851
|
Abstract
Recent remarkable progress in genomic novel drug discovery enables us to prepare drug candidates with tremendous diversity in a high-throughput-manner. In clinical use of these candidates, they should be effectively delivered to a target-tissue in body. But delivery systems suitable for the high-throughput discovery of drugs have never been established. Tight junctions (TJs) play a pivotal role in compartmentation of each tissues and maintenance of their intra-circumstances. Claudin, a membrane protein with four trans-membrane domains, have recently found to be responsible for the barrier-function of TJs. Claudin is constituted of 24 family members, and expression profiles and barrier-function of claudin differ interestingly among the family members. These findings indicate that a modulator of the unique barrier-function of claudin may be used for drug delivery. In this respect, we have investigated whether a claudin is a target for drug delivery. A claudin modulator (C-terminal fragment of Clostridium perfringens enterotoxin, C-CPE) had 400-fold jejunal absorption-enhancing activity to a clinically used absorption-enhancer, and interaction between C-CPE and claudin was essential for the enhancing activity. We have already prepared a screening system for claudin-targeting molecule. Now we are performing functional domain mapping of C-CPE, and we will attempt to prepare a various type of claudin modulator in a future. In the current review, I introduce our recent works on development of a novel strategy for drug delivery system using claudin modulator, and I discuss also possibility of claudin modulator in drug delivery system.
Collapse
Affiliation(s)
- Masuo Kondoh
- Department of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan.
| |
Collapse
|
852
|
Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, Ehalt T, Hammer JA, Miller SS. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 2006; 47:3612-24. [PMID: 16877436 PMCID: PMC1904392 DOI: 10.1167/iovs.05-1622] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Provide a reproducible method for culturing confluent monolayers of hfRPE cells that exhibit morphology, physiology, polarity, and protein expression patterns similar to native tissue. METHODS Human fetal eyes were dissected on arrival, and RPE cell sheets were mechanically separated from the choroid and cultured in a specifically designed medium comprised entirely of commercially available components. Physiology experiments were performed with previously described techniques. Standard techniques were used for immunohistochemistry, electron microscopy, and cytokine measurement by ELISA. RESULTS Confluent monolayers of RPE cell cultures exhibited epithelial morphology and heavy pigmentation, and electron microscopy showed extensive apical membrane microvilli. The junctional complexes were identified with immunofluorescence labeling of various tight junction proteins. The mean transepithelial potential (TEP) was 2.6 +/- 0.8 mV, apical positive, and the mean transepithelial resistance (R(T)) was 501 +/- 138 Omega . cm(2) (mean +/- SD; n = 35). Addition of 100 microM adenosine triphosphate (ATP) to the apical bath increased net fluid absorption from 13.6 +/- 2.6 to 18.8 +/- 4.6 microL . cm(-2) per hour (mean +/- SD; n = 4). In other experiments, VEGF was mainly secreted into the basal bath (n = 10), whereas PEDF was mainly secreted into the apical bath (n = 10). CONCLUSIONS A new cell culture procedure has been developed that produces confluent primary hfRPE cultures with morphological and physiological characteristics of the native tissue. Epithelial polarity and function of these easily reproducible primary cultures closely resemble previously studied native human fetal and bovine RPE-choroid explants.
Collapse
Affiliation(s)
- Arvydas Maminishkis
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
853
|
Luo Y, Fukuhara M, Weitzman M, Rizzolo LJ. Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions. Brain Res 2006; 1110:55-63. [PMID: 16859655 DOI: 10.1016/j.brainres.2006.06.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 01/23/2023]
Abstract
The tight junctions of the endothelial and epithelial regions of the blood-brain barrier are regulated by interactions with the neighboring tissue. We examined how the neural retina regulates the assembly of tight junctions in the retinal pigment epithelium (RPE). The proteins JAM-A, AF-6, PAR-3 and PAR-6 have been implicated in the assembly of other epithelial tight junctions. Using chick embryos and primary cell culture, we examined gene expression of these proteins during embryonic development, and whether retinal secretions regulate their expression. Three highly conserved RNA splice sites of AF-6 were identified in chick ocular tissues, but only two were expressed in RPE. JAM-A and AF-6 were expressed at relatively high levels early in development when adherens junctions form, but before tight junctions form. Expression of JAM-A and the AF-6 isoforms actually decreased when tight junctions were forming and expanding. The expression of PAR-3 and PAR-6 was constant. Despite the expression of these proteins in vitro (along with claudins, occludin, ZO-1 and ZO-2), the tight junctional networks that form were discontinuous (Rahner, C., Fukuhara, M., Peng, S., Kojima, S., Rizzolo, L.J., 2004. The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development. J. Cell Sci. 117, 3307-3318). The expression of these assembly proteins was unaffected by a retinal conditioned medium that induced the completion of tight junction formation. These data indicate that the early expression of the assembly proteins corresponds to the initial establishment of the adherens and tight junctions, but secretory products of the neural retina must induce the expression of additional proteins to complete the maturation process.
Collapse
Affiliation(s)
- Yan Luo
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520-8062, USA
| | | | | | | |
Collapse
|
854
|
Rehder D, Iden S, Nasdala I, Wegener J, Brickwedde MKMZ, Vestweber D, Ebnet K. Junctional adhesion molecule-a participates in the formation of apico-basal polarity through different domains. Exp Cell Res 2006; 312:3389-403. [PMID: 16919624 DOI: 10.1016/j.yexcr.2006.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/06/2006] [Accepted: 07/14/2006] [Indexed: 12/21/2022]
Abstract
Junctional adhesion molecule (JAM)-A is an integral membrane protein at tight junctions of epithelial cells which associates with the cell polarity protein PAR-3. Here, we demonstrate that downregulation of JAM-A impairs the ability of MDCK II cells to form cysts in a three-dimensional matrix indicating the requirement of JAM-A for the development of apico-basal polarity. To define the regions of JAM-A important for this function, we have generated MDCK II cell lines stably expressing inducible JAM-A mutants. Mutants of JAM-A which were designed to mislocalize strongly impaired the development of cysts and the formation of functional tight junctions. Surprisingly, similar mutants that lacked the PDZ domain-binding motif at the C-terminus were still impaired in apico-basal polarity formation suggesting that additional regions within the cytoplasmic tail of JAM-A are important for the function of JAM-A. A JAM-A mutant lacking the first Ig-like domain necessary for homophilic binding localized to cell-cell contacts similar to wild-type JAM-A. However, despite this same localization, this mutant interfered with cell polarity and tight junction formation. Together our findings suggest an important role for JAM-A in the development of apico-basal polarity in epithelial cells and identify regions in JAM-A which are critical for this role.
Collapse
Affiliation(s)
- Daniela Rehder
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
855
|
Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM. Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 2006; 291:F1288-99. [PMID: 16804102 DOI: 10.1152/ajprenal.00138.2006] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Members of the large claudin family of tight junction (TJ) proteins create the differences in paracellular conductance and charge selectivity observed among different epithelia. Previous studies demonstrated that ionic charge selectivity is influenced by acidic or basic amino acids on the first extracellular domain of claudins. We noted two alternatively spliced variants of claudin-10 in the database, 10a and 10b, which are predicted to encode two different first extracellular domains and asked whether this might be a novel mechanism to generate two different permselectivities from a single gene. Using quantitative PCR, we found that claudin-10b is widely expressed among tissues including the kidney; however, claudin-10a is unique to the kidney. Using a nondiscriminating antibody, we found that claudin-10 (a plus b) is expressed in most segments of the nephron. In situ hybridization, however, showed that mRNA for 10a is concentrated in the cortex, and mRNA for 10b is more highly expressed in the medulla. Expression in Madin-Darby canine kidney (MDCK) II and LLC-PK1 cells reveals that both variants form low-resistance pores, and that claudin-10b is more selective for cations than claudin-10a. Charge-reversing mutations of cationic residues on 10a reveal positions that contribute to its anion selectivity. We conclude that alternative splicing of claudin-10 generates unique permselectivities and might contribute to the variable paracellular transport observed along the nephron.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| | | | | | | | | | | |
Collapse
|
856
|
Zhang NN, Dudgeon DD, Paliwal S, Levchenko A, Grote E, Cunningham KW. Multiple signaling pathways regulate yeast cell death during the response to mating pheromones. Mol Biol Cell 2006; 17:3409-22. [PMID: 16738305 PMCID: PMC1525234 DOI: 10.1091/mbc.e06-03-0177] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mating pheromones promote cellular differentiation and fusion of yeast cells with those of the opposite mating type. In the absence of a suitable partner, high concentrations of mating pheromones induced rapid cell death in approximately 25% of the population of clonal cultures independent of cell age. Rapid cell death required Fig1, a transmembrane protein homologous to PMP-22/EMP/MP20/Claudin proteins, but did not require its Ca2+ influx activity. Rapid cell death also required cell wall degradation, which was inhibited in some surviving cells by the activation of a negative feedback loop involving the MAP kinase Slt2/Mpk1. Mutants lacking Slt2/Mpk1 or its upstream regulators also underwent a second slower wave of cell death that was independent of Fig1 and dependent on much lower concentrations of pheromones. A third wave of cell death that was independent of Fig1 and Slt2/Mpk1 was observed in mutants and conditions that eliminate calcineurin signaling. All three waves of cell death appeared independent of the caspase-like protein Mca1 and lacked certain "hallmarks" of apoptosis. Though all three waves of cell death were preceded by accumulation of reactive oxygen species, mitochondrial respiration was only required for the slowest wave in calcineurin-deficient cells. These findings suggest that yeast cells can die by necrosis-like mechanisms during the response to mating pheromones if essential response pathways are lacking or if mating is attempted in the absence of a partner.
Collapse
Affiliation(s)
| | | | - Saurabh Paliwal
- Whitaker Institute for Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; and
| | - Andre Levchenko
- Whitaker Institute for Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; and
| | - Eric Grote
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | |
Collapse
|
857
|
Abstract
Tight junctions restrict the flow of ions and aqueous molecules between cells by forming a selective barrier to the paracellular pathway. Permeability of the tight junction barrier is determined by a class of transmembrane proteins known as claudins. The relationship between claudins and paracellular permeability is complex and determined not only by the profile of claudin expression but also by the arrangement of claudins and other proteins into tight junction strands. This review summarizes progress in understanding how claudins are assembled into tight junctions and how they interact with other tight junction proteins.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
858
|
Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 2006; 54:933-44. [PMID: 16651389 DOI: 10.1369/jhc.6a6944.2006] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Among tight-junction proteins, claudins, which play a key role in paracellular transport across epithelia, claudins 1 to 5 are expressed in the intestine, and changes in their abundance and/or distribution are considered to contribute to various gastrointestinal diseases. We investigated, by reverse transcription-PCR, immunoblot, and immunofluorescence analyses, which other claudin species were expressed in the mouse intestine, and whether they showed unique expression profiles. Rabbit polyclonal antibodies against mouse claudin-8, claudin-12, and claudin-15 were generated, and their specificity was verified by immunoblotting using COS-7 cells transfected with individual claudin cDNAs. Claudin-7, -8, -12, -13, and -15 appeared to be expressed in the duodenum, jejunum, ileum, and/or colon with remarkable variations in the expression levels along the intestinal tract, and had distinct subcellular localization in the intestinal epithelium. In addition, claudin-13 and -15 exhibited gradients along the crypt-surface axis of the colon. By contrast, claudin-6, -9, -10, -11, -14, -16, -18, and -19 were not observed in the intestine. Our results indicate that five additional species of claudins have very complex expression patterns along and within the intestine, and that this may reflect differences in paracellular permeable properties, providing valuable resources for studying the significance of these claudins in gastrointestinal disorders. This manuscript contains online supplemental material available at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Hiroki Fujita
- Dept. of Pathology, Sapporo Medical University School of Medicine, S1, W17, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
859
|
Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, Hunziker W. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 2006; 116:878-91. [PMID: 16528408 PMCID: PMC1395478 DOI: 10.1172/jci26323] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/10/2006] [Indexed: 12/20/2022] Open
Abstract
Claudin-16 (Cldn16) is selectively expressed at tight junctions (TJs) of renal epithelial cells of the thick ascending limb of Henle's loop, where it plays a central role in the reabsorption of divalent cations. Over 20 different mutations in the CLDN16 gene have been identified in patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), a disease of excessive renal Mg2+ and Ca2+ excretion. Here we show that disease-causing mutations can lead to the intracellular retention of Cldn16 or affect its capacity to facilitate paracellular Mg2+ transport. Nine of the 21 Cldn16 mutants we characterized were retained in the endoplasmic reticulum, where they underwent proteasomal degradation. Three mutants accumulated in the Golgi complex. Two mutants were efficiently delivered to lysosomes, one via clathrin-mediated endocytosis following transport to the cell surface and the other without appearing on the plasma membrane. The remaining 7 mutants localized to TJs, and 4 were found to be defective in paracellular Mg2+ transport. We demonstrate that pharmacological chaperones rescued surface expression of several retained Cldn16 mutants. We conclude that FHHNC can result from mutations in Cldn16 that affect intracellular trafficking or paracellular Mg2+ permeability. Knowledge of the molecular defects associated with disease-causing Cldn16 mutations may open new venues for therapeutic intervention.
Collapse
Affiliation(s)
- P. Jaya Kausalya
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Salah Amasheh
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dorothee Günzel
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Henrik Wurps
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dominik Müller
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Michael Fromm
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| |
Collapse
|
860
|
Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 2006; 6:581-8. [PMID: 16458081 DOI: 10.1016/j.modgep.2005.12.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 01/29/2023]
Abstract
Members of the claudin protein family are key regulators of tight junction selectivity and are implicated in influencing development and cellular differentiation in the intestine and other tissues. The goal of the present study was to profile claudin gene expression and protein location during postnatal development of the mouse jejunum and in the adult mouse gut from duodenum to distal colon as a first step in understanding both normal claudin function and the pathologic implications of altered expression patterns. The relative expression of claudins 1-19 and other tight and adherens junction genes was determined by quantitative RT-PCR from six regions of normal mouse intestine and colon. Immunofluorescent localization was performed for claudins 1-5, 7, 8, 10, 12, 15, and 18. Transcripts for claudins 1-5, 7-13, 17, and 18 were all detected in adult intestine, although their relative abundance differed up to 1000-fold within individual segments. In contrast to the unchanging expression and localization of ZO-1, occludin, and JAM, most claudins were expressed in decreasing or increasing gradients or in more complex patterns along the longitudinal axis of the intestine and the crypt to villus/surface differentiation axis. During neonatal development at days 1, 14, 28, and 90 several claudins showed striking increases or decreases in transcript expression as well as changes in tissue localization along the crypt-villus axis. Claudin-19 was only detected at days 1 and 14. This database provides a resource for investigating regional and developmental differences in permselectivity, crypt to villus/surface differentiation and neoplastic changes along the gut and during postnatal development.
Collapse
Affiliation(s)
- Jennifer L Holmes
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
861
|
Kondoh M, Takahashi A, Fujii M, Yagi K, Watanabe Y. A Novel Strategy for a Drug Delivery System Using a Claudin Modulator. Biol Pharm Bull 2006; 29:1783-9. [PMID: 16946486 DOI: 10.1248/bpb.29.1783] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the continued progress in genomic drug discovery, the high-throughput production of drug candidates has become possible, and thus today there are a number of candidates that are extremely effective both in cell-free and in cell models. However, a drug delivery system suitable for the high-throughput production has yet to be fully developed. In tissues, the tight junction (TJ) plays a pivotal role as both a barrier to restrict various substances and in intra-tissue maintenance. Claudin, a ca. 23 kDa transmembrane protein with four transmembrane domains, is responsible for the TJ functions. Interestingly, for each of the 24 members of the claudin family, expression profiles and exact barrier functions differ. Therefore, claudin may be a potential target for use as a drug delivery system via a paracellular route. The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) is known to modulate the barrier function of claudin. We found that C-CPE is a potent absorption-enhancer and that this enhancing activity is 400-fold greater than clinically used enhancers. The enhancing activity examined in this study involved an interaction between C-CPE and claudin-4. These findings indicate that claudin might be a novel target for a drug delivery system. In the current review, we describe about background and data on our research about claudin modulator, and we also discuss the possibility of the use of the claudin family in a new approach for developing a drug delivery system.
Collapse
Affiliation(s)
- Masuo Kondoh
- Department of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
862
|
Berger P, Niemann A, Suter U. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 2006; 54:243-57. [PMID: 16856148 DOI: 10.1002/glia.20386] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the last 15 years, a number of mutations in a variety of genes have been identified that lead to inherited motor and sensory neuropathies (HMSN), also called Charcot-Marie-Tooth disease (CMT). In this review we will focus on the molecular and cellular mechanisms that cause the Schwann cell pathologies observed in dysmyelinating and demyelinating forms of CMT. In most instances, the underlying gene defects alter primarily myelinating Schwann cells followed by secondary axonal degeneration. The first set of proteins affected by disease-causing mutations includes the myelin components PMP22, P0/MPZ, Cx32/GJB1, and periaxin. A second group contains the regulators of myelin gene transcription EGR2/Krox20 and SOX10. A third group is composed of intracellular Schwann cells proteins that are likely to be involved in the synthesis, transport and degradation of myelin components. These include the myotubularin-related lipid phosphatase MTMR2 and its regulatory binding partner MTMR13/SBF2, SIMPLE, and potentially also dynamin 2. Mutations affecting the mitochondrial fission factor GDAP1 may indicate an important contribution of mitochondria in myelination or myelin maintenance, whereas the functions of other identified genes, including NDRG1, KIAA1985, and the tyrosyl-tRNA synthase YARS, are not yet clear. Mutations in GDAP1, YARS, and the pleckstrin homology domain of dynamin 2 lead to an intermediate form of CMT that is characterized by moderately reduced nerve conduction velocity consistent with minor myelin deficits. Whether these phenotypes originate in Schwann cells or in neurons, or whether both cell types are directly affected, remains a challenging question. However, based on the advances in systematic gene identification in CMT and the analyses of the function and dysfunction of the affected proteins, crucially interconnected pathways in Schwann cells in health and disease have started to emerge. These networks include the control of myelin formation and stability, membrane trafficking, intracellular protein sorting and quality control, and may extend to mitochondrial dynamics and basic protein biosynthesis.
Collapse
Affiliation(s)
- Philipp Berger
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
863
|
[Effectiveness of hyperbaric oxygenation as a factor of increasing the resistance of the human body to space flight conditions]. Infect Immun 1991; 76:1340-8. [PMID: 2292865 DOI: 10.1128/iai.00778-07] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In four experimental runs (30 test subjects in 407 tests), the beneficial effect of hyperbaric oxygenation (HBO) on flight tolerance was demonstrated. HBO sessions (7-8 sessions of an hour in duration during 10-12 days at pO2 = 2 atm) helped subjects with poor altitude tolerance to increase the altitude ceiling by 1 km and reserve time at altitudes of 6-7 km by 3-4 min, the effect being persistent for 2-3 months. Statokinetic tolerance of subjects with medium motion sickness susceptibility grew by 2-2.5 times after the above HBO sessions. As compared to regular rest, the HBO treatment shortened two-fold the period of recovery of the health state and work capacity of operators, which went down during flight, and increased 15-20% the time of repeated work prior to failure in a stressful environment.
Collapse
|