99651
|
Shademan B, Nourazarian A, Hajazimian S, Isazadeh A, Biray Avci C, Oskouee MA. CRISPR Technology in Gene-Editing-Based Detection and Treatment of SARS-CoV-2. Front Mol Biosci 2022; 8:772788. [PMID: 35087864 PMCID: PMC8787289 DOI: 10.3389/fmolb.2021.772788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Outbreak and rapid spread of coronavirus disease (COVID-19) caused by coronavirus acute respiratory syndrome (SARS-CoV-2) caused severe acute respiratory syndrome (SARS-CoV-2) that started in Wuhan, and has become a global problem because of the high rate of human-to-human transmission and severe respiratory infections. Because of high prevalence of SARS-CoV-2, which threatens many people worldwide, rapid diagnosis and simple treatment are needed. Genome editing is a nucleic acid-based approach to altering the genome by artificially changes in genetic information and induce irreversible changes in the function of target gene. Clustered, regularly interspaced short palindromic repeats (CRISPR/Cas) could be a practical and straightforward approach to this disease. CRISPR/Cas system contains Cas protein, which is controlled by a small RNA molecule to create a double-stranded DNA gap. Evidence suggested that CRISPR/Cas was also usable for diagnosis and treatment of SARS-CoV-2 infection. In this review study, we discoursed on application of CRISPR technology in detection and treatment of SARS-CoV-2 infection. Another aspect of this study was to introduce potential future problems in use of CRISPR/Cas technology.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mahin Ahangar Oskouee
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
99652
|
Han Y, Villarreal-Ponce A, Gutierrez G, Nguyen Q, Sun P, Wu T, Sui B, Berx G, Brabletz T, Kessenbrock K, Zeng YA, Watanabe K, Dai X. Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Rep 2022; 38:110240. [PMID: 35021086 PMCID: PMC9894649 DOI: 10.1016/j.celrep.2021.110240] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.
Collapse
Affiliation(s)
- Yingying Han
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Ting Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Benjamin Sui
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium,Cancer Research Institute Ghent, Ghent, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine I, University, Erlangen-Nuernberg Glueckstr. 6, 91054 Erlangen, Germany
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Yi Arial Zeng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,Lead contact,Correspondence:
| |
Collapse
|
99653
|
Avolio R, Inglés-Ferrándiz M, Ciocia A, Coll O, Bonnin S, Guitart T, Ribó A, Gebauer F. Coordinated post-transcriptional control of oncogene-induced senescence by UNR/CSDE1. Cell Rep 2022; 38:110211. [PMID: 35021076 DOI: 10.1016/j.celrep.2021.110211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/27/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a form of stable cell-cycle arrest arising in response to oncogenic stimulation. OIS must be bypassed for transformation, but the mechanisms of OIS establishment and bypass remain poorly understood, especially at the post-transcriptional level. Here, we show that the RNA-binding protein UNR/CSDE1 enables OIS in primary mouse keratinocytes. Depletion of CSDE1 leads to senescence bypass, cell immortalization, and tumor formation, indicating that CSDE1 behaves as a tumor suppressor. Unbiased high-throughput analyses uncovered that CSDE1 promotes OIS by two independent molecular mechanisms: enhancement of the stability of senescence-associated secretory phenotype (SASP) factor mRNAs and repression of Ybx1 mRNA translation. Importantly, depletion of YBX1 from immortal keratinocytes rescues senescence and uncouples proliferation arrest from the SASP, revealing multilayered mechanisms exerted by CSDE1 to coordinate senescence. Our data highlight the relevance of post-transcriptional control in the regulation of senescence.
Collapse
Affiliation(s)
- Rosario Avolio
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Marta Inglés-Ferrándiz
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Annagiulia Ciocia
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Olga Coll
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sarah Bonnin
- Bioinformatics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Anna Ribó
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
99654
|
Wang R, Chen F, Chen Q, Wan X, Shi M, Chen AK, Ma Z, Li G, Wang M, Ying Y, Liu Q, Li H, Zhang X, Ma J, Zhong J, Chen M, Zhang MQ, Zhang Y, Chen Y, Zhu D. MyoD is a 3D genome structure organizer for muscle cell identity. Nat Commun 2022; 13:205. [PMID: 35017543 PMCID: PMC8752600 DOI: 10.1038/s41467-021-27865-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
The genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice. We show that MyoD functions as a “genome organizer” that specifies 3D genome architecture unique to muscle cell development, and that H3K27ac is insufficient for the establishment of MyoD-induced chromatin loops in muscle cells. Moreover, we present evidence that other cell lineage-specific TFs might also exert functional roles in orchestrating lineage-specific 3D genome organization during development. Pioneer transcription factors (TFs) have been proposed to act as protein anchors to orchestrate cell type-specific 3D genome architecture. MyoD is a pioneer TF for myogenic lineage specification. Here the authors provide further support for the role of MyoD in 3D genome architecture in muscle stem cells by comparing MyoD knockout and wild-type mice.
Collapse
Affiliation(s)
- Ruiting Wang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Fengling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Qian Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Xin Wan
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Qinyao Liu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China
| | - Xu Zhang
- Beijing institute of collaborative innovation, 100094, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jiayun Zhong
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Meihong Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China. .,Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas 800 West Campbell Road, RL11, Richardson, TX, 75080-3021, USA.
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China.
| |
Collapse
|
99655
|
Lo HF, Hong M, Krauss RS. Concepts in Multifactorial Etiology of Developmental Disorders: Gene-Gene and Gene-Environment Interactions in Holoprosencephaly. Front Cell Dev Biol 2022; 9:795194. [PMID: 35004690 PMCID: PMC8727999 DOI: 10.3389/fcell.2021.795194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Many common developmental disorders are thought to arise from a complex set of genetic and environmental risk factors. These factors interact with each other to affect the strength and duration of key developmental signaling pathways, thereby increasing the possibility that they fail to achieve the thresholds required for normal embryonic patterning. One such disorder, holoprosencephaly (HPE), serves as a useful model system in understanding various forms of multifactorial etiology. Genomic analysis of HPE cases, epidemiology, and mechanistic studies of animal models have illuminated multiple potential ways that risk factors interact to produce adverse developmental outcomes. Among these are: 1) interactions between driver and modifier genes; 2) oligogenic inheritance, wherein each parent provides predisposing variants in one or multiple distinct loci; 3) interactions between genetic susceptibilities and environmental risk factors that may be insufficient on their own; and 4) interactions of multiple genetic variants with multiple non-genetic risk factors. These studies combine to provide concepts that illuminate HPE and are also applicable to additional disorders with complex etiology, including neural tube defects, congenital heart defects, and oro-facial clefting.
Collapse
Affiliation(s)
- Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
99656
|
Jinnan W, Ruyue W, Jihong L, Yanting T, Haoping G, Lili H, Dongyue W, Xueling W. Construction of a high-density genetic map using specific-length amplified fragment markers and identification of QTLs for branching angle in poplar. Mol Genet Genomics 2022; 297:345-356. [PMID: 35015131 DOI: 10.1007/s00438-021-01850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
Branching angle is a critical factor that determines the morphological establishment and is a typical quantitative trait controlled by multiple genes. In this study, we used SLAF-seq to construct a high-density genetic map, to investigate the genetic architecture of branching angle in poplar (Populus leucopyramidalis). A total of 240,672 SLAF tags were obtained, including 103,691 polymorphic SLAF tags. After filtering, 53,407 polymorphic markers were sorted into eight segregation types, and 11,162 of them were used to construct the genetic map. 8447 were on the female parent map, 8532 were on the male parent map, and 11,162 were on the integrated map. The marker coverage was 4820.84 and 5044.80 cM for the female and male maps, and 3142.61 cM for the integrated map. The average intervals between two adjacent mapped markers were 0.55, 0.59, and 0.28 cM for the three maps, respectively. Two quantitative trait loci (QTLs) were detected. Seven markers that exceeded the threshold in these two regions were considered as being associated with branching angle and the phenotypic variance explained by each of these marker was 10.64-11.66%. After functional annotation, we identified 15 candidate genes and analyzed the expression of candidate genes in narrow and wide crown progenies by qRT-PCR. These results show that the combination of QTL and SLAF-seq will contribute to future breeding plans in poplar breeding, especially in narrow crown poplar breeding.
Collapse
Affiliation(s)
- Wang Jinnan
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China
| | - Wang Ruyue
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China
| | - Li Jihong
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China. .,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China. .,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China.
| | - Tian Yanting
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China
| | - Guo Haoping
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China
| | - Hou Lili
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China
| | - Wang Dongyue
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China
| | - Wang Xueling
- College of Forestry, Shandong Agricultural University, Taian, 271018, Shangdong, China.,Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, 271018, Shangdong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, Shangdong, China
| |
Collapse
|
99657
|
Ramos F, Durán L, Sánchez M, Campos A, Hernández-Villamor D, Antequera F, Clemente-Blanco A. Genome-wide sequencing analysis of Sgs1, Exo1, Rad51, and Srs2 in DNA repair by homologous recombination. Cell Rep 2022; 38:110201. [PMID: 35021102 DOI: 10.1016/j.celrep.2021.110201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Homologous recombination is essential to maintain genome stability in response to DNA damage. Here, we have used genome-wide sequencing to quantitatively analyze at nucleotide resolution the dynamics of DNA end resection, re-synthesis, and gene conversion at a double-strand break. Resection initiates asymmetrically in an MRX-independent manner before proceeding steadily in both directions. Sgs1, Exo1, Rad51, and Srs2 differently regulate the rate and symmetry of early and late resection. Exo1 also ensures the coexistence of resection and re-synthesis, while Srs2 guarantees a constant and symmetrical DNA re-polymerization. Gene conversion is MMR independent, spans only a minor fraction of the resected region, and its unidirectionality depends on Srs2. Finally, these repair factors prevent the development of alterations remote from the DNA lesion, such as subtelomeric instability, duplication of genomic regions, and over-replication of Ty elements. Altogether, this approach allows a quantitative analysis and a direct genome-wide visualization of DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Laura Durán
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Mar Sánchez
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Adrián Campos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - David Hernández-Villamor
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Francisco Antequera
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain.
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain.
| |
Collapse
|
99658
|
Jeong M, Bojkovic K, Sagi V, Stankovic KM. Molecular and Clinical Significance of Fibroblast Growth Factor 2 in Development and Regeneration of the Auditory System. Front Mol Neurosci 2022; 14:757441. [PMID: 35002617 PMCID: PMC8733209 DOI: 10.3389/fnmol.2021.757441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 01/25/2023] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a member of the FGF family which is involved in key biological processes including development, cellular proliferation, wound healing, and angiogenesis. Although the utility of the FGF family as therapeutic agents has attracted attention, and FGF2 has been studied in several clinical contexts, there remains an incomplete understanding of the molecular and clinical function of FGF2 in the auditory system. In this review, we highlight the role of FGF2 in inner ear development and hearing protection and present relevant clinical studies for tympanic membrane (TM) repair. We conclude by discussing the future implications of FGF2 as a potential therapeutic agent.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Katarina Bojkovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Varun Sagi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,University of Minnesota Medical School, Minneapolis, MN, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
99659
|
Cordon-Obras C, Gomez-Liñan C, Torres-Rusillo S, Vidal-Cobo I, Lopez-Farfan D, Barroso-Del Jesus A, Rojas-Barros D, Carrington M, Navarro M. Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep 2022; 38:110221. [PMID: 35021094 DOI: 10.1016/j.celrep.2021.110221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-coding genes in trypanosomes occur in polycistronic transcription units (PTUs). How RNA polymerase II (Pol II) initiates transcription of PTUs has not been resolved; the current model favors chromatin modifications inducing transcription rather than sequence-specific promoters. Here, we uncover core promoters by functional characterization of Pol II peaks identified by chromatin immunoprecipitation sequencing (ChIP-seq). Two distinct promoters are located between divergent PTUs, each driving unidirectional transcription. Detailed analysis identifies a 75-bp promoter that is necessary and sufficient to drive full reporter expression and contains functional motifs. Analysis of further promoters suggests transcription initiation is regulated and promoters are either focused or dispersed. In contrast to the previous model of unregulated and promoter-independent transcription initiation, we find that sequence-specific promoters determine the initiation of Pol II transcription of protein-coding genes PTUs. These findings in Trypanosoma brucei suggest that in addition of chromatin modifications, promoter motifs-based regulation of gene expression is deeply conserved among eukaryotes.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Claudia Gomez-Liñan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Sara Torres-Rusillo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Isabel Vidal-Cobo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Diana Lopez-Farfan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Alicia Barroso-Del Jesus
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Domingo Rojas-Barros
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
99660
|
The Multifaceted Profile of Thyroid Disease in the Background of DICER1 Germline and Somatic Mutations: Then, Now and Future Perspectives. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DICER1 protein is a member of the ribonuclease (RNAse) III family with a key role in the biogenesis of microRNAs (miRNA) and in microRNA processing, potentially affecting gene regulation at the post-transcriptional level. The role of DICER1 and its relevance to thyroid cellular processes and tumorigenesis have only recently been explored, following the acknowledgement that DICER1 germline and somatic changes can contribute not only to non-toxic multinodule goiter (MNG) lesions detected in individuals of affected families but also to a series of childhood tumours, including thyroid neoplasms, which can be identified from early infancy up until the decade of 40s. In a context of DICER1 germline gene mutation, thyroid lesions have recently been given importance, and they may represent either an index event within a syndromic context or the isolated event that may trigger a deeper and broader genomic analysis screening of individuals and their relatives, thereby preventing the consequences of a late diagnosis of malignancy. Within the syndromic context MNG is typically the most observed lesion. On the other hand, in a DICER1 somatic mutation context, malignant tumours are more common. In this review we describe the role of DICER protein, the genomic events that affect the DICER1 gene and their link to tumorigenesis as well as the frequency and pattern of benign and malignant thyroid lesions and the regulation of DICER1 within the thyroidal environment.
Collapse
|
99661
|
Nørgård MØ, Steffensen LB, Hansen DR, Füchtbauer EM, Engelund MB, Dimke H, Andersen DC, Svenningsen P. A new transgene mouse model using an extravesicular EGFP tag enables affinity isolation of cell-specific extracellular vesicles. Sci Rep 2022; 12:496. [PMID: 35017633 PMCID: PMC8752749 DOI: 10.1038/s41598-021-04512-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
The in vivo function of cell-derived extracellular vesicles (EVs) is challenging to establish since cell-specific EVs are difficult to isolate and differentiate. We, therefore, created an EV reporter using truncated CD9 to display enhanced green fluorescent protein (EGFP) on the EV surface. CD9truc-EGFP expression in cells did not affect EV size and concentration but enabled co-precipitation of EV markers TSG101 and ALIX from the cell-conditioned medium by anti-GFP immunoprecipitation. We then created a transgenic mouse where CD9truc-EGFP was inserted in the inverse orientation and double-floxed, ensuring irreversible Cre recombinase-dependent EV reporter expression. We crossed the EV reporter mice with mice expressing Cre ubiquitously (CMV-Cre), in cardiomyocytes (αMHC-MerCreMer) and renal tubular epithelial cells (Pax8-Cre), respectively. The CD9truc-EGFP positive mice showed Cre-dependent EGFP expression, and plasma CD9truc-EGFP EVs were immunoprecipitated only from CD9truc-EGFP positive CD9truc-EGFPxCMV-Cre and CD9truc-EGFPxαMHC-Cre mice, but not in CD9truc-EGFPxPax8-Cre and CD9truc-EGFP negative mice. In urine samples, CD9truc-EGFP EVs were detected by immunoprecipitation only in CD9truc-EGFP positive CD9truc-EGFPxCMV-Cre and CD9truc-EGFPxPax8-Cre mice, but not CD9truc-EGFPxαMHC-Cre and CD9truc-EGFP negative mice. In conclusion, our EV reporter mouse model enables Cre-dependent EV labeling, providing a new approach to studying cell-specific EVs in vivo and gaining a unique insight into their physiological and pathophysiological function.
Collapse
Affiliation(s)
- Mikkel Ø Nørgård
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsloews vej 21.3, 5000, Odense C, Denmark
| | - Lasse B Steffensen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsloews vej 21.3, 5000, Odense C, Denmark
| | - Didde R Hansen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsloews vej 21.3, 5000, Odense C, Denmark
| | | | - Morten B Engelund
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.,Clinical Genome Center, University of Southern Denmark, Odense C, Denmark
| | - Henrik Dimke
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsloews vej 21.3, 5000, Odense C, Denmark.,Department of Nephrology, Odense University Hospital, Odense C, Denmark
| | - Ditte C Andersen
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsloews vej 21.3, 5000, Odense C, Denmark.
| |
Collapse
|
99662
|
Lee K, Lee J, Lee P, Jeon BC, Song MY, Kwak S, Lee J, Kim J, Kim D, Kim JH, Tesh VL, Lee M, Park S. Inhibition of O-GlcNAcylation protects from Shiga toxin-mediated cell injury and lethality in host. EMBO Mol Med 2022; 14:e14678. [PMID: 34842355 PMCID: PMC8749473 DOI: 10.15252/emmm.202114678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli (EHEC) are the major virulence factors responsible for hemorrhagic colitis, which can lead to life-threatening systemic complications including acute renal failure (hemolytic uremic syndrome) and neuropathy. Here, we report that O-GlcNAcylation, a type of post-translational modification, was acutely increased upon induction of endoplasmic reticulum (ER) stress in host cells by Stxs. Suppression of the abnormal Stx-mediated increase in O-GlcNAcylation effectively inhibited apoptotic and inflammatory responses in Stx-susceptible cells. The protective effect of O-GlcNAc inhibition for Stx-mediated pathogenic responses was also verified using three-dimensional (3D)-cultured spheroids or organoids mimicking the human kidney. Treatment with an O-GlcNAcylation inhibitor remarkably improved the major disease symptoms and survival rate for mice intraperitoneally injected with a lethal dose of Stx. In conclusion, this study elucidates O-GlcNAcylation-dependent pathogenic mechanisms of Stxs and demonstrates that inhibition of aberrant O-GlcNAcylation is a potential approach to treat Stx-mediated diseases.
Collapse
Affiliation(s)
- Kyung‐Soo Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Jieun Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Pureum Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Bong Chan Jeon
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Min Yeong Song
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Sojung Kwak
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Jungwoon Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Jun‐Seob Kim
- Department of Nano‐BioengineeringIncheon National UniversityIncheonKorea
| | - Doo‐Jin Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Ji Hyung Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M UniversityBryanTXUSA
| | - Moo‐Seung Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Sung‐Kyun Park
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| |
Collapse
|
99663
|
Ghosh A, Pandey SP, Ansari AH, Sundar J, Singh P, Khan Y, Ekka MK, Chakraborty D, Maiti S. Alternative splicing modulation mediated by G-quadruplex structures in MALAT1 lncRNA. Nucleic Acids Res 2022; 50:378-396. [PMID: 34761272 PMCID: PMC8754661 DOI: 10.1093/nar/gkab1066] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
MALAT1, an abundant lncRNA specifically localized to nuclear speckles, regulates alternative-splicing (AS). The molecular basis of its role in AS remains poorly understood. Here, we report three conserved, thermodynamically stable, parallel RNA-G-quadruplexes (rG4s) present in the 3' region of MALAT1 which regulates this function. Using rG4 domain-specific RNA-pull-down followed by mass-spectrometry, RNA-immuno-precipitation, and imaging, we demonstrate the rG4 dependent localization of Nucleolin (NCL) and Nucleophosmin (NPM) to nuclear speckles. Specific G-to-A mutations that abolish rG4 structures, result in the localization loss of both the proteins from speckles. Functionally, disruption of rG4 in MALAT1 phenocopies NCL knockdown resulting in altered pre-mRNA splicing of endogenous genes. These results reveal a central role of rG4s within the 3' region of MALAT1 orchestrating AS.
Collapse
Affiliation(s)
- Arpita Ghosh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Satya Prakash Pandey
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | | | - Praveen Singh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Yasmeen Khan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
99664
|
Distinctive Roles of YAP and TAZ in Human Endothelial Progenitor Cells Growth and Functions. Biomedicines 2022; 10:biomedicines10010147. [PMID: 35052826 PMCID: PMC8773510 DOI: 10.3390/biomedicines10010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The hippo signaling pathway plays an essential role in controlling organ size and balancing tissue homeostasis. Its two main effectors, yes-associated protein (YAP) and WW domain-containing transcription regulator 1, WWTR1 or TAZ, have also been shown to regulate endothelial cell functions and angiogenesis. In this study, the functions of YAP and TAZ in human endothelial progenitor cells (EPCs) were investigated by a loss-of-function study using CRISPR/Cas9-mediated gene knockdown (KD). Depletion of either YAP or TAZ reduced EPC survival and impaired many of their critical functions, including migration, invasion, vessel-formation, and expression of pro-angiogenic genes. Notably, TAZ-KD EPCs exhibited more severe phenotypes in comparison to YAP-KD EPCs. Moreover, the conditioned medium derived from TAZ-KD EPCs reduced the survivability of human lung cancer cells and increased their sensitivity to chemotherapeutic agents. The overexpression of either wild-type or constitutively active TAZ rescued the impaired phenotypes of TAZ-KD EPCs and restored the expression of pro-angiogenic genes in those EPCs. In summary, we demonstrate the crucial role of Hippo signaling components, YAP and TAZ, in controlling several aspects of EPC functions that can potentially be used as a drug target to enhance EPC functions in patients.
Collapse
|
99665
|
Sun Y, Tian Y, He J, Tian Y, Zhang G, Zhao R, Zhu WJ, Gao P. Linc01133 contributes to gastric cancer growth by enhancing YES1-dependent YAP1 nuclear translocation via sponging miR-145-5p. Cell Death Dis 2022; 13:51. [PMID: 35017464 PMCID: PMC8752595 DOI: 10.1038/s41419-022-04500-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/18/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
The long intergenic non-coding RNA linc01133 is reported to be oncogenic in various malignancies. However, the role and mechanism of linc01133 in regulating gastric cancer growth is still not clear. In the present study, we found that linc01133 was significantly upregulated in gastric cancer tissues compared to non-tumorous gastric tissues. Linc01133 over-expression significantly correlated with tumor size and tumor differentiation in gastric cancer patients. The expression of linc01133 was regulated by c-Jun and c-Fos collaboratively. In both in vitro and in vivo studies, linc01133 was shown to promote gastric cancer cell growth. Linc01133 localized in the cytoplasm and functioned as an endogenous competing RNA of miR-145-5p to upregulate the expression of YES1, which was proved to be the target gene of miR-145-5p. By promoting YES1-dependent YAP1 nuclear translocation, linc01133 upregulated the expression of the key cell cycle regulators CDK4, CDK6 and cyclin D1 to promote G1-S phase transition. Thus, our study unveiled the function and mechanism of linc01133 regulating cell cycle progression in gastric cancer.
Collapse
Affiliation(s)
- Yujing Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuan Tian
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Junyi He
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, PR China
| | - Guohao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ruinan Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Wen-Jie Zhu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China. .,Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Peng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China. .,Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
99666
|
Wang F, Tao R, Zhao L, Hao XH, Zou Y, Lin Q, Liu MM, Goldman G, Luo D, Chen S. Differential lncRNA/mRNA Expression Profiling and Functional Network Analyses in Bmp2 Deletion of Mouse Dental Papilla Cells. Front Genet 2022; 12:702540. [PMID: 35003201 PMCID: PMC8727545 DOI: 10.3389/fgene.2021.702540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Bmp2 is essential for dentin development and formation. Bmp2 conditional knock-out (KO) mice display a similar tooth phenotype of dentinogenesis imperfecta (DGI). To elucidate a foundation for subsequent functional studies of cross talk between mRNAs and lncRNAs in Bmp2-mediated dentinogenesis, we investigated the profiling of lncRNAs and mRNAs using immortalized mouse dental Bmp2 flox/flox (iBmp2fx/fx) and Bmp2 knock-out (iBmp2ko/ko) papilla cells. RNA sequencing was implemented to study the expression of the lncRNAs and mRNAs. Quantitative real-time PCR (RT-qPCR) was used to validate expressions of lncRNAs and mRNAs. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to predict functions of differentially expressed genes (DEGs). Protein-protein interaction (PPI) and lncRNA-mRNA co-expression network were analyzed by using bioinformatics methods. As a result, a total of 22 differentially expressed lncRNAs (16 downregulated vs 6 upregulated) and 227 differentially expressed mRNAs (133 downregulated vs. 94 upregulated) were identified in the iBmp2ko/ko cells compared with those of the iBmp2fx/fx cells. RT-qPCR results showed significantly differential expressions of several lncRNAs and mRNAs which were consistent with the RNA-seq data. GO and KEGG analyses showed differentially expressed genes were closely related to cell differentiation, transcriptional regulation, and developmentally relevant signaling pathways. Moreover, network-based bioinformatics analysis depicted the co-expression network between lncRNAs and mRNAs regulated by Bmp2 in mouse dental papilla cells and symmetrically analyzed the effect of Bmp2 during dentinogenesis via coding and non-coding RNA signaling.
Collapse
Affiliation(s)
- Feng Wang
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Developmental Dentistry, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ran Tao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Zhao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin-Hui Hao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Qing Lin
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Meng Meng Liu
- Department of Developmental Dentistry, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Graham Goldman
- Department of Developmental Dentistry, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Daoshu Luo
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shuo Chen
- Department of Developmental Dentistry, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
99667
|
Ge F, Pan Q, Qin Y, Jia M, Ruan C, Wei X, Jing Q, Zhi X, Wang X, Jiang L, Osto E, Guo J, Meng D. Single-Cell Analysis Identify Transcription Factor BACH1 as a Master Regulator Gene in Vascular Cells During Aging. Front Cell Dev Biol 2022; 9:786496. [PMID: 35004685 PMCID: PMC8740196 DOI: 10.3389/fcell.2021.786496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular aging is a potent driver of cardiovascular and cerebrovascular diseases. Vascular aging features cellular and functional changes, while its molecular mechanisms and the cell heterogeneity are poorly understood. This study aims to 1) explore the cellular and molecular properties of aged cardiac vasculature in monkey and mouse and 2) demonstrate the role of transcription factor BACH1 in the regulation of endothelial cell (EC) senescence and its mechanisms. Here we analyzed published single-cell RNA sequencing (scRNA-seq) data from monkey coronary arteries and aortic arches and mouse hearts. We revealed that the gene expression of YAP1, insulin receptor, and VEGF receptor 2 was downregulated in both aged ECs of coronary arteries’ of monkey and aged cardiac capillary ECs of mouse, and proliferation-related cardiac capillary ECs were significantly decreased in aged mouse. Increased interaction of ECs and immunocytes was observed in aged vasculature of both monkey and mouse. Gene regulatory network analysis identified BACH1 as a master regulator of aging-related genes in both coronary and aorta ECs of monkey and cardiac ECs of mouse. The expression of BACH1 was upregulated in aged cardiac ECs and aortas of mouse. BACH1 aggravated endothelial cell senescence under oxidative stress. Mechanistically, BACH1 occupied at regions of open chromatin and bound to CDKN1A (encoding for P21) gene enhancers, activating its transcription in senescent human umbilical vein endothelial cells (HUVECs). Thus, these findings demonstrate that BACH1 plays an important role in endothelial cell senescence and vascular aging.
Collapse
Affiliation(s)
- Fei Ge
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengchao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, University Heart Center, University and University Hospital Zurich, Zurich, Switzerland
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
99668
|
Signatures of selection in recently domesticated macadamia. Nat Commun 2022; 13:242. [PMID: 35017544 PMCID: PMC8752631 DOI: 10.1038/s41467-021-27937-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Macadamia is a high value nut crop that is recently domesticated, ideal for testing the effect of artificial selection. Here, we sequence the genome of Hawaiian cultivar ‘Kau’ and assemble into 794 Mb in 14 pseudo-chromosomes with 37,728 genes. Genome analysis reveals a whole-genome duplication event, occurred 46.8 million years ago. Gene expansions occurred in gene families involves in fatty acid biosynthesis. Gene duplication of MADS-Box transcription factors in proanthocyanidin biosynthesis are relevant for seed coat development. Genome re-sequencing of 112 accessions reveals the origin of Hawaiian cultivars from Mount Bauple in southeast Queensland in Australia. Selective sweeps are detected in macadamia cultivars, including genes involved in fatty acid biosynthesis, seed coat development, and heat stress response. Such strong effects of artificial selection in few generations reveals the genomic basis for ‘one-step operation’ for clonal crop domestication. The knowledge gained could accelerate domestication of new crops from wild species. Macadamia is a recently domesticated nut crop. Here, the authors report the genome assembly of Hawaiian cultivar ‘Kau’ and conduct population genomic analyses to reveal the origin of Hawaiian cultivars and the genomic basis for one-step operation for the clonal crop domestication.
Collapse
|
99669
|
Hasegawa J, Uchida Y, Mukai K, Lee S, Matsudaira T, Taguchi T. A Role of Phosphatidylserine in the Function of Recycling Endosomes. Front Cell Dev Biol 2022; 9:783857. [PMID: 35004683 PMCID: PMC8740049 DOI: 10.3389/fcell.2021.783857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cells internalize proteins and lipids in the plasma membrane (PM) and solutes in the extracellular space by endocytosis. The removal of PM by endocytosis is constantly balanced by the replenishment of proteins and lipids to PM through recycling pathway. Recycling endosomes (REs) are specific subsets of endosomes. Besides the established role of REs in recycling pathway, recent studies have revealed unanticipated roles of REs in membrane traffic and cell signalling. In this review, we highlight these emerging issues, with a particular focus on phosphatidylserine (PS), a phospholipid that is highly enriched in the cytosolic leaflet of RE membranes. We also discuss the pathogenesis of Hermansky Pudlak syndrome type 2 (HPS2) that arises from mutations in the AP3B1 gene, from the point of view of dysregulated RE functions.
Collapse
Affiliation(s)
- Junya Hasegawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kojiro Mukai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Shoken Lee
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tatsuyuki Matsudaira
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
99670
|
Yang Y, Zhang L, Xiong C, Chen J, Wang L, Wen Z, Yu J, Chen P, Xu Y, Jin J, Cai Y, Li G. HIRA complex presets transcriptional potential through coordinating depositions of the histone variants H3.3 and H2A.Z on the poised genes in mESCs. Nucleic Acids Res 2022; 50:191-206. [PMID: 34893908 PMCID: PMC8754660 DOI: 10.1093/nar/gkab1221] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Histone variants have been implicated in regulating chromatin dynamics and genome functions. Previously, we have shown that histone variant H3.3 actively marks enhancers and cooperates with H2A.Z at promoters to prime the genes into a poised state in mouse embryonic stem cells (mESCs). However, how these two important histone variants collaboratively function in this process still remains elusive. In this study, we found that depletion of different components of HIRA complex, a specific chaperone of H3.3, results in significant decreases of H2A.Z enrichment at genome scale. In addition, CUT&Tag data revealed a genomic colocalization between HIRA complex and SRCAP complex. In vivo and in vitro biochemical assays verified that HIRA complex could interact with SRCAP complex through the Hira subunit. Furthermore, our chromatin accessibility and transcription analyses demonstrated that HIRA complex contributed to preset a defined chromatin feature around TSS region for poising gene transcription. In summary, our results unveiled that while regulating the H3.3 incorporation in the regulatory regions, HIRA complex also collaborates with SRCAP to deposit H2A.Z onto the promoters, which cooperatively determines the transcriptional potential of the poised genes in mESCs.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liwei Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaoyang Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yong Cai
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
99671
|
Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B, Ghai U, Gur T, Blendy JA, Vaidya VA. The Hallucinogenic Serotonin 2A Receptor Agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent Neocortex. Front Mol Neurosci 2022; 14:790213. [PMID: 35002622 PMCID: PMC8739224 DOI: 10.3389/fnmol.2021.790213] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Psychedelic compounds that target the 5-HT2A receptor are reported to evoke psychoplastogenic effects, including enhanced dendritic arborization and synaptogenesis. Transcriptional regulation of neuronal plasticity-associated genes is implicated in the cytoarchitectural effects of serotonergic psychedelics, however, the transcription factors that drive this regulation are poorly elucidated. Here, we addressed the contribution of the transcription factor cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in the regulation of neuronal plasticity-associated genes by the hallucinogenic 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). In vitro studies with rat cortical neurons indicated that DOI enhances the phosphorylation of CREB (pCREB) through mitogen-activated protein (MAP) kinase and calcium/calmodulin dependent kinase II (CaMKII) pathways, with both cascades contributing to the DOI-evoked upregulation of Arc, Bdnf1, Cebpb, and Egr2 expression, whilst the upregulation of Egr1 and cFos mRNA involved the MAP kinase and CaMKII pathway respectively. We observed a robust DOI-evoked increase in the expression of several neuronal plasticity-associated genes in the rat neocortex in vivo. This DOI-evoked upregulation of neuronal plasticity-associated genes was completely blocked by the 5-HT2A receptor antagonist MDL100,907 in vitro and was also abrogated in the neocortex of 5-HT2A receptor deficient mice. Further, 5-HT2A receptor stimulation enhanced pCREB enrichment at putative cAMP response element (CRE) binding sites in the Arc, Bdnf1, Cebpb, cFos, but not Egr1 and Egr2, promoters in the rodent neocortex. The DOI-mediated transcriptional induction of Arc, cFos and Cebpb was significantly attenuated in the neocortex of CREB deficient/knockout (CREBαδ KO) mice. Collectively, these results indicate that the hallucinogenic 5-HT2A receptor agonist DOI leads to a rapid transcriptional upregulation of several neuronal plasticity-associated genes, with a subset of them exhibiting a CREB-dependent regulation. Our findings raise the intriguing possibility that similar to slow-acting classical antidepressants, rapid-action serotonergic psychedelics that target the 5-HT2A receptor may also recruit the transcription factor CREB to enhance the expression of neuronal plasticity-associated genes in the neocortex, which could in turn contribute to the rapid psychoplastogenic changes evoked by these compounds.
Collapse
Affiliation(s)
- Lynette A Desouza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Madhurima Benekareddy
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Farhan Mohammad
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Utkarsha Ghai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Tamar Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
99672
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
99673
|
Stanciu A, Luo J, Funes L, Galbokke Hewage S, Kulkarni SD, Aitken CE. eIF3 and Its mRNA-Entry-Channel Arm Contribute to the Recruitment of mRNAs With Long 5′-Untranslated Regions. Front Mol Biosci 2022; 8:787664. [PMID: 35087868 PMCID: PMC8787345 DOI: 10.3389/fmolb.2021.787664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/21/2023] Open
Abstract
Translation initiation in eukaryotes is a multi-step pathway and the most regulated phase of translation. Eukaryotic initiation factor 3 (eIF3) is the largest and most complex of the translation initiation factors, and it contributes to events throughout the initiation pathway. In particular, eIF3 appears to play critical roles in mRNA recruitment. More recently, eIF3 has been implicated in driving the selective translation of specific classes of mRNAs. However, unraveling the mechanism of these diverse contributions—and disentangling the roles of the individual subunits of the eIF3 complex—remains challenging. We employed ribosome profiling of budding yeast cells expressing two distinct mutations targeting the eIF3 complex. These mutations either disrupt the entire complex or subunits positioned near the mRNA-entry channel of the ribosome and which appear to relocate during or in response to mRNA binding and start-codon recognition. Disruption of either the entire eIF3 complex or specific targeting of these subunits affects mRNAs with long 5′-untranslated regions and whose translation is more dependent on eIF4A, eIF4B, and Ded1 but less dependent on eIF4G, eIF4E, and PABP. Disruption of the entire eIF3 complex further affects mRNAs involved in mitochondrial processes and with structured 5′-untranslated regions. Comparison of the suite of mRNAs most sensitive to both mutations with those uniquely sensitive to disruption of the entire complex sheds new light on the specific roles of individual subunits of the eIF3 complex.
Collapse
Affiliation(s)
- Andrei Stanciu
- Computer Science Department, Vassar College, Poughkeepsie, NY, United States
| | - Juncheng Luo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
| | - Lucy Funes
- Biology Department, Vassar College, Poughkeepsie, NY, United States
| | | | - Shardul D. Kulkarni
- Department of Biochemistry and Molecular Biology, Penn State Eberly College of Medicine, University Park, PA, United States
| | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
- Biology Department, Vassar College, Poughkeepsie, NY, United States
- *Correspondence: Colin Echeverría Aitken,
| |
Collapse
|
99674
|
Hiraiwa M, Fukasawa K, Iezaki T, Sabit H, Horie T, Tokumura K, Iwahashi S, Murata M, Kobayashi M, Suzuki A, Park G, Kaneda K, Todo T, Hirao A, Nakada M, Hinoi E. SMURF2 phosphorylation at Thr249 modifies glioma stemness and tumorigenicity by regulating TGF-β receptor stability. Commun Biol 2022; 5:22. [PMID: 35017630 PMCID: PMC8752672 DOI: 10.1038/s42003-021-02950-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023] Open
Abstract
Glioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorigenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorigenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-β receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy. Hiraiwa et al. show that phosphorylation of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) at Thr249 mediates ubiquitylation and degradation of the TGF-β receptor TGBR1 leading to loss of glioblastoma stem cell tumorigenic capacity. Their data elucidates a mechanism of regulation of the TGF-β signaling pathway that controls the stem cell status in glioblastoma.
Collapse
Affiliation(s)
- Manami Hiraiwa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kazuya Fukasawa
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Takashi Iezaki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuhiro Horie
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Sayuki Iwahashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Misato Murata
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masaki Kobayashi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akane Suzuki
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Gyujin Park
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Hirao
- Cancer and Stem Cell Research Program, Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.,WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
99675
|
Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, Vaithiyalingam S, Waddell MB, Moldoveanu T. Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat Commun 2022; 13:250. [PMID: 35017502 PMCID: PMC8752837 DOI: 10.1038/s41467-021-27851-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
BCL-2 proteins regulate mitochondrial poration in apoptosis initiation. How the pore-forming BCL-2 Effector BAK is activated remains incompletely understood mechanistically. Here we investigate autoactivation and direct activation by BH3-only proteins, which cooperate to lower BAK threshold in membrane poration and apoptosis initiation. We define in trans BAK autoactivation as the asymmetric “BH3-in-groove” triggering of dormant BAK by active BAK. BAK autoactivation is mechanistically similar to direct activation. The structure of autoactivated BAK BH3-BAK complex reveals the conformational changes leading to helix α1 destabilization, which is a hallmark of BAK activation. Helix α1 is destabilized and restabilized in structures of BAK engaged by rationally designed, high-affinity activating and inactivating BID-like BH3 ligands, respectively. Altogether our data support the long-standing hit-and-run mechanism of BAK activation by transient binding of BH3-only proteins, demonstrating that BH3-induced structural changes are more important in BAK activation than BH3 ligand affinity. The authors show that the mechanism of BAK activation in mitochondrial apoptosis involves cooperation between direct activation by BH3-only protein BID and BAK autoactivation, providing a unifying basis for BAK triggering by BH3 ligands.
Collapse
Affiliation(s)
- Geetika Singh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrative Biomedical Sciences Program, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Cristina D Guibao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anup Aggarwal
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dan E McNamara
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
99676
|
Yamamoto Y, Carreras J, Shimizu T, Kakizaki M, Kikuti YY, Roncador G, Nakamura N, Kotani A. Anti-HBV drug entecavir ameliorates DSS-induced colitis through PD-L1 induction. Pharmacol Res 2022; 179:105918. [PMID: 35031477 DOI: 10.1016/j.phrs.2021.105918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
PD-L1-mediated signaling is one of the major processes that regulate local inflammatory responses in the gut. To date, protective effects against colitis through direct Fc-fused PD-L1 administration or indirect PD-L1 induction by probiotics have been reported. We have previously shown that the anti-HBV drug entecavir (ETV) induces PD-L1 expression in human hepatocytes. In the present study, we investigated whether ETV induces PD-L1 expression in intestinal cells and provides a protective effect against DSS-induced colitis. ETV induced PD-L1 expression in epithelial cells, rather than T and B cells, improving the symptoms of colitis. In the mechanistic analysis, Th17 cell differentiation was inhibited and B cell infiltration into the lamina propria was reduced. In addition, PD-L1 expression was positively correlated with Foxp3 or CSF1-R. In conclusion, ETV upregulated PD-L1 expression in epithelial cells and ameliorated inflammation in DSS-induced colitis. These results suggest that ETV may be a potential therapeutic agent as a PD-L1 enhancer for the treatment of human IBD.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Takanobu Shimizu
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Masatoshi Kakizaki
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Giovanna Roncador
- Monoclonal Antibodies Unit. Spanish National Cancer Research Institute (CNIO). Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193.
| |
Collapse
|
99677
|
Liu J, Heraud C, Véron V, Laithier J, Burel C, Prézelin A, Panserat S, Marandel L. Hepatic Global DNA Hypomethylation Phenotype in Rainbow Trout Fed Diets Varying in Carbohydrate to Protein Ratio. J Nutr 2022; 152:29-39. [PMID: 34550380 DOI: 10.1093/jn/nxab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A high carbohydrate-low protein diet can induce hepatic global DNA hypomethylation in trout. The mechanisms remain unclear. OBJECTIVES We aimed to investigate whether an increase in dietary carbohydrates (dHCs) or a decrease in dietary proteins (dLPs) can cause hepatic global DNA hypomethylation, as well as explore the underlying mechanisms in trout. METHODS Two feeding trials were conducted on juvenile males, both of which involved a 4-d fasting and 4-d refeeding protocol. In trial 1, trout were fed either a high protein-no carbohydrate [HP-NC, protein 60% dry matter (DM), carbohydrates 0% DM] or a moderate protein-high carbohydrate (MP-HC, protein 40% DM, carbohydrates 30% DM) diet. In trial 2, fish were fed either a moderate protein-no carbohydrate (MP-NC, protein 40% DM, carbohydrates 0% DM), an MP-HC (protein 40% DM, carbohydrates 30% DM), or a low protein-no carbohydrate (LP-NC, protein 20% DM, carbohydrates 0% DM) diet to separate the effects of dHCs and dLPs on the hepatic methylome. Global CmCGG methylation, DNA demethylation derivative concentrations, and mRNA expression of DNA (de)methylation-related genes were measured. Differences were tested by 1-factor ANOVA when data were normally distributed or by Kruskal-Wallis nonparametric test if not. RESULTS In both trials, global CmCGG methylation concentrations remained unaffected, but the hepatic 5-mdC content decreased after refeeding (1-3%). The MP-HC group had 3.4-fold higher hepatic 5-hmdC and a similar 5-mdC concentration compared with the HP-NC group in trial 1. Both MP-HC and LP-NC diets lowered the hepatic 5-mdC content (1-2%), but only the LP-NC group had a significantly lower 5-hmdC concentration (P < 0.01) compared with MP-NC group in trial 2. CONCLUSIONS dHC and dLP independently induced hepatic global DNA demethylation in trout. The alterations in other methylation derivative concentrations indicated the demethylation process was achieved through an active demethylation pathway and probably occurred at non-CmCGG sites.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Jésabel Laithier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Christine Burel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Audrey Prézelin
- Université Paris Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
99678
|
Kometani T, Kawasaki Y, Chibazakura T. Differential regulation of p27Kip1 depending on culture conditions and its correlation with status of p14ARF and p53. Genes Cells 2022; 27:229-237. [PMID: 35014130 DOI: 10.1111/gtc.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
p27Kip1 is known as a major cyclin-dependent kinase inhibitor and a tumor suppressor, and often functionally hampered at protein level. p27 protein expression levels are frequently low in various cancers and negatively correlated with malignancy of cancer. However, in our previous study, we discovered that p27 overexpression does not inhibit the proliferation of two cancer cell lines due to a functional suppression of p27 by nucleophosmin isoform 1 (NPM1); that is, a qualitative, not quantitative, suppression of p27 function occurs in these cancer cell lines. To clarify the regulation of p27 in several types of cancer, we investigated p27 function in other cancer cell lines, based on proliferation assays in those cell lines carrying doxycycline-inducible p27, and found that MDAH041 cells which express p14ARF, an antagonist of NPM1, show growth inhibition depending on p27 induction. Moreover, to investigate p27 function under anchorage-independent culture conditions, we performed soft agar colony formation assay and observed that the colony formation of some cell lines carrying wild-type p53, a major tumor suppressor, was inhibited depending on p27 induction. These results suggest that p27 function is regulated differentially among cancer cell types under anchorage-dependent and anchorage-independent culture conditions.
Collapse
Affiliation(s)
- Tatsuya Kometani
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yutaro Kawasaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
99679
|
Zhi W, Li S, Wan Y, Wu F, Hong L. Short-term starvation synergistically enhances cytotoxicity of Niraparib via Akt/mTOR signaling pathway in ovarian cancer therapy. Cancer Cell Int 2022; 22:18. [PMID: 35016681 PMCID: PMC8753877 DOI: 10.1186/s12935-022-02447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
Background Short-term starvation (STS) has gradually been confirmed as a treatment method that synergistically enhances the effect of chemotherapy on malignant tumours. In clinical applications, there are still some limitations of poly (ADP-ribose) polymerase inhibitors (PARPi), including understanding their effectiveness and side effects. Here, we sought to investigate the effect and mechanism of the combined use of STS and niraparib in the treatment of ovarian cancer. Methods In in vitro experiments, SKOV3 and A2780 ovarian cancer cells were treated with STS and niraparib alone or in combination. Cell viability was assessed with CCK-8, and cell cycle, apoptosis, DNA damage repair and autophagy were examined to explore the molecular mechanisms. Akt and mTOR inhibitors were used to examine any changes in DNA damage repair levels. Xenograft animal models were treated with STS and niraparib, and HE staining and immunohistochemistry were performed to examine the effects. Results The combined use of STS and niraparib inhibited cell proliferation and increased apoptosis more than niraparib application alone. In addition, compared with the niraparib group, the STS + niraparib group had increased G2/M arrest, DNA damage and autophagy, which indicated that STS pretreatment enhanced the cytotoxicity of niraparib. In animal experiments, STS did not affect the growth of transplanted tumours, but the combined treatment synergistically enhanced the cytotoxicity of niraparib. In in vivo experiments, STS did not affect the growth of transplanted tumours, but the combined treatment synergistically enhanced the cytotoxicity of niraparib and reduced the small intestinal side effects caused by niraparib chemotherapy. Conclusion STS pretreatment can synergistically enhance the cytotoxicity of niraparib. STS + niraparib is a potentially effective strategy in the maintenance therapy of ovarian cancer.
Collapse
Affiliation(s)
- Wang Zhi
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Suting Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Yuting Wan
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Fuwen Wu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
99680
|
Wasnick RM, Shalashova I, Wilhelm J, Khadim A, Schmidt N, Hackstein H, Hecker A, Hoetzenecker K, Seeger W, Bellusci S, El Agha E, Ruppert C, Guenther A. Differential LysoTracker Uptake Defines Two Populations of Distal Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:235. [PMID: 35053350 PMCID: PMC8773634 DOI: 10.3390/cells11020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal degenerative lung disease of unknown etiology. Although in its final stages it implicates, in a reactive manner, all lung cell types, the initial damage involves the alveolar epithelial compartment, in particular the alveolar epithelial type 2 cells (AEC2s). AEC2s serve dual progenitor and surfactant secreting functions, both of which are deeply impacted in IPF. Thus, we hypothesize that the size of the surfactant processing compartment, as measured by LysoTracker incorporation, allows the identification of different epithelial states in the IPF lung. Flow cytometry analysis of epithelial LysoTracker incorporation delineates two populations (Lysohigh and Lysolow) of AEC2s that behave in a compensatory manner during bleomycin injury and in the donor/IPF lung. Employing flow cytometry and transcriptomic analysis of cells isolated from donor and IPF lungs, we demonstrate that the Lysohigh population expresses all classical AEC2 markers and is drastically diminished in IPF. The Lysolow population, which is increased in proportion in IPF, co-expressed AEC2 and basal cell markers, resembling the phenotype of the previously identified intermediate AEC2 population in the IPF lung. In that regard, we provide an in-depth flow-cytometry characterization of LysoTracker uptake, HTII-280, proSP-C, mature SP-B, NGFR, KRT5, and CD24 expression in human lung epithelial cells. Combining functional analysis with extracellular and intracellular marker expression and transcriptomic analysis, we advance the current understanding of epithelial cell behavior and fate in lung fibrosis.
Collapse
Affiliation(s)
- Roxana Maria Wasnick
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Irina Shalashova
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ali Khadim
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Nicolai Schmidt
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Holger Hackstein
- Department of Clinical Immunology and Transfusion Medicine, 35392 Giessen, Germany;
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital Giessen, 35392 Giessen, Germany;
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- European IPF Registry/UGLMC Giessen Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of General and Thoracic Surgery, University Hospital Giessen, 35392 Giessen, Germany;
- European IPF Registry/UGLMC Giessen Biobank, 35392 Giessen, Germany
- Lung Clinic Waldhof-Elgershausen, 35753 Greifenstein, Germany
| |
Collapse
|
99681
|
Sarkar S, Yadav S, Mehta P, Gupta G, Rajender S. Histone Methylation Regulates Gene Expression in the Round Spermatids to Set the RNA Payloads of Sperm. Reprod Sci 2022; 29:857-882. [PMID: 35015293 DOI: 10.1007/s43032-021-00837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
Gene expression during spermatogenesis undergoes significant changes due to a demanding sequence of mitosis, meiosis, and differentiation. We investigated the contribution of H3 histone modifications to gene regulation in the round spermatids. Round spermatids were purified from rat testes using centrifugal elutriation and Percoll density-gradient centrifugation. After enzymatic chromatin shearing, immuno-precipitation using antibodies against histone marks H3k4me3 and H3K9me3 was undertaken. The immunoprecipitated DNA fragments were subjected to massive parallel sequencing. Gene expression in round spermatids and sperm was analyzed by transcriptome sequencing using next-generation sequencing methods. ChIP-seq analysis showed significant peak enrichment in H3K4me3 marks in active chromatin regions and H3K9me3 peak enrichment in repressive regions. We found 53 genes which showed overlapping peak enrichment in both H3K4me3 and H3K9me3 marks. Some of the top H3K4me3-enriched genes were involved in sperm tail formation (Odf1, Odf3, Odf4, Oaz3, Ccdc42, Ccdc63, and Ccdc181), chromatin condensation (Dync1h1, Dynll1, and Kdm3a), and sperm functions such as acrosome reaction (Acrbp and Fabp9), energy generation (Gapdhs), and signaling for motility (Tssk1b, Tssk2, and Tssk4). Transcriptome sequencing in round spermatids found 64% transcripts of the H3K4me3-enriched genes at high levels and of about 25% of H3K9me3-enriched genes at very low levels. Transcriptome sequencing in sperm found that more than 99% of the ChIP-seq corresponding transcripts were also present in sperm. H3K4me3 enrichment in the round spermatids correlates significantly with gene expression and H3K9me3 correlates with gene silencing that contribute to sperm differentiation and setting the RNA payloads of sperm.
Collapse
Affiliation(s)
- Saumya Sarkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Santosh Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
99682
|
Chen F, Fan Y, Liu X, Zhang J, Shang Y, Zhang B, Liu B, Hou J, Cao P, Tan K. Pan-Cancer Integrated Analysis of HSF2 Expression, Prognostic Value and Potential Implications for Cancer Immunity. Front Mol Biosci 2022; 8:789703. [PMID: 35087869 PMCID: PMC8787226 DOI: 10.3389/fmolb.2021.789703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Heat shock factor 2 (HSF2), a transcription factor, plays significant roles in corticogenesis and spermatogenesis by regulating various target genes and signaling pathways. However, its expression, clinical significance and correlation with tumor-infiltrating immune cells across cancers have rarely been explored. In the present study, we comprehensively investigated the expression dysregulation and prognostic significance of HSF2, and the relationship with clinicopathological parameters and immune infiltration across cancers. The mRNA expression status of HSF2 was analyzed by TCGA, GTEx, and CCLE. Kaplan-Meier analysis and Cox regression were applied to explore the prognostic significance of HSF2 in different cancers. The relationship between HSF2 expression and DNA methylation, immune infiltration of different immune cells, immune checkpoints, tumor mutation burden (TMB), and microsatellite instability (MSI) were analyzed using data directly from the TCGA database. HSF2 expression was dysregulated in the human pan-cancer dataset. High expression of HSF2 was associated with poor overall survival (OS) in BRCA, KIRP, LIHC, and MESO but correlated with favorable OS in LAML, KIRC, and PAAD. The results of Cox regression and nomogram analyses revealed that HSF2 was an independent factor for KIRP, ACC, and LIHC prognosis. GO, KEGG, and GSEA results indicated that HSF2 was involved in various oncogenesis- and immunity-related signaling pathways. HSF2 expression was associated with TMB in 9 cancer types and associated with MSI in 5 cancer types, while there was a correlation between HSF2 expression and DNA methylation in 27 types of cancer. Additionally, HSF2 expression was correlated with immune cell infiltration, immune checkpoint genes, and the tumor immune microenvironment in various cancers, indicating that HSF2 could be a potential therapeutic target for immunotherapy. Our findings revealed the important roles of HSF2 across different cancer types.
Collapse
Affiliation(s)
- Fei Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaopeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bing Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiajie Hou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Ke Tan,
| |
Collapse
|
99683
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
99684
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
99685
|
Abstract
The vertebral column of individual mammalian species often exhibits remarkable robustness in the number and identity of vertebral elements that form (known as axial formulae). The genetic mechanism(s) underlying this constraint however remain ill-defined. Here, we reveal the interplay of three regulatory pathways (Gdf11, miR-196 and Retinoic acid) is essential in constraining total vertebral number and regional axial identity in the mouse, from cervical through to tail vertebrae. All three pathways have differing control over Hox cluster expression, with heterochronic and quantitative changes found to parallel changes in axial identity. However, our work reveals an additional role for Hox genes in supporting axial elongation within the tail region, providing important support for an emerging view that mammalian Hox function is not limited to imparting positional identity as the mammalian body plan is laid down. More broadly, this work provides a molecular framework to interrogate mechanisms of evolutionary change and congenital anomalies of the vertebral column. Vertebral column length and shape exhibits remarkable robustness within a species but diversity across species. Here the authors reveal the molecular logic constraining vertebral number in mouse and a novel role for posterior Hox genes in this context.
Collapse
|
99686
|
Marino D, Pizzi M, Kotova I, Schmidt R, Schröder C, Guzzardo V, Talli I, Peroni E, Finotto S, Scapinello G, Dei Tos AP, Piazza F, Trentin L, Zagonel V, Piovan E. High ETV6 Levels Support Aggressive B Lymphoma Cell Survival and Predict Poor Outcome in Diffuse Large B-Cell Lymphoma Patients. Cancers (Basel) 2022; 14:cancers14020338. [PMID: 35053500 PMCID: PMC8774128 DOI: 10.3390/cancers14020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of prognostic factors for aggressive B-cell lymphomas still represents an unmet clinical need. We used forward phase protein arrays (FFPA) to identify proteins associated with overall survival (OS) from diagnostic formalin-fixed paraffin-embedded material of diffuse large B-cell lymphoma (DLBCL) patients (n = 47). Univariate Cox regression analysis identified numerous proteins, including immune check-point molecules (PDCD1, PDCD2 and PD1L2) and BCL2 to be significantly associated with OS. However, only ETV6 and PIM2 proteins persisted following multivariate Cox analysis. Independent validation studies by immunohistochemistry and analysis of public gene expression profiles of DLBCL confirmed a prognostic role for high ETV6 and ETV6/PIM2 ratios in DLBCL. ETV6 is a recurrently mutated/deleted gene in DLBCL for which its function in this disease entity is currently unknown. We find that ETV6 is upregulated during oncogenic transformation of germinal center B-cells and that it regulates DLBCL survival, as its acute loss results in marked apoptosis. Fluctuations in survivin (BIRC5) expression levels were associated with this phenomenon. Furthermore, an inverse correlation between ETV6 and BIRC5 expression levels was found and correlated with a response to the BIRC5 inhibitor, YM155. In conclusion, we present evidence for an oncogenic function of ETV6 in DLBCL.
Collapse
Affiliation(s)
- Dario Marino
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Marco Pizzi
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Iuliia Kotova
- Sciomics GmbH, 69151 Neckargemünd, Germany; (I.K.); (R.S.); (C.S.)
| | - Ronny Schmidt
- Sciomics GmbH, 69151 Neckargemünd, Germany; (I.K.); (R.S.); (C.S.)
| | | | - Vincenza Guzzardo
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Ilaria Talli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
| | - Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy;
| | - Silvia Finotto
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Greta Scapinello
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Angelo Paolo Dei Tos
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Francesco Piazza
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Livio Trentin
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Vittorina Zagonel
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Erich Piovan
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy;
- Correspondence: ; Tel.: +39-(049)-8215895
| |
Collapse
|
99687
|
Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). Blood Cancer J 2022; 12:5. [PMID: 35017466 PMCID: PMC8752621 DOI: 10.1038/s41408-021-00603-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Treatment with Menin inhibitor (MI) disrupts the interaction between Menin and MLL1 or MLL1-fusion protein (FP), inhibits HOXA9/MEIS1, induces differentiation and loss of survival of AML harboring MLL1 re-arrangement (r) and FP, or expressing mutant (mt)-NPM1. Following MI treatment, although clinical responses are common, the majority of patients with AML with MLL1-r or mt-NPM1 succumb to their disease. Pre-clinical studies presented here demonstrate that genetic knockout or degradation of Menin or treatment with the MI SNDX-50469 reduces MLL1/MLL1-FP targets, associated with MI-induced differentiation and loss of viability. MI treatment also attenuates BCL2 and CDK6 levels. Co-treatment with SNDX-50469 and BCL2 inhibitor (venetoclax), or CDK6 inhibitor (abemaciclib) induces synergistic lethality in cell lines and patient-derived AML cells harboring MLL1-r or mtNPM1. Combined therapy with SNDX-5613 and venetoclax exerts superior in vivo efficacy in a cell line or PD AML cell xenografts harboring MLL1-r or mt-NPM1. Synergy with the MI-based combinations is preserved against MLL1-r AML cells expressing FLT3 mutation, also CRISPR-edited to introduce mtTP53. These findings highlight the promise of clinically testing these MI-based combinations against AML harboring MLL1-r or mtNPM1.
Collapse
|
99688
|
Elevated P-Element-Induced Wimpy-Testis-Like Protein 1 Expression Predicts Unfavorable Prognosis for Patients with Various Cancers. JOURNAL OF ONCOLOGY 2022; 2021:9982192. [PMID: 35003260 PMCID: PMC8741353 DOI: 10.1155/2021/9982192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidence has shown that overexpression of P-element-induced wimpy-testis (PIWI)-like protein 1 (PIWIL1) was associated with unfavorable prognosis of patients with various types of cancers. Herein, we conducted this meta-analysis to identify the clinicopathological and prognostic value of the PIWIL1 expression in cancers. Three electronic databases (PubMed, Web of Science, and Embase) were comprehensively retrieved for relevant studies up to August 4th, 2019. RevMan 5.3 and STATA 12.0 statistical software programs were used to explore the relationships between PIWIL1 expression and the prognosis and clinicopathological features in cancer patients. A total of 13 studies recruiting 2179 patients with 9 types of solid tumors were finally included in the meta-analysis. The results indicated that patients with high PIWIL1 expression tended to have a shorter survival, and additionally deeper tumor invasion, higher clinical stage, and more lymph node metastasis. PIWIL1 could serve as a biomarker for prognosis and clinicopathological characteristics in various cancers.
Collapse
|
99689
|
Zeng W, Zheng S, Mao Y, Wang S, Zhong Y, Cao W, Su T, Gong M, Cheng J, Zhang Y, Yang H. Elevated N-Glycosylation Contributes to the Cisplatin Resistance of Non-Small Cell Lung Cancer Cells Revealed by Membrane Proteomic and Glycoproteomic Analysis. Front Pharmacol 2022; 12:805499. [PMID: 35002739 PMCID: PMC8728018 DOI: 10.3389/fphar.2021.805499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Chemoresistance is the major restriction on the clinical use of cisplatin. Aberrant changes in protein glycosylation are closely associated with drug resistance. Comprehensive study on the role of protein glycosylation in the development of cisplatin resistance would contribute to precise elucidation of the complicated mechanism of resistance. However, comprehensive characterization of glycosylated proteins remains a big challenge. In this work, we integrated proteomic and N-glycoproteomic workflow to comprehensively characterize the cisplatin resistance-related membrane proteins. Using this method, we found that proteins implicated in cell adhesion, migration, response to drug, and signal transduction were significantly altered in both protein abundance and glycosylation level during the development of cisplatin resistance in the non-small cell lung cancer cell line. Accordingly, the ability of cell migration and invasion was markedly increased in cisplatin-resistant cells, hence intensifying their malignancy. In contrast, the intracellular cisplatin accumulation was significantly reduced in the resistant cells concomitant with the down-regulation of drug uptake channel protein, LRRC8A, and over-expression of drug efflux pump proteins, MRP1 and MRP4. Moreover, the global glycosylation was elevated in the cisplatin-resistant cells. Consequently, inhibition of N-glycosylation reduced cell resistance to cisplatin, whereas promoting the high-mannose or sialylated type of glycosylation enhanced the resistance, suggesting that critical glycosylation type contributes to cisplatin resistance. These results demonstrate the high efficiency of the integrated proteomic and N-glycoproteomic workflow in discovering drug resistance-related targets, and provide new insights into the mechanism of cisplatin resistance.
Collapse
Affiliation(s)
- Wenjuan Zeng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cao
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
99690
|
David-Bercholz J, Kuo CT, Deneen B. Astrocyte and Oligodendrocyte Responses From the Subventricular Zone After Injury. Front Cell Neurosci 2022; 15:797553. [PMID: 35002630 PMCID: PMC8740317 DOI: 10.3389/fncel.2021.797553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
Under normal conditions, neural stem cells (NSCs or B cells) in the adult subventricular zone (SVZ) give rise to amplifying neural progenitor cells (NPCs or C cells), which can produce neuroblasts (or A cells) that migrate to the olfactory bulb and differentiate into new neurons. However, following brain injury, these cells migrate toward the injury site where they differentiate into astrocytes and oligodendrocytes. In this review, we will focus on recent findings that chronicle how astrocytes and oligodendrocytes derived from SVZ-NSCs respond to different types of injury. We will also discuss molecular regulators of SVZ-NSC proliferation and their differentiation into astrocytes and oligodendrocytes. Overall, the goal of this review is to highlight how SVZ-NSCs respond to injury and to summarize the regulatory mechanisms that oversee their glial response. These molecular and cellular processes will provide critical insights needed to develop strategies to promote brain repair following injury using SVZ-NSCs.
Collapse
Affiliation(s)
- Jennifer David-Bercholz
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States.,Department of Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
99691
|
HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato. Cell Rep 2022; 38:110224. [PMID: 35021091 DOI: 10.1016/j.celrep.2021.110224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/18/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Plants respond to higher temperatures by the action of heat stress (HS) transcription factors (Hsfs), which control the onset, early response, and long-term acclimation to HS. Members of the HsfA1 subfamily, such as tomato HsfA1a, are the central regulators of HS response, and their activity is fine-tuned by other Hsfs. We identify tomato HsfA7 as capacitor of HsfA1a during the early HS response. Upon a mild temperature increase, HsfA7 is induced in an HsfA1a-dependent manner. The subsequent interaction of the two Hsfs prevents the stabilization of HsfA1a resulting in a negative feedback mechanism. Under prolonged or severe HS, HsfA1a and HsfA7 complexes stimulate the induction of genes required for thermotolerance. Therefore, HsfA7 exhibits a co-repressor mode at mild HS by regulating HsfA1a abundance to moderate the upregulation of HS-responsive genes. HsfA7 undergoes a temperature-dependent transition toward a co-activator of HsfA1a to enhance the acquired thermotolerance capacity of tomato plants.
Collapse
|
99692
|
Ruan HG, Gu WC, Xia W, Gong Y, Zhou XL, Chen WY, Xiong J. METTL3 Is Suppressed by Circular RNA circMETTL3/miR-34c-3p Signaling and Limits the Tumor Growth and Metastasis in Triple Negative Breast Cancer. Front Oncol 2022; 11:778132. [PMID: 35004298 PMCID: PMC8727604 DOI: 10.3389/fonc.2021.778132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Despite N6-methyladenosine (m6A) is functionally important in various biological processes, its role in the underlying regulatory mechanism in TNBC are lacking. In this study, we investigate the pathological role and the underlying mechanism of the m6A methylated RNA level and its major methyltransferase METTL3 in the TNBC progression. We found that the m6A methylated RNA was dramatically decreased in TNBC tissues and cell lines. Functionally, we demonstrated that METTL3 inhibits the proliferation, migration, and invasion ability of TNBC cells. Moreover, we found METTL3 is repressed by miR-34c-3p in TNBC cells. On the mechanism, we found that circMETTL3 could act as a sponge for miR-34c-3p and inhibits cell proliferation, invasion, tumor growth and metastasis by up-regulating the expression of miR-34c-3p target gene METTL3. In conclusion, our study demonstrates the functional importance and regulatory mechanism of METTL3 in suppressing the tumor growth of TNBC.
Collapse
Affiliation(s)
- Han-Guang Ruan
- Department of Breast Oncology, The Third Hospital of Nanchang, Nanchang, China
| | - Wen-Chao Gu
- Department of Diagnostic of Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Wen Xia
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Gong
- Department of Breast Oncology, The Third Hospital of Nanchang, Nanchang, China
| | - Xue-Liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Wen-Yan Chen
- Department of Breast Oncology, The Third Hospital of Nanchang, Nanchang, China
| | - Juan Xiong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
99693
|
Analysis of the Frequency of 10 Polymorphic Markers of CDKN2A and RB1 Genes in Russian Populations. Bull Exp Biol Med 2022; 172:352-358. [PMID: 35001307 DOI: 10.1007/s10517-022-05391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 10/19/2022]
Abstract
The study of population frequencies of rare clinically significant alleles is a prerequisite of the development of personalized medicine. We performed genotyping of 1785 DNA samples from representatives of Russian populations according to 10 benign polymorphic markers of two genes involved in oncogenesis: 3 variants of the CDKN2A gene (rs3731249, rs116150891, and rs6413464) and 7 markers of the RB1 gene (rs149800437, rs147754935, rs183898408, rs146897002, rs4151539, rs187912365, and rs144668210). Genotyping was performed using the Illumina biochip test system. The sample covered 28 populations of the Russian Federation and neighboring countries, which were later combined into 3 groups (Asian, European, and Caucasian). The information from the ALFA (NCBI) project was used as reference for the frequencies of these polymorphisms in the Asian and European populations. It was shown that rare alleles in 8 of 10 studied polymorphic markers are presented in Russian populations of European and Caucasian origin with frequencies that are tens and hundreds of times higher than the available data for Western European populations, and in Russian Asian populations, alternative alleles of 5 markers absent in the Asian population of the ALFA project were found. In the subpopulation of Astrakhan Tatars, exceptionally high frequencies of rare alleles were identified; this requires further study.
Collapse
|
99694
|
Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front Cell Dev Biol 2022; 9:785712. [PMID: 35004684 PMCID: PMC8740192 DOI: 10.3389/fcell.2021.785712] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, can negatively regulate the growth and development of skeletal muscle by autocrine or paracrine signaling. Mutation of the myostatin gene under artificial or natural conditions can lead to a significant increase in muscle quality and produce a double-muscle phenotype. Here, we review the similarities and differences between myostatin and other members of the transforming growth factor-β superfamily and the mechanisms of myostatin self-regulation. In addition, we focus extensively on the regulation of myostatin functions involved in myogenic differentiation, myofiber type conversion, and skeletal muscle protein synthesis and degradation. Also, we summarize the induction of reactive oxygen species generation and oxidative stress by myostatin in skeletal muscle. This review of recent insights into the function of myostatin will provide reference information for future studies of myostatin-regulated skeletal muscle formation and may have relevance to agricultural fields of study.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi-Ping Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
99695
|
Liu X, Yang Y, Song J, Li D, Liu X, Li C, Ma Z, Zhong J, Wang L. Knockdown of forkhead box protein P1 alleviates hypoxia reoxygenation injury in H9c2 cells through regulating Pik3ip1/Akt/eNOS and ROS/mPTP pathway. Bioengineered 2022; 13:1320-1334. [PMID: 35000528 PMCID: PMC8805992 DOI: 10.1080/21655979.2021.2016046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Forkhead box protein P1 (Foxp1) exerts an extensive array of physiological and pathophysiological impacts on the cardiovascular system. However, the exact function of myocardial Foxp1 in myocardial ischemic reperfusion injury (MIRI) stays largely vague. The hypoxia reoxygenation model of H9c2 cells (the rat ventricular myoblasts) closely mimics myocardial ischemia-reperfusion injury. This report intends to research the effects and mechanisms underlying Foxp1 on H9c2 cells in response to hypoxia (12 h)/reoxygenation (4 h) (HR) stimulation. Expressions of Foxp1 and Phosphatidylinositol 3-kinase interacting protein 1 (Pik3ip1) were both upregulated in ischemia/reperfusion (IR)/HR-induced injury. Stimulation through HR led to marked increases in cellular apoptosis, mitochondrial dysfunction, and superoxide generation in H9c2 cells, which were rescued with knockdown of Foxp1 by siRNA. Silence of Foxp1 depressed expression of Pik3ip1 directly activated the PI3K/Akt/eNOS pathway and promoted nitric oxide (NO) release. Moreover, the knockdown of Foxp1 blunted HR-induced enhancement of reactive oxygen species (ROS) generation, thus alleviating excessive persistence of mitochondrial permeability transition pore (mPTP) opening and decreased mitochondrial apoptosis-associated protein expressions in H9c2 cells. Meanwhile, these cardioprotective effects can be abolished by LY294002, NG-nitro-L-arginine methyl ester (L-NAME), and Atractyloside (ATR), respectively. In summary, our findings indicated that knockdown of Foxp1 prevented HR-induced encouragement of apoptosis and oxidative stress via PI3K/Akt/eNOS signaling activation by targeting Pik3ip1 and improved mitochondrial function by inhibiting ROS-mediated mPTP opening. Inhibition of Foxp1 may be a promising therapeutic avenue for MIRI.
Collapse
Affiliation(s)
- Xinming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yixing Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiawei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Dongjie Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chuang Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zheng Ma
- Department of Cardiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Respiratory Medicine, Beijing, China
| | - Lefeng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
99696
|
A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Nat Commun 2022; 13:246. [PMID: 35017472 PMCID: PMC8752738 DOI: 10.1038/s41467-021-27533-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
The molecular targets and mechanisms of propolis ameliorating metabolic syndrome are not fully understood. Here, we report that Brazilian green propolis reduces fasting blood glucose levels in obese mice by disrupting the formation of CREB/CRTC2 transcriptional complex, a key regulator of hepatic gluconeogenesis. Using a mammalian two-hybrid system based on CREB-CRTC2, we identify artepillin C (APC) from propolis as an inhibitor of CREB-CRTC2 interaction. Without apparent toxicity, APC protects mice from high fat diet-induced obesity, decreases fasting glucose levels, enhances insulin sensitivity and reduces lipid levels in the serum and liver by suppressing CREB/CRTC2-mediated both gluconeogenic and SREBP transcriptions. To develop more potential drugs from APC, we designed and found a novel compound, A57 that exhibits higher inhibitory activity on CREB-CRTC2 association and better capability of improving insulin sensitivity in obese animals, as compared with APC. In this work, our results indicate that CREB/CRTC2 is a suitable target for developing anti-metabolic syndrome drugs.
Collapse
|
99697
|
Abdelhamid RF, Ogawa K, Beck G, Ikenaka K, Takeuchi E, Yasumizu Y, Jinno J, Kimura Y, Baba K, Nagai Y, Okada Y, Saito Y, Murayama S, Mochizuki H, Nagano S. piRNA/PIWI Protein Complex as a Potential Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:1693-1705. [PMID: 35015250 PMCID: PMC8882100 DOI: 10.1007/s12035-021-02686-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
The pathological hallmark of the majority of amyotrophic lateral sclerosis (ALS) cases is the mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43), an RNA-binding protein. Several studies have attributed disease processes of ALS to abnormal RNA metabolism. However, dysregulated biogenesis of RNA, especially non-coding RNA (ncRNA), is poorly understood. To resolve it, RNA-Seq, biochemical, and immunohistochemical analyses were performed on the pyramidal tract of the medulla oblongata of sporadic ALS (sALS) and control postmortem brain samples. Here, we report perturbation of ncRNA biogenesis in PIWI-interacting RNA (piRNA) in several sALS brain samples associated with TDP-43 pathology. In addition, we confirmed the dysregulation of two PIWI homologs, PIWI-like-mediated gene silencing 1 (PIWIL1) and PIWIL4, which bind to piRNAs to regulate their expression. PIWIL1 was mislocalized and co-localized with TDP-43 in motor neurons of sporadic ALS lumbar cords. Our results imply that dysregulation of piRNA, PIWIL1, and PIWIL4 is linked to pathogenesis of ALS. Based on these results, piRNAs and PIWI proteins are potential diagnostic biomarkers and therapeutic targets of ALS.
Collapse
Affiliation(s)
- Rehab F Abdelhamid
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eriko Takeuchi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Yasumizu
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Experimental Immunology, Osaka University Immunology Frontier Research Center, Suita, Osaka, Japan
| | - Jyunki Jinno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuko Saito
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan.,Brain Bank for Neurodevelopmental, Molecular Research Center for Children's Mental Development, Neurological and Psychiatric Disorders, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan. .,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
99698
|
Inhibition of Growth of Colon Tumors and Proliferation of HT-29 Cells by Warburgia ugandensis Extract through Mediating G 0/G 1 Cell Cycle Arrest, Cell Apoptosis, and Intracellular ROS Generation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:8807676. [PMID: 35003521 PMCID: PMC8736697 DOI: 10.1155/2021/8807676] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023]
Abstract
Warburgia ugandensis Sprague (W. ugandensis), widely distributed in Africa, is a traditional medicinal plant used for the treatment of various diseases including cancer. We intended to evaluate the anticolorectal cancer (CRC) activities of the crude extract from W. ugandensis (WUD) and reveal the underlying molecular mechanisms of its action. We found that WUD inhibited the proliferation of HT-29 and HCT116 cells in a time- and dose-dependent manner and induced intracellular ROS generation. The inhibitory effect of WUD on the proliferation of HT-29 and HCT116 cells could be attenuated by NAC (a ROS scavenger) in a dose-dependent manner. WUD induced G0/G1 phase arrest, down-regulated the protein expression of Cyclin D1 via ROS accumulation in HT-29 cells. In search of the molecular mechanism involved in WUD-induced Cyclin D1 down-regulation, it was found that WUD can suppress PI3K/Akt/GSK3β signaling pathway in HT-29 cells. Next, it was found that WUD also activated apoptosis, poly-ADP ribose polymerase 1 (PARP1) cleavage and down-regulated pro-caspase 3 in HT-29 and HCT116 cells. Besides, WUD decreased the growth of colon tumors in vivo in the xenograft mouse model. We demonstrated for the first time that ROS and their modulation in the corresponding intracellular signaling could play a significant role in the potential activity of WUD against CRC cells.
Collapse
|
99699
|
Park I, Goddard ME, Cole JE, Zanin N, Lyytikäinen LP, Lehtimäki T, Andreakos E, Feldmann M, Udalova I, Drozdov I, Monaco C. C-type lectin receptor CLEC4A2 promotes tissue adaptation of macrophages and protects against atherosclerosis. Nat Commun 2022; 13:215. [PMID: 35017526 PMCID: PMC8752790 DOI: 10.1038/s41467-021-27862-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Macrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease. The contribution of distinct subsets of macrophages to atherosclerosis is poorly understood. Here the authors describe a protective subset of vascular macrophages expressing the C-type lectin receptor CLEC4A2, which licenses monocytes to join the resident vascular macrophage pool and ensures vascular homeostasis.
Collapse
Affiliation(s)
- Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michael E Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Natacha Zanin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Evangelos Andreakos
- Biomedical Research Foundation, Academy of Athens, Center for Clinical, Experimental Surgery and Translational Research, Athens, Greece
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Irina Udalova
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
99700
|
Zhu X, Wang Z, Sun YE, Liu Y, Wu Z, Ma B, Cheng L. Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice. Front Cell Neurosci 2022; 15:768711. [PMID: 35087378 PMCID: PMC8787356 DOI: 10.3389/fncel.2021.768711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is caused by an external force, leading to severe dysfunction of the limbs below the injured segment. The inflammatory response plays a vital role in the prognosis of SCI. Human umbilical cord mesenchymal stem cell (hUCMSC) transplantation can promote repair of SCI by reducing the inflammatory response. We previously showed that hUCMSCs from 32 donors had different inhibitory abilities on BV2 cell proliferation. In this study, three experimental groups were established, and the mice were injected with different lines of hUCMSCs. Hind limb motor function, hematoxylin-eosin (H&E) staining, immunohistochemistry, Western blot (WB), qualitative real-time polymerase chain reaction (qRT-PCR), and RNA sequencing and correlation analysis were used to investigate the effects of hUCMSC transplantation on SCI mice and the underlying mechanisms. The results showed that the therapeutic effects of the three hUCMSC lines were positively correlated with their inhibitory abilities of BV2 cell proliferation rates in vitro. The MSC_A line had a better therapeutic effect on improving the hind limb motor function and greater effect on reducing the expression of glial fibrillary acidic protein (Gfap) and ionized calcium binding adaptor molecule 1 (Iba1) and increasing the expression of neuronal nuclei (NeuN). Differentially expressed genes including Zbtb16, Per3, and Hif3a were probably the key genes involved in the protective mechanism by MSC_A after nerve injury. qRT-PCR results further verified that Zbtb16, Per3, and Hif3a expressions reduced by SCI could be reversed by MSC_A application. These results suggest that the effect of hUCMSCs transplantation on acute SCI depends on their inhibitory abilities to inflammation reaction after nerve injury, which may help to shape future use of hUCMSCs combined with improving the effectiveness of clinical transformation.
Collapse
Affiliation(s)
- Xu Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yi Eve Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yuchen Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
- *Correspondence: Bei Ma,
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
- Liming Cheng,
| |
Collapse
|