901
|
Khoury G, Rajasuriar R, Cameron PU, Lewin SR. The role of naïve T-cells in HIV-1 pathogenesis: an emerging key player. Clin Immunol 2011; 141:253-67. [PMID: 21996455 DOI: 10.1016/j.clim.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Functional naïve T-cells are critical for an effective immune response to multiple pathogens. HIV leads to a significant reduction in CD4+ naïve T-cell number and impaired function and there is incomplete recovery following combination antiretroviral therapy (cART). Here we review the basic homeostatic mechanisms that maintain naïve CD4+ T-cells and discuss recent developments in understanding the impact of HIV infection on naïve CD4+ T-cells. Finally we review therapeutic interventions in HIV-infected individuals aimed at specifically enhancing recovery of naïve CD4+ T-cells.
Collapse
Affiliation(s)
- Gabriela Khoury
- Department of Medicine, Monash University, Melbourne Victoria, 3004, Australia
| | | | | | | |
Collapse
|
902
|
Gag cytotoxic T lymphocyte escape mutations can increase sensitivity of HIV-1 to human TRIM5alpha, linking intrinsic and acquired immunity. J Virol 2011; 85:11846-54. [PMID: 21917976 DOI: 10.1128/jvi.05201-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although laboratory-adapted HIV-1 strains are largely resistant to the human restriction factor TRIM5α (hTRIM5α), we have recently shown that some viruses carrying capsid (CA) sequences from clinical isolates can be more sensitive to this restriction factor. In this study we evaluated the contribution to this phenotype of CA mutations known to be associated with escape from cytotoxic T lymphocyte (CTL) responses. Recombinant viruses carrying HIV-1 CA sequences from NL4-3 and three different clinical isolates were prepared, along with variants in which mutations associated with CTL resistance were modified by site-directed mutagenesis, and the infectivities of these viruses in target cells expressing hTRIM5α and cells in which TRIM5α activity had been inhibited by overexpression of TRIM5γ were compared. For both hTRIM5α-sensitive viruses studied, CTL-associated mutations were found to be responsible for this phenotype. Both CTL resistance mutations occurring within HLA-restricted CA epitopes and compensatory mutations occurring outside CTL epitopes influenced hTRIM5α sensitivity, and mutations associated with CTL resistance selected in prior hosts can contribute to this effect. The impact of CTL resistance mutations on hTRIM5α sensitivity was context dependent, because mutations shown to be responsible for the TRIM5α-sensitive phenotype in viruses from one patient could have little or no impact on this parameter when introduced into another virus. No fixed relationship between changes in hTRIM5α sensitivity and infectivity was discernible in our studies. Taken together, these findings suggest that CTL mutations may influence HIV-1 replication by modifying both viral infectivity and sensitivity to TRIM5α.
Collapse
|
903
|
O'huigin C, Kulkarni S, Xu Y, Deng Z, Kidd J, Kidd K, Gao X, Carrington M. The molecular origin and consequences of escape from miRNA regulation by HLA-C alleles. Am J Hum Genet 2011; 89:424-31. [PMID: 21907013 PMCID: PMC3169826 DOI: 10.1016/j.ajhg.2011.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022] Open
Abstract
Differential expression of human leukocyte antigen C (HLA-C) allotypes is mediated by the binding of a microRNA, miR-148a, to the 3' untranslated region of some, but not all, HLA-C alleles. The binding results in lower levels of HLA-C expression, which is associated with higher levels of HIV-1 viral load among infected individuals. The alternative set of HLA-C alleles has several substitutions in the miR-148a binding site that prevent binding and HLA-C downregulation; these high-expression alleles associate with control of HIV-1 viral load. We show that the common ancestor of all extant HLA-C alleles was suppressed by miR-148a. Substitutions that prevent miR-148a binding arose by a sequence exchange event between an HLA-C allele and an HLA-B (MIM 142830) allele of a B(∗)07-like lineage. The event occurred 3-5 million years ago, resulting in an HLA-C variant that escape from miR-148a downregulation. We present evidence suggesting that selection played a role in the successful spread of the HLA-C escape alleles, giving rise to 7 of the 14 extant HLA-C lineages. Notably, critical peptide and KIR binding residues of the escape variants have selectively converged to resemble the sequence of their inhibited counterparts, such that the inhibited and escape groupings differ primarily by their levels of expression.
Collapse
Affiliation(s)
- Colm O'huigin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
904
|
H5N1 influenza virus pathogenesis in genetically diverse mice is mediated at the level of viral load. mBio 2011; 2:mBio.00171-11. [PMID: 21896679 PMCID: PMC3171982 DOI: 10.1128/mbio.00171-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host's immune response to the virus. In humans, it is unclear which aspect dictates the severity of H5N1 virus disease. To identify the mechanism underlying differential responses to H5N1 virus infection in a genetically diverse population, we assessed the host responses and lung viral loads in 21 inbred mouse strains upon intranasal inoculation with A/Hong Kong/213/03 (H5N1). Resistant mouse strains survived large inocula while susceptible strains succumbed to infection with 1,000- to 10,000-fold-lower doses. Quantitative analysis of the viral load after inoculation with an intermediate dose found significant associations with lethality as early as 2 days postinoculation, earlier than any other disease indicator. The increased viral titers in the highly susceptible strains mediated a hyperinflamed environment, indicated by the distinct expression profiles and increased production of inflammatory mediators on day 3. Supporting the hypothesis that viral load rather than an inappropriate response to the virus was the key severity-determining factor, we performed quantitative real-time PCR measuring the cytokine/viral RNA ratio. No significant differences between susceptible and resistant mouse strains were detected, confirming that it is the host genetic component controlling viral load, and therefore replication dynamics, that is primarily responsible for a host's susceptibility to a given H5N1 virus. IMPORTANCE Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response.
Collapse
|
905
|
Sobieszczyk ME, Lingappa JR, McElrath MJ. Host genetic polymorphisms associated with innate immune factors and HIV-1. Curr Opin HIV AIDS 2011; 6:427-34. [PMID: 21734565 DOI: 10.1097/coh.0b013e3283497155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Our understanding of the early events in HIV-1 infection continues to grow, along with the heightened recognition of the important contribution that innate immunity plays in response to HIV-1. Here, we review the epidemiological and functional studies of genetic polymorphisms associated with innate immune factors that are believed to modulate host responses, focusing specifically on recent findings related to Toll-like receptor, cytokine, host restriction and KIR genes and their activities. RECENT FINDINGS A growing number of genomic studies have described polymorphisms in innate immune genes that are associated with early postseroconversion events, including TLR4, TLR9, IRF-3, TRIM5α and the ABOBEC3 gene family. Genetic and functional data confirm the importance of KIR-HLA interactions and provide new understanding of the role of innate restriction factors in resistance to HIV-1 and disease progression. SUMMARY Single-gene, genome-wide association and expression studies have permitted the identification of innate immune genes and their variants that contribute to protection from disease progression. Characterization of the pathogen-innate immune system interactions and discovery of new and rare host genetic variants that account for a portion of the observed variance in the HIV-1 phenotype is critical to gain new insights into promising treatment and prevention strategies.
Collapse
Affiliation(s)
- Magdalena E Sobieszczyk
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | |
Collapse
|
906
|
Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, Hartman KL, Henry LM, Brenchley JM, Ruff LE, Venturi V, Pereyra F, Sidney J, Sette A, Douek DC, Walker BD, Kaufmann DE, Brander C. High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control. J Virol 2011; 85:9334-45. [PMID: 21752903 PMCID: PMC3165743 DOI: 10.1128/jvi.00460-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Christoph T. Berger
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Nicole Frahm
- Fred Hutchinson Cancer Research Center/NIAID HIV Vaccine Trials Network (HVTN), Seattle, Washington
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Beatriz Mothe
- Lluita contra la Sida Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Badalona, Barcelona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Musie Ghebremichael
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kari L. Hartman
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Leah M. Henry
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Jason M. Brenchley
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Laura E. Ruff
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Christian Brander
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
907
|
Thèze J, Chakrabarti LA, Vingert B, Porichis F, Kaufmann DE. HIV controllers: a multifactorial phenotype of spontaneous viral suppression. Clin Immunol 2011; 141:15-30. [PMID: 21865089 DOI: 10.1016/j.clim.2011.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 02/02/2023]
Abstract
A small minority of HIV-infected individuals, known as HIV controllers, is able to exert long-term control over HIV replication in the absence of treatment. Increasing evidence suggests that the adaptive immune system plays a critical role in this control but also that a combination of several host and/or viral factors, rather than a single cause, leads to this rare phenotype. Here, we review recent advances in the study of these remarkable individuals. We summarize the epidemiology and clinical characteristics of HIV controllers, and subsequently describe contributing roles of host genetic factors, innate and adaptive immune responses, and viral factors to this phenotype. We emphasize distinctive characteristics of HIV-specific CD4 T cell responses and of CD4 T cell subpopulations that are frequently found in HIV controllers. We discuss major controversies in the field and the relevance of the study of HIV controllers for the development of novel therapeutic strategies and vaccines.
Collapse
Affiliation(s)
- Jacques Thèze
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, 75015, Paris, France.
| | | | | | | | | |
Collapse
|
908
|
Killing the messenger to maintain control of HIV. Nat Med 2011; 17:927-8. [PMID: 21818087 DOI: 10.1038/nm.2427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
909
|
Admon A, Bassani-Sternberg M. The Human Immunopeptidome Project, a suggestion for yet another postgenome next big thing. Mol Cell Proteomics 2011; 10:O111.011833. [PMID: 21813418 DOI: 10.1074/mcp.o111.011833] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The time is ripe for staging the Human Immunopeptidome Project, whose goal is to analyze the full repertoires of peptides bound to the HLA molecules, in both health and disease. Mass spectrometry technologies have matured to enable comprehensive analyses of both the membrane-bound and the plasma soluble immunopeptidomes associated with each of the HLA allomorphs and the different diseases. The expected outcomes of such project will include basic understanding of the molecular mechanisms involved with formation of immunopeptidomes, correlating them with their source cellular proteomes, definition of both the consensus motifs and the scope of each allomorphs-specific immunopeptidomes, and most importantly, identification of disease-related HLA peptides, which may eventually serve as biomarkers or immunotherapeutics. Ideally, the Human Immunopeptidome Project will become public and the gathered data will be shared, as soon as possible. Other immunopeptidome projects, of other animals, will follow suit.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion, Haifa, Israel.
| | | |
Collapse
|
910
|
Chopera DR, Wright JK, Brockman MA, Brumme ZL. Immune-mediated attenuation of HIV-1. Future Virol 2011; 6:917-928. [PMID: 22393332 DOI: 10.2217/fvl.11.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune escape mutations selected by human leukocyte antigen class I-restricted CD8(+) cytotoxic T lymphocytes (CTLs) can result in biologically and clinically relevant costs to HIV-1 replicative fitness. This phenomenon may be exploited to design an HIV-1 vaccine capable of stimulating effective CTL responses against highly conserved, mutationally constrained viral regions, where immune escape could occur only at substantial functional costs. Such a vaccine might 'channel' HIV-1 evolution towards a less-fit state, thus lowering viral load set points, attenuating the infection course and potentially reducing the risk of transmission. A major barrier to this approach, however, is the accumulation of immune escape variants at the population level, possibly leading to the loss of immunogenic CTL epitopes and diminished vaccine-induced cellular immune responses as the epidemic progresses. Here, we review the evidence supporting CTL-driven replicative defects in HIV-1 and consider the implications of this work for CTL-based vaccines designed to attenuate the infection course.
Collapse
|
911
|
|
912
|
Abstract
PURPOSE OF REVIEW To understand the role of HIV-specific CD4 T cells in viral control and highlight recent progress in the field. RECENT FINDINGS HIV-specific CD4 T cells show higher functional avidity in elite controllers than in patients with progressive infection. There is an attrition of the HIV-specific CD4 T-cell population in the digestive mucosa of antiretroviral therapy (ART)-treated patients that contrasts with robust responses in individuals with spontaneous viral control. Secretion of the cytokine IL-21, by HIV-specific CD4 T cells, is associated with disease control and enhances the capacity of HIV-specific CD8 T cells to suppress viral replication. Studies of the PD-1, IL-10, and Tim-3 pathways provided insight into mechanisms of HIV-specific CD4 T-cell exhaustion and new evidence that manipulation of these networks may restore immune functions. Robust, polyfunctional CD4 T-cell responses can be elicited with novel HIV and simian immunodeficiency virus (SIV) vaccines. SUMMARY These observations show that HIV-specific CD4 T-cell responses are different in elite controllers and individuals with progressive disease. Evidence suggests that HIV-specific CD4 T cells will be an important component of an effective HIV vaccine and significant efforts need to be made to further our understanding of HIV-specific CD4 T-cell functions in different body compartments.
Collapse
|
913
|
Abstract
PURPOSE OF REVIEW Recent studies have been published characterizing the epidemiology of elite controllers. The demographic features, clinical characteristics, and HIV disease outcomes of elite controllers are summarized. RECENT FINDINGS Elite controllers are defined by the ability to spontaneously suppress plasma viremia. Despite differing definitions in the literature, studies have shown that elite control of HIV infection is established soon after seroconversion and occurs in less than 1% of HIV-infected individuals. Elite controllers are demographically heterogeneous with diverse racial backgrounds and modes of HIV transmission, though genetic studies demonstrate an overrepresentation of protective HLA alleles. Elite controllers typically have elevated CD4 cell counts, stable CD4 trajectories, and more favorable clinical outcomes compared with viremic patients. A proportion of elite controllers, however, may experience HIV disease progression with loss of virologic control, CD4 cell declines, and rarely AIDS-defining events. SUMMARY Elite controllers are a subgroup of HIV-infected individuals characterized by the ability to spontaneously maintain virologic control. The mechanisms underlying elite control are aggressively being sought to guide vaccine development and novel therapeutic strategies. As elite control may be a temporary state, the ability to distinguish and further characterize elite controllers with long-term clinical success from those with HIV disease progression is of major importance.
Collapse
|
914
|
Major histocompatibility complex-dependent cytotoxic T lymphocyte repertoire and functional avidity contribute to strain-specific disease susceptibility after murine respiratory syncytial virus infection. J Virol 2011; 85:10135-43. [PMID: 21795345 DOI: 10.1128/jvi.00816-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.
Collapse
|
915
|
Abstract
PURPOSE OF REVIEW The phenomenon of long-term nonprogression in HIV infection has been recognized for some time, and the ability of rare individuals, designated 'elite controllers', to control HIV in the absence of therapy is the focus of numerous ongoing studies. This review focuses on studies of HIV-specific immune responses in mucosal tissues as a potential correlate of immune control, with an emphasis on recently published work. RECENT FINDINGS Genetic studies have implicated a role for elements localized to the major histocompatibility complex (MHC) on chromosome 6 in the immune control of HIV infection. In parallel, functional studies have strongly implicated MHC class I-restricted, CD8+ T-cell responses as a major contributor to elite control. In addition, the localization of HIV-specific CD8+ and CD4+ T cells with respect to the major sites of virus replication in the body may be critical in determining clinical outcome. SUMMARY Recent findings suggest that MHC class I-restricted, CD8+ T cells are a major component of immune control in 'elite controllers'. In addition, the presence of these effector cells at or near critical viral reservoirs, such as mucosal tissues, may be critical in determining their effectiveness at limiting viral replication and dissemination.
Collapse
|
916
|
The study of elite controllers: a pure academic exercise or a potential pathway to an HIV-1 vaccine? Curr Opin HIV AIDS 2011; 6:147-50. [PMID: 21399493 DOI: 10.1097/coh.0b013e3283457868] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
917
|
Understanding animal models of elite control: windows on effective immune responses against immunodeficiency viruses. Curr Opin HIV AIDS 2011; 6:197-201. [PMID: 21502922 DOI: 10.1097/coh.0b013e3283453e16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We will summarize recent advances in research regarding control of simian immunodeficiency virus replication in nonhuman primate models. We will then relate these findings to the broader field of human immunodeficiency virus (HIV) vaccine development. RECENT FINDINGS Recent studies have highlighted the importance of T-cell responses in elite control, especially CD8+ T-cell responses and provide insight into the kinetics and qualities of such effective responses. Additionally, these findings suggest that the peptides bound by elite control-associated major histocompatibility complex class I molecules in monkeys and humans share many properties. SUMMARY Animal models of effective immune control of immunodeficiency virus replication have provided important insight into the components of successful immune responses against these viruses. Similarities between the human and nonhuman primate responses to immunodeficiency viruses should help us understand the nature of elite control. Further study of the acute phase, in which virus replication is first brought under control, may help define important characteristics of viral control that could be engendered by a successful HIV vaccine.
Collapse
|
918
|
Abstract
PURPOSE OF REVIEW Over the last decade our understanding of the role of natural killer cells in HIV infection has changed dramatically due to strong epidemiological, phenotypic, and functional data providing evidence for their involvement in antiviral control. Here we review the current literature on natural killer cells in the control of HIV infection, with a specific focus on their role in HIV controllers, individuals that spontaneously control HIV replication in the absence of antiretroviral therapy. RECENT FINDINGS Differences between progressors and controllers are highlighted in the context of genetic influences, natural killer cell phenotypes, function and dysregulation. Also, recent findings on the role of natural killer cell-mediated antibody-dependent cellular cytotoxicity in HIV control are summarized. SUMMARY This evolving understanding of the complex biology of natural killer cells and their multifaceted role in HIV infection offer exciting new approaches for future vaccine strategies. Furthermore, the specific natural killer cell phenotype and function observed in controllers may guide new vaccine modalities that specifically harness the antiviral power of natural killer cells as adjuvants, or as direct effectors.
Collapse
|
919
|
The TRIM5 gene modulates penile mucosal acquisition of simian immunodeficiency virus in rhesus monkeys. J Virol 2011; 85:10389-98. [PMID: 21775457 DOI: 10.1128/jvi.00854-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is considerable variability in host susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, but the host genetic determinants of that variability are not well understood. In addition to serving as a block for cross-species retroviral infection, TRIM5 was recently shown to play a central role in limiting primate immunodeficiency virus replication. We hypothesized that TRIM5 may also contribute to susceptibility to mucosal acquisition of simian immunodeficiency virus (SIV) in rhesus monkeys. We explored this hypothesis by establishing 3 cohorts of Indian-origin rhesus monkeys with different TRIM5 genotypes: homozygous restrictive, heterozygous permissive, and homozygous permissive. We then evaluated the effect of TRIM5 genotype on the penile transmission of SIVsmE660. We observed a significant effect of TRIM5 genotype on mucosal SIVsmE660 acquisition in that no SIV transmission occurred in monkeys with only restrictive TRIM5 alleles. In contrast, systemic SIV infections were initiated after preputial pocket exposures in monkeys that had at least one permissive TRIM5 allele. These data demonstrate that host genetic factors can play a critical role in restricting mucosal transmission of a primate immunodeficiency virus. In addition, we used our understanding of TRIM5 to establish a novel nonhuman primate penile transmission model for AIDS mucosal pathogenesis and vaccine research.
Collapse
|
920
|
Dahirel V, Shekhar K, Pereyra F, Miura T, Artyomov M, Talsania S, Allen TM, Altfeld M, Carrington M, Irvine DJ, Walker BD, Chakraborty AK. Coordinate linkage of HIV evolution reveals regions of immunological vulnerability. Proc Natl Acad Sci U S A 2011; 108:11530-5. [PMID: 21690407 PMCID: PMC3136285 DOI: 10.1073/pnas.1105315108] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular immune control of HIV is mediated, in part, by induction of single amino acid mutations that reduce viral fitness, but compensatory mutations limit this effect. Here, we sought to determine if higher order constraints on viral evolution exist, because some coordinately linked combinations of mutations may hurt viability. Immune targeting of multiple sites in such a multidimensionally conserved region might render the virus particularly vulnerable, because viable escape pathways would be greatly restricted. We analyzed available HIV sequences using a method from physics to reveal distinct groups of amino acids whose mutations are collectively coordinated ("HIV sectors"). From the standpoint of mutations at individual sites, one such group in Gag is as conserved as other collectively coevolving groups of sites in Gag. However, it exhibits higher order conservation indicating constraints on the viability of viral strains with multiple mutations. Mapping amino acids from this group onto protein structures shows that combined mutations likely destabilize multiprotein structural interactions critical for viral function. Persons who durably control HIV without medications preferentially target the sector in Gag predicted to be most vulnerable. By sequencing circulating viruses from these individuals, we find that individual mutations occur with similar frequency in this sector as in other targeted Gag sectors. However, multiple mutations within this sector are very rare, indicating previously unrecognized multidimensional constraints on HIV evolution. Targeting such regions with higher order evolutionary constraints provides a novel approach to immunogen design for a vaccine against HIV and other rapidly mutating viruses.
Collapse
Affiliation(s)
- Vincent Dahirel
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
- Departments of Chemical Engineering
- Chemistry, and
| | - Karthik Shekhar
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
- Departments of Chemical Engineering
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
| | - Toshiyuki Miura
- Institute for Medical Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Mikita Artyomov
- Chemistry, and
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | - Shiv Talsania
- Departments of Chemical Engineering
- Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Todd M. Allen
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702
| | - Darrell J. Irvine
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815; and
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
- Howard Hughes Medical Institute, Chevy Chase, MD 20815; and
| | - Arup K. Chakraborty
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02129
- Departments of Chemical Engineering
- Chemistry, and
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
921
|
Inhibition of HIV-1 integration in ex vivo-infected CD4 T cells from elite controllers. J Virol 2011; 85:9646-50. [PMID: 21734042 DOI: 10.1128/jvi.05327-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elite controllers spontaneously maintain undetectable levels of HIV-1 replication for reasons that remain unclear. Here, we show that in elite controllers, direct ex vivo infection of purified CD4 T cells without prior in vitro activation results in disproportionately low levels of integrated HIV-1 DNA relative to the quantity of reverse transcripts, while the levels of two-long terminal repeat (2-LTR) circles were excessively elevated relative to those of integrated HIV-1 DNA. This indicates that chromosomal HIV-1 integration is inhibited in ex vivo-infected CD4 T cells from elite controllers. This defect in HIV-1 integration was unrelated to p21, a host protein that can restrict early HIV-1 replication steps, and was not visible following infection of in vitro-activated CD4 T cells from elite controllers. These data contribute to increasing evidence that intrinsic inhibition of specific HIV-1 replication steps plays an important role in the ability of elite controllers to maintain undetectable viral loads.
Collapse
|
922
|
Brynedal B, Hillert J. Entering a new phase of multiple sclerosis genetic epidemiology. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a complex disease, where multiple genetic variants have been found to influence the risk of development. The evidence for environmental-attributable risk is also strong, indicating an interaction of risk factors leading to the development of disease in the individual. An importance of genetic variation within the human leukocyte antigen (HLA) region has been known for almost 40 years, but the search for additional variants connected to susceptibility has been long and largely fruitless. Joint efforts of the MS research community in collecting and sharing results from genetic case control cohorts, together with the technical development, eventually lead to the identification of multiple risk factors for MS as in other complex diseases. The list of identified genetic variants associated with disease is increasingly growing and some leads for functional mechanisms are emerging. Many of the identified regions also harbor associations with other immune-mediated diseases, suggesting common etiology across these various diseases. The great challenge in front of us now is to translate these point-wise indications of genetic effects to functional understanding of how disease develops.
Collapse
Affiliation(s)
- Boel Brynedal
- Department of Neurology, Yale Medical School, New Haven, CT, USA
- Medical & Population Genetics, The Broad Institute, Cambridge, MA, USA
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
923
|
Replication-competent simian immunodeficiency virus (SIV) Gag escape mutations archived in latent reservoirs during antiretroviral treatment of SIV-infected macaques. J Virol 2011; 85:9167-75. [PMID: 21715484 DOI: 10.1128/jvi.00366-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8(+) T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8(+) T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4(+) T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8(+) T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted.
Collapse
|
924
|
Human leukocyte antigen variants B*44 and B*57 are consistently favorable during two distinct phases of primary HIV-1 infection in sub-Saharan Africans with several viral subtypes. J Virol 2011; 85:8894-902. [PMID: 21715491 DOI: 10.1128/jvi.00439-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
As part of an ongoing study of early human immunodeficiency virus type 1 (HIV-1) infection in sub-Saharan African countries, we have identified 134 seroconverters (SCs) with distinct acute-phase (peak) and early chronic-phase (set-point) viremias. SCs with class I human leukocyte antigen (HLA) variants B*44 and B*57 had much lower peak viral loads (VLs) than SCs without these variants (adjusted linear regression beta values of -1.08 ± 0.26 log(10) [mean ± standard error] and -0.83 ± 0.27 log(10), respectively; P < 0.005 for both), after accounting for several nongenetic factors, including gender, age at estimated date of infection, duration of infection, and country of origin. These findings were confirmed by alternative models in which major viral subtypes (A1, C, and others) in the same SCs replaced country of origin as a covariate (P ≤ 0.03). Both B*44 and B*57 were also highly favorable (P ≤ 0.03) in analyses of set-point VLs. Moreover, B*44 was associated with relatively high CD4(+) T-cell counts during early chronic infection (P = 0.02). Thus, at least two common HLA-B variants showed strong influences on acute-phase as well as early chronic-phase VL, regardless of the infecting viral subtype. If confirmed, the identification of B*44 as another favorable marker in primary HIV-1 infection should help dissect mechanisms of early immune protection against HIV-1 infection.
Collapse
|
925
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
926
|
Scifo C, Mekaelian L, Munyazesa E, Schmitt-Verhulst AM, Guimezanes A. Selection of T-cell receptors with a recurrent CDR3β peptide-contact motif within the repertoire of alloreactive CD8(+) T cells. Eur J Immunol 2011; 41:2414-23. [PMID: 21590766 DOI: 10.1002/eji.201141494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 11/06/2022]
Abstract
Peptide/MHC complexes recognized by alloreactive T lymphocytes (TLs) have been identified, but their contribution to in vivo allo-rejection is not known. We previously characterized the peptide pBM1, highly represented among endogenous H-2K(b) (K(b) )-associated peptides and critically required to induce full activation of H-2(k) monoclonal CD8(+) TLs expressing the cognate TCR-BM3.3. Here, we asked whether a pBM1/K(b) -specific TL subset could be detected within a polyclonal TL population rejecting allogeneic cells in vivo. We show that the proportion of pBM1/K(b) -binding CD8(+) TLs increased from <0.04% in naïve mice to 3% of activated CD44(+) CD8(+) TLs in H-2(k) mice rejecting K(b) -expressing cells. Among these, TCR-Vβ2 usage was greatly enriched, and 75% of them shared a TCR-Vβ2 CDR3β motif with the prototype TCR-BM3.3. Fewer than 5% of K(b) -reactive CD44(+) CD8(+) TLs not binding pBM1/K(b) displayed this CDR3β motif. We found that the recurrent CDR3β motif of pBM1/K(b) -binding TLs was assembled from distinct V/D/J recombination events, suggesting that it is recruited upon immunization for its optimal TCR-peptide/MHC fit. Thus, a CDR3β motif generated by a process akin to "convergent recombination" accounts for a sizable fraction of the alloreactive anti-K(b) TCR repertoire.
Collapse
Affiliation(s)
- Caroline Scifo
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
927
|
Rao X, Hoof I, Fontaine Costa AICA, van Baarle D, Keşmir C. HLA class I allele promiscuity revisited. Immunogenetics 2011; 63:691-701. [PMID: 21695550 PMCID: PMC3190086 DOI: 10.1007/s00251-011-0552-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/10/2011] [Indexed: 12/02/2022]
Abstract
The peptide repertoire presented on human leukocyte antigen (HLA) class I molecules is largely determined by the structure of the peptide binding groove. It is expected that the molecules having similar grooves (i.e., belonging to the same supertype) might present similar/overlapping peptides. However, the extent of promiscuity among HLA class I ligands remains controversial: while in many studies T cell responses are detected against epitopes presented by alternative molecules across HLA class I supertypes and loci, peptide elution studies report minute overlaps between the peptide repertoires of even related HLA molecules. To get more insight into the promiscuous peptide binding by HLA molecules, we analyzed the HLA peptide binding data from the large epitope repository, Immune Epitope Database (IEDB), and further performed in silico analysis to estimate the promiscuity at the population level. Both analyses suggest that an unexpectedly large fraction of HLA ligands (>50%) bind two or more HLA molecules, often across supertype or even loci. These results suggest that different HLA class I molecules can nevertheless present largely overlapping peptide sets, and that “functional” HLA polymorphism on individual and population level is probably much lower than previously anticipated.
Collapse
Affiliation(s)
- Xiangyu Rao
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ilka Hoof
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Can Keşmir
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
928
|
Zhang Y, Peng Y, Yan H, Xu K, Saito M, Wu H, Chen X, Ranasinghe S, Kuse N, Powell T, Zhao Y, Li W, Zhang X, Feng X, Li N, Leligdowicz A, Xu X, John M, Takiguchi M, McMichael A, Rowland-Jones S, Dong T. Multilayered defense in HLA-B51-associated HIV viral control. THE JOURNAL OF IMMUNOLOGY 2011; 187:684-91. [PMID: 21670313 DOI: 10.4049/jimmunol.1100316] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphism in the HLA region of a chromosome is the major source of host genetic variability in HIV-1 outcome, but there is limited understanding of the mechanisms underlying the beneficial effect of protective class I alleles such as HLA-B57, -B27, and -B51. Taking advantage of a unique cohort infected with clade B' HIV-1 through contaminated blood, in which many variables such as the length of infection, the infecting viral strain, and host genetic background are controlled, we performed a comprehensive study to understand HLA-B51-associated HIV-1 control. We focused on the T cell responses against three dominant HLA-B51-restricted epitopes: Gag327-345(NI9) NANPDCKTI, Pol743-751(LI9) LPPVVAKEI, and Pol283-289(TI8) TAFTIPSI. Mutations in all three dominant epitopes were significantly associated with HLA-B51 in the cohort. A clear hierarchy in selection of epitope mutations was observed through epitope sequencing. L743I in position 1 of epitope LI9 was seen in most B51(+) individuals, followed by V289X in position 8 of the TI8, and then, A328S, in position 2 of the NI9 epitope, was also seen in some B51(+) individuals. Good control of viral load and higher CD4(+) counts were significantly associated with at least one detectable T cell response to unmutated epitopes, whereas lower CD4(+) counts and higher viral loads were observed in patients who had developed escape mutations in all three epitopes or who lacked T cell responses specific to these epitope(s). We propose that patients with HLA-B51 benefit from having multiple layers of effective defense against the development of immune escape mutations.
Collapse
Affiliation(s)
- YongHong Zhang
- Beijing You An Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
929
|
Orlova M, Di Pietrantonio T, Schurr E. Genetics of infectious diseases: hidden etiologies and common pathways. Clin Chem Lab Med 2011; 49:1427-37. [PMID: 21619464 DOI: 10.1515/cclm.2011.620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the completion of the human genome sequence, the study of common genetic polymorphisms in complex human diseases has become a main activity of human genetics. Employing genome-wide association studies, hundreds of modest genetic risk factors have been identified. In infectious diseases the identification of common risk factors has been varied and as in other common diseases it seems likely that important genetic risk factors remain to be discovered. Nevertheless, the identification of disease-specific genetic risk factors revealed an unexpected overlap in susceptibility genes of diverse inflammatory and infectious diseases. Analysis of the multi-disease susceptibility genes has allowed the definition of shared key pathways of inflammatory dysregulation and suggested unexpected infectious etiologies for other "non-infectious" common diseases.
Collapse
Affiliation(s)
- Marianna Orlova
- McGill Centre for the Study of Host Resistance, The Research Institute of the McGill University Health Centre, Montreal, PQ, Canada
| | | | | |
Collapse
|
930
|
Jamil KM, Khakoo SI. KIR/HLA interactions and pathogen immunity. J Biomed Biotechnol 2011; 2011:298348. [PMID: 21629750 PMCID: PMC3100571 DOI: 10.1155/2011/298348] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/14/2011] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is the first line of defence in response to pathogen infection. Natural killer (NK) cells perform a vital role in this response with the ability to directly kill infected cells, produce cytokines, and cross-talk with the adaptive immune system. These effector functions are dependent on activation of NK cells which is determined by surface receptor interactions with ligands on target cells. Of these receptors, the polymorphic killer immunoglobulin-like receptors (KIRs), which interact with MHC class 1 (also highly polymorphic), are largely inhibitory, and exhibit substantial genetic diversity. The result is a significant variation of NK cell repertoire between individuals and also between populations, with a multitude of possible KIR:HLA combinations. As each KIR:ligand interaction may have differential effects on NK cell activation and inhibition, this diversity has important potential influences on the host response to infections. Genetic studies have demonstrated associations between specific KIR:ligand combinations and the outcome of viral (and other) infections, in particular hepatitis C and HIV infection. Detailed functional studies are not required to define the mechanisms underpinning these disease associations.
Collapse
Affiliation(s)
- Khaleel M. Jamil
- Department of Hepatology, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Salim I. Khakoo
- Department of Hepatology, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
931
|
Abstract
In 2009, the United Nations Estimated that 33.2 Million People worldwide were living with human immunodeficiency virus type 1 (HIV-1) infection and that 2.6 million people had been newly infected. The need for effective HIV-1 prevention has never been greater. In this review, we address recent critical advances in our understanding of HIV-1 transmission and acute HIV-1 infection. Fourth-generation HIV-1 testing, now available worldwide,, will allow the diagnosis of infection in many patients and may lead to new treatments and opportunities for prevention.
Collapse
Affiliation(s)
- Myron S Cohen
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|
932
|
Rotger M, Dalmau J, Rauch A, McLaren P, Bosinger SE, Martinez R, Sandler NG, Roque A, Liebner J, Battegay M, Bernasconi E, Descombes P, Erkizia I, Fellay J, Hirschel B, Miró JM, Palou E, Hoffmann M, Massanella M, Blanco J, Woods M, Günthard HF, de Bakker P, Douek DC, Silvestri G, Martinez-Picado J, Telenti A. Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque. J Clin Invest 2011; 121:2391-400. [PMID: 21555857 DOI: 10.1172/jci45235] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/30/2011] [Indexed: 01/14/2023] Open
Abstract
High levels of HIV-1 replication during the chronic phase of infection usually correlate with rapid progression to severe immunodeficiency. However, a minority of highly viremic individuals remains asymptomatic and maintains high CD4⁺ T cell counts. This tolerant profile is poorly understood and reminiscent of the widely studied nonprogressive disease model of SIV infection in natural hosts. Here, we identify transcriptome differences between rapid progressors (RPs) and viremic nonprogressors (VNPs) and highlight several genes relevant for the understanding of HIV-1-induced immunosuppression. RPs were characterized by a specific transcriptome profile of CD4⁺ and CD8⁺ T cells similar to that observed in pathogenic SIV-infected rhesus macaques. In contrast, VNPs exhibited lower expression of interferon-stimulated genes and shared a common gene regulation profile with nonpathogenic SIV-infected sooty mangabeys. A short list of genes associated with VNP, including CASP1, CD38, LAG3, TNFSF13B, SOCS1, and EEF1D, showed significant correlation with time to disease progression when evaluated in an independent set of CD4⁺ T cell expression data. This work characterizes 2 minimally studied clinical patterns of progression to AIDS, whose analysis may inform our understanding of HIV pathogenesis.
Collapse
Affiliation(s)
- Margalida Rotger
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
933
|
Unique features of memory T cells in HIV elite controllers: a systems biology perspective. Curr Opin HIV AIDS 2011; 6:188-96. [DOI: 10.1097/coh.0b013e32834589a1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
934
|
Hersperger AR, Migueles SA, Betts MR, Connors M. Qualitative features of the HIV-specific CD8+ T-cell response associated with immunologic control. Curr Opin HIV AIDS 2011; 6:169-73. [PMID: 21399496 PMCID: PMC4309378 DOI: 10.1097/coh.0b013e3283454c39] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Over the past 2 years, a clearer picture has emerged regarding the properties of HIV-specific CD8+ T cells associated with immunologic control of HIV replication. These properties represent a potential mechanism by which rare patients might control HIV replication in the absence of antiretroviral therapy. This review addresses the background and recent findings that have lead to our current understanding of these mechanism(s). RECENT FINDINGS Patients with immunologic control of HIV are not distinguished by targeted specificities, or greater numbers or breadth of their HIV-specific CD8+ T-cell response. For this reason, recent work has focused greater attention on qualitative features of this response. The qualitative features most closely associated with immunologic control of HIV are related to the granule-exocytosis-mediated elimination of HIV-infected CD4 T cells. The ability of HIV-specific CD8+ T cells to increase their contents of proteins known to mediate cytotoxicity, such as granzyme B and perforin, appears to be a critical means by which HIV-specific cytotoxic capacity is regulated. SUMMARY Investigation from multiple groups has now focused upon HIV-specific CD8+ T-cell granule-exocytosis-mediated cytotoxicity as a correlate of immunologic control of HIV. In the near future, a more detailed understanding of the qualities associated with immunologic control may provide critical insights regarding the necessary features of a response that should be stimulated by immunotherapies or T-cell-based vaccines.
Collapse
Affiliation(s)
- Adam R. Hersperger
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen A. Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
935
|
Autran B, Descours B, Avettand-Fenoel V, Rouzioux C. Elite controllers as a model of functional cure. Curr Opin HIV AIDS 2011; 6:181-7. [PMID: 21460722 DOI: 10.1097/coh.0b013e328345a328] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
936
|
Hartigan-O'Connor DJ, Hirao LA, McCune JM, Dandekar S. Th17 cells and regulatory T cells in elite control over HIV and SIV. Curr Opin HIV AIDS 2011; 6:221-7. [PMID: 21399494 PMCID: PMC4079838 DOI: 10.1097/coh.0b013e32834577b3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW We present current findings about two subsets of CD4+ T cells that play an important part in the initial host response to infection with the HIV type 1: those producing IL-17 (Th17 cells) and those with immunosuppressive function (CD25+FoxP3+ regulatory T cells or T-reg). The role of these cells in the control of viral infection and immune activation as well as in the prevention of immune deficiency in HIV-infected elite controllers will be examined. We will also discuss the use of the simian immunodeficiency virus (SIV)-infected macaque model of AIDS to study the interplay between these cells and lentiviral infection in vivo. RECENT FINDINGS Study of Th17 cells in humans and nonhuman primates (NHPs) has shown that depletion of these cells is associated with the dissemination of microbial products from the infected gut, increased systemic immune activation, and disease progression. Most impressively, having a smaller Th17-cell compartment has been found to predict these outcomes. T-reg have been associated with the reduced antiviral T-cell responses but not with the suppression of generalized T cell activation. Both cell subsets influence innate immune responses and, in doing so, may shape the inflammatory milieu of the host at infection. SUMMARY Interactions between Th17 cells, T-reg, and cells of the innate immune system influence the course of HIV and SIV infection from its earliest stages, even before the appearance of adaptive immunity. Such interactions may be pivotal for elite control over disease progression.
Collapse
Affiliation(s)
- Dennis J Hartigan-O'Connor
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, USA.
| | | | | | | |
Collapse
|
937
|
Kulkarni S, Savan R, Qi Y, Gao X, Yuki Y, Bass SE, Martin MP, Hunt P, Deeks SG, Telenti A, Pereyra F, Goldstein D, Wolinsky S, Walker B, Young HA, Carrington M. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 2011; 472:495-8. [PMID: 21499264 PMCID: PMC3084326 DOI: 10.1038/nature09914] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 02/10/2011] [Indexed: 12/28/2022]
Abstract
The HLA-C locus is distinct relative to the other classical HLA class I loci in that it has relatively limited polymorphism, lower expression on the cell surface, and more extensive ligand-receptor interactions with killer-cell immunoglobulin-like receptors. A single nucleotide polymorphism (SNP) 35 kb upstream of HLA-C (rs9264942; termed -35) associates with control of HIV, and with levels of HLA-C messenger RNA transcripts and cell-surface expression, but the mechanism underlying its varied expression is unknown. We proposed that the -35 SNP is not the causal variant for differential HLA-C expression, but rather is marking another polymorphism that directly affects levels of HLA-C. Here we show that variation within the 3' untranslated region (UTR) of HLA-C regulates binding of the microRNA hsa-miR-148 to its target site, resulting in relatively low surface expression of alleles that bind this microRNA and high expression of HLA-C alleles that escape post-transcriptional regulation. The 3' UTR variant associates strongly with control of HIV, potentially adding to the effects of genetic variation encoding the peptide-binding region of the HLA class I loci. Variation in HLA-C expression adds another layer of diversity to this highly polymorphic locus that must be considered when deciphering the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Smita Kulkarni
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
938
|
Strong human endogenous retrovirus-specific T cell responses are associated with control of HIV-1 in chronic infection. J Virol 2011; 85:6977-85. [PMID: 21525339 DOI: 10.1128/jvi.00179-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Eight percent of the human genome is composed of human endogenous retroviruses (HERVs), which are thought to be inactive remnants of ancient infections. Previously, we showed that individuals with early HIV-1 infection have stronger anti-HERV T cell responses than uninfected controls. In this study, we investigated whether these responses persist in chronic HIV-1 infection and whether they have a role in the control of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 88 subjects diagnosed with HIV-1 infection for at least 1 year (median duration of diagnosis, 13 years) were tested for responses against HERV peptides in gamma interferon (IFN-γ) enzyme immunospot (ELISPOT) assays. Individuals who control HIV-1 viremia without highly active antiretroviral therapy (HAART) had stronger and broader HERV-specific T cell responses than HAART-suppressed patients, virologic noncontrollers, immunologic progressors, and uninfected controls (P < 0.05 for each pairwise comparison). In addition, the magnitude of the anti-HERV T cell response was inversely correlated with HIV-1 viral load (r(2) = 0.197, P = 0.0002) and associated with higher CD4(+) T cell counts (r(2) = 0.072, P = 0.027) in untreated patients. Flow cytometric analyses of an HLA-B51-restricted CD8(+) HERV response in one HIV-1-infected individual revealed a less activated and more differentiated phenotype than that stimulated by a homologous HIV-1 peptide. HLA-B51 tetramer dual staining within this individual confirmed two different T cell populations corresponding to these HERV and HIV-1 epitopes, ruling out cross-reactivity. These findings suggest a possible role for anti-HERV immunity in the control of chronic HIV-1 infection and provide support for a larger effort to design an HIV-1 vaccine that targets conserved antigens such as HERV.
Collapse
|
939
|
Corrah TW, Goonetilleke N, Kopycinski J, Deeks SG, Cohen MS, Borrow P, McMichael A, Brackenridge S. Reappraisal of the relationship between the HIV-1-protective single-nucleotide polymorphism 35 kilobases upstream of the HLA-C gene and surface HLA-C expression. J Virol 2011; 85:3367-74. [PMID: 21248048 PMCID: PMC3067890 DOI: 10.1128/jvi.02276-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/22/2010] [Indexed: 01/16/2023] Open
Abstract
Previous studies have found an association between a single-nucleotide polymorphism 35 kb upstream of the HLA-C locus (-35 SNP), HLA-C expression, and HIV-1 set point viral loads. We show that the difference in HLA-C expression across -35 SNP genotypes can be attributed primarily to the very low expression of a single allelic product, HLA-Cw7, which is a common HLA type. We suggest that association of the -35 SNP and HIV-1 load manifests as a result of linkage disequilibrium of this polymorphism with both favorable and unfavorable HLA-C and -B alleles.
Collapse
Affiliation(s)
- Tumena W. Corrah
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nilu Goonetilleke
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jakub Kopycinski
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven G. Deeks
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Myron S. Cohen
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Brackenridge
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom, IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom, Department of Medicine, University of California San Francisco, San Francisco, California, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
940
|
Keane N, John M. Biomarkers of natural and vaccine immunity against HIV. Biomark Med 2011; 5:113-6. [DOI: 10.2217/bmm.11.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Niamh Keane
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia
| | - Mina John
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia and Department of Clinical Immunology, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, Western Australia
| |
Collapse
|
941
|
Riva A, Vicenzi E, Galli M, Poli G. Strenuous resistance to natural HIV-1 disease progression: viral controllers and long-term nonprogressors. Future Virol 2011. [DOI: 10.2217/fvl.11.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1 infection leads to AIDS and death within 8–10 years for most individuals in the absence of antiretroviral therapy (ART). However, a minority of infected individuals show the unusual capacity to spontaneously control disease progression after infection in the absence of any ART. So-called ‘long-term nonprogressors’ are defined by maintenance of peripheral CD4+ T-cell counts >500 cells/µl and good health without ART for >7 years since infection. More recently, ART-naive individuals who spontaneously control their viremia levels at either <50 or <2000 copies of RNA/ml for at least 12 months in the absence of ART have been named ‘elite controllers’ and ‘HIV controllers’, respectively. The overlap between long-term nonprogressors and elite controllers/HIV controllers is partial, and both groups collectively account for <5% of all infected individuals. Unraveling the nature of their relative resistance to HIV-1 disease progression would be of great value for HIV-prevention strategies.
Collapse
Affiliation(s)
- Agostino Riva
- Infectious Diseases & Immunopathology Section, Department of Clinical Sciences, L Sacco Hospital, Università di Milano, Italy
| | - Elisa Vicenzi
- Viral Pathogens & Biosafety & AIDS Immunopathogenesis Units, Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy; P2/P3 Laboratories, Via Olgettina n 58, 20132, Milano, Italy
| | - Massimo Galli
- Infectious Diseases & Immunopathology Section, Department of Clinical Sciences, L Sacco Hospital, Università di Milano, Italy
| | - Guido Poli
- Vita-Salute San Raffaele University, School of Medicine, Milano, Italy
| |
Collapse
|
942
|
McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, Sills GJ, Marson T, Jia X, de Bakker PIW, Chinthapalli K, Molokhia M, Johnson MR, O'Connor GD, Chaila E, Alhusaini S, Shianna KV, Radtke RA, Heinzen EL, Walley N, Pandolfo M, Pichler W, Park BK, Depondt C, Sisodiya SM, Goldstein DB, Deloukas P, Delanty N, Cavalleri GL, Pirmohamed M. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011; 364:1134-43. [PMID: 21428769 PMCID: PMC3113609 DOI: 10.1056/nejmoa1013297] [Citation(s) in RCA: 639] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B*1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN) in the Han Chinese and other Asian populations but not in European populations. METHODS We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions. RESULTS The HLA-A*3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P=3.5×10(-8)). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A*3101 allele (P=1.1×10(-6)). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS-TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18). CONCLUSIONS The presence of the HLA-A*3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.).
Collapse
Affiliation(s)
- Mark McCormack
- Molecular and Cellular Therapeutics, the Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
943
|
Chen H, Li C, Huang J, Cung T, Seiss K, Beamon J, Carrington MF, Porter LC, Burke PS, Yang Y, Ryan BJ, Liu R, Weiss RH, Pereyra F, Cress WD, Brass AL, Rosenberg ES, Walker BD, Yu XG, Lichterfeld M. CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21. J Clin Invest 2011; 121:1549-60. [PMID: 21403397 DOI: 10.1172/jci44539] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/19/2011] [Indexed: 12/25/2022] Open
Abstract
Elite controllers represent a unique group of HIV-1-infected persons with undetectable HIV-1 replication in the absence of antiretroviral therapy. However, the mechanisms contributing to effective viral immune defense in these patients remain unclear. Here, we show that compared with HIV-1 progressors and HIV-1-negative persons, CD4+ T cells from elite controllers are less susceptible to HIV-1 infection. This partial resistance to HIV-1 infection involved less effective reverse transcription and mRNA transcription from proviral DNA and was associated with strong and selective upregulation of the cyclin-dependent kinase inhibitor p21 (also known as cip-1 and waf-1). Experimental blockade of p21 in CD4+ T cells from elite controllers resulted in a marked increase of viral reverse transcripts and mRNA production and led to higher enzymatic activities of cyclin-dependent kinase 9 (CDK9), which serves as a transcriptional coactivator of HIV-1 gene expression. This suggests that p21 acts as a barrier against HIV-1 infection in CD4+ T cells from elite controllers by inhibiting a cyclin-dependent kinase required for effective HIV-1 replication. These data demonstrate a mechanism of host resistance to HIV-1 in elite controllers and may open novel perspectives for clinical strategies to prevent or treat HIV-1 infection.
Collapse
Affiliation(s)
- Huabiao Chen
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
944
|
Abstract
The quest for an effective and safe HIV-1 vaccine has been and still is the aspiration of many scientists and clinicians worldwide. Until recently, the hopes for an effective vaccine were thwarted by the disappointing results and early termination in September 2007 of the STEP study, which saw a subgroup of male vaccine recipients at an increased risk of HIV-1 infection, and the failure of earlier trials of vaccines based on recombinant envelope proteins to provide any level of protection. The results of the STEP study raised important questions in the field of HIV vaccines, including the use of recombinant adenovirus vectors as immunogens, the rationale for the development of T-cell-based vaccines and the development pathway for these vaccines, in terms of assessment of immunogenicity and the challenge models used. The study of neutralizing antibodies has demonstrated that the induction of high-titre, broadly neutralizing antibodies in the majority of recipients is likely to be highly problematic. However, the results of the RV144 Thai trial released in September 2009 have brought new optimism to the field. This study employed envelope-based immunogens delivered as a priming vaccination with a recombinant poxvirus vector and boosting with recombinant proteins. This regimen provided modest protection to HIV-1 infection in a low-risk population. Although the correlates of protection are currently unknown, extensive studies are underway to try to determine these. Neutralizing antibodies were not induced in the RV144 study; however, considerable titres of binding antibodies to HIV-1 viral envelope (Env) were. It is speculated that these antibodies may have provided a means of protection by a mechanism such as antibody-dependent cell-mediated cytotoxicity. In addition, no CD8+ T-cell responses were induced, but robust CD4+ T-cell responses were, and correlates of protection are being sought by analysing the quality of this aspect of the vaccine-induced immune response. The current paradigm for an optimal HIV-1 vaccine is to design immunogens and vaccination protocols that allow the induction of both broadly neutralizing humoral and broadly reactive and effective cell-mediated immunity, to act at sites of possible infection and post-infection, respectively. However, this is challenged by the results of the RV144 trial as neither of these responses were induced but modest protection was observed. Understanding the biology and immunopathology of HIV-1 early following infection, its modes of transmission and the human immune system's response to the virus should aid in the rational design of vaccines of increased efficacy.
Collapse
Affiliation(s)
- C Mee Ling Munier
- HIV Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
945
|
Genomic DNA pooling strategy for next-generation sequencing-based rare variant discovery in abdominal aortic aneurysm regions of interest-challenges and limitations. J Cardiovasc Transl Res 2011; 4:271-80. [PMID: 21360310 PMCID: PMC3099005 DOI: 10.1007/s12265-011-9263-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/16/2011] [Indexed: 12/25/2022]
Abstract
The costs and efforts for sample preparation of hundreds of individuals, their genomic enrichment for regions of interest, and sufficient deep sequencing bring a significant burden to next-generation sequencing-based experiments. We investigated whether pooling of samples at the level of genomic DNA would be a more versatile strategy for lowering the costs and efforts for common disease-associated rare variant detection in candidate genes or associated loci in a substantial patient cohort. We performed a pilot experiment using five pools of 20 abdominal aortic aneurysm (AAA) patients that were enriched on separate microarrays for the reported 9p21.3 associated locus and 42 additional AAA candidate genes, and sequenced on the SOLiD platform. Here, we discuss challenges and limitations connected to this approach and show that the high number of novel variants detected per pool and allele frequency deviations to the usually highly false positive cut-off region for variant detection in non-pooled samples can be limiting factors for successful variant prioritization and confirmation. We conclude that barcode indexing of individual samples before pooling followed by a multiplexed enrichment strategy should be preferred for detection of rare genetic variants in larger sample sets rather than a genomic DNA pooling strategy.
Collapse
|
946
|
Foster JL, Denial SJ, Temple BRS, Garcia JV. Mechanisms of HIV-1 Nef function and intracellular signaling. J Neuroimmune Pharmacol 2011; 6:230-46. [PMID: 21336563 DOI: 10.1007/s11481-011-9262-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Advances in the last several years have enhanced mechanistic understanding of Nef-induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed. The recent progress has been dependent on conservative mutations and multi-protein binding assays. The poorly understood Nef functions of p21 activated protein kinase (PAK2) activation, enhancement of virion infectivity, and inhibition of immunoglobulin class switching are also likely to involve ternary complexes and non-canonical interactions. Hence, investigation of these latter Nef functions should benefit from a similar approach. Six historically used alanine substitutions for determining structure-function relationships of Nef are discussed. These are M20A, E62A/E63A/E64A/E65A (AAAA), P72A/P75A (AXXA), R106A, L164A/L165A, and D174A/D175A. Investigations of less-disruptive mutations in place of AAAA and AXXA have led to different interpretations of mechanism. Two recent examples of this alternate approach, F191I for studying PAK2 activation and D123E for the critical residue D123 are discussed. The implications of the new findings and the resulting new paradigm for Nef structure-function are discussed with respect to creating a map of Nef functions on the protein surface. We report the results of a PPI-Pred analysis for protein-protein interfaces. There are three predicted patches produced by the analysis which describe regions consistent with the currently known mutational analyses of Nef function.
Collapse
Affiliation(s)
- John L Foster
- Division of Infectious Diseases, Center for AIDS Research, Chapel Hill, NC 27599-7042, USA.
| | | | | | | |
Collapse
|
947
|
Influence of Gag-protease-mediated replication capacity on disease progression in individuals recently infected with HIV-1 subtype C. J Virol 2011; 85:3996-4006. [PMID: 21289112 DOI: 10.1128/jvi.02520-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HLA class I-mediated selection of immune escape mutations in functionally important Gag epitopes may partly explain slower disease progression in HIV-1-infected individuals with protective HLA alleles. To investigate the impact of Gag function on disease progression, the replication capacities of viruses encoding Gag-protease from 60 individuals in early HIV-1 subtype C infection were assayed in an HIV-1-inducible green fluorescent protein reporter cell line and were correlated with subsequent disease progression. Replication capacities did not correlate with viral load set points (P = 0.37) but were significantly lower in individuals with below-median viral load set points (P = 0.03), and there was a trend of correlation between lower replication capacities and lower rates of CD4 decline (P = 0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (P = 0.04), but host HLA-B-specific polymorphisms were associated with higher viral load set points (P = 0.01). Further, polymorphisms associated with host-specific protective HLA alleles were linked with higher viral load set points (P = 0.03). These data suggest that transmission or early HLA-driven selection of Gag polymorphisms results in reduced early cytotoxic T-lymphocyte (CTL) responses and higher viral load set points. In support of the former, 46% of individuals with nonprotective alleles harbored a Gag polymorphism exclusively associated with a protective HLA allele, indicating a high rate of their transmission in sub-Saharan Africa. Overall, HIV disease progression is likely to be affected by the ability to mount effective Gag CTL responses as well as the replication capacity of the transmitted virus.
Collapse
|
948
|
Abstract
Macrophages and CD4+ T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific findings that support a critical role for the infected monocyte/macrophage in HIV-1-associated diseases, such as neurological disorders and cardiovascular disease, are accumulating. To prevent or treat these HIV-1-related diseases, we need to halt HIV-1 replication in the macrophage reservoir. This article describes our current knowledge of how monocytes and certain macrophage subsets are able to restrict HIV-1 infection, in addition to what makes macrophages respond less well to current antiretroviral drugs as compared with CD4+ T cells. These insights will help to find novel approaches that can be used to meet this challenge.
Collapse
Affiliation(s)
- Sebastiaan M Bol
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Viviana Cobos-Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
949
|
Lazaryan A, Song W, Lobashevsky E, Tang J, Shrestha S, Zhang K, McNicholl JM, Gardner LI, Wilson CM, Klein RS, Rompalo A, Mayer K, Sobel J, Kaslow RA. The influence of human leukocyte antigen class I alleles and their population frequencies on human immunodeficiency virus type 1 control among African Americans. Hum Immunol 2011; 72:312-8. [PMID: 21262311 DOI: 10.1016/j.humimm.2011.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 12/09/2010] [Accepted: 01/13/2011] [Indexed: 11/17/2022]
Abstract
Populations of African ancestry continue to account for a disproportionate burden of the human immunodeficiency virus type 1 (HIV-1) epidemic in the United States. We investigated the effects of human leukocyte antigen (HLA) class I markers in association with virologic and immunologic control of HIV-1 infection among 338 HIV-1 subtype B-infected African Americans in 2 cohorts: Reaching for Excellence in Adolescent Care and Health (REACH) and HIV Epidemiology Research Study (HERS). One-year treatment-free interval measurements of HIV-1 RNA viral loads and CD4(+) T cells were examined both separately and combined to represent 3 categories of HIV-1 disease control (76 controllers, 169 intermediates, and 93 noncontrollers). Certain previously or newly implicated HLA class I alleles (A*32, A*36, A*74, B*14, B*1510, B*3501, B*45, B*53, B*57, Cw*04, Cw*08, Cw*12, and Cw*18) were associated with 1 or more of the endpoints in univariate analyses. After multivariable adjustments for other genetic and nongenetic risk factors of HIV-1 progression, the subset of alleles more strongly or consistently associated with HIV-1 disease control included A*32, A*74, B*14, B*45, B*53, B*57, and Cw*08. Carriage of infrequent HLA-B but not HLA-A alleles was associated with more favorable disease outcomes. Certain HLA class I associations with control of HIV-1 infection cross the boundaries of race and viral subtype, whereas others appear confined within one or the other of those boundaries.
Collapse
|
950
|
Abstract
Antiviral adaptive immune defenses consist of humoral and cell-mediated responses, which together eliminate extracellular and intracellular virus. As most retrovirus-infected individuals do not raise efficient protective antivirus immune responses, the relative importance of humoral and cell-mediated responses in restraining retroviral infection is not well understood. We utilized retrovirus-resistant I/LnJ mice, which control infection with mouse mammary tumor virus (MMTV) and murine leukemia virus (MuLV) via an adaptive immune mechanism, to assess the contribution of cellular responses and virus-neutralizing antibodies (Abs) to the control of retroviral infection. We found that in retrovirus-infected CD8-deficient I/LnJ mice, viral titers exceed the neutralizing capability of antiviral Abs, resulting in augmented virus spread and disease induction. Thus, even in the presence of robust neutralizing Ab responses, CD8-mediated responses are essential for full protection against retroviral infection.
Collapse
|