901
|
A Comparative Study of Granular Agglomeration between 3D Printed Hydroxyapatite and Commercial Bone Graft Granules. ACTA ACUST UNITED AC 2019. [DOI: 10.4028/www.scientific.net/kem.798.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Granule characteristics and the agglomeration ability of 3D printed hydroxyapatite granules (3DP HA) when contacting water were compared to those of commercial bone graft granules based on hydroxyapatite/β-tricalcium phosphate/collagen mixture (Sunmax). Microstructure, phase composition, water absorption and granular agglomeration of the granules were characterized. SEM showed that the granule sizes of Sunmax were in the range of 0.8-1.5 mm whereas that of 3DP HA was relatively more uniform at about 1 mm. 3DP HA granules comprised the weaving of numerous minute crystals containing large pores and having high porosity while Sunmax granules were crushed granules and having low porosity. XRD analysis confirmed that Sunmax granules were biphasic hydroxyapatite and β-tricalcium phosphate while 3DP HA granules were monophasic hydroxyapatite. Sunmax granules exhibited greater agglomeration volume than that of 3DP HA granules. However, the water absorption of 3DP HA granules was greater than that of Sunmax granules. The greater agglomeration ability of Sunmax granules was likely due to the collagen constituent of the granules which could act as adhesive to bind granules together in addition to water capillary action. In contrast, 3DP HA granules formed the agglomeration by the water film due to the capillary action only so the efficiency was lower although the water absorption was greater.
Collapse
|
902
|
Cai Z, Wan Y, Becker ML, Long YZ, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials 2019; 208:45-71. [PMID: 30991217 DOI: 10.1016/j.biomaterials.2019.03.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Poly(propylene fumarate) (PPF) is a biodegradable polymer that has been investigated extensively over the last three decades. It has led many scientists to synthesize and fabricate a variety of PPF-based materials for biomedical applications due to its controllable mechanical properties, tunable degradation and biocompatibility. This review provides a comprehensive overview of the progress made in improving PPF synthesis, resin formulation, crosslinking, device fabrication and post polymerization modification. Further, we highlight the influence of these parameters on biodegradation, biocompatibility, and their use in a number of regenerative medicine applications, especially bone tissue engineering. In particular, the use of 3D printing techniques for the fabrication of PPF-based scaffolds is extensively reviewed. The recent invention of a ring-opening polymerization method affords precise control of PPF molecular mass, molecular mass distribution (ƉM) and viscosity. Low ƉM facilitates time-certain resorption of 3D printed structures. Novel post-polymerization and post-printing functionalization methods have accelerated the expansion of biomedical applications that utilize PPF-based materials. Finally, we shed light on evolving uses of PPF-based materials for orthopedics/bone tissue engineering and other biomedical applications, including its use as a hydrogel for bioprinting.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| | - Yong Wan
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China; Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China.
| | - David Dean
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
903
|
Taghavi MA, Rabiee SM, Jahanshahi M, Nasiri F. Electrospun Poly-ε-Caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) Composite Scaffold for Tissue Engineering Application. Mol Biotechnol 2019; 61:345-354. [PMID: 30887276 DOI: 10.1007/s12033-019-00168-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recently electrospun scaffolds show excellent response in cell adhesion, growth, and tissue healing in comparison with other techniques. So in this study, PCL and PCL/DCPD scaffolds were designed and prepared with electrospinning. The electrospun scaffolds were characterized by scanning electron microscope with X-ray elemental analysis, atomic force microcopy, differential scanning calorimetry, and contact angle analysis for optimizing the effective parameters. Fiber formation with uniform diameter and bead-free structure was obtained. Scaffold surface roughness increased from 100 nm for PCL to 440 nm for PCL/DCPD. DSC analysis showed the effects of DCPD on thermal stability of composite scaffold and the results of contact angle evaluation indicate improved hydrophilicity and ability of water absorption of PCL/DCPD composite fibers as compared to PCL fibers. MTT assay indicated lack of toxicity for human gingival fibroblast (HGF) cells after cell seeding on scaffold. Also, the composite scaffold can improve cell viability by helping their growth on its surface. So it can be concluded that by engineering the electrospinning parameters we can fabricate a PCL/DCPD composite scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Milad Angooraj Taghavi
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran.,Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran. .,Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran.,Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Fatemeh Nasiri
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
904
|
Götz W, Tobiasch E, Witzleben S, Schulze M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019; 11:E117. [PMID: 30871062 PMCID: PMC6471146 DOI: 10.3390/pharmaceutics11030117] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.
Collapse
Affiliation(s)
- Werner Götz
- Department of Orthodontics, Oral Biology Laboratory, School of Dentistry, Rheinische Wilhelms University of Bonn, Welschnonnenstr. 17, D-53111 Bonn, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
905
|
Pensa NW, Curry AS, Reddy MS, Bellis SL. The addition of a polyglutamate domain to the angiogenic QK peptide improves peptide coupling to bone graft materials leading to enhanced endothelial cell activation. PLoS One 2019; 14:e0213592. [PMID: 30856221 PMCID: PMC6411101 DOI: 10.1371/journal.pone.0213592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Vascularization of bone grafts is vital for graft integration and bone repair, however non-autologous graft sources have limited potential to induce angiogenesis. Accordingly, intensive research has focused on functionalizing non-autologous materials with angiogenic factors. In the current study we evaluated a method for coupling an angiogenic peptide to the surface of two clinically-relevant graft materials, anorganic bovine bone (ABB) and synthetic hydroxyapatite (HA). Specifically, the VEGF-derived “QK” peptide was synthesized with a heptaglutamate (E7) domain, a motif that has strong affinity for calcium phosphate graft materials. Compared with unmodified QK, a 4–6 fold enrichment was observed in the binding of E7-modified QK (E7-QK) to ABB and HA. The E7-QK peptide was then assessed for its capacity to stimulate angiogenic cell behaviors. Human umbilical vein endothelial cells (HUVECs) were treated with solutions of either QK or E7-QK, and it was found that QK and E7-QK elicited equivalent levels of cell migration, tubule formation and activation of the Akt and ERK signaling pathways. These data confirmed that the inherent bioactivity of the QK sequence was not diminished by the addition of the E7 domain. We further verified that the activity of E7-QK was retained following peptide binding to the graft surface. HA disks were coated with QK or E7-QK, and then HUVECs were seeded onto the disks. Consistent with the increased amount of E7-QK bound to HA, relative to QK, markedly greater activation of Akt and ERK 1/2 was observed in cells exposed to the E7-QK-coated disks. Taken together, these results suggest that the E7 domain can be leveraged to concentrate angiogenic peptides on graft materials, facilitating delivery of higher peptide concentrations within the graft site. The ability to endow diverse graft materials with angiogenic potential holds promise for augmenting the regenerative capacity of non-autologous bone grafts.
Collapse
Affiliation(s)
- Nicholas W. Pensa
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew S. Curry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael S. Reddy
- School of Dentistry, University of California, San Francisco, California, United States of America
- * E-mail: (SLB); (MSR)
| | - Susan L. Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (SLB); (MSR)
| |
Collapse
|
906
|
Stastny P, Sedlacek R, Suchy T, Lukasova V, Rampichova M, Trunec M. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:544-553. [PMID: 30948091 DOI: 10.1016/j.msec.2019.03.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
The structure degradation and strength changes of calcium phosphate scaffolds after long-term exposure to an acidic environment simulating the osteoclastic activity were determined and compared. Sintered calcium phosphate scaffolds with different phase structures were prepared with a similar cellular pore structure and an open porosity of over 80%. Due to microstructural features the biphasic calcium phosphate (BCP) scaffolds had a higher compressive strength of 1.7 MPa compared with the hydroxyapatite (HA) and β-tricalcium phosphate (TCP) scaffolds, which exhibited a similar strength of 1.2 MPa. After exposure to an acidic buffer solution of pH = 5.5, the strength of the HA scaffolds did not change over 14 days. On the other hand, the strength of the TCP scaffolds decreased steeply in the first 2 days and reached a negligible value of 0.09 MPa after 14 days. The strength of the BCP scaffolds showed a steady decrease with a reasonable value of 0.5 MPa after 14 days. The mass loss, phase composition and microstructural changes of the scaffolds during degradation in the acidic environment were investigated and a mechanism of scaffold degradation was proposed. The BCP scaffold showed the best cell response in the in vitro tests. The BCP scaffold structure with the highly soluble phase (α-TCP) embedded in a less soluble matrix (β-TCP/HA) exhibited a controllable degradation with a suitable strength stability and with beneficial biological behavior it represented the preferred calcium phosphate structure for a resorbable bone scaffold.
Collapse
Affiliation(s)
- Premysl Stastny
- CEITEC BUT, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Radek Sedlacek
- Department of Mechanics, Biomechanics and Mechatronics, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic
| | - Tomas Suchy
- Department of Mechanics, Biomechanics and Mechatronics, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic; Institute of Rock Structure and Mechanics, Czech Academy of Sciences, V Holesovickach 41, 182 09 Prague, Czech Republic
| | - Vera Lukasova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; University Center for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic; Department of Cell Biology, Charles University, Vinicna 5, 128 00 Prague, Czech Republic
| | - Michala Rampichova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Martin Trunec
- CEITEC BUT, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; Institute of Materials Science and Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic.
| |
Collapse
|
907
|
Wang X, Lin M, Kang Y. Engineering Porous β-Tricalcium Phosphate (β-TCP) Scaffolds with Multiple Channels to Promote Cell Migration, Proliferation, and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9223-9232. [PMID: 30758175 DOI: 10.1021/acsami.8b22041] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inadequate oxygen and nutrient diffusion in a porous scaffold often resulted in insufficient formation of branched vasculatures, which hindered bone regeneration. In this study, interconnected porous β-tricalcium phosphate (β-TCP) scaffolds with different geometric designs of channels were fabricated and compared to discover the functionality of structure on facilitating nutrient diffusion for angiogenesis. In vitro fluid transportation and degradation of the scaffolds were performed. Cell infiltration, migration, and proliferation of human umbilical vein endothelial cells (HUVECs) on the scaffolds were carried out under both static and dynamic culture conditions. A computational simulation model and a series of immunofluorescent staining were implemented to understand the mechanism of cell behavior in response to different types of scaffolds. Results showed that geometry with multiple channels significantly accelerated the release of Ca2+ and increased the fluid diffusion efficiency. Moreover, multiple channels promoted HUVECs' infiltration and migration in vitro. The ex vivo implantation results showed that the channels promoted cells from the rats' calvarial bone explants to infiltrate into the implanted scaffold. Multiple channels also stimulated HUVECs' proliferation prominently at both static and dynamic culturing conditions. The expression of both cell migration-related protein α5 and angiogenesis-related protein CD31 on multiple-channeled scaffolds was upregulated compared to that on the other two types of scaffolds, implying that multiple channels reinforced cell migration and angiogenesis. All the findings suggested that the geometric design of multiple channels in the porous β-TCP scaffold has promising potential to promote cell infiltration, migration, and further vascularization when implanted in vivo.
Collapse
Affiliation(s)
| | | | - Yunqing Kang
- Integrative Biology PhD Program, Department of Biological Science, College of Science , Florida Atlantic University , Boca Raton , Florida 33431 , United States
| |
Collapse
|
908
|
Characterization of circulating DNA in plasma of patients after allogeneic bone grafting. Clin Oral Investig 2019; 23:4243-4253. [DOI: 10.1007/s00784-019-02867-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
|
909
|
Kim I, Lee SS, Kim SHL, Bae S, Lee H, Hwang NS. Osteogenic Effects of VEGF-Overexpressed Human Adipose-Derived Stem Cells with Whitlockite Reinforced Cryogel for Bone Regeneration. Macromol Biosci 2019; 19:e1800460. [PMID: 30821921 DOI: 10.1002/mabi.201800460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Bone is a vascularized tissue that is comprised of collagen fibers and calcium phosphate crystals such as hydroxyapatite (HAp) and whitlockite (WH). HAp and WH are known to elicit bone regeneration by stimulating osteoblast activities and osteogenic commitment of stem cells. In addition, vascular endothelial growth factor (VEGF) is shown to promote osteogenesis and angiogenesis which is considered as an essential process in bone repair by providing nutrients. In this study, VEGF-secreting human adipose-derived stem cells (VEGF-ADSCs) are developed by transducing ADSCs with VEGF-encoded lentivirus. Additionally, WH-reinforced gelatin/heparin cryogels (WH-C) are fabricated by loading WH into gelatin/heparin cryogels. VEGF-ADSC secrete tenfold more VEGF than ADSC and show increased VEGF secretion with cell growth. Also, incorporation of WH into cryogels provides a mineralized environment with ions secreted from WH. When the VEGF-ADSCs are seeded on WH-C, sustained release of VEGF is observed due to the specific affinity of VEGF to heparin. Finally, the synergistic effect of VEGF-ADSC and WH on osteogenesis is successfully confirmed by alkaline phosphatase and real-time polymerase chain reaction analysis. In vivo bone formation is demonstrated via implantation of VEGF-ADSC seeded WH-C into mouse calvarial bone defect model, resulted in enhanced bone development with the highest bone volume/total volume.
Collapse
Affiliation(s)
- Inseon Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghun S Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunghoon Bae
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoyon Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,BioMax Institute of Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
910
|
Westhauser F, Karadjian M, Essers C, Senger AS, Hagmann S, Schmidmaier G, Moghaddam A. Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented β-TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS One 2019; 14:e0212799. [PMID: 30811492 PMCID: PMC6392320 DOI: 10.1371/journal.pone.0212799] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Since the amount of autologous bone for the treatment of bone defects is limited and harvesting might cause complications, synthetic bone substitutes such as the popular β-tricalcium phosphate (β-TCP) based Vitoss have been developed as an alternative grafting material. β-TCPs exhibit osteoconductive properties, however material-initiated stimulation of osteogenic differentiation is limited. These limitations might be overcome by addition of 45S5 bioactive glass (BG) particles. This study aims to analyze the influence of BG particles in Vitoss BA (20 wt% BG particles with a size of 90–150 μm) on osteogenic properties, cell vitality and cell proliferation in direct comparison to Vitoss by evaluation of the underlying cellular mechanisms. For that purpose, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stem cells (MSC) and underwent osteogenic differentiation in-vitro for up to 42 days. Cell vitality, proliferation, and osteogenic differentiation were monitored by quantitative gene expression analysis, determination of alkaline phosphatase activity, PrestoBlue cell viability assay, dsDNA quantification, and a fluorescence-microscopy-based live/dead-assay. It was demonstrated that BG particles decrease cell proliferation but do not have a negative impact on cell vitality. Especially the early stages of osteogenic differentiation were significantly improved in the presence of BG particles, resulting in earlier maturation of the MSC towards osteoblasts. Since most of the stimulatory effects induced by BG particles took place initially, particles exhibiting another surface-area-to-volume ratio should be considered in order to provide long-lasting stimulation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| | - Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne-Sophie Senger
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| |
Collapse
|
911
|
Solakoglu Ö, Götz W, Kiessling MC, Alt C, Schmitz C, Alt EU. Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors: A first-in-human case report and literature review. World J Stem Cells 2019; 11:124-146. [PMID: 30842809 PMCID: PMC6397807 DOI: 10.4252/wjsc.v11.i2.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Novel strategies are needed for improving guided bone regeneration (GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation (GBR-MSA) and in lateral alveolar ridge augmentation (LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells (UA-ADRCs), fraction 2 of plasma rich in growth factors (PRGF-2) and an osteoinductive scaffold (OIS) (UA-ADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone (PRGF-2/OIS) in GBR-MSA/LRA. CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBR-MSA/LRA. At the latter time point implants were placed. Radiographs (32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic, histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS. CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.
Collapse
Affiliation(s)
- Önder Solakoglu
- External Visiting Lecturer, Dental Department of the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Clinic for Periodontology and Implantology, Hamburg 22453, Germany.
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn 53111, Germany
| | - Maren C Kiessling
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Eckhard U Alt
- InGeneron GmbH, Munich 80331, Germany
- InGeneron, Inc., Houston, TX 77054, United States
- Isar Klinikum Munich, 80331 Munich, Germany
| |
Collapse
|
912
|
Femtosecond Laser Fabrication of Engineered Functional Surfaces Based on Biodegradable Polymer and Biopolymer/Ceramic Composite Thin Films. Polymers (Basel) 2019; 11:polym11020378. [PMID: 30960362 PMCID: PMC6419159 DOI: 10.3390/polym11020378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 01/05/2023] Open
Abstract
Surface functionalization introduced by precisely-defined surface structures depended on the surface texture and quality. Laser treatment is an advanced, non-contact technique for improving the biomaterials surface characteristics. In this study, femtosecond laser modification was applied to fabricate diverse structures on biodegradable polymer thin films and their ceramic blends. The influences of key laser processing parameters like laser energy and a number of applied laser pulses (N) over laser-treated surfaces were investigated. The modification of surface roughness was determined by atomic force microscopy (AFM). The surface roughness (Rrms) increased from approximately 0.5 to nearly 3 µm. The roughness changed with increasing laser energy and a number of applied laser pulses (N). The induced morphologies with different laser parameters were compared via Scanning electron microscopy (SEM) and confocal microscopy analysis. The chemical composition of exposed surfaces was examined by FTIR, X-ray photoelectron spectroscopy (XPS), and XRD analysis. This work illustrates the capacity of the laser microstructuring method for surface functionalization with possible applications in improvement of cellular attachment and orientation. Cells exhibited an extended shape along laser-modified surface zones compared to non-structured areas and demonstrated parallel alignment to the created structures. We examined laser-material interaction, microstructural outgrowth, and surface-treatment effect. By comparing the experimental results, it can be summarized that considerable processing quality can be obtained with femtosecond laser structuring.
Collapse
|
913
|
Chocholata P, Kulda V, Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E568. [PMID: 30769821 PMCID: PMC6416573 DOI: 10.3390/ma12040568] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.
Collapse
Affiliation(s)
- Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| |
Collapse
|
914
|
The Role of Strontium Enriched Hydroxyapatite and Tricalcium Phosphate Biomaterials in Osteoporotic Bone Regeneration. Symmetry (Basel) 2019. [DOI: 10.3390/sym11020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Strontium (Sr) enriched biomaterials have been used to improve bone regeneration in vivo. However, most studies provide only two experimental groups. The aim of our study was to compare eleven different bone sample groups from osteoporotic and healthy rabbits’ femoral neck, as it is the most frequent osteoporotic fracture in humans. Methods: Osteoporotic bone defects were filled with hydroxyapatite 30% (HA) and tricalcium phosphate 70% (TCP), 5% Sr-enriched HA30/TCP70, HA70/TCP30, or Sr-HA70/TCP30 granules and were compared with intact leg, sham surgery and healthy non-operated bone. Expression of osteoprotegerin (OPG), nuclear factor kappa beta 105 (NFkB-105), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP-2/4), collagen I (Col-1α), matrix metalloproteinase 2 (MMP-2), tissue inhibitor of matrix metalloproteinase 2 (TIMP-2), interleukin 1 (IL-1) and interleukin 10 (IL-10) was analyzed by histomorphometry and immunohistochemistry. Results: Our study showed that Sr-HA70/TCP30 induced higher expression of all above-mentioned factors compared to intact leg and even higher expression of OC, MMP-2 and NFkB-105 compared to Sr-HA30/TCP70. HA70/TCP30 induced higher level of NFkB-105 and IL-1 compared to HA30/TCP70. Conclusion: Sr-enriched biomaterials improved bone regeneration at molecular level in severe osteoporosis and induced activity of the factors was higher than after pure ceramic, sham or even healthy rabbits.
Collapse
|
915
|
Morsi NM, Shamma RN, Eladawy NO, Abdelkhalek AA. Risedronate-Loaded Macroporous Gel Foam Enriched with Nanohydroxyapatite: Preparation, Characterization, and Osteogenic Activity Evaluation Using Saos-2 Cells. AAPS PharmSciTech 2019; 20:104. [PMID: 30737611 DOI: 10.1208/s12249-019-1292-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
The application of minimally invasive surgical techniques in the field of orthopedic surgery has created a growing need for new injectable synthetic materials that can be used for bone grafting. In this work, novel injectable thermosensitive foam was developed by mixing nHAP powder with a thermosensitive polymer with foaming power (Pluronic F-127) and loaded with a water-soluble bisphosphonate drug (risedronate) to promote osteogenesis. The foam was able to retain the porous structure after injection and set through temperature change of PF-127 solution to form gel inside the body. The effect of different formulation parameters on the gelation time, porosity, foamability, injectability, and in vitro degradation in addition to drug release from the prepared foams were analyzed using a full factorial design. The addition of a co-polymer like methylcellulose or sodium alginate into the foam was also studied. Results showed that the prepared optimized thermosensitive foam was able to gel within 1 min at 37°C, and sustain the release of drug for 72 h. The optimized formulation was further tested for any interactions using DSC and IR, and revealed no interactions between the drug and the used excipients in the prepared foam. Furthermore, the ability of the pre-set foam to support osteoblastic-like Saos-2-cell proliferation and differentiation was assessed, and revealed superior function on promoting cellular proliferation as confirmed by fluorescence microscope compared to the plain drug solution. The activity of the foam treated cells was also assessed by measuring the alkaline phosphatase activity and calcium deposition, and confirmed that the cellular activity was greatly enhanced in foam treated cells compared to those treated with the plain drug solution only. The obtained results show that the prepared risedronate-loaded thermosensitive foam would represent a step forward in the design of new materials for minimally invasive bone regeneration.
Collapse
|
916
|
Rasti M, Hesaraki S, Nezafati N. Effects of GPTMS concentration and powder to liquid ratio on the flowability and biodegradation behaviors of 45S5 bioglass/tragacanth bioactive composite pastes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahtab Rasti
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| | - Saeed Hesaraki
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| | - Nader Nezafati
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| |
Collapse
|
917
|
Mucalo MR. Special Issue: Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates. MATERIALS 2019; 12:ma12030405. [PMID: 30696063 PMCID: PMC6384801 DOI: 10.3390/ma12030405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/07/2023]
Abstract
Research on calcium phosphate use in the development and clinical application of biomedical materials is a diverse activity and is genuinely interdisciplinary, with much work leading to innovative solutions for improvement of health outcomes. This Special Issue aimed to summarize current advances in this area. The nine papers published cover a wide spectrum of topical areas, such as (1) remineralisation pastes for decalcified teeth, (2) use of statins to enhance bone formation, (3) how dolomitic marble and seashells can be processed into bioceramic materials, (4) relationships between the roughness of calcium phosphate surfaces and surface charge with the effect on human MRC osteogenic differentiation and maturation being investigated, (5) rheological and mechanical properties of a novel injectable bone substitute, (6) improving strength of bone cements by incorporating reinforcing chemically modified fibres, (7) using adipose stem cells to stimulate osteogenesis, osteoinduction, and angiogenesis on calcium phosphates, (8) using glow discharge treatments to remove surface contaminants from biomedical materials to enhance cell attachment and improve bone generation, and (9) a review on how classically brittle hydroxyapatite based scaffolds can be improved by making fibre-hydroxyapatite composites, with detailed analysis of ceramic crack propagation mechanisms and its prevention via fibre incorporation in the hydroxyapatite.
Collapse
Affiliation(s)
- Michael R Mucalo
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
918
|
Schimke MM, Paul S, Tillmann K, Lepperdinger G, Stigler RG. Hard Tissue Augmentation of Aged Bone by Means of a Tin-Free PLLA-PCL Co-Polymer Exhibiting in vivo Anergy and Long-Term Structural Stability. Gerontology 2019; 65:174-185. [PMID: 30677770 DOI: 10.1159/000494798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Due to aging, tissue regeneration gradually declines. Contemporary strategies to promote tissue-specific regeneration, in particular in elderly patients, often include synthetic material apt for implantation primarily aiming at upholding body functions and regaining appropriate anatomical and functional integrity. OBJECTIVE Biomaterials suitable for complex reconstruction surgical procedures have to exert high physicochemical stability and biocompatibility. METHOD A polymer made of poly-L-lactic acid and poly-ε-caprolactone was synthesized by means of a novel tin-free catalytic process. The material was tested in a bioreactor-assisted perfusion culture and implanted in a sheep model for lateral augmentation of the mandible. Histological and volumetric evaluation was performed 3 and 6 months post-implantation. RESULTS After synthesis the material could be further refined by cryogrinding and sintering, thus yielding differently porous scaffolds that exhibited a firm and stable appearance. In perfusion culture, no disintegration was observed for extended periods of up to 7 weeks, while mesenchymal stromal cells readily attached to the material, steadily proliferated, and deposited extracellular calcium. The material was tested in vivo together with autologous bone marrow-derived stromal cells. Up to 6 months post-implantation, the material hardly changed in shape with composition also refraining from foreign body reactions. CONCLUSION Given the long-term shape stability in vivo, featuring imperceptible degradation and little scarring as well as exerting good compatibility to cells and surrounding tissues, this novel biomaterial is suitable as a space filler in large anatomical defects.
Collapse
|
919
|
Abstract
Implants are being continuously developed to achieve personalized therapy. With the advent of 3-dimensional (3D) printing, it is becoming possible to produce customized precisely fitting implants that can be derived from 3D images fed into 3D printers. In addition, it is possible to combine various materials, such as ceramics, to render these constructs osteoconductive or growth factors to make them osteoinductive. Constructs can be seeded with cells to engineer bone tissue. Alternatively, it is possible to load cells into the biomaterial to form so called bioink and print them together to from 3D bioprinted constructs that are characterized by having more homogenous cell distribution in their matrix. To date, 3D printing was applied in the clinic mostly for surgical training and for planning of surgery, with limited use in producing 3D implants for clinical application. Few examples exist so far, which include mostly the 3D printed implants applied in maxillofacial surgery and in orthopedic surgery, which are discussed in this report. Wider clinical application of 3D printing will help the adoption of 3D printers as essential tools in the clinics in future and thus, contribute to realization of personalized medicine.
Collapse
|
920
|
Herten M, Zilkens C, Thorey F, Tassemeier T, Lensing-Höhn S, Fischer JC, Sager M, Krauspe R, Jäger M. Biomechanical Stability and Osteogenesis in a Tibial Bone Defect Treated by Autologous Ovine Cord Blood Cells-A Pilot Study. Molecules 2019; 24:molecules24020295. [PMID: 30650584 PMCID: PMC6358876 DOI: 10.3390/molecules24020295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to elucidate the impact of autologous umbilical cord blood cells (USSC) on bone regeneration and biomechanical stability in an ovine tibial bone defect. Ovine USSC were harvested and characterized. After 12 months, full-size 2.0 cm mid-diaphyseal bone defects were created and stabilized by an external fixateur containing a rigidity measuring device. Defects were filled with (i) autologous USSC on hydroxyapatite (HA) scaffold (test group), (ii) HA scaffold without cells (HA group), or (iii) left empty (control group). Biomechanical measures, standardized X-rays, and systemic response controls were performed regularly. After six months, bone regeneration was evaluated histomorphometrically and labeled USSC were tracked. In all groups, the torsion distance decreased over time, and radiographies showed comparable bone regeneration. The area of newly formed bone was 82.5 ± 5.5% in the control compared to 59.2 ± 13.0% in the test and 48.6 ± 2.9% in the HA group. Labeled cells could be detected in lymph nodes, liver and pancreas without any signs of tumor formation. Although biomechanical stability was reached earliest in the test group with autologous USSC on HA scaffold, the density of newly formed bone was superior in the control group without any bovine HA.
Collapse
Affiliation(s)
- Monika Herten
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Christoph Zilkens
- Orthopedic Department, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Fritz Thorey
- Center for Hip, Knee and Foot Surgery, Sports Traumatology Department, ATOS Hospital, 69115 Heidelberg, Germany.
| | - Tjark Tassemeier
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Sabine Lensing-Höhn
- Orthopedic Department, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Martin Sager
- Animal Research Institute, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Rüdiger Krauspe
- Orthopedic Department, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Marcus Jäger
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
921
|
Karadjian M, Essers C, Tsitlakidis S, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. Int J Mol Sci 2019; 20:ijms20020305. [PMID: 30646516 PMCID: PMC6359412 DOI: 10.3390/ijms20020305] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Standard treatment for bone defects is the biological reconstruction using autologous bone—a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.
Collapse
Affiliation(s)
- Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedics Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
922
|
Rustom LE, Poellmann MJ, Wagoner Johnson AJ. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater 2019; 83:435-455. [PMID: 30408560 DOI: 10.1016/j.actbio.2018.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
With the increasing demand for novel bone repair solutions that overcome the drawbacks of current grafting techniques, the design of artificial bone scaffolds is a central focus in bone regeneration research. Calcium phosphate scaffolds are interesting given their compositional similarity with bone mineral. The majority of studies focus on bone growth in the macropores (>100 µm) of implanted calcium phosphate scaffolds where bone structures such as osteons and trabeculae can form. However, a growing body of research shows that micropores (<50 µm) play an important role not only in improving bone growth in the macropores, but also in providing additional space for bone growth. Bone growth in the micropores of calcium phosphate scaffolds offers major mechanical advantages as it improves the mechanical properties of the otherwise brittle materials, further stabilizes the implant, improves load transfer, and generally enhances osteointegration. In this paper, we review evidence in the literature of bone growth into micropores, emphasizing on identification techniques and conditions under which bone components are observed in the micropores. We also review theories on mineralization and propose mechanisms, mediated by cells or not, by which mineralization may occur in the confined micropore space of calcium phosphate scaffolds. Understanding and validating these mechanisms will allow to better control and enhance mineralization in micropores to improve the design and efficiency of bone implants. STATEMENT OF SIGNIFICANCE: The design of synthetic bone scaffolds remains a major focus for engineering solutions to repair damaged and diseased bone. Most studies focus on the design of and growth in macropores (>100 µm), however research increasingly shows the importance of microporosity (<50 µm). Micropores provide an additional space for bone growth, which provides multiple mechanical advantages to the scaffold/bone composite. Here, we review evidence of bone growth into micropores in calcium phosphate scaffolds and conditions under which growth occurs in micropores, and we propose mechanisms that enable or facilitate growth in these pores. Understanding these mechanisms will allow researchers to exploit them and improve the design and efficiency of bone implants.
Collapse
|
923
|
Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 2019; 121:38-54. [DOI: 10.1016/j.ijbiomac.2018.10.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
924
|
Sun X, Guo Q, Wei W, Robertson S, Yuan Y, Luo X. Current Progress on MicroRNA-Based Gene Delivery in the Treatment of Osteoporosis and Osteoporotic Fracture. Int J Endocrinol 2019; 2019:6782653. [PMID: 30962808 PMCID: PMC6431398 DOI: 10.1155/2019/6782653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/28/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence demonstrates that microRNAs, as important endogenous posttranscriptional regulators, are essential for bone remodeling and regeneration. Undoubtedly, microRNA-based gene therapies show great potential to become novel approaches against bone-related diseases, including osteoporosis and associated fractures. The major obstacles for continued advancement of microRNA-based therapies in clinical application include their poor in vivo stability, nonspecific biodistribution, and unwanted side effects. Appropriate chemical modifications and delivery vectors, which improve the biological performance and potency of microRNA-based drugs, hold the key to translating miRNA technologies into clinical practice. Thus, this review summarizes the current attempts and existing deficiencies of chemical modifications and delivery systems applied in microRNA-based therapies for osteoporosis and osteoporotic fractures to inform further explorations.
Collapse
Affiliation(s)
- Xi Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, 138# Tongzipo Road, Changsha, Hunan 410007, China
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Wenhua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Stephen Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Ying Yuan
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
925
|
Campos JM, Sousa AC, Caseiro AR, Pedrosa SS, Pinto PO, Branquinho MV, Amorim I, Santos JD, Pereira T, Mendonça CM, Afonso A, Atayde LM, Maurício AC. Dental pulp stem cells and Bonelike ® for bone regeneration in ovine model. Regen Biomater 2018; 6:49-59. [PMID: 30740242 PMCID: PMC6362823 DOI: 10.1093/rb/rby025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Development of synthetic bone substitutes has arisen as a major research interest in the need to find an alternative to autologous bone grafts. Using an ovine model, the present pre-clinical study presents a synthetic bone graft (Bonelike®) in combination with a cellular system as an alternative for the regeneration of non-critical defects. The association of biomaterials and cell-based therapies is a promising strategy for bone tissue engineering. Mesenchymal stem cells (MSCs) from human dental pulp have demonstrated both in vitro and in vivo to interact with diverse biomaterial systems and promote mineral deposition, aiming at the reconstruction of osseous defects. Moreover, these cells can be found and isolated from many species. Non-critical bone defects were treated with Bonelike® with or without MSCs obtained from the human dental pulp. Results showed that Bonelike® and MSCs treated defects showed improved bone regeneration compared with the defects treated with Bonelike® alone. Also, it was observed that the biomaterial matrix was reabsorbed and gradually replaced by new bone during the healing process. We therefore propose this combination as an efficient binomial strategy that promotes bone growth and vascularization in non-critical bone defects.
Collapse
Affiliation(s)
- J M Campos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - A C Sousa
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - A R Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal
| | - S S Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - P O Pinto
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - M V Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - I Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - J D Santos
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - T Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - C M Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A Afonso
- Faculdade de Medicina Dentária da Universidade do Porto (FMDUP), Porto, Portugal
| | - L M Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A C Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| |
Collapse
|
926
|
Cojocaru FD, Balan V, Popa MI, Lobiuc A, Antoniac A, Antoniac IV, Verestiuc L. Biopolymers - Calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering. Int J Biol Macromol 2018; 125:612-620. [PMID: 30537500 DOI: 10.1016/j.ijbiomac.2018.12.083] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Composites based on combination of biopolymers (chitosan, hyaluronic acid and bovine serum albumin or gelatin), calcium phosphates (CP) and magnetic nanoparticles have been prepared by a biomimetic co-precipitation method. The biomimetic strategy is inspired by natural mineralization processes, where the synthesized minerals are usually combined with proteins, polysaccharides or other mineral forms to form composite, in physiological conditions of temperature and pH. The morphology of the magnetic composites, studied using scanning electron microscopy (SEM) indicated a macroporous structure, which influenced the retention of simulated biological fluids. Fourier transformed infrared spectroscopy and X-ray diffraction and Energy-dispersive X-ray spectroscopy (EDX) confirmed the composition of the scaffolds and the formation of various types of calcium phosphates with amorphous nature. The in vitro degradation studies showed a slow degradation process for magnetic composites that confirmed the tightly connection of the polymeric matrix with calcium phosphates, which limits the enzyme access to the degradable components and material disintegration. The magnetic scaffolds exhibited no negative effect on osteoblasts cell, emphasizing a good biocompatibility. Considering the scaffolds properties, some compositions based on calcium phosphates, chitosan, Hya/Bsa and more than 3% of MNPs are recommended for further optimization and in vivo tests.
Collapse
Affiliation(s)
- Florina D Cojocaru
- Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Chemical Engineering, Iasi, Romania; Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Department of Biomedical Sciences, Iasi, Romania
| | - Vera Balan
- Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Department of Biomedical Sciences, Iasi, Romania
| | - Marcel I Popa
- Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Chemical Engineering, Iasi, Romania
| | - Andrei Lobiuc
- CERNESIM Research Center, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506, Iasi, Romania; Stefan cel Mare University of Suceava, Faculty of Food Engineering, Department of Food Technologies, Food Production and Environment Safety, 13 University Street, 720229 Suceava, Romania
| | - Aurora Antoniac
- Polytechnic University of Bucharest, Faculty of Material Science and Engineering, BIOMAT Department, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Iulian Vasile Antoniac
- Polytechnic University of Bucharest, Faculty of Material Science and Engineering, BIOMAT Department, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Liliana Verestiuc
- Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Department of Biomedical Sciences, Iasi, Romania.
| |
Collapse
|
927
|
Orth M, Shadmanov T, Scheuer C, Braun BJ, Fritz T, Holstein JH, Histing T, Laschke MW, Pohlemann T, Menger MD. Marble-derived microcalcite improves bone healing in mice osteotomy. ACTA ACUST UNITED AC 2018; 14:025001. [PMID: 30524063 DOI: 10.1088/1748-605x/aaee54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Approximately 10% of all fractures result in delayed healing or non-unions. Bone healing can be improved by the application of osteoconductive and osteoinductive biomaterials. Microcalcite (MCA) as a naturally available calcium carbonate-based biomaterial derived from marble may have the potential to improve bone healing. Herein, we studied for the first time, if MCA in combination with platelet-rich plasma (PRP) can be used as a bone graft material for bone healing in vivo. For this purpose, osteotomies were induced in CD-1 mice (n = 60). Animals received into the osteotomy gap either MCA-loaded PRP (MCA + PRP; n = 20), PRP alone (PRP; n = 20) or no application (NONE; n = 20). Bone healing was evaluated at two and five weeks after osteotomy by micro-computed tomography (μCT), histomorphometric, immunohistochemical and Western Blot analyses. μCT of MCA + PRP femurs revealed more bone volume and an increased polar moment of inertia, indicating a higher biomechanical stability when compared to PRP and NONE femurs. Histomorphometry revealed an increased total callus area after two weeks and a reduced callus tissue area after five weeks in MCA + PRP and PRP animals compared to NONE animals, indicating an accelerated process of bone healing and remodeling over the study period. Moreover, histomorphometric analyses demonstrated an increased fraction of osseous tissue within the callus in MCA + PRP femurs when compared to PRP and NONE femurs. Immunohistochemical analyses showed increased numbers of Ki67+ cells in callus tissue of MCA + PRP femurs. Of interest, Western Blotting revealed a significantly reduced expression of BMP-4 in MCA + PRP animals, while the expression of BMP-2 did not reveal any significant differences between the groups. This indicates a modified balance between angiogenesis and osteogenesis due to MCA. In conclusion, the application of MCA with PRP improved bone healing in a murine osteotomy model and, thus, might be a promising novel bone graft material which may be of interest for clinical fracture treatment.
Collapse
Affiliation(s)
- Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany. Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
928
|
Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr Polym 2018; 202:382-396. [DOI: 10.1016/j.carbpol.2018.09.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022]
|
929
|
Jiang YY, Zhou ZF, Zhu YJ, Chen FF, Lu BQ, Cao WT, Zhang YG, Cai ZD, Chen F. Enzymatic Reaction Generates Biomimic Nanominerals with Superior Bioactivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1804321. [PMID: 30417599 DOI: 10.1002/smll.201804321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 05/22/2023]
Abstract
In vivo mineralization is a multistep process involving mineral-protein complexes and various metastable compounds in vertebrates. In this complex process, the minerals produced in the mitochondrial matrix play a critical role in initiating extracellular mineralization. However, the functional mechanisms of the mitochondrial minerals are still a mystery. Herein, an in vitro enzymatic reaction strategy is reported for the generation of biomimic amorphous calcium phosphate (EACP) nanominerals by an alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) in a weakly alkalescent aqueous condition (pH 8.0-8.5), which is partially similar to the mitochondrial environment. Significantly, the EACP nanomineral obviously promotes autophagy and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by activating an AMPK related pathway, and displays a high performance in promoting bone regeneration. These results provide in vitro evidence for the effect of ATP on the formation and stabilization of the mineral in the mineralization process, demonstrating a potential strategy for the preparation of the biomimic mineral for treating bone related diseases.
Collapse
Affiliation(s)
- Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Zi-Fei Zhou
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fei-Fei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Wen-Tao Cao
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zheng-Dong Cai
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
930
|
Janssen SJ, Langerhuizen DWG, Schwab JH, Bramer JAM. Outcome after reconstruction of proximal femoral tumors: A systematic review. J Surg Oncol 2018; 119:120-129. [DOI: 10.1002/jso.25297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Stein J. Janssen
- Department of Orthopaedic SurgeryAmphia HospitalBreda The Netherlands
| | - David W. G. Langerhuizen
- Department of Orthopaedic SurgeryAcademic Medical Center, University of AmsterdamAmsterdam The Netherlands
| | - Joseph H. Schwab
- Department of Orthopaedic SurgeryOrthopaedic Oncology Service, Massachusetts General Hospital, Harvard Medical SchoolBoston Massachusetts
| | - Jos A. M. Bramer
- Department of Orthopaedic SurgeryAcademic Medical Center, University of AmsterdamAmsterdam The Netherlands
| |
Collapse
|
931
|
Ottensmeyer PF, Witzler M, Schulze M, Tobiasch E. Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells. Int J Mol Sci 2018; 19:E3601. [PMID: 30441872 PMCID: PMC6274752 DOI: 10.3390/ijms19113601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
The need for bone grafts is high, due to age-related diseases, such as tumor resections, but also accidents, risky sports, and military conflicts. The gold standard for bone grafting is the use of autografts from the iliac crest, but the limited amount of accessible material demands new sources of bone replacement. The use of mesenchymal stem cells or their descendant cells, namely osteoblast, the bone-building cells and endothelial cells for angiogenesis, combined with artificial scaffolds, is a new approach. Mesenchymal stem cells (MSCs) can be obtained from the patient themselves, or from donors, as they barely cause an immune response in the recipient. However, MSCs never fully differentiate in vitro which might lead to unwanted effects in vivo. Interestingly, purinergic receptors can positively influence the differentiation of both osteoblasts and endothelial cells, using specific artificial ligands. An overview is given on purinergic receptor signaling in the most-needed cell types involved in bone metabolism-namely osteoblasts, osteoclasts, and endothelial cells. Furthermore, different types of scaffolds and their production methods will be elucidated. Finally, recent patents on scaffold materials, as wells as purinergic receptor-influencing molecules which might impact bone grafting, are discussed.
Collapse
Affiliation(s)
- Patrick Frank Ottensmeyer
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Markus Witzler
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
932
|
de Melo Pereira D, Habibovic P. Biomineralization-Inspired Material Design for Bone Regeneration. Adv Healthc Mater 2018; 7:e1800700. [PMID: 30240157 DOI: 10.1002/adhm.201800700] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Synthetic substitutes of bone grafts, such as calcium phosphate-based ceramics, have shown some good clinical successes in the regeneration of large bone defects and are currently extensively used. In the past decade, the field of biomineralization has delivered important new fundamental knowledge and techniques to better understand this fascinating phenomenon. This knowledge is also applied in the field of biomaterials, with the aim of bringing the composition and structure, and hence the performance, of synthetic bone graft substitutes even closer to those of the extracellular matrix of bone. The purpose of this progress report is to critically review advances in mimicking the extracellular matrix of bone as a strategy for development of new materials for bone regeneration. Lab-made biomimicking or bioinspired materials are discussed against the background of the natural extracellular matrix, starting from basic organic and inorganic components, and progressing into the building block of bone, the mineralized collagen fibril, and finally larger, 2D and 3D constructs. Moreover, bioactivity studies on state-of-the-art biomimicking materials are discussed. By addressing these different topics, an overview is given of how far the field has advanced toward a true bone-mimicking material, and some suggestions are offered for bridging current knowledge and technical gaps.
Collapse
Affiliation(s)
- Daniel de Melo Pereira
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
933
|
Multani I, Schneider P, Baldawi H, Deheshi B, Ghert M. Long-term Follow-up of the Use of a Synthetic Bone Graft Composite in the Surgical Management of Primary Bone Tumors. Orthopedics 2018; 41:e868-e875. [PMID: 30371921 DOI: 10.3928/01477447-20181023-03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023]
Abstract
The surgical management of benign and benign aggressive bone tumors typically involves intralesional curettage and reconstruction of the resulting defect with cement or bone graft material. At the authors' institution, an injectable synthetic calcium sulfate-calcium phosphate composite is now the standard graft material for these cases. This study reports the long-term follow-up, specifically the stability of bone regeneration, for the use of the synthetic graft material for oncologic reconstruction. Fourteen patients who underwent intralesional curettage of a primary bone tumor followed by cavitary reconstruction with synthetic graft material who had at least 4-year follow-up were identified from an institutional orthopedic oncology database. Clinical outcome data, focusing on long-term clinical and radiographic features of the reconstruction, were extracted from electronic and paper medical records. Seven females and 7 males were included (mean age at surgery, 28.1 years; range, 13-64 years). Follow-up ranged from 50 to 105 months (mean, 68 months). Most surgical reconstructions were done for the lower limb (n=11), and giant cell tumor of bone was the most common tumor treated. The mean amount of synthetic graft material used was 18.6 cm3. Complete radiographic resorption and new bone incorporation was observed within the first year, and bone remodeling was complete in all patients. Bone remodeling remained stable throughout the longer-term follow-up (ie, up to 9 years). The use of an injectable synthetic calcium sulfate-calcium phosphate composite is a viable option in the reconstruction of cavitary bone defects following intralesional curettage of primary benign bone tumors. This reconstruction technique was safe, with no long-term complications, and led to complete radiographic resorption and new bone incorporation with long-lasting stability. [Orthopedics. 2018; 41(6):e868-e875.].
Collapse
|
934
|
Carvalho MS, Cabral JM, da Silva CL, Vashishth D. Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties. J Cell Biochem 2018; 120:6555-6569. [PMID: 30362184 DOI: 10.1002/jcb.27948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
A high demand for functional bone grafts is being observed worldwide, especially due to the increased life expectancy. Osteoinductive components should be incorporated into functional bone grafts, accelerating cell recruitment, cell proliferation, angiogenesis, and new bone formation at a defect site. Noncollagenous bone matrix proteins, especially osteopontin (OPN) and osteocalcin (OC), have been reported to regulate some physiological process, such as cell migration and bone mineralization. However, the effects of OPN and OC on cell proliferation, osteogenic differentiation, mineralization, and angiogenesis are still undefined. Therefore, we assessed the exogenous effect of OPN and OC supplementation on human bone marrow mesenchymal stem/stromal cells (hBM MSC) proliferation and osteogenic differentiation. OPN dose-dependently increased the proliferation of hBM MSC, as well as improved the angiogenic properties of human umbilical vein endothelial cells (HUVEC) by increasing the capillary-like tube formation in vitro. On the other hand, OC enhanced the differentiation of hBM MSC into osteoblasts and demonstrated an increase in extracellular calcium levels and alkaline phosphatase activity, as well as higher messenger RNA levels of mature osteogenic markers osteopontin and osteocalcin. In vivo assessment of OC/OPN-enhanced scaffolds in a critical-sized defect rabbit long-bone model revealed no infection, while new bone was being formed. Taken together, these results suggest that OC and OPN stimulate bone regeneration by inducing stem cell proliferation, osteogenesis and by enhancing angiogenic properties. The synergistic effect of OC and OPN observed in this study can be applied as an attractive strategy for bone regeneration therapeutics by targeting different vital cellular processes.
Collapse
Affiliation(s)
- Marta S Carvalho
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Bioengineering, iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim Ms Cabral
- Department of Bioengineering, iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
935
|
Suchanek K, Bartkowiak A, Perzanowski M, Marszałek M. From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach. Sci Rep 2018; 8:15408. [PMID: 30337672 PMCID: PMC6194120 DOI: 10.1038/s41598-018-33936-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Calcium phosphates offer outstanding biological adaptability. Thanks to their specific physico-chemical properties they are one of the most widely used materials in bone tissue engineering applications. The search for an innovative and economic strategy of synthesizing their different forms has been drawing considerable attention in the field. Herein, we report on a facile hydrothermal process in the presence of ethylenediamine tetraacetic acid and monoethanolamine to obtain various forms of calcium phosphates. The monoethanolamine served as an alkaline source and crystal growth modifier, while ethylenediamine tetraacetic acid was used to control the Ca2+ supersaturation level under high temperature and high pressure conditions. The obtained inorganic compounds were examined for their elemental composition, morphology, and structure using scanning electron microscopy, Raman spectroscopy, and powder x-ray diffraction. We were able to selectively synthesize monetite plate-like microcrystals as well as hydroxyapatite plates and nanofibers by simply varying the concentration of monoethanolamine.
Collapse
Affiliation(s)
- Katarzyna Suchanek
- The Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland.
| | - Amanda Bartkowiak
- The Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Marcin Perzanowski
- The Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Marta Marszałek
- The Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| |
Collapse
|
936
|
Sakamoto A, Qi P, Ohba S, Ohta S, Hara Y, Ogawa T, Tomokiyo M, Sasaki A, Takizawa H, Mochizuki M, Ito T, Honnami M. Bone regeneration by calcium phosphate-loaded carboxymethyl cellulose nonwoven sheets in canine femoral condyle defects. J Biomed Mater Res B Appl Biomater 2018; 107:1516-1521. [PMID: 30265780 DOI: 10.1002/jbm.b.34243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
The bone regeneration capacities of calcium phosphate (CaP)-loaded carboxymethyl cellulose (CMC) nonwoven sheet (CMC/CaP) were evaluated using a dog lateral femoral condyle defect model. In addition, the effect of bFGF on bone regeneration when added to CMC/CaP sheet was investigated. The CMC and CMC/CaP sheets have high operability. The new bone formation rate in the CMC/CaP group was significantly higher than that in the control and CMC groups based on micro-computed tomography and histological evaluation. In contrast, there was no significant difference between the CMC/CaP group and the CMC/CaP/f group. In conclusion, the CMC/CaP sheet has the ability to promote new bone formation and seems to be useful as a sheet-shaped bone graft substitute. The effect of the auditioning signaling molecules to the CMC/CaP sheet, such as bFGF, requires further investigation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1516-1521, 2019.
Collapse
Affiliation(s)
- Ayumi Sakamoto
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Pan Qi
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Hara
- Asahi Kasei Corporation, 4-3400-1 Asahi-machi, Nobeoka, Miyazaki 882-0847, Japan
| | - Takayuki Ogawa
- Asahi Kasei Corporation, 4-3400-1 Asahi-machi, Nobeoka, Miyazaki 882-0847, Japan
| | - Masahiro Tomokiyo
- Asahi Kasei Corporation, 4-3400-1 Asahi-machi, Nobeoka, Miyazaki 882-0847, Japan
| | - Akari Sasaki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Harue Takizawa
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Manabu Mochizuki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Muneki Honnami
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
937
|
Klinische Anwendung von Platelet-rich plasma und Wachstumsfaktoren am Bewegungsapparat. DER ORTHOPADE 2018; 48:105-116. [DOI: 10.1007/s00132-018-3643-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
938
|
Chellini F, Tani A, Vallone L, Nosi D, Pavan P, Bambi F, Zecchi Orlandini S, Sassoli C. Platelet-Rich Plasma Prevents In Vitro Transforming Growth Factor-β1-Induced Fibroblast to Myofibroblast Transition: Involvement of Vascular Endothelial Growth Factor (VEGF)-A/VEGF Receptor-1-Mediated Signaling †. Cells 2018; 7:cells7090142. [PMID: 30235859 PMCID: PMC6162453 DOI: 10.3390/cells7090142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
The antifibrotic potential of platelet-rich plasma (PRP) is controversial. This study examined the effects of PRP on in vitro transforming growth factor (TGF)-β1-induced differentiation of fibroblasts into myofibroblasts, the main drivers of fibrosis, and the involvement of vascular endothelial growth factor (VEGF)-A in mediating PRP-induced responses. The impact of PRP alone on fibroblast differentiation was also assessed. Myofibroblastic phenotype was evaluated by confocal fluorescence microscopy and western blotting analyses of α-smooth muscle actin (sma) and type-1 collagen expression, vinculin-rich focal adhesion clustering, and stress fiber assembly. Notch-1, connexin 43, and VEGF-A expression were also analyzed by RT-PCR. PRP negatively regulated fibroblast-myofibroblast transition via VEGF-A/VEGF receptor (VEGFR)-1-mediated inhibition of TGF-β1/Smad3 signaling. Indeed TGF-β1/PRP co-treated fibroblasts showed a robust attenuation of the myofibroblastic phenotype concomitant with a decrease of Smad3 expression levels. The VEGFR-1 inhibition by KRN633 or blocking antibodies, or VEGF-A neutralization in these cells prevented the PRP-promoted effects. Moreover PRP abrogated the TGF-β1-induced reduction of VEGF-A and VEGFR-1 cell expression. The role of VEGF-A signaling in counteracting myofibroblast generation was confirmed by cell treatment with soluble VEGF-A. PRP as single treatment did not induce fibroblast myodifferentiation. This study provides new insights into cellular and molecular mechanisms underpinning PRP antifibrotic action.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| | - Larissa Vallone
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, 50139 Florence, Italy.
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, 50139 Florence, Italy.
| | - Sandra Zecchi Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
939
|
Neto AS, Ferreira JMF. Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1702. [PMID: 30216991 PMCID: PMC6165145 DOI: 10.3390/ma11091702] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Bone is a vascularized and connective tissue. The cortical bone is the main part responsible for the support and protection of the remaining systems and organs of the body. The trabecular spongy bone serves as the storage of ions and bone marrow. As a dynamic tissue, bone is in a constant remodelling process to adapt to the mechanical demands and to repair small lesions that may occur. Nevertheless, due to the increased incidence of bone disorders, the need for bone grafts has been growing over the past decades and the development of an ideal bone graft with optimal properties remains a clinical challenge. This review addresses the bone properties (morphology, composition, and their repair and regeneration capacity) and puts the focus on the potential strategies for developing bone repair and regeneration materials. It describes the requirements for designing a suitable scaffold material, types of materials (polymers, ceramics, and composites), and techniques to obtain the porous structures (additive manufacturing techniques like robocasting or derived from marine skeletons) for bone tissue engineering applications. Overall, the main objective of this review is to gather the knowledge on the materials and methods used for the production of scaffolds for bone tissue engineering and to highlight the potential of natural porous structures such as marine skeletons as promising alternative bone graft substitute materials without any further mineralogical changes, or after partial or total transformation into calcium phosphate.
Collapse
Affiliation(s)
- Ana S Neto
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
940
|
The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater 2018; 2018:8935750. [PMID: 30254677 PMCID: PMC6140132 DOI: 10.1155/2018/8935750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteoblasts and bone, affecting their metabolism, in spite of our poor understanding of the underlying mechanisms. Hence, we have the hypothesis that PEMFs may also ameliorate cell responses to biomaterials, improving their growth, differentiation, and the expression of a mature phenotype and therefore increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings used for PEMFs stimulation still represents a hurdle to better define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone.
Collapse
|
941
|
Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration. Mar Drugs 2018; 16:md16080288. [PMID: 30127281 PMCID: PMC6117730 DOI: 10.3390/md16080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
Coccolithophores are unicellular marine phytoplankton, which produce intricate, tightly regulated, exoskeleton calcite structures. The formation of biogenic calcite occurs either intracellularly, forming ‘wheel-like’ calcite plates, or extracellularly, forming ‘tiled-like’ plates known as coccoliths. Secreted coccoliths then self-assemble into multiple layers to form the coccosphere, creating a protective wall around the organism. The cell wall hosts a variety of unique species-specific inorganic morphologies that cannot be replicated synthetically. Although biomineralisation has been extensively studied, it is still not fully understood. It is becoming more apparent that biologically controlled mineralisation is still an elusive goal. A key question to address is how nature goes from basic building blocks to the ultrafine, highly organised structures found in coccolithophores. A better understanding of coccolithophore biomineralisation will offer new insight into biomimetic and bioinspired synthesis of advanced, functionalised materials for bone tissue regeneration. The purpose of this review is to spark new interest in biomineralisation and gain new insight into coccolithophores from a material science perspective, drawing on existing knowledge from taxonomists, geologists, palaeontologists and phycologists.
Collapse
|
942
|
PEÑA FERNÁNDEZ M, BARBER A, BLUNN G, TOZZI G. Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. J Microsc 2018; 272:213-228. [DOI: 10.1111/jmi.12745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | - A.H. BARBER
- School of Engineering; University of Portsmouth; Portsmouth U.K
- School of Engineering; London South Bank University; U.K
| | - G.W. BLUNN
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth U.K
| | - G. TOZZI
- School of Engineering; University of Portsmouth; Portsmouth U.K
| |
Collapse
|
943
|
Wingender B, Ni Y, Zhang Y, Taylor C, Gower L. Hierarchical Characterization and Nanomechanical Assessment of Biomimetic Scaffolds Mimicking Lamellar Bone via Atomic Force Microscopy Cantilever-Based Nanoindentation. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1257. [PMID: 30037132 PMCID: PMC6073810 DOI: 10.3390/ma11071257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
The hierarchical structure of bone and intrinsic material properties of its two primary constituents, carbonated apatite and fibrillar collagen, when being synergistically organized into an interpenetrating hard-soft composite, contribute to its excellent mechanical properties. Lamellar bone is the predominant structural motif in mammalian hard tissues; therefore, we believe the fabrication of a collagen/apatite composite with a hierarchical structure that emulates bone, consisting of a dense lamellar microstructure and a mineralized collagen fibril nanostructure, is an important first step toward the goal of regenerative bone tissue engineering. In this work, we exploit the liquid crystalline properties of collagen to fabricate dense matrices that assemble with cholesteric organization. The matrices were crosslinked via carbodiimide chemistry to improve mechanical properties, and are subsequently mineralized via the polymer-induced liquid-precursor (PILP) process to promote intrafibrillar mineralization. Neither the crosslinking procedure nor the mineralization affected the cholesteric collagen microstructures; notably, there was a positive trend toward higher stiffness with increasing crosslink density when measured by cantilever-based atomic force microscopy (AFM) nanoindentation. In the dry state, the average moduli of moderately (X51; 4.8 ± 4.3 GPa) and highly (X76; 7.8 ± 6.7 GPa) crosslinked PILP-mineralized liquid crystalline collagen (LCC) scaffolds were higher than the average modulus of bovine bone (5.5 ± 5.6 GPa).
Collapse
Affiliation(s)
- Brian Wingender
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030-165, USA.
| | - Yongliang Ni
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Yifan Zhang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Curtis Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Laurie Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
944
|
Lai WY, Feng SW, Chan YH, Chang WJ, Wang HT, Huang HM. In Vivo Investigation into Effectiveness of Fe₃O₄/PLLA Nanofibers for Bone Tissue Engineering Applications. Polymers (Basel) 2018; 10:E804. [PMID: 30960729 PMCID: PMC6404065 DOI: 10.3390/polym10070804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Fe₃O₄ nanoparticles were loaded into poly-l-lactide (PLLA) with concentrations of 2% and 5%, respectively, using an electrospinning method. In vivo animal experiments were then performed to evaluate the potential of the Fe₃O₄/PLLA nanofibrous material for bone tissue engineering applications. Bony defects with a diameter of 4 mm were prepared in rabbit tibias. Fe₃O₄/PLLA nanofibers were grafted into the drilled defects and histological examination and computed tomography (CT) image detection were performed after an eight-week healing period. The histological results showed that the artificial bony defects grafted with Fe₃O₄/PLLA nanofibers exhibited a visibly higher bone healing activity than those grafted with neat PLLA. In addition, the quantitative results from CT images revealed that the bony defects grafted with 2% and 5% Fe₃O₄/PLLA nanofibers, respectively, showed 1.9- and 2.3-fold increases in bone volume compared to the control blank sample. Overall, the results suggest that the Fe₃O₄/PLLA nanofibers fabricated in this study may serve as a useful biomaterial for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Wei-Yi Lai
- School of Organic and Polymeric, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ya-Hui Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Dental Department, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan.
| | - Hsin-Ta Wang
- School of Organic and Polymeric, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei 11031, Taiwan.
| |
Collapse
|
945
|
Zarins J, Pilmane M, Sidhoma E, Salma I, Locs J. Immunohistochemical evaluation after Sr-enriched biphasic ceramic implantation in rabbits femoral neck: comparison of seven different bone conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:119. [PMID: 30030632 DOI: 10.1007/s10856-018-6124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Strontium (Sr) has shown effectiveness for stimulating bone remodeling. Nevertheless, the exact therapeutic values are not established yet. Authors hypothesized that local application of Sr-enriched ceramics would enhance bone remodeling in constant osteoporosis of rabbits' femoral neck bone. Seven different bone conditions were analyzed: ten healthy rabbits composed a control group, while other twenty underwent ovariectomy and were divided into three groups. Bone defect was filled with hydroxyapatite 30% (HAP) and tricalcium phosphate 70% (TCP) granules in 7 rabbits, 5% of Sr-enriched HAP/TCP granules in 7, but sham defect was left unfilled in 6 rabbits. Bone samples were obtained from operated and non-operated legs 12 weeks after surgery and analyzed by histomorphometry and immunohistochemistry (IMH). Mean trabecular bone area in control group was 0.393 mm2, in HAP/TCP - 0.226 mm2, in HAP/TCP/Sr - 0.234 mm2 and after sham surgery - 0.242 mm2. IMH revealed that HAP/TCP/Sr induced most noticeable increase of nuclear factor kappa beta 105 (NFkB 105), osteoprotegerin (OPG), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP 2/4), collagen type 1α (COL-1α), interleukin 1 (IL-1) with comparison to intact leg; NFkB 105 and OPG rather than pure HAP/TCP or sham bone. We concluded that Sr-enriched biomaterials induce higher potential to improve bone regeneration than pure bioceramics in constant osteoporosis of femoral neck bone. Further studies on bigger osteoporotic animals using Sr-substituted orthopedic implants for femoral neck fixation should be performed to confirm valuable role in local treatment of osteoporotic femoral neck fractures in humans.
Collapse
Affiliation(s)
- Janis Zarins
- Department of Hand and Plastic Surgery, Microsurgery Centre of Latvia, Brivibas Street 410, Riga, Latvia.
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Elga Sidhoma
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Ilze Salma
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, Dzirciema Street 20, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of Riga Technical University, Pulka Street 3, Riga, Latvia
| |
Collapse
|
946
|
Yuan Q, Huang Y, Liu D, Chen M. Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg-Zn-Ca composite. Bioelectrochemistry 2018; 124:93-104. [PMID: 30007209 DOI: 10.1016/j.bioelechem.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Biodegradable beta-tricalcium phosphate (β-TCP) particle reinforced magnesium metal matrix composites (Mg-MMC) have attracted increasing interest for application as implant materials. This investigation was conducted to study the effect of cooling rate on the microstructure and corrosion behavior of a biodegradable β-TCP/Mg-Zn-Ca composite. The composite was fabricated under a series of cooling rates using a wedge-shaped casting mold. The microstructure of the composite was examined by optical and scanning electron microscopy, and the corrosion behavior was investigated using an electrochemical workstation and immersion tests in a simulated body fluid (SBF). Faster cooling rates were shown to refine the secondary phase and grain size, and produce a more homogenous microstructure. The refined microstructure resulted in a more uniform distribution of β-TCP particles, which is believed to be beneficial in the formation of a stable and compact corrosion product layer, leading to improved corrosion resistance for the composite.
Collapse
Affiliation(s)
- Qiang Yuan
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Y Huang
- BCAST, Brunel University London, Uxbridge Middlesex UB8 3PH, UK
| | - Debao Liu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Minfang Chen
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
947
|
O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH. The roles of ions on bone regeneration. Drug Discov Today 2018; 23:879-890. [DOI: 10.1016/j.drudis.2018.01.049] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
|
948
|
De Mori A, Peña Fernández M, Blunn G, Tozzi G, Roldo M. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers (Basel) 2018; 10:E285. [PMID: 30966320 PMCID: PMC6414880 DOI: 10.3390/polym10030285] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022] Open
Abstract
Injuries of bone and cartilage constitute important health issues costing the National Health Service billions of pounds annually, in the UK only. Moreover, these damages can become cause of disability and loss of function for the patients with associated social costs and diminished quality of life. The biomechanical properties of these two tissues are massively different from each other and they are not uniform within the same tissue due to the specific anatomic location and function. In this perspective, tissue engineering (TE) has emerged as a promising approach to address the complexities associated with bone and cartilage regeneration. Tissue engineering aims at developing temporary three-dimensional multicomponent constructs to promote the natural healing process. Biomaterials, such as hydrogels, are currently extensively studied for their ability to reproduce both the ideal 3D extracellular environment for tissue growth and to have adequate mechanical properties for load bearing. This review will focus on the use of two manufacturing techniques, namely electrospinning and 3D printing, that present promise in the fabrication of complex composite gels for cartilage and bone tissue engineering applications.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Marta Peña Fernández
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK.
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
949
|
Pokhrel S. Hydroxyapatite: Preparation, Properties and Its Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aces.2018.84016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
950
|
Al-Dabbagh NN, Zahid TM. The impact of fatwas on patients' acceptance of enamel matrix derivatives for periodontal regeneration in Saudi Arabia. Patient Prefer Adherence 2018; 12:2405-2411. [PMID: 30519006 PMCID: PMC6239119 DOI: 10.2147/ppa.s179629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Since the introduction of enamel matrix derivatives (EMD) (Emdogain®), it has not been allowed to be used in Saudi Arabia due to the religious restriction on porcine products. This study was conducted to determine the impact of the fatwas permitting the use of EMD and to assess the general perception of using bone-grafting materials in Jeddah, Saudi Arabia. MATERIALS AND METHODS This cross-sectional survey study included 213 patients seeking dental treatment at the Faculty of Dentistry Clinics of King Abdulaziz University, Jeddah, Saudi Arabia. They were recruited between September and November 2017. Subjects completed a questionnaire to assess their opinions before and after reading the fatwa about using EMD. RESULTS Majority of the study subjects (70%) did not accept the use of bone-grafting materials and EMD in periodontal regeneration before reading the fatwas. The highest rate of acceptance was observed for the use of tissues from one's own body (84%) while the biomaterials of porcine origin had the lowest acceptance rate (14.1%). Strong religious belief and low education level were the two key factors responsible for the initial refusal of EMD use before reading the fatwas. Around 45.1% of the participants changed their opinions in favor of EMD use after reading the fatwas and their interpretations. McNemar's test found a statistically significant difference in opinions collected before and after reading the fatwas (P<0.001). CONCLUSION A significant impact of the fatwas was found on patients' acceptance of EMD use for periodontal regeneration. We believe reliable interpretations of the fatwas may positively shift patients' attitudes toward using new biomaterials.
Collapse
Affiliation(s)
- Najla N Al-Dabbagh
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia,
| | - Talal M Zahid
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia,
| |
Collapse
|