99701
|
He Y, Liang Y, Liang S, Harn YW, Li Z, Zhang M, Shen D, Li Z, Yan Y, Pang X, Lin Z. Dual-Protected Metal Halide Perovskite Nanosheets with an Enhanced Set of Stabilities. Angew Chem Int Ed Engl 2021; 60:7259-7266. [PMID: 33393190 DOI: 10.1002/anie.202014983] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Indexed: 12/14/2022]
Abstract
Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single-nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic-diblock-copolymer-enabled strategy for crafting highly-stable anisotropic CsPbBr3 nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual-protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white-light-emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated-growth of shell materials of interest, a rich variety of dual-shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices.
Collapse
Affiliation(s)
- Yanjie He
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yachao Liang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yeu-Wei Harn
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zili Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dingfeng Shen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiwei Li
- Shenzhen Cloud Computing Center, National Supercomputing Center, Shenzhen, 518055, China
| | - Yan Yan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
99702
|
Zhou M, Varol A, Efferth T. Multi-omics approaches to improve malaria therapy. Pharmacol Res 2021; 167:105570. [PMID: 33766628 DOI: 10.1016/j.phrs.2021.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malaria. Next, we describe resistance phenomena to established antimalarial drugs and underlying mechanisms. Finally, we provide insight into novel multi-omics approaches, new drugs and vaccine developments and analyze current gaps in multi-omics research. Although multi-omics approaches have been successfully used in malaria studies, they are still limited. Many gaps need to be filled to bridge the gap between basic research and treatment of malaria patients. Multi-omics approaches will foster a better understanding of the molecular mechanisms of Plasmodium that are essential for the development of novel drugs and vaccines to fight this disastrous disease.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
99703
|
Wang Y, Zeng S, Crunteanu A, Xie Z, Humbert G, Ma L, Wei Y, Brunel A, Bessette B, Orlianges JC, Lalloué F, Schmidt OG, Yu N, Ho HP. Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor. NANO-MICRO LETTERS 2021; 13:96. [PMID: 34138312 PMCID: PMC7985234 DOI: 10.1007/s40820-021-00613-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/23/2021] [Indexed: 05/24/2023]
Abstract
A zero-reflection-induced phase singularity is achieved through precisely controlling the resonance characteristics using two-dimensional nanomaterials. An atomically thin nano-layer having a high absorption coefficient is exploited to enhance the zero-reflection dip, which has led to the subsequent phase singularity and thus a giant lateral position shift. We have improved the detection limit of low molecular weight molecules by more than three orders of magnitude compared to current state-of-art nanomaterial-enhanced plasmonic sensors. Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 μm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10-15 mol L-1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.
Collapse
Affiliation(s)
- Yuye Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Shuwen Zeng
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, USA.
| | - Aurelian Crunteanu
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Zhenming Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Georges Humbert
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Libo Ma
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden, Germany
| | - Yuanyuan Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Aude Brunel
- Faculty of Medicine, University of Limoges, EA3842-CAPTuR, GEIST, 2 rue du Dr Marcland, Limoges, France
| | - Barbara Bessette
- Faculty of Medicine, University of Limoges, EA3842-CAPTuR, GEIST, 2 rue du Dr Marcland, Limoges, France
| | - Jean-Christophe Orlianges
- CNRS, XLIM Research Institute, UMR 7252, University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Fabrice Lalloué
- Faculty of Medicine, University of Limoges, EA3842-CAPTuR, GEIST, 2 rue du Dr Marcland, Limoges, France
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden, Germany
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, USA
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China.
| |
Collapse
|
99704
|
Desai P, Todankar B, Ranade AK, Kondo M, Dewa T, Tanemura M, Kalita G. Synthesis of MoS
2
Layers on GaN Using Ammonium Tetrathiomolybdate for Heterojunction Device Applications. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202000198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pradeep Desai
- Department of Physical Science and Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
| | - Bhagyashri Todankar
- Department of Physical Science and Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
| | - Ajinkya K. Ranade
- Department of Physical Science and Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
| | - Masaharu Kondo
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
| | - Masaki Tanemura
- Department of Physical Science and Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
| | - Golap Kalita
- Department of Physical Science and Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
- Frontier Research Institute for Material Science Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya 466‐8555 Japan
| |
Collapse
|
99705
|
Li R, Chen H, Choi JH. Auxetic Two-Dimensional Nanostructures from DNA*. Angew Chem Int Ed Engl 2021; 60:7165-7173. [PMID: 33403767 DOI: 10.1002/anie.202014729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Indexed: 11/09/2022]
Abstract
Architectured materials exhibit negative Poisson's ratios and enhanced mechanical properties compared with regular materials. Their auxetic behaviors emerge from periodic cellular structures regardless of the materials used. The majority of such metamaterials are constructed by top-down approaches and macroscopic with unit cells of microns or larger. There are also molecular auxetics including natural crystals which are not designable. There is a gap from few nanometers to microns, which may be filled by biomolecular self-assembly. Herein, we demonstrate two-dimensional auxetic nanostructures using DNA origami. Structural reconfigurations are performed by two-step DNA reactions and complemented by mechanical deformation studies using molecular dynamics simulations. We find that the auxetic behaviors are mostly defined by geometrical designs, yet the properties of the materials also play an important role. From elasticity theory, we introduce design principles for auxetic DNA metamaterials.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Haorong Chen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
99706
|
Nishimoto T, Shinagawa T, Naito T, Takanabe K. Delivering the Full Potential of Oxygen Evolving Electrocatalyst by Conditioning Electrolytes at Near-Neutral pH. CHEMSUSCHEM 2021; 14:1554-1564. [PMID: 33481326 PMCID: PMC8048901 DOI: 10.1002/cssc.202002813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Indexed: 05/06/2023]
Abstract
This study reports on the impact of identity and compositions of buffer ions on oxygen evolution reaction (OER) performance at a wide range of pH levels using a model IrOx electrocatalyst. Rigorous microkinetic analysis employing kinetic isotope effects, Tafel analysis, and temperature dependence measurement was conducted to establish rate expression isolated from the diffusion contribution of buffer ions and solution resistance. It was found that the OER kinetics was facile with OH- oxidation compared to H2 O, the results of which were highlighted by mitigating over 200 mV overpotential in the presence of buffer to reach 10 mA cm-2 . This improvement was ascribed to the involvement of the kinetics of the local OH- supply by the buffering action. Further digesting the kinetic data at various buffer pKa and the solution bulk pH disclosed a trade-off between the exchange current density and the Tafel slope, indicating that the optimal electrolyte condition can be chosen at a different range of current density. This study provides a quantitative guideline for electrolyte engineering to maximize the intrinsic OER performance that electrocatalyst possesses especially at near-neutral pH.
Collapse
Affiliation(s)
- Takeshi Nishimoto
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Tatsuya Shinagawa
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Takahiro Naito
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| |
Collapse
|
99707
|
Guo W, Han Q, Jiao J, Wu W, Zhu X, Chen Z, Zhao Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium–Sulfide Batteries with Long Cycle Life. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wei Guo
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Wenhao Wu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| |
Collapse
|
99708
|
Hai Y, Liu L, Gong Y. Iron Coordination Polymer, Fe(oxalate)(H2O)2 Nanorods Grown on Nickel Foam via One-Step Electrodeposition as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorg Chem 2021; 60:5140-5152. [DOI: 10.1021/acs.inorgchem.1c00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Hai
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Li Liu
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
99709
|
Stolyar SV, Kolenchukova OA, Boldyreva AV, Kudryasheva NS, Gerasimova YV, Krasikov AA, Yaroslavtsev RN, Bayukov OA, Ladygina VP, Birukova EA. Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect. Biomedicines 2021; 9:biomedicines9030323. [PMID: 33810151 PMCID: PMC8005073 DOI: 10.3390/biomedicines9030323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023] Open
Abstract
Biogenic ferrihydrite nanoparticles were synthesized as a result of the cultivation of Klebsiella oxytoca microorganisms. The distribution of nanoparticles in the body of laboratory animals and the physical properties of the nanoparticles were studied. The synthesized ferrihydrite nanoparticles are superparamagnetic at room temperature, and the characteristic blocking temperature is 23–25 K. The uncompensated moment of ferrihydrite particles was determined to be approximately 200 Bohr magnetons. In vitro testing of different concentrations of ferrihydrite nanoparticles for the functional activity of neutrophilic granulocytes by the chemiluminescence method showed an increase in the release of primary oxygen radicals by blood phagocytes when exposed to a minimum concentration and a decrease in secondary radicals when exposed to a maximum concentration. In vivo testing of ferrihydrite nanoparticles on Wister rats showed that a suspension of ferrihydrite nanoparticles has chronic toxicity, since it causes morphological changes in organs, mainly in the spleen, which are characterized by the accumulation of hemosiderin nanoparticles (stained blue according to Perls). Ferrihydrite can also directly or indirectly stimulate the proliferation and intracellular regeneration of hepatocytes. The partial detection of Perls-positive cells in the liver and kidneys can be explained by the rapid elimination from organs and the high dispersion of the nanomaterial. Thus, it is necessary to carry out studies of these processes at the systemic level, since the introduction of nanoparticles into the body is characterized by adaptive-proliferative processes, accompanied by the development of cell dystrophy and tension of the phagocytic system.
Collapse
Affiliation(s)
- Sergey V. Stolyar
- Federal Research Center KSC SB RAS, Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia; (S.V.S.); (Y.V.G.); (A.A.K.); (R.N.Y.); (O.A.B.)
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia; (A.V.B.); (V.P.L.)
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Oksana A. Kolenchukova
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Federal Research Center KSC SB RAS, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia;
- Correspondence: ; Tel.: +7-962-070-1710
| | - Anna V. Boldyreva
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia; (A.V.B.); (V.P.L.)
| | - Nadezda S. Kudryasheva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Federal Research Center KSC SB RAS, Institute of Biophysics, 660036 Krasnoyarsk, Russia
| | - Yulia V. Gerasimova
- Federal Research Center KSC SB RAS, Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia; (S.V.S.); (Y.V.G.); (A.A.K.); (R.N.Y.); (O.A.B.)
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Alexandr A. Krasikov
- Federal Research Center KSC SB RAS, Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia; (S.V.S.); (Y.V.G.); (A.A.K.); (R.N.Y.); (O.A.B.)
| | - Roman N. Yaroslavtsev
- Federal Research Center KSC SB RAS, Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia; (S.V.S.); (Y.V.G.); (A.A.K.); (R.N.Y.); (O.A.B.)
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia; (A.V.B.); (V.P.L.)
| | - Oleg A. Bayukov
- Federal Research Center KSC SB RAS, Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia; (S.V.S.); (Y.V.G.); (A.A.K.); (R.N.Y.); (O.A.B.)
| | - Valentina P. Ladygina
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia; (A.V.B.); (V.P.L.)
| | - Elena A. Birukova
- Federal Research Center KSC SB RAS, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia;
| |
Collapse
|
99710
|
Waghwani HK, Douglas T. Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage. J Mater Chem B 2021; 9:3168-3179. [PMID: 33885621 DOI: 10.1039/d1tb00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus, is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3',5,5'-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
99711
|
Clement S, Guller A, Mahbub SB, Goldys EM. Oxygen-Carrying Polymer Nanoconstructs for Radiodynamic Therapy of Deep Hypoxic Malignant Tumors. Biomedicines 2021; 9:322. [PMID: 33810115 PMCID: PMC8005177 DOI: 10.3390/biomedicines9030322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Radiodynamic therapy (RDT) is an emerging non-invasive anti-cancer treatment based on the generation of the reactive oxygen species (ROS) at the lesion site following the interaction between X-rays and a photosensitizer drug (PS). The broader application of RDT is impeded by the tumor-associated hypoxia that results in low availability of oxygen for the generation of sufficient amounts of ROS. Herein, a novel nanoparticle drug formulation for RDT, which addresses the problem of low oxygen availability, is reported. It consists of poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-loaded with a PS drug verteporfin (VP), and the clinically approved oxygen-carrying molecule, perfluorooctylbromide (PFOB). When triggered by X-rays (4 Gy), under both normoxic and hypoxic conditions, PLGA-VP-PFOB nanoconstructs (NCs) induced a significant increase of the ROS production compared with matching PLGA-VP nanoparticles. The RDT with NCs effectively killed ~60% of human pancreatic cancer cells in monolayer cultures, and almost completely suppressed the outgrowth of tumor cells in 2-weeks clonogenic assay. In a 3D engineered model of pancreatic cancer metastasis to the liver, RDT with NCs destroyed ~35% of tumor cells, demonstrating an exceptional efficiency at a tissue level. These results show that PLGA-VP-PFOB is a promising agent for RDT of deep-seated hypoxic tumors.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| | - Anna Guller
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Saabah B. Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| | - Ewa M. Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| |
Collapse
|
99712
|
Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2553-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
99713
|
Li R, Chen H, Choi JH. Auxetic Two‐Dimensional Nanostructures from DNA**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering Purdue University West Lafayette IN 47907 USA
| | - Haorong Chen
- School of Mechanical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jong Hyun Choi
- School of Mechanical Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
99714
|
Dufrêne YF, Viljoen A, Mignolet J, Mathelié-Guinlet M. AFM in cellular and molecular microbiology. Cell Microbiol 2021; 23:e13324. [PMID: 33710716 DOI: 10.1111/cmi.13324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The unique capabilities of the atomic force microscope (AFM), including super-resolution imaging, piconewton force-sensitivity, nanomanipulation and ability to work under physiological conditions, have offered exciting avenues for cellular and molecular biology research. AFM imaging has helped unravel the fine architectures of microbial cell envelopes at the nanoscale, and how these are altered by antimicrobial treatment. Nanomechanical measurements have shed new light on the elasticity, tensile strength and turgor pressure of single cells. Single-molecule and single-cell force spectroscopy experiments have revealed the forces and dynamics of receptor-ligand interactions, the nanoscale distribution of receptors on the cell surface and the elasticity and adhesiveness of bacterial pili. Importantly, recent force spectroscopy studies have demonstrated that extremely stable bonds are formed between bacterial adhesins and their cognate ligands, originating from a catch bond behaviour allowing the pathogen to reinforce adhesion under shear or tensile stress. Here, we survey how the versatility of AFM has enabled addressing crucial questions in microbiology, with emphasis on bacterial pathogens. TAKE AWAYS: AFM topographic imaging unravels the ultrastructure of bacterial envelopes. Nanomechanical mapping shows what makes cell envelopes stiff and resistant to drugs. Force spectroscopy characterises the molecular forces in pathogen adhesion. Stretching pili reveals a wealth of mechanical and adhesive responses.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
99715
|
Moskalyuk A, Van De Vijver S, Verstraelen P, De Vos WH, Kooy RF, Giugliano M. Single-Cell and Neuronal Network Alterations in an In Vitro Model of Fragile X Syndrome. Cereb Cortex 2021; 30:31-46. [PMID: 30958540 DOI: 10.1093/cercor/bhz068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of comorbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GABAergic signaling, and an altered balance between excitation and inhibition has been hypothesized to underlie the clinical consequences of absence of the protein. Using Fmrp knockout mice, we studied an in vitro model of cortical microcircuitry and observed that the loss of FMRP largely affected the electrophysiological correlates of network development and maturation but caused less alterations in single-cell phenotypes. The loss of FMRP also caused a structural increase in the number of excitatory synaptic terminals. Using a mathematical model, we demonstrated that the combination of an increased excitation and reduced inhibition describes best our experimental observations during the ex vivo formation of the network connections.
Collapse
Affiliation(s)
- Anastasiya Moskalyuk
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Sebastiaan Van De Vijver
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Flanders, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Flanders, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Flanders, Belgium
| | - Michele Giugliano
- Molecular, Cellular, and Network Excitability Lab, University of Antwerp, Wilrijk, Flanders, Belgium.,International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
99716
|
Li H, Kopiec G, Müller F, Nyßen F, Shimizu K, Ceccato M, Daasbjerg K, Plumeré N. Spectroscopic Evidence for a Covalent Sigma Au-C Bond on Au Surfaces Using 13C Isotope Labeling. JACS AU 2021; 1:362-368. [PMID: 33829214 PMCID: PMC8016281 DOI: 10.1021/jacsau.0c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 05/20/2023]
Abstract
The Au-C linkage has been demonstrated as a robust interface for coupling thin organic films on Au surfaces. However, the nature of the Au-C interaction remains elusive up to now. Surface-enhanced Raman spectroscopy was previously used to assign a band at 412 cm-1 as a covalent sigma Au-C bond for films generated by spontaneous reduction of the 4-nitrobenzenediazonium salt on Au nanoparticles. However, this assignment is disputed based on our isotopic shift study. We now provide direct evidence for covalent Au-C bonds on the surface of Au nanoparticles using 13C cross-polarization/magic angle spinning solid-state NMR spectroscopy combined with isotope substitution. A 13C NMR shift at 165 ppm was identified as an aromatic carbon linked to the gold surface, while the shift at 148 ppm was attributed to C-C junctions in the arylated organic film. This demonstration of the covalent sigma Au-C bond fills the gap in metal-C bonds for organic films on surfaces, and it has great practical and theoretical significance in understanding and designing a molecular junction based on the Au-C bond.
Collapse
Affiliation(s)
- Huaiguang Li
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
- Campus
Straubing for Biotechnology and Sustainability, Technical University Munich, Schulgasse 22, 94315 Straubing, Germany
- . (H.L.)
| | - Gabriel Kopiec
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Frank Müller
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Frauke Nyßen
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Kyoko Shimizu
- Interdisciplinary
Nanoscience Center/Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Marcel Ceccato
- Interdisciplinary
Nanoscience Center/Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Interdisciplinary
Nanoscience Center/Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Nicolas Plumeré
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
- Campus
Straubing for Biotechnology and Sustainability, Technical University Munich, Schulgasse 22, 94315 Straubing, Germany
- . (N.P.)
| |
Collapse
|
99717
|
Lobo K, Sahoo P, Kurapati R, Krishna K. V, Patil V, Pandit A, Matte HSSR. Additive‐free Aqueous Dispersions of Two‐Dimensional Materials with Glial Cell Compatibility and Enzymatic Degradability. Chemistry 2021; 27:7434-7443. [DOI: 10.1002/chem.202005491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Kenneth Lobo
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
- Manipal Academy of Higher Education Manipal 576 104 India
| | - Priyabrata Sahoo
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
- Manipal Academy of Higher Education Manipal 576 104 India
| | - Rajendra Kurapati
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Vijaya Krishna K.
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - H. S. S. Ramakrishna Matte
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
| |
Collapse
|
99718
|
Sui J, Gandotra N, Xie P, Lin Z, Scharfe C, Javanmard M. Multi-frequency impedance sensing for detection and sizing of DNA fragments. Sci Rep 2021; 11:6490. [PMID: 33753781 PMCID: PMC7985362 DOI: 10.1038/s41598-021-85755-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Electronic biosensors for DNA detection typically utilize immobilized oligonucleotide probes on a signal transducer, which outputs an electronic signal when target molecules bind to probes. However, limitation in probe selectivity and variable levels of non-target material in complex biological samples can lead to nonspecific binding and reduced sensitivity. Here we introduce the integration of 2.8 μm paramagnetic beads with DNA fragments. We apply a custom-made microfluidic chip to detect DNA molecules bound to beads by measuring Impedance Peak Response (IPR) at multiple frequencies. Technical and analytical performance was evaluated using beads containing purified Polymerase Chain Reaction (PCR) products of different lengths (157, 300, 613 bp) with DNA concentration ranging from 0.039 amol to 7.8 fmol. Multi-frequency IPR correlated positively with DNA amounts and was used to calculate a DNA quantification score. The minimum DNA amount of a 300 bp fragment coupled on beads that could be robustly detected was 0.0039 fmol (1.54 fg or 4750 copies/bead). Additionally, our approach allowed distinguishing beads with similar molar concentration DNA fragments of different lengths. Using this impedance sensor, purified PCR products could be analyzed within ten minutes to determine DNA fragment length and quantity based on comparison to a known DNA standard.
Collapse
Affiliation(s)
- Jianye Sui
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 94 Brett Rd, Piscataway, NJ, 08854, USA
| | - Neeru Gandotra
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, New Haven, CT, 06520-8005, USA
| | - Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 94 Brett Rd, Piscataway, NJ, 08854, USA
| | - Zhongtian Lin
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 94 Brett Rd, Piscataway, NJ, 08854, USA
| | - Curt Scharfe
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, New Haven, CT, 06520-8005, USA.
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 94 Brett Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
99719
|
Lin TC, Liu ZY, Liu SH, Koshevoy IO, Chou PT. Counterion Migration Driven by Light-Induced Intramolecular Charge Transfer. JACS AU 2021; 1:282-293. [PMID: 34467293 PMCID: PMC8395631 DOI: 10.1021/jacsau.0c00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/14/2023]
Abstract
A series of D-π-A + pyridinium compounds, in which D = -NPh2 and A+ = -PyMe+ are linked by various amounts of linear phenyl spacers, were strategically designed and synthesized. Their characterization revealed the presence of excited-state intramolecular charge transfer (ESICT) that triggers a corresponding response from the counterion. In medium and strong polar solvents, the fast solvent relaxation occurring after ESICT overwhelms the counterion effect, showing typical emission solvatochromism. In weakly polar solvents, ESICT induces counteranion migration for electrostatic stabilization, the time scale of which is dependent on the radius of the counteranion, the length of the π-linker, and the viscosity of the solvent. In low-viscosity organic solvents such as toluene, counteranion migration occurs within several tens to hundreds of picoseconds, resulting in a time-dependent continuous emission that can be resolved from the spectral temporal evolution. Concrete evidence for this is provided by the chemical synthesis of a D-π-A + pyridinium-sulfur trioxide- zwitterion, where anion migration is restricted due to its internally locked ion pair. As a result, only a single emission band can be observed. These comprehensive studies prove that the ion migration process may be significant for a wide range of ESICT-type ionic fluorophores. Such an ionic movement, triggered by optically pumped ESICT of the D-π-A + dyad, is similar to the molecular machine driven by the redox reaction, but with a facile access and fast response.
Collapse
Affiliation(s)
- Ta-Chun Lin
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Zong-Ying Liu
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Shih-Hung Liu
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Igor O. Koshevoy
- Department
of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| |
Collapse
|
99720
|
Sadighian S, Bayat N, Najaflou S, Kermanian M, Hamidi M. Preparation of Graphene Oxide/Fe
3
O
4
Nanocomposite as a Potential Magnetic Nanocarrier and MRI Contrast Agent. ChemistrySelect 2021. [DOI: 10.1002/slct.202100195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Somayeh Sadighian
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Nahid Bayat
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Sahar Najaflou
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center School of Pharmacy Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
99721
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angew Chem Int Ed Engl 2021; 60:6890-6918. [PMID: 31729826 PMCID: PMC9205421 DOI: 10.1002/anie.201909927] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Indexed: 01/01/2023]
Abstract
Functional nucleic acid (FNA) nanotechnology is an interdisciplinary field between nucleic acid biochemistry and nanotechnology that focuses on the study of interactions between FNAs and nanomaterials and explores the particular advantages and applications of FNA nanomaterials. With the goal of building the next-generation biomaterials that combine the advantages of FNAs and nanomaterials, the interactions between FNAs and nanomaterials as well as FNA self-assembly technologies have established themselves as hot research areas, where the target recognition, response, and self-assembly ability, combined with the plasmon properties, stability, stimuli-response, and delivery potential of various nanomaterials can give rise to a variety of novel fascinating applications. As research on the structural and functional group features of FNAs and nanomaterials rapidly develops, many laboratories have reported numerous methods to construct FNA nanomaterials. In this Review, we first introduce some widely used FNAs and nanomaterials along with their classification, structure, and application features. Then we discuss the most successful methods employing FNAs and nanomaterials as elements for creating advanced FNA nanomaterials. Finally, we review the extensive applications of FNA nanomaterials in bioimaging, biosensing, biomedicine, and other important fields, with their own advantages and drawbacks, and provide our perspective about the issues and developing trends in FNA nanotechnology.
Collapse
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, Illinois 61801 (USA)
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| |
Collapse
|
99722
|
Qian RC, Zhou ZR, Guo W, Wu Y, Yang Z, Lu Y. Cell Surface Engineering Using DNAzymes: Metal Ion Mediated Control of Cell–Cell Interactions. J Am Chem Soc 2021; 143:5737-5744. [DOI: 10.1021/jacs.1c00060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | | | | | | | | |
Collapse
|
99723
|
Yamazaki T, Kimura Y. Radiolysis-Induced Crystallization of Sodium Chloride in Acetone by Electron Beam Irradiation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-7. [PMID: 33745494 DOI: 10.1017/s1431927621000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ liquid cell transmission electron microscopy (LC-TEM) is an innovative method for studying the processes involved in the formation of crystals in liquids. However, it is difficult to capture early stages of crystallization because of the small field of view and the unfavorable changes in sample composition resulting from electron-beam radiolysis. Nevertheless, if the radiolysis required to induce the crystallization of a sample could be controlled in LC-TEM, this would be advantageous for observing the crystallization process. Here, we examined this possibility by using a mixture of sodium chlorate (NaClO3) and acetone in the LC-TEM. The electron beam induced the formation of dendritic crystals in a saturated acetone solution of NaClO3; moreover, these crystals consisted of sodium chloride (NaCl), rather than NaClO3, suggesting that chloride ions (Cl−), which were not present in the initial solution, were generated by radiolysis of chlorate ions ${\rm \lpar ClO}_3^- \rpar$. As a result, the solution then supersaturated with NaCl because its solubility in acetone is much lower than that of NaClO3. The combination of radiolysis and a solvent in which a solute is much less soluble is potentially useful for establishing crystallization conditions for materials that are difficult to crystallize directly in LC-TEM experiments.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo060-0819, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo060-0819, Japan
| |
Collapse
|
99724
|
Guo W, Han Q, Jiao J, Wu W, Zhu X, Chen Z, Zhao Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium-Sulfide Batteries with Long Cycle Life. Angew Chem Int Ed Engl 2021; 60:7267-7274. [PMID: 33372332 DOI: 10.1002/anie.202015049] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Lithium-sulfur (Li-S) batteries have potential in high energy density battery systems. However, intermediates of lithium polysulfides (LiPSs) can easily shuttle to the Li anode and react with Li metal to deplete the active materials and cause rapid failure of the battery. A facile solution pretreatment method for Li anodes involving a solution of metal fluorides/dimethylsulfoxide was developed to construct robust biphasic surface layers (BSLs) in situ. The BSLs consist of lithiophilic alloy (Lix M) and LiF phases on Li metal, which inhibit the shuttle effect and increase the cycle life of Li-S batteries. The BSLs allow Li+ transport and they inhibit dendrite growth and shield the Li anodes from corrosive reaction with LiPSs. Li-S batteries containing BSLs-Li anodes demonstrate excellent cycling over 1000 cycles at 1 C and simultaneously maintain a high coulombic efficiency of 98.2 %. Based on our experimental and theoretical results, we propose a strategy for inhibition of the shuttle effect that produces high stability Li-S batteries.
Collapse
Affiliation(s)
- Wei Guo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Wenhao Wu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
99725
|
Yang Y, Tang J, Song H, Yang Y, Gu Z, Fu J, Liu Y, Zhang M, Qiao ZA, Yu C. Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angew Chem Int Ed Engl 2021; 59:19610-19617. [PMID: 32876984 DOI: 10.1002/anie.202006861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Aluminum-containing adjuvants used in vaccine formulations suffer from low cellular immunity, severe aggregation, and accumulation in the brain. Conventional aluminosilicates widely used in the chemical industry focus mainly on acidic sites for catalytic applications, but they are rarely used as adjuvants. Reported here is an innovative "ligand-assisted steric hindrance" strategy to create a high density of six-coordinate VI Al-OH groups with basicity on dendritic mesoporous silica nanoparticles as new nanoadjuvants. Compared to four-coordinate IV Al-modified counterparts, VI Al-OH-rich aluminosilicate nanoadjuvants enhance cellular delivery of antigens and provoke stronger cellular immunity. Moreover, the aluminum accumulation in the brain is more reduced than that with a commercial adjuvant. These results show that coordination chemistry can be used to control the adjuvanticity, providing new understanding in the development of next-generation vaccine adjuvants.
Collapse
Affiliation(s)
- Yang Yang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Min Zhang
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, UQ-JLU Joint Research Centre for Future Materials, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
99726
|
Joseph Yeow Wan Foong J, Febriansyah B, Jyoti Singh Rana P, Ming Koh T, Jun Jie Tay D, Bruno A, Mhaisalkar S, Mathews N. Effects of All-Organic Interlayer Surface Modifiers on the Efficiency and Stability of Perovskite Solar Cells. CHEMSUSCHEM 2021; 14:1524-1533. [PMID: 33433943 DOI: 10.1002/cssc.202002831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Surface imperfections created during fabrication of halide perovskite (HP) films could induce formation of various defect sites that affect device performance and stability. In this work, all-organic surface modifiers consisting of alkylammonium cations and alkanoate anions are introduced on top of the HP layer to passivate interfacial vacancies and improve moisture tolerance. Passivation using alkylammonium alkanoate does not induce formation of low-dimensional perovskites species. Instead, the organic species only passivate the perovskite's surface and grain boundaries, which results in enhanced hydrophobic character of the HP films. In terms of photovoltaic application, passivation with alkylammonium alkanoate allows significant reduction in recombination losses and enhancement of open-circuit voltage. Alongside unchanged short-circuit current density, power conversion efficiencies of more than 18.5 % can be obtained from the treated sample. Furthermore, the unencapsulated device retains 85 % of its initial PCE upon treatment, whereas the standard 3D perovskite device loses 50 % of its original PCE when both are subjected to ambient environment over 1500 h.
Collapse
Affiliation(s)
- Japheth Joseph Yeow Wan Foong
- School of Materials Science and Engineering, Nanyang, Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Benny Febriansyah
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Prem Jyoti Singh Rana
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Teck Ming Koh
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Darrell Jun Jie Tay
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Annalisa Bruno
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Subodh Mhaisalkar
- School of Materials Science and Engineering, Nanyang, Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang, Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| |
Collapse
|
99727
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
99728
|
Duan H, Wang C, Li G, Tan H, Hu W, Cai L, Liu W, Li N, Ji Q, Wang Y, Lu Y, Yan W, Hu F, Zhang W, Sun Z, Qi Z, Song L, Wei S. Single-Atom-Layer Catalysis in a MoS 2 Monolayer Activated by Long-Range Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Single-Atom Catalysis. Angew Chem Int Ed Engl 2021; 60:7251-7258. [PMID: 33400363 DOI: 10.1002/anie.202014968] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 11/07/2022]
Abstract
Single-atom-layer catalysts with fully activated basal-atoms will provide a solution to the low loading-density bottleneck of single-atom catalysts. Herein, we activate the majority of the basal sites of monolayer MoS2 , by doping Co ions to induce long-range ferromagnetic order. This strategy, as revealed by in situ synchrotron radiation microscopic infrared spectroscopy and electrochemical measurements, could activate more than 50 % of the originally inert basal-plane S atoms in the ferromagnetic monolayer for the hydrogen evolution reaction (HER). Consequently, on a single monolayer of ferromagnetic MoS2 measured by on-chip micro-cell, a current density of 10 mA cm-2 could be achieved at the overpotential of 137 mV, corresponding to a mass activity of 28, 571 Ag-1 , which is two orders of magnitude higher than the multilayer counterpart. Its exchange current density of 75 μA cm-2 also surpasses most other MoS2 -based catalysts. Experimental results and theoretical calculations show the activation of basal plane S atoms arises from an increase of electronic density around the Fermi level, promoting the H adsorption ability of basal-plane S atoms.
Collapse
Affiliation(s)
- Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Guinan Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Wei Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Liang Cai
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Wei Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Yao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Ying Lu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, China
| |
Collapse
|
99729
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
99730
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
99731
|
Sun J, Dou H, Zhang G, Leng J. The contact barrier of a 1T'/2H MoS 2 heterophase bilayer and its modulation by adatom and strain: a first-principles study. Phys Chem Chem Phys 2021; 23:6791-6799. [PMID: 33721008 DOI: 10.1039/d1cp00504a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The successful synthesis of a 1T'/2H MoS2 heterophase bilayer offers potential building blocks for constructing novel nanoelectronic and optoelectronic devices. Here, first principles calculations are applied to explore and modulate its contact nature. The calculated results show a finite Schottky barrier of ∼0.56 eV, and a dominant tunneling barrier of ∼2 eV exists at the contact interface of the 1T'/2H MoS2 heterophase bilayer. The Schottky barrier can be eliminated by adatoms and strains. Although the two strategies have an insignificant effect on the dominant tunneling barrier, they alter the regions with local potentials lower than that of the inter-layer gap related barrier.
Collapse
Affiliation(s)
- Jie Sun
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R. China.
| | | | | | | |
Collapse
|
99732
|
Qin Y, Yang M, Deng C, Shen W, He R, Li M. Theoretical insight into single Rh atoms anchored on N-doped γ-graphyne as an excellent bifunctional electrocatalyst for the OER and ORR: electronic regulation of graphitic nitrogen. NANOSCALE 2021; 13:5800-5808. [PMID: 33710226 DOI: 10.1039/d0nr07513b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reducing the overpotential and increasing the reaction rate, which are respectively determined by the thermodynamics and kinetics of electrocatalysis, are the keys to obtaining high-performance bifunctional electrocatalysts for the OER/ORR. Herein, six late-transition metals (Ru, Rh, Pd, Os, Ir, and Pt) anchored on γ-GY and graphitic N doped γ-GY substrates are screened as electrocatalysts for the OER and ORR via density functional theory, and the effects of electronic regulation due to the presence of graphitic N on the thermodynamics and kinetics of electrocatalysis are investigated in detail. Among the six γ-GY@TM candidates, only γ-GY@Rh exhibits excellent OER activity, with an overpotential of 0.42 V. Furthermore, graphitic N doped graN-γ-GY@Rh shows outstanding bifunctional electrocatalytic activity, with overpotentials of 0.27 V for the OER and 0.33 V for the ORR, which are remarkably superior to the values of 0.43 V for RuO2 and 0.45 V for noble-metal Pt electrocatalysts. The present results present some of the lowest overpotentials for OER/ORR electrocatalysts given by theoretical studies to date. From a kinetics point of view, N-doping also remarkably reduces the activation energy barriers of the catalytic rate-limiting steps of the OER and ORR, accelerating the reaction processes and significantly improving the conductivity. Our work provides a theoretical strategy for designing high-efficiency bifunctional OER/ORR electrocatalysts based on γ-GY materials.
Collapse
Affiliation(s)
- Youcheng Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | | | | | | | | | | |
Collapse
|
99733
|
Loeb SK, Wei H, Kim JH. Measuring temperature heterogeneities during solar-photothermal heating using quantum dot nanothermometry. Analyst 2021; 146:2048-2056. [PMID: 33533374 DOI: 10.1039/d0an02258f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small metallic nanoparticles with appropriate surface plasmon resonance frequencies can be extremely efficient absorbers of solar radiation. This efficient absorption can lead to localized heating and highly heterogeneous temperatures. These unique optical properties have inspired research into the development of environmentally relevant solar-to-heat conversion technologies that are based on the light absorption of nanomaterials. The development of robust, reliable, and straight-forward techniques for measuring spatially resolved temperatures in photothermally heated systems can be an indispensable tool to aid future work in this area. Herein, we consider the application of a fluorescent technique that can measure spatially resolved temperatures in solar photothermal systems using CdSe quantum dots (<10 nm diameter). The local temperature of the quantum dot can be determined by monitoring the shift in its fluorescence wavelength resulting from the dilatation of the lattice with increasing temperature. To exploit this property, we fabricated Au nanorod-quantum dot architectures using linkers of varying lengths, and measured the light induced temperature change increasing more rapidly closer to the surface of an Au nanorod. We also compared the effect of Au nanorod coatings and found that silica coating leads to higher overall temperatures compared to organic stabilized Au nanorods.
Collapse
Affiliation(s)
- Stephanie K Loeb
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, USA.
| | | | | |
Collapse
|
99734
|
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Mixing iron oxide nanoparticles with different shape and size for tunable magneto-heating performance. NANOSCALE 2021; 13:5714-5729. [PMID: 33704298 DOI: 10.1039/d0nr09121a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tuning the magnetic properties of nanoparticles is a strategic goal to use them in the most effective way to perform specific functions in the nanomedicine field. We report a systematic study carried out on a set of samples obtained by mixing together iron oxide nanoparticles with different shape: elongated with aspect ratio ∼5.2 and mean volume of the order of 103 nm3 (excluding the silica coating) and spherical with mean volume one order of magnitude larger. These structural features of the nanoparticles together with their aggregation state determine the magnetic anisotropy and the magnetic relaxation processes. In particular, the spherical nanoparticles turn out to be more stable against superparamagnetic relaxation. Mixing the nanoparticles in different proportions allows to modulate the magnetic response of the samples. The two populations of nanoparticles magnetically influence each other through a mean field mechanism, which depends crucially on temperature and rules the hysteretic magnetic properties and their thermal evolution. This magnetic phenomenology has a direct impact on the ability of the mixed samples to generate heat under an alternating magnetic field, a key function in view of nanomedicine applications. Under proper testing conditions, the heating efficiency of the mixed samples is larger compared to that obtained as the sum of those of the parent nanoparticles. This occurs thanks to the mean field produced by the magnetically blocked spherical nanoparticles that stabilizes the thermally fluctuating moments of the elongated ones, which therefore contribute more effectively to the heat production.
Collapse
Affiliation(s)
- Jesus G Ovejero
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | |
Collapse
|
99735
|
Li Y, Yang J, Ma JF. A copper(ii)-based porous metal-organic framework for the efficient and rapid capture of toxic oxo-anion pollutants from water. Dalton Trans 2021; 50:3832-3840. [PMID: 33615324 DOI: 10.1039/d0dt04252h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The efficient and selective capture of toxic oxo-anions is highly desirable for environmental retrieval and hazardous waste disposal. This has remained an important task and gained considerable scientific attention due to their harmful effects on the ecosystem and human health. Herein, a porous cationic metal-organic framework (MOF), namely, [Cu3Cl(L)(H2O)2]·Cl·4DMA·8H2O (1), was synthesized (H4L = 1,4,8,11-tetrazacyclotetradecane-N,N',N'',N'''-tetramethylenecinnamic acid and DMA = N,N'-dimethylacetamide). 1 shows high stability in aqueous solution and represents an extraordinary example that is capable of efficiently capturing environmentally toxic Cr2O72- and MnO4- anions. Moreover, the removal of Cr2O72- and MnO4- anions from water was also explored in the presence of other competing anions.
Collapse
Affiliation(s)
- Yang Li
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | | | | |
Collapse
|
99736
|
Dai L, Liu P, Hu X, Zhao X, Shao G, Tian Y. DNA origami: an outstanding platform for functions in nanophotonics and cancer therapy. Analyst 2021; 146:1807-1819. [PMID: 33595553 DOI: 10.1039/d0an02160a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to the proposal and evolution of the DNA origami technique over the past decade, DNA molecules have been utilized as building blocks for the precise construction of nanoscale architectures. Benefiting from the superior programmability of DNA molecules, the sequence-dependent recognition mechanism and robust complementation among DNA strands make it possible to customize almost arbitrary structures. Such an assembly strategy bypasses some of the limits of conventional fabrication methods; the fabrication accuracy and complexity of the target product are unprecedentedly promoted as well. Furthermore, due to the spatial addressability of the final products, nanostructures assembled through the DNA origami technique can also serve as a versatile platform for the spatial positioning of functional elements, represented by colloidal nanoparticles (NPs). The subsequent fabrication of heterogeneous functional nanoarchitectures is realized via modifying colloidal NPs with DNA strands and manipulating them to anchor into DNA origami templates. This has given rise to investigations of their novel properties in nanophotonics and therapeutic effects towards some diseases. In this review, we survey the crucial progress in the development of DNA origami design, assembly and structural analysis and summarize available applications in nanophotonics and cancer therapy based on the object-dressed DNA origami complex. Moreover, we elucidate the development of this field and discuss the potential directions of this kind of application-oriented nanomanufacturing.
Collapse
Affiliation(s)
- Lizhi Dai
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China.
| | | | | | | | | | | |
Collapse
|
99737
|
Hoseinpoor SM, Nikoofard N, Ha BY. Characteristic time for the end monomers of a spherically confined polymer to find a nano-pore. J Chem Phys 2021; 154:114901. [PMID: 33752364 DOI: 10.1063/5.0040551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translocation of a polymer through a nano-pore is relevant in a variety of contexts such as passage of RNAs through a nuclear pore and transportation of proteins across a membrane. An essential step in polymer translocation is for the end monomers to search the pore. This process requires a characteristic time, referred to as the "attempt time" in this work. Here, we study the attempt time τ of a confined polymer inside a spherical surface by combining a scaling approach and Langevin dynamics simulations. For a moderately to strongly confined polymer, our results suggest that τ ∼ R3.67 for R > P and τ ∼ R2.67 for R < P, where R is the radius of the spherical surface and P is the persistence length of the polymer. All simulation data obtained for an intermediate range of the volume fraction of monomers ϕ(≲ 0.2) tend to collapse onto each other. This implies that τ does not explicitly depend on ϕ, in agreement with the theoretical predictions. These results will be useful for interpreting translocation as a two-step process: the initial attempt to find the pore and eventual pore crossing.
Collapse
Affiliation(s)
- S Mohammad Hoseinpoor
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 51167-87317, Iran
| | - Narges Nikoofard
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 51167-87317, Iran
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
99738
|
Huang D, Han H, Guo C, Lin X, Chen D, Yang S, Yang Q, Li F. Information processing using an integrated DNA reaction network. NANOSCALE 2021; 13:5706-5713. [PMID: 33683263 DOI: 10.1039/d0nr09148k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Living organisms use interconnected chemical reaction networks (CRNs) to exchange information with the surrounding environment and respond to diverse external stimuli. Inspired by nature, numerous artificial CRNs with a complex information processing function have been recently introduced, with DNA as one of the most attractive engineering materials. Although much progress has been made in DNA-based CRNs in terms of controllable reaction dynamics and molecular computation, the effective integration of signal translation with information processing in a single CRN remains to be difficult. In this work, we introduced a stimuli-responsive DNA reaction network capable of integrated information translation and processing in a stepwise manner. This network is designed to integrate sensing, translation, and decision-making operations by independent modules, in which various logic units capable of performing different functions were realized, including information identification (YES and OR gates), integration (AND and AND-AND gates), integration-filtration (AND-AND-NOT gate), comparison (Comparator), and map-to-map analysis (Feynman gate). Benefitting from the modular and programmable design, continuous and parallel processing operations are also possible. With the innovative functions, we show that the DNA network is a highly useful addition to the current DNA-based CRNs by offering a bottom-up strategy to design devices capable of cascaded information processing with high efficiency.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
99739
|
Negi RS, Culver SP, Wiche M, Ahmed S, Volz K, Elm MT. Optimized atomic layer deposition of homogeneous, conductive Al 2O 3 coatings for high-nickel NCM containing ready-to-use electrodes. Phys Chem Chem Phys 2021; 23:6725-6737. [PMID: 33710207 DOI: 10.1039/d0cp06422j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomic layer deposition (ALD) derived ultrathin conformal Al2O3 coating has been identified as an effective strategy for enhancing the electrochemical performance of Ni-rich LiNixCoyMnzO2 (NCM; 0 ≤x, y, z < 1) based cathode active materials (CAM) in Li-ion batteries. However, there is still a need to better understand the beneficial effect of ALD derived surface coatings on the performance of NCM based composite cathodes. In this work, we applied and optimized a low-temperature ALD derived Al2O3 coating on a series of Ni-rich NCM-based (NCM622, NCM71.51.5 and NCM811) ready-to-use composite cathodes and investigated the effect of coating on the surface conductivity of the electrode as well as its electrochemical performance. A highly uniform and conformal coating was successfully achieved on all three different cathode compositions under the same ALD deposition conditions. All the coated cathodes were found to exhibit an improved electrochemical performance during long-term cycling under moderate cycling conditions. The improvement in the electrochemical performance after Al2O3 coating is attributed to the suppression of parasitic side reactions between the electrode and the electrolyte during cycling. Furthermore, conductive atomic force microscopy (C-AFM) was performed on the electrode surface as a non-destructive technique to determine the difference in surface morphology and conductivity between uncoated and coated electrodes before and after cycling. C-AFM measurements on pristine cathodes before cycling allow clear separation between the conductive carbon additives and the embedded NCM secondary particles, which show an electrically insulating behavior. More importantly, the measurements reveal that the ALD-derived Al2O3 coating with an optimized thickness is thin enough to retain the original conduction properties of the coated electrodes, while thicker coating layers are insulating resulting in a worse cycling performance. After cycling, the surface conductivity of the coated electrodes is maintained, while in the case of uncoated electrodes the surface conductivity is completely suppressed confirming the formation of an insulating cathode electrolyte interface due to the parasitic side reactions. The results not only show the possibilities of C-AFM as a non-destructive evaluation of the surface properties, but also reveal that an optimized coating, which preserves the conductive properties of the electrode surface, is a crucial factor for stabilising the long-term battery performance.
Collapse
Affiliation(s)
- Rajendra S Negi
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
99740
|
He Y, Cong C, Zhao S, Li Z, Wang D, Gu J, Liu L, Gao D. Gaseous microenvironmental remodeling of tumors for enhanced photo-gas therapy and real-time tracking. Biomater Sci 2021; 9:2313-2321. [PMID: 33556159 DOI: 10.1039/d0bm02026e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gaseous microenvironment (GME) of tumors is rapidly becoming a new concern for nanotechnology-mediated oncotherapy. Here, we constructed a tumor/near-infrared (NIR) light-responsive nanoplatform to generate O2 and NO for remodeling the GME of tumors and phototherapy. The biocompatible and pyrolytic polydopamine was used to load indocyanine green, NONOate, and MnO2 NPs as a nanoenzyme (PINM). Then, HA was modified on the PINM to form the final nanoplatform (PINMH). PINMH can target tumors favorably due to the modification of HA. Under the NIR light irradiation, PINM converts the light and O2 to hyperpyrexia (58.5 °C) and cytotoxic 1O2. MnO2 NPs catalyze the H2O2 overexpressed in tumors to O2, which increases the amount of 1O2. Moreover, NONOate decomposes to NO (100 μM) under hyperpyrexia, thus leading to the gas therapy. The results verified that the responsive nanoplatform with precise gaseous regulation and phototherapy exhibited a superior anti-tumor effect (V/V0 = 1.2) and biosafety. In addition, PINMH can be tracked in real-time via magnetic resonance imaging. In this study, an intelligent nano-platform integrated with diagnosis and treatment was developed, which used the phototherapy technology to reshape GME and achieve good anti-tumor effects, aiming to provide an innovative and reasonable strategy for the development of tumor treatment.
Collapse
Affiliation(s)
- Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
99741
|
Chen Y, Sun M. Two-dimensional WS 2/MoS 2 heterostructures: properties and applications. NANOSCALE 2021; 13:5594-5619. [PMID: 33720254 DOI: 10.1039/d1nr00455g] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The successful fabrication of WS2/MoS2 heterostructures provides more possibilities for optoelectronic and thermoelectric applications than graphene because of their direct bandgap characteristics; therefore, scientific investigations on WS2/MoS2 heterostructures are more significant and thriving. In this paper, we review the latest research progress in WS2/MoS2 heterostructures, and look forward to their properties and applications. Firstly, we analyze the crystal structure and electronic structure of WS2, MoS2, and their heterostructures. Secondly, we comprehensively present the widely used methods for preparing heterostructures. Finally, based on the unique physical characteristics of WS2/MoS2 heterostructures, we focus on their properties and applications in mechanics, electronics, optoelectronics, and thermoelectronics.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | | |
Collapse
|
99742
|
Yang KC, Lin JC, Tsai HH, Hsu CY, Shih V, Hu CMJ. Nanotechnology advances in pathogen- and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Deliv Transl Res 2021; 11:1420-1437. [PMID: 33748879 PMCID: PMC7982277 DOI: 10.1007/s13346-021-00965-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic's high mortality rate and severe socioeconomic impact serve as a reminder of the urgent need for effective countermeasures against viral pandemic threats. In particular, effective antiviral therapeutics capable of stopping infections in its tracks is critical to reducing infection fatality rate and healthcare burden. With the field of drug delivery witnessing tremendous advancement in the last two decades owing to a panoply of nanotechnology advances, the present review summarizes and expounds on the research and development of therapeutic nanoformulations against various infectious viral pathogens, including HIV, influenza, and coronaviruses. Specifically, nanotechnology advances towards improving pathogen- and host-targeted antiviral drug delivery are reviewed, and the prospect of achieving effective viral eradication, broad-spectrum antiviral effect, and resisting viral mutations are discussed. As several COVID-19 antiviral clinical trials are met with lackluster treatment efficacy, nanocarrier strategies aimed at improving drug pharmacokinetics, biodistributions, and synergism are expected to not only contribute to the current disease treatment efforts but also expand the antiviral arsenal against other emerging viral diseases.
Collapse
Affiliation(s)
- Kai-Chieh Yang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Hsiao-Han Tsai
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Chung-Yao Hsu
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Vicky Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Che-Ming Jack Hu
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112304, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan. .,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 704017, Taiwan.
| |
Collapse
|
99743
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
99744
|
DNA Nanodevices as Mechanical Probes of Protein Structure and Function. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology has reported a wide range of structurally tunable scaffolds with precise control over their size, shape and mechanical properties. One promising application of these nanodevices is as probes for protein function or determination of protein structure. In this perspective we cover several recent examples in this field, including determining the effect of ligand spacing and multivalency on cell activation, applying forces at the nanoscale, and helping to solve protein structure by cryo-EM. We also highlight some future directions in the chemistry necessary for integrating proteins with DNA nanoscaffolds, as well as opportunities for computational modeling of hybrid protein-DNA nanomaterials.
Collapse
|
99745
|
Wei N, Li Z, Li ZH, Zhang C, Wang C, Zhao J, Cai K. A heat and force locating sensor with nanoscale precision: a knitted graphene sheet. NANOSCALE 2021; 13:5826-5833. [PMID: 33710203 DOI: 10.1039/d0nr08829c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fast and accurately locating the heating or force bearing points is essential to the maintenance and diagnosis of nano/micro-electromechanical systems. Here, a knitted graphene sheet (KGS), prepared by knitting graphene nanoribbons, is proposed as a heat or force sensor to locate the spot with nanoscale precision under thermal or mechanical loadings. The heat flux transport among the ribbons in the KGS is more difficult than in the ribbon due to the weaker van der Waals interactions among ribbons, so the heat energy can be restricted in the directly loaded ribbons over a period of time. Molecular dynamics results demonstrate that the KGS can efficiently locate and evaluate the spots and sizes of heat/force sources with high accuracy dependent on the width of the ribbons in the KGS. Our research provides a new detection approach and sheds light on designing and assembling KGS-based nanosensors for locating thermal and mechanical loads.
Collapse
Affiliation(s)
- Ning Wei
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, China.
| | | | | | | | | | | | | |
Collapse
|
99746
|
Zheng G, He J, Kumar V, Wang S, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Wong KY. Discrete metal nanoparticles with plasmonic chirality. Chem Soc Rev 2021; 50:3738-3754. [PMID: 33586721 DOI: 10.1039/c9cs00765b] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From a geometrical perspective, a chiral object does not have mirror planes or inversion symmetry. It exhibits the same physical properties as its mirror image (enantiomer), except for the chiroptical activity, which is often the opposite. Recent advancements have identified particularly interesting implications of chirality on the optical properties of metal nanoparticles, which are intimately related to localized surface plasmon resonance phenomena. Although such resonances are usually independent of the circular polarization of light, specific strategies have been applied to induce chirality, both in assemblies and at the single-particle level. In this tutorial review, we discuss the origin of plasmonic chirality, as well as theoretical models that have been proposed to explain it. We then summarise recent developments in the synthesis of discrete nanoparticles with plasmonic chirality by means of wet-chemistry methods. We conclude with a discussion of promising applications for discrete chiral nanoparticles. We expect this tutorial review to be of interest to researchers from a wide variety of disciplines where chiral plasmonics can be exploited at the nanoparticle level, such as chemical sensing, photocatalysis, photodynamic or photothermal therapies, etc.
Collapse
Affiliation(s)
- Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
99747
|
Liu M, Liang S, Shi D, Yang S, Lei Y, Li T, Wang Y. An emission stable vertical air channel diode by a low-cost and IC compatible BOE etching process. NANOSCALE 2021; 13:5693-5699. [PMID: 33690739 DOI: 10.1039/d0nr08997d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale air/vacuum channel devices have shown great potential in extreme environments, high speed and low power consumption applications. Progress in fabrication, structure and material optimization keeps emerging. However, it remains challenging to achieve a stable large current emission at low voltages, which limit the practical application of nanoscale air/vacuum channel devices. Here, a vertical structure consisting of two asymmetric flat emitters and a sub-100 nm air channel is proposed and fabricated by a low-cost and IC compatible BOE etching process. Typical diode characteristics have been demonstrated and controlled by the channel length. More importantly, emission currents up to several hundreds of microamp have been achieved in air with voltages lower than 2 volts and remain stable under sweep, fixed and periodic voltages. Along with the stable emission, a rise/fall time of 25 ns has been achieved for 1 MHz input signal. The present study provides an emission-stable nanoscale air channel diode with good manufacturing and integration possibilities, which can be an element for the future logic circuits of nanoscale air/vacuum channel electronics.
Collapse
Affiliation(s)
- Meng Liu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | | | | | | | | | | | | |
Collapse
|
99748
|
Kim W, Lee HJ, Yoo SJ, Kim Trinh C, Ahmad Z, Lee JS. Preparation of a polymer nanocomposite via the polymerization of pyrrole : biphenyldisulfonic acid : pyrrole as a two-monomer-connected precursor on MoS 2 for electrochemical energy storage. NANOSCALE 2021; 13:5868-5874. [PMID: 33724290 DOI: 10.1039/d0nr08941a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We prepared a poly(pyrrole : biphenyldisulfonic acid : pyrrole (Py:BPDSA:Py)) nanocomposite of molybdenum disulfide (MoS2), P(Py:BPDSA:Py)-MoS2, with high crystallinity. The composite is synthesized by oxidative polymerization of Py:BPDSA:Py as a two-monomer-connected precursor (TMCP) linked by ionic bonding on a molybdenum disulfide (MoS2) monolayer. The chemical, structural and morphological characterization of this composite is confirmed by Raman spectroscopy, FT-IR, X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), and scanning electron microscopy (SEM). The crystal structure is analysed by X-ray diffraction (XRD) and high-voltage electron microscopy (HVEM), which shows a face-centered cubic (FCC) crystal structure for the composite. Nitrogen adsorption-desorption isotherms show an improved specific surface area (91.3 m2 g-1). The electrochemical properties of the composite with a unique crystal structure and a large specific surface area are analysed through cyclic voltammetry (CV), which shows a specific capacitance of 681 F g-1 demonstrating that the composite can be used as an efficient electrode active material for electrochemical energy storage systems.
Collapse
Affiliation(s)
- Wonbin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea.
| | | | | | | | | | | |
Collapse
|
99749
|
Zhou Y, Zhang L, Gao W, Yang M, Lu J, Zheng Z, Zhao Y, Yao J, Li J. A reasonably designed 2D WS 2 and CdS microwire heterojunction for high performance photoresponse. NANOSCALE 2021; 13:5660-5669. [PMID: 33724286 DOI: 10.1039/d1nr00210d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterojunctions based on low-dimensional materials can combine the superiorities of each component and realize novel properties. Herein, a mixed-dimensional heterojunction comprising multilayer WS2, CdS microwire, and few-layer WS2 has been demonstrated. The working mechanism and its application in a photodetector are investigated. The multilayer WS2 and CdS microwire are utilized to provide efficient light absorption, while the few-layer WS2 is utilized to passivate interfacial impurity scattering. In addition, based on the reasonable band alignment of the components, three built-in electric fields are formed, which efficiently separate the photo-generated carriers and enhance the photocurrent. In particular, the photo-generated electrons are trapped in CdS, while the photo-generated holes circulate in the external circuit, leading to a high photoconductivity gain. Motivated by these, we constructed a device that exhibits a photoresponsivity of ∼4.7 A W-1, a response/recovery time of 13.7/15.8 ms, and a detectivity of 3.4 × 1012 Jones, which are much better than the counterparts. All of these clearly demonstrate the importance of advanced device designs for realizing high performance optoelectronic devices.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
99750
|
Giráldez-Pérez RM, Grueso E, Domínguez I, Pastor N, Kuliszewska E, Prado-Gotor R, Requena-Domenech F. Biocompatible DNA/5-Fluorouracil-Gemini Surfactant-Functionalized Gold Nanoparticles as Promising Vectors in Lung Cancer Therapy. Pharmaceutics 2021; 13:423. [PMID: 33801142 PMCID: PMC8004209 DOI: 10.3390/pharmaceutics13030423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
The design and preparation of novel nanocarriers to transport cancer drugs for chemotherapy purposes is an important line of research in the medical field. A new 5-fluorouracil (5-Fu) transporter was designed based on the use of two new biocompatible gold nanosystems: (i) a gold nanoparticle precursor, Au@16-Ph-16, stabilized with the positively charged gemini surfactant 16-Ph-16, and (ii) the compacted nanocomplexes formed by the precursor and DNA/5-Fu complexes, Au@16-Ph-16/DNA-5-Fu. The physicochemical properties of the obtained nanosystems were studied by using UV-visible spectroscopy, TEM, dynamic light scattering, and zeta potential techniques. Method tuning also requires the use of circular dichroism, atomic force microscopy, and fluorescence spectroscopy techniques for the prior selection of the optimal relative Au@16-Ph-16 and DNA concentrations (R = CAu@16-Ph-16/CDNA), biopolymer compaction/decompaction, and 5-Fu release from the DNA/5-Fu complex. TEM experiments revealed the effective internalization of the both precursor and Au@16-Ph-16/DNA-5-Fu-compacted nanosystems into the cells. Moreover, cytotoxicity assays and internalization experiments using TEM and confocal microscopy showed that the new strategy for 5-Fu administration enhanced efficacy, biocompatibility and selectivity against lung cancer cells. The differential uptake among different formulations is discussed in terms of the physicochemical properties of the nanosystems.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Departments of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain;
| | - Elia Grueso
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain;
| | - Inmaculada Domínguez
- Department of Biology and Cellular Biology, University of Seville, 41012 Seville, Spain; (I.D.); (N.P.)
| | - Nuria Pastor
- Department of Biology and Cellular Biology, University of Seville, 41012 Seville, Spain; (I.D.); (N.P.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain;
| | - Francisco Requena-Domenech
- Departments of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|