51
|
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. BRAIN & SPINE 2023; 4:102735. [PMID: 38510630 PMCID: PMC10951700 DOI: 10.1016/j.bas.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Introduction A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care. Research question What evidence is available for clinical applications of BBBMs in TBI and how to advance this field? Material and methods This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination. Results Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit. Discussion and conclusion Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, Neurotrauma Research Group, Szentagothai Research Centre, And HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andras Buki
- Department of Neurosurgery, University of Örebro, Örebro, Sweden
| |
Collapse
|
52
|
Pittock RR, Aakre JA, Castillo AM, Ramanan VK, Kremers WK, Jack CR, Vemuri P, Lowe VJ, Knopman DS, Petersen RC, Graff-Radford J, Vassilaki M. Eligibility for Anti-Amyloid Treatment in a Population-Based Study of Cognitive Aging. Neurology 2023; 101:e1837-e1849. [PMID: 37586881 PMCID: PMC10663008 DOI: 10.1212/wnl.0000000000207770] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Treatment options for Alzheimer disease (AD) are limited and have focused mainly on symptomatic therapy and improving quality of life. Recently, lecanemab, an anti-β-amyloid monoclonal antibody (mAb), received accelerated approval by the US Food and Drug Administration for treatment in the early stages of biomarker-confirmed symptomatic AD. An additional anti-β-amyloid mAb, aducanumab, was approved in 2021, and more will potentially become available in the near future. Research on the applicability and generalizability of the anti-β-amyloid mAb eligibility criteria on adults with biomarkers available in the general population has been lacking. The study's primary aim was to apply the clinical trial eligibility criteria for lecanemab treatment to participants with early AD of the population-based Mayo Clinic Study of Aging (MCSA) and assess the generalizability of anti-amyloid treatment. The secondary aim of this study was to apply the clinical trial eligibility criteria for aducanumab treatment in MCSA participants. METHODS This cross-sectional study aimed to apply the clinical trial eligibility criteria for lecanemab and aducanumab treatment to participants with early AD of the population-based MCSA and assess the generalizability of anti-amyloid treatment. RESULTS Two hundred thirty-seven MCSA participants (mean age [SD] 80.9 [6.3] years, 54.9% male, and 97.5% White) with mild cognitive impairment (MCI) or mild dementia and increased brain amyloid burden by PiB PET comprised the study sample. Lecanemab trial's inclusion criteria reduced the study sample to 112 (47.3% of 237) participants. The trial's exclusion criteria further narrowed the number of potentially eligible participants to 19 (overall 8% of 237). Modifying the eligibility criteria to include all participants with MCI (instead of applying additional cognitive criteria) resulted in 17.4% of participants with MCI being eligible for lecanemab treatment. One hundred four participants (43.9% of 237) fulfilled the aducanumab clinical trial's inclusion criteria. The aducanumab trial's exclusion criteria further reduced the number of available participants, narrowing those eligible to 12 (5.1% of 237). Common exclusions were related to other chronic conditions and neuroimaging findings. DISCUSSION Findings estimate the limited eligibility in typical older adults with cognitive impairment for anti-β-amyloid mAbs.
Collapse
Affiliation(s)
- Rioghna R Pittock
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Jeremiah A Aakre
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Anna M Castillo
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Vijay K Ramanan
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Walter K Kremers
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Clifford R Jack
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Val J Lowe
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - David S Knopman
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Ronald C Petersen
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Jonathan Graff-Radford
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN
| | - Maria Vassilaki
- From the Department of Neurology (R.R.P., V.K.R., D.S.K., R.C.P., J.G.-R.), Mayo Clinic, Rochester, MN; The College (R.R.P.), University of Chicago, IL; Departments of Quantitative Health Sciences (J.A.A., A.M.C., W.K.K., R.C.P., M.V.) and Radiology (C.R.J., P.V., V.J.L.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
53
|
Besser LM, Chrisphonte S, Kleiman MJ, O’Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. PLoS One 2023; 18:e0293634. [PMID: 37889891 PMCID: PMC10610524 DOI: 10.1371/journal.pone.0293634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. METHODS HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. ETHICS AND EXPECTED IMPACT HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, creating comprehensive diagnostic evaluations, and providing the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
Affiliation(s)
- Lilah M. Besser
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Stephanie Chrisphonte
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Michael J. Kleiman
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Deirdre O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Amie Rosenfeld
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - Magdalena Tolea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, Florida, United States of America
| |
Collapse
|
54
|
Sarb OF, Vacaras V, Sarb A, Iacobescu M, Tantau AI. Cognitive Dysfunction and Affective Mood Disorder Screening in Patients With Chronic Inflammatory Bowel Disease: Protocol for a Prospective Case-Control Study. JMIR Res Protoc 2023; 12:e50546. [PMID: 37824197 PMCID: PMC10603561 DOI: 10.2196/50546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) and Alzheimer's disease (AD) might be more frequent in patients with inflammatory bowel disease (IBD), but the relationship between these 2 entities is yet to be entirely established. Certain blood biomarkers (eg, serum amyloid A [SAA] and serum homocysteine [Hcy], which increase in IBD and MCI; brain-derived neurotrophic factor [BDNF], which decreases in MCI and AD but is not clearly modified in IBD; and S100 calcium-binding protein B [S100B], which increases in the blood-brain barrier and neuronal lesions) might predict the stage of MCI or dementia or progression to a further state. The gut-brain axis (GBA) might be the key to the development of MCI in patients with IBD, along with systemic inflammation and the possible and unknown adverse effects of disease-modifying medication. OBJECTIVE The aim of this study is to investigate whether GBA interactions play a role in MCI development in patients with IBD. METHODS A case-control study will be conducted on at least 100 patients diagnosed with IBD, matched with 100 healthy individual controls. The matching will include sex, age, and education. Patients will be fully examined, and a full interview and a neurological and cognitive examination will be performed. The primary clinical outcomes will be cognitive test scores (Montreal Cognitive Assessment, Trail Making Test, Digit Symbol Substitution Test, forward and backward digit span testing). Depression, stress, and anxiety screening will also be performed. Blood samples from all participants will be collected, and aliquots will be immediately stored in a biobank. Primary laboratory outcomes will include serum levels of presumed cognitive dysfunction blood biomarkers SAA, Hcy, S100B, and BDNF. Follow-up will be performed at 12, 24, 36, and 48 months. RESULTS Data collection started in December 2021 and is ongoing. So far, 53 patients with IBD have been recruited and 50 HC matched. Data collection should end in January 2030. Intermediary analysis will be performed in April 2024. We expect patients with IBD to have lower scores on cognitive testing and a positive correlation between disease length and cognitive impairment level. In addition, the levels of stress, anxiety, and depression should be higher in the IBD group. The serum levels of the 4 biomarkers could correlate or anticorrelate with cognitive scores and serve as predictive factors for MCI or dementia development. A higher level of education, a younger age, the absence of malabsorption, and good disease control might serve as protectors against MCI. CONCLUSIONS GBA interactions, along with systemic inflammation and the adverse effects of medication, might be a cause of MCI and AD development in patients with IBD. Serum biomarkers could prove cheap and useful predictors of MCI development. TRIAL REGISTRATION ClinicalTrials.gov NCT05760729; https://clinicaltrials.gov/study/NCT05760729. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50546.
Collapse
Affiliation(s)
- Oliviu Florentiu Sarb
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vitalie Vacaras
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adriana Sarb
- Department of Internal Medicine, Heart Institute, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Ioana Tantau
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
55
|
Forno G, Parra MA, Thumala D, Villagra R, Cerda M, Zitko P, Ibañez A, Lillo P, Slachevsky A. The "when" matters: Evidence from memory markers in the clinical continuum of Alzheimer's disease. Neuropsychology 2023; 37:753-768. [PMID: 37227845 PMCID: PMC10522796 DOI: 10.1037/neu0000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE Cognitive assessment able to detect impairments in the early neuropathological stages of Alzheimer's disease (AD) is urgently needed. The visual short-term memory binding task (VSTMBT) and the Free and Cued Selective Reminding Test (FCSRT) have been recommended by the neurodegenerative disease working group as promising tests to aid in the early detection of AD. In this study, we investigated their complementary value across the clinical stages of the AD continuum. METHOD One hundred and seventeen older adults with subjective cognitive complaint (SCC), 79 with mild cognitive impairment (MCI), 31 patients with AD dementia (ADD), and 37 cognitively unimpaired (CU) subjects, underwent assessment with the VSTMBT and the picture version of the Spanish FCSRT. RESULTS After controlling for multiple comparisons, significant differences were found across groups. The VSTMBT was the only test that "marginally" differentiated between CU and SCC (d = 0.47, p = .052). Moreover, whereas the FCSRT showed a gradient (CU = SCC) > MCI > ADD, the VSTMBT gradient was CU > SCC > (MCI = ADD) suggesting that conjunctive binding deficits assessed by the latter may be sensitive to the very early stages of the disease. CONCLUSIONS Our results suggest that the VSTMBT and the FCSRT are sensitive to the clinical continuum of AD. Whereas the former detects changes in the early prodromal stages, the latter is more sensitive to the advanced prodromal stages of AD. These novel tests can aid in the early detection, monitor disease progression and response to treatment, and thus support drug development programs. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Gonzalo Forno
- School of Psychology, Universidad de los Andes, Santiago, Chile
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Daniela Thumala
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Psychology Department, Faculty of Social Sciences, University of Chile, Santiago, Chile
- Interuniversity Center on Healthy Aging (Plan to Strengthen State Universities, Chilean Ministry of Education RED21993). Santiago, Chile
| | - Roque Villagra
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Centro de Parkinson (CENPAR), Santiago, Chile
| | - Mauricio Cerda
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas y Centro de Informática Médica y Telemedicina, Facultad de Medicina, Universidad de Chile
| | - Pedro Zitko
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Departamento de Salud Global, Escuela de Salud Pública, Universidad de Chile
- Department of Health Services & Population Research, IoPPN, King’s College London
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin (TCD), Dublin, Ireland
| | - Patricia Lillo
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile
- Unidad de Neurología, Hospital San José, Santiago, Chile
| | - Andrea Slachevsky
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, Institute of Biomedical Science (ICBM), Neuroscience and East Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
- East Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
56
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
57
|
Wang ZB, Tan L, Gao PY, Ma YH, Fu Y, Sun Y, Yu JT. Associations of the A/T/N profiles in PET, CSF, and plasma biomarkers with Alzheimer's disease neuropathology at autopsy. Alzheimers Dement 2023; 19:4421-4435. [PMID: 37506291 DOI: 10.1002/alz.13413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION To examine the extent to which positron emission tomography (PET)-, cerebrospinal fluid (CSF)-, and plasma-related amyloid-β/tau/neurodegeneration (A/T/N) biomarkers are associated with Alzheimer's disease (AD) neuropathology at autopsy. METHODS A total of 100 participants who respectively underwent antemortem biomarker measurements and postmortem neuropathology were included in the Alzheimer's Disease Neuroimaging Initiative (ADNI). We examined the associations of PET-, CSF-, and plasma-related A/T/N biomarkers in combinations or alone with AD neuropathological changes (ADNC). RESULTS PET- and CSF-related A/T/N biomarkers in combination showed high concordance with the ADNC stage and alone showed high accuracy in discriminating autopsy-confirmed AD. However, the plasma-related A/T/N biomarkers alone showed better discriminative performance only when combined with apolipoprotein E (APO)E ε4 genotype. DISCUSSION This study supports that PET- and CSF-related A/T/N profiles can be used to predict accurately the stages of AD neuropathology. For diagnostic settings, PET-, CSF-, and plasma-related A/T/N biomarkers are all useful diagnostic tools to detect the presence of AD neuropathology. HIGHLIGHTS PET- and CSF-related A/T/N biomarkers in combination can accurately predict the specific stages of AD neuropathology. PET- and CSF-related A/T/N biomarkers alone may serve as a precise diagnostic tool for detecting AD neuropathology at autopsy. Plasma-related A/T/N biomarkers may need combined risk factors when used as a diagnostic tool. Aβ PET and CSF p-tau181/Aβ42 were most consistent with Aβ pathology, while tau PET and CSF p-tau181/Aβ42 were most consistent with tau pathology.
Collapse
Affiliation(s)
- Zhi-Bo Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
58
|
Kim HB, Kim SH, Um YH, Wang SM, Kim REY, Choe YS, Lee J, Kim D, Lim HK, Lee CU, Kang DW. Modulation of associations between education years and cortical volume in Alzheimer's disease vulnerable brain regions by Aβ deposition and APOE ε4 carrier status in cognitively normal older adults. Front Aging Neurosci 2023; 15:1248531. [PMID: 37829142 PMCID: PMC10565031 DOI: 10.3389/fnagi.2023.1248531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Background Education years, as a measure of cognitive reserve, have been shown to affect the progression of Alzheimer's disease (AD), both pathologically and clinically. However, inconsistent results have been reported regarding the association between years of education and intermediate structural changes in AD-vulnerable brain regions, particularly when AD risk factors were not considered during the preclinical phase. Objective This study aimed to examine how Aβ deposition and APOE ε4 carrier status moderate the relationship between years of education and cortical volume in AD-vulnerable regions among cognitively normal older adults. Methods A total of 121 participants underwent structural MRI, [18F] flutemetamol PET-CT imaging, and neuropsychological battery assessment. Multiple regression analysis was conducted to examine the interaction between years of education and the effects of potential modifiers on cortical volume. The associations between cortical volume and neuropsychological performance were further explored in subgroups categorized based on AD risk factors. Results The cortical volume of the left lateral occipital cortex and bilateral fusiform gyrus demonstrated a significant differential association with years of education, depending on the presence of Aβ deposition and APOE ε4 carrier status. Furthermore, a significant relationship between the cortical volume of the bilateral fusiform gyrus and AD-nonspecific cognitive function was predominantly observed in individuals without AD risk factors. Conclusion AD risk factors exerted varying influences on the association between years of education and cortical volume during the preclinical phase. Further investigations into the long-term implications of these findings would enhance our understanding of cognitive reserves in the preclinical stages of AD.
Collapse
Affiliation(s)
- Hak-Bin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Yeong Sim Choe
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Jiyeon Lee
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
59
|
Besser LM, Chrisphonte S, Kleiman MJ, O'Shea D, Rosenfeld A, Tolea M, Galvin JE. The Healthy Brain Initiative (HBI): A prospective cohort study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295908. [PMID: 37808766 PMCID: PMC10557773 DOI: 10.1101/2023.09.21.23295908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background The Health Brain Initiative (HBI), established by University of Miami's Comprehensive Center for Brain Health (CCBH), follows racially/ethnically diverse older adults without dementia living in South Florida. With dementia prevention and brain health promotion as an overarching goal, HBI will advance scientific knowledge by developing novel assessments and non-invasive biomarkers of Alzheimer's disease and related dementias (ADRD), examining additive effects of sociodemographic, lifestyle, neurological and biobehavioral measures, and employing innovative, methodologically advanced modeling methods to characterize ADRD risk and resilience factors and transition of brain aging. Methods HBI is a longitudinal, observational cohort study that will follow 500 deeply-phenotyped participants annually to collect, analyze, and store clinical, cognitive, behavioral, functional, genetic, and neuroimaging data and biospecimens. Participants are ≥50 years old; have no, subjective, or mild cognitive impairment; have a study partner; and are eligible to undergo magnetic resonance imaging (MRI). Recruitment is community-based including advertisements, word-of-mouth, community events, and physician referrals. At baseline, following informed consent, participants complete detailed web-based surveys (e.g., demographics, health history, risk and resilience factors), followed by two half-day visits which include neurological exams, cognitive and functional assessments, an overnight sleep study, and biospecimen collection. Structural and functional MRI is completed by all participants and a subset also consent to amyloid PET imaging. Annual follow-up visits repeat the same data and biospecimen collection as baseline, except that MRIs are conducted every other year after baseline. Ethics and expected impact HBI has been approved by the University of Miami Miller School of Medicine Institutional Review Board. Participants provide informed consent at baseline and are re-consented as needed with protocol changes. Data collected by HBI will lead to breakthroughs in developing new diagnostics and therapeutics, create comprehensive diagnostic evaluations, and provide the evidence base for precision medicine approaches to dementia prevention with individualized treatment plans.
Collapse
|
60
|
Kunach P, Vaquer-Alicea J, Smith MS, Hopewell R, Monistrol J, Moquin L, Therriault J, Tissot C, Rahmouni N, Massarweh G, Soucy JP, Guiot MC, Shoichet BK, Rosa-Neto P, Diamond MI, Shahmoradian SH. Cryo-EM structure of Alzheimer's disease tau filaments with PET ligand MK-6240. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558671. [PMID: 37790438 PMCID: PMC10542181 DOI: 10.1101/2023.09.22.558671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identified AD brain tissue with elevated tau burden, purified filaments, and determined the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine K353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.
Collapse
Affiliation(s)
- Peter Kunach
- Department of Neurology, McGill University, Montreal, Quebec, Canada
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Jaime Vaquer-Alicea
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Matthew S. Smith
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, United States
- Program of Biophysics, UCSF, San Francisco, CA, United States
| | | | - Jim Monistrol
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Luc Moquin
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Joseph Therriault
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Cecile Tissot
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | | | | | - Marie-Christine Guiot
- Department of Neurology, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, United States
| | - Pedro Rosa-Neto
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Sarah H. Shahmoradian
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| |
Collapse
|
61
|
Haque R, Watson CM, Liu J, Carter EK, Duong DM, Lah JJ, Wingo AP, Roberts BR, Johnson EC, Saykin AJ, Shaw LM, Seyfried NT, Wingo TS, Levey AI. A protein panel in cerebrospinal fluid for diagnostic and predictive assessment of Alzheimer's disease. Sci Transl Med 2023; 15:eadg4122. [PMID: 37672565 PMCID: PMC10880442 DOI: 10.1126/scitranslmed.adg4122] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with heterogenous pathophysiological changes that develop years before the onset of clinical symptoms. These preclinical changes have generated considerable interest in identifying markers for the pathophysiological mechanisms linked to AD and AD-related disorders (ADRD). On the basis of our prior work integrating cerebrospinal fluid (CSF) and brain proteome networks, we developed a reliable and high-throughput mass spectrometry-selected reaction monitoring assay that targets 48 key proteins altered in CSF. To test the diagnostic utility of these proteins and compare them with existing AD biomarkers, CSF collected at baseline visits was assayed from 706 participants recruited from the Alzheimer's Disease Neuroimaging Initiative. We found that the targeted CSF panel of 48 proteins (CSF 48 panel) performed at least as well as existing AD CSF biomarkers (Aβ42, tTau, and pTau181) for predicting clinical diagnosis, FDG PET, hippocampal volume, and measures of cognitive and dementia severity. In addition, for each of those outcomes, the CSF 48 panel plus the existing AD CSF biomarkers significantly improved diagnostic performance. Furthermore, the CSF 48 panel plus existing AD CSF biomarkers significantly improved predictions for changes in FDG PET, hippocampal volume, and measures of cognitive decline and dementia severity compared with either measure alone. A potential reason for these improvements is that the CSF 48 panel reflects a range of altered biology observed in AD/ADRD. In conclusion, we show that the CSF 48 panel complements existing AD CSF biomarkers to improve diagnosis and predict future cognitive decline and dementia severity.
Collapse
Affiliation(s)
- Rafi Haque
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
| | - Caroline M. Watson
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
| | - E. Kathleen Carter
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA, 30322
| | - Duc M. Duong
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA, 30322
| | - James J. Lah
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
| | - Aliza P. Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA, 30033
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA, 30329
| | - Blaine R. Roberts
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA, 30322
| | - Erik C.B. Johnson
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA, 30322
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA, 46204
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Nicholas T. Seyfried
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA, 30322
| | - Thomas S. Wingo
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA, 30322
| | - Allan I. Levey
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA, 30329
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA, 30329
| |
Collapse
|
62
|
Dunne R, Coulthard E. Tipping the scales towards routine APOE genotyping. J Neurol Neurosurg Psychiatry 2023; 94:669. [PMID: 37414535 DOI: 10.1136/jnnp-2023-332045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Affiliation(s)
- Ross Dunne
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | | |
Collapse
|
63
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted excitation-inhibition balance in cognitively normal individuals at risk of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554061. [PMID: 37662359 PMCID: PMC10473582 DOI: 10.1101/2023.08.21.554061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. Objective Examine how AD risk factors (age, APOE-ɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. Methods Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). Results In absence of AD risk factors (APOE-ɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β = -0.007). Regression modeling including APOE-ɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β = 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β = 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the trail-making test (p < 0.05). Conclusion Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOE-ɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE-ɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL
| | - Scott Mackin
- Department of Psychiatry, University of California - San Francisco, San Francisco, CA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
64
|
Zhang W, Wang HF, Kuo K, Wang L, Li Y, Yu J, Feng J, Cheng W. Contribution of Alzheimer's disease pathology to biological and clinical progression: A longitudinal study across two cohorts. Alzheimers Dement 2023; 19:3602-3612. [PMID: 36840615 DOI: 10.1002/alz.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) deposition, tau accumulation, and brain atrophy occurr in sequence, but the contribution of Alzheimer's disease (AD) pathology to biological and clinical progression remains unclear. METHODS We included 290 and 70 participants with longitudinal assessment on Aβ-positron emission tomography (PET), tau-PET, magnetic resonance imaging, and cognitive function from the Harvard Aging Brain Study (HABS) and Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets, respectively. Partial least squares structural equation modeling (PLS-SEM) was used to determine the contribution of AD pathology to the biological and clinical longitudinal changes. RESULTS Imaging biomarkers and cognitive function were significantly associated in cross-sectional and longitudinal analyses. At the final time point, the percentage of variance explained by PLS-SEM was 27% for Aβ, 30% for tau (Aβ accounted for 61%), 29% for brain atrophy (tau accounted for 37%), and 37% for cognitive decline (brain atrophy accounted for 35%). DISCUSSION This study highlights distinctive contributing proportions of AD pathology to biological and clinical progression. Treatments targeting Aβ and tau may partially block AD progression.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Hui-Fu Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kevin Kuo
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Yuzhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Jintai Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
- School of Data Science, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Fudan University, Shanghai, China
| |
Collapse
|
65
|
Leisher S, Bohorquez A, Gay M, Garcia V, Jones R, Baldaranov D, Rafii MS. Amyloid-Lowering Monoclonal Antibodies for the Treatment of Early Alzheimer's Disease. CNS Drugs 2023; 37:671-677. [PMID: 37470978 PMCID: PMC10439019 DOI: 10.1007/s40263-023-01021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Numerous biomarker studies have clearly demonstrated that AD has a long asymptomatic phase, with the development of pathology occurring at least 2 decades prior to the development of any symptoms. These pathological changes include a stepwise development of amyloid-β (Aβ) plaques, followed by tau neurofibrillary tangles and subsequently extensive neurodegeneration in the brain. In this review, we discuss the first class of drugs intended to be disease modifying to be approved by the US Food and Drug Administration (FDA) for AD-anti-Aβ monoclonal antibodies-and the scientific rationale with which they were developed.
Collapse
Affiliation(s)
- Solana Leisher
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Adriana Bohorquez
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Marcus Gay
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Victoria Garcia
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Renarda Jones
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Dobri Baldaranov
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA.
| |
Collapse
|
66
|
Luo X, Hong H, Li K, Zeng Q, Wang S, Li Z, Fu Y, Liu X, Hong L, Li J, Zhang X, Zhong S, Jiaerken Y, Liu Z, Chen Y, Huang P, Zhang M. Distinct cerebral small vessel disease impairment in early- and late-onset Alzheimer's disease. Ann Clin Transl Neurol 2023; 10:1326-1337. [PMID: 37345812 PMCID: PMC10424647 DOI: 10.1002/acn3.51824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVE This study investigated cerebral small vessel disease (CSVD) damage patterns in early-onset and late-onset Alzheimer's disease (EOAD and LOAD) and their effects on cognitive function. METHODS This study included 93 participants, 45 AD patients (14 EOAD and 31 LOAD), and 48 normal controls (13 YNC and 35 ONC) from the ADNI database. All participants had diffusion tensor imaging data; some had amyloid PET and plasma p-tau181 data. The study used peak width of skeletonized mean diffusivity (PSMD) to measure CSVD severity and compared PSMD between patients and age-matched controls. The effect of age on the relationship between PSMD and cognition was also examined. The study also repeated the analysis in amyloid-positive AD patients and amyloid-negative controls in another independent database (31 EOAD and 38 LOAD), and the merged database. RESULTS EOAD and LOAD showed similar cognitive function and disease severity. PSMD was validated as a reliable correlate of cognitive function. In the ADNI database, PSMD was significantly higher for LOAD and showed a tendency to increase for EOAD; in the independent and merged databases, PSMD was significantly higher for both LOAD and EOAD. The impact of PSMD on cognitive function was notably greater in the younger group (YNC and EOAD) than in the older group (ONC and LOAD), as supported by the ADNI and merged databases. INTERPRETATION EOAD has less CSVD burden than LOAD, but has a greater impact on cognition. Proactive cerebrovascular prevention strategies may have potential clinical value for younger older adults with cognitive decline.
Collapse
Affiliation(s)
- Xiao Luo
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Hui Hong
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Kaicheng Li
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qingze Zeng
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shuyue Wang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Zheyu Li
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yanv Fu
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Luwei Hong
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jixuan Li
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xinyi Zhang
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Siyan Zhong
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yeerfan Jiaerken
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Zhirong Liu
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yanxing Chen
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | | |
Collapse
|
67
|
Erickson P, Simrén J, Brum WS, Ennis GE, Kollmorgen G, Suridjan I, Langhough R, Jonaitis EM, Van Hulle CA, Betthauser TJ, Carlsson CM, Asthana S, Ashton NJ, Johnson SC, Shaw LM, Blennow K, Andreasson U, Bendlin BB, Zetterberg H. Prevalence and Clinical Implications of a β-Amyloid-Negative, Tau-Positive Cerebrospinal Fluid Biomarker Profile in Alzheimer Disease. JAMA Neurol 2023; 80:2807607. [PMID: 37523162 PMCID: PMC10391361 DOI: 10.1001/jamaneurol.2023.2338] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/05/2023] [Indexed: 08/01/2023]
Abstract
Importance Knowledge is lacking on the prevalence and prognosis of individuals with a β-amyloid-negative, tau-positive (A-T+) cerebrospinal fluid (CSF) biomarker profile. Objective To estimate the prevalence of a CSF A-T+ biomarker profile and investigate its clinical implications. Design, Setting, and Participants This was a retrospective cohort study of the cross-sectional multicenter University of Gothenburg (UGOT) cohort (November 2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative (ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals without cognitive impairment; February 2007-November 2020). This was a multicenter study, with data collected from referral centers in clinical routine (UGOT) and research settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate occasions. Data were analyzed on August 2022 to April 2023. Exposures Baseline CSF Aβ42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI: modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC [PACC-3]). Exposures in the ADNI cohort included [18F]-florbetapir amyloid positron emission tomography (PET), magnetic resonance imaging (MRI), [18F]-fluorodeoxyglucose PET (FDG-PET), and cross-sectional tau-PET (ADNI: [18F]-flortaucipir, WISC: [18F]-MK6240). Main Outcomes and Measures Primary outcomes were the prevalence of CSF AT biomarker profiles and continuous longitudinal global cognitive outcome and imaging biomarker trajectories in A-T+ vs A-T- groups. Secondary outcomes included cross-sectional tau-PET. Results A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male [54%]) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years; 346 female [67%]) were included in the WISC cohort. The prevalence of an A-T+ profile in the UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns. Longitudinally, no significant differences in rates of worsening were observed between A-T+ and A-T- profiles for cognition or imaging biomarkers. Cross-sectionally, A-T+ had similar tau-PET uptake to individuals with an A-T- biomarker profile. Conclusion and Relevance Results suggest that the CSF A-T+ biomarker profile was found in approximately 5% of lumbar punctures and was not associated with a higher rate of cognitive decline or biomarker signs of disease progression compared with biomarker-negative individuals.
Collapse
Affiliation(s)
- Pontus Erickson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Simrén
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Wagner S. Brum
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gilda E. Ennis
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
| | | | | | - Rebecca Langhough
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
| | - Erin M. Jonaitis
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
| | - Carol A. Van Hulle
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
| | - Tobey J. Betthauser
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
| | - Cynthia M. Carlsson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison
- Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison
- Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Nicholas J. Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, King’s College London, London, England
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, England
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Sterling C. Johnson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Barbara B. Bendlin
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison
- Institute of Neurology, Department of Neurodegenerative Disease, University College London, London, England
- UK Dementia Research Institute, University College London, London, England
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
68
|
Gonzalez J, Wilson A, Byrd D, Cortes EP, Crary JF, Morgello S. Neuronal accumulation of hyperphosphorylated tau protein predicts stable memory impairment in people living with HIV. AIDS 2023; 37:1247-1256. [PMID: 36988209 PMCID: PMC10539475 DOI: 10.1097/qad.0000000000003556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
OBJECTIVES As lifespans increase in people with HIV (PWH), there is concern that age-related neurodegenerative disorders may contribute to cognitive decline. We asked whether brain accumulation of Alzheimer's disease (AD)-associated proteins amyloid-beta (Aβ) and hyperphosphorylated tau (p-tau) predicted cognitive performance in middle-aged PWH. METHODS In a prospectively followed, cognitively-characterized autopsy sample of 135 PWH, we used immunohistochemistry to assess Aβ plaques and neuronal p-tau in medial temporal and lateral frontal lobes. These pathologies were tested for associations with cognitive performance in seven domains: motor, speed of information processing, working memory, memory encoding, memory retrieval, verbal fluency, and abstraction/executive function. Univariate and multivariate analyses accounting for HIV-associated variables, reading level, and comorbidities were conducted. Longitudinal trajectories of memory functions were evaluated in 60 individuals with a median follow-up of 6.0 years. RESULTS In this population with mean age 51.4 ± 0.9 years, 58% displayed neuronal p-tau and 29% Aβ plaques. Neuronal p-tau, but not Aβ, predicted worse memory encoding and retrieval, but not other cognitive functions. With an ordinal hierarchy of neuronal p-tau locations (entorhinal, hippocampal, neocortical), decreased memory performance correlated with neocortical distribution. Memory function trajectories could not be distinguished between individuals with and without neuronal p-tau, and over 80% of the sample showed no change over time. CONCLUSION In this middle-aged sample, neuronal p-tau accumulation contributes to memory deficits, but is not associated with accelerated decline in function over time. In the absence of AD-like deterioration, other etiologies for neuronal p-tau in cognitively impaired PWH must be considered.
Collapse
Affiliation(s)
| | - Alyssa Wilson
- Department of Neurology
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Desiree Byrd
- Department of Neurology
- Department of Psychology, Queens College and the Graduate Center, City University of New York
| | | | - John F Crary
- Department of Pathology
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Morgello
- Department of Neurology
- Department of Pathology
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
69
|
Ferreiro AL, Choi J, Ryou J, Newcomer EP, Thompson R, Bollinger RM, Hall-Moore C, Ndao IM, Sax L, Benzinger TLS, Stark SL, Holtzman DM, Fagan AM, Schindler SE, Cruchaga C, Butt OH, Morris JC, Tarr PI, Ances BM, Dantas G. Gut microbiome composition may be an indicator of preclinical Alzheimer's disease. Sci Transl Med 2023; 15:eabo2984. [PMID: 37315112 PMCID: PMC10680783 DOI: 10.1126/scitranslmed.abo2984] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) pathology is thought to progress from normal cognition through preclinical disease and ultimately to symptomatic AD with cognitive impairment. Recent work suggests that the gut microbiome of symptomatic patients with AD has an altered taxonomic composition compared with that of healthy, cognitively normal control individuals. However, knowledge about changes in the gut microbiome before the onset of symptomatic AD is limited. In this cross-sectional study that accounted for clinical covariates and dietary intake, we compared the taxonomic composition and gut microbial function in a cohort of 164 cognitively normal individuals, 49 of whom showed biomarker evidence of early preclinical AD. Gut microbial taxonomic profiles of individuals with preclinical AD were distinct from those of individuals without evidence of preclinical AD. The change in gut microbiome composition correlated with β-amyloid (Aβ) and tau pathological biomarkers but not with biomarkers of neurodegeneration, suggesting that the gut microbiome may change early in the disease process. We identified specific gut bacterial taxa associated with preclinical AD. Inclusion of these microbiome features improved the accuracy, sensitivity, and specificity of machine learning classifiers for predicting preclinical AD status when tested on a subset of the cohort (65 of the 164 participants). Gut microbiome correlates of preclinical AD neuropathology may improve our understanding of AD etiology and may help to identify gut-derived markers of AD risk.
Collapse
Affiliation(s)
- Aura L. Ferreiro
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - JooHee Choi
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jian Ryou
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erin P. Newcomer
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Regina Thompson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca M. Bollinger
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Hall-Moore
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - I. Malick Ndao
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laurie Sax
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan L. Stark
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suzanne E. Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Omar H. Butt
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phillip I. Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beau M. Ances
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gautam Dantas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
70
|
Li B, Shi K, Ren C, Kong M, Ba M. Detection of Tau-PET Positivity in Clinically Diagnosed Mild Cognitive Impairment with Multidimensional Features. J Alzheimers Dis 2023:JAD230180. [PMID: 37334600 DOI: 10.3233/jad-230180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND The way to evaluate brain tau pathology in vivo is tau positron emission tomography (tau-PET) or cerebrospinal fluid (CSF) analysis. In the clinically diagnosed mild cognitive impairment (MCI), a significant proportion of tau-PET are negative. Interest in less expensive and convenient ways to detect tau pathology in Alzheimer's disease has increased due to the high cost of tau-PET and the invasiveness of lumbar puncture, which typically slows down the cost and enrollment of clinical trials. OBJECTIVE We aimed to investigate one simple and effective method in predicting tau-PET status in MCI individuals. METHODS The sample included 154 individuals which were dichotomized into tau-PET (+) and tau-PET (-) using a cut-off of >1.33. We used stepwise regression to select the unitary or combination of variables that best predicted tau-PET. The receiver operating characteristic curve was used to assess the accuracy of single and multiple clinical markers. RESULTS The combined performance of three variables [Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-Cog13), Mini-Mental State Examination (MMSE), ADNI-Memory summary score (ADNI-MEM)] in neurocognitive measures demonstrated good predictive accuracy of tau-PET status [accuracy = 85.7%, area under the curve (AUC) = 0.879]. The combination of clinical markers model (APOEɛ4, neurocognitive measures and structural MRI imaging of middle temporal) had the best discriminative power (AUC = 0.946). CONCLUSION As a noninvasive test, the combination of APOEɛ4, neurocognitive measures and structural MRI imaging of middle temporal accurately predicts tau-PET status. The finding may provide a non-invasive, cost-effective tool for clinical application in predicting tau pathology among MCI individuals.
Collapse
Affiliation(s)
- Bingyu Li
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kening Shi
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chao Ren
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China
| | - Maowen Ba
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Yantai Regional Sub Center of National Center for Clinical Medical Research of Neurological Diseases, Shandong, China
| |
Collapse
|
71
|
Stricker NH, Twohy EL, Albertson SM, Karstens AJ, Kremers WK, Machulda MM, Fields JA, Jack CR, Knopman DS, Mielke MM, Petersen RC. Mayo-PACC: A parsimonious preclinical Alzheimer's disease cognitive composite comprised of public-domain measures to facilitate clinical translation. Alzheimers Dement 2023; 19:2575-2584. [PMID: 36565459 PMCID: PMC10272034 DOI: 10.1002/alz.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION We aimed to define a Mayo Preclinical Alzheimer's disease Cognitive Composite (Mayo-PACC) that prioritizes parsimony and use of public domain measures to facilitate clinical translation. METHODS Cognitively unimpaired participants aged 65 to 85 at baseline with amyloid PET imaging were included, yielding 428 amyloid negative (A-) and 186 amyloid positive (A+) individuals with 7 years mean follow-up. Sensitivity to amyloid-related cognitive decline was examined using slope estimates derived from linear mixed models (difference in annualized change across A+ and A- groups). We compared differences in rates of change between Mayo-PACC and other composites (A+ > A- indicating more significant decline in A+). RESULTS All composites showed sensitivity to amyloid-related longitudinal cognitive decline (A+ > A- annualized change p < 0.05). Comparisons revealed that Mayo-PACC (AVLT sum of trials 1-5+6+delay, Trails B, animal fluency) showed comparable longitudinal sensitivity to other composites. DISCUSSION Mayo-PACC performs similarly to other composites and can be directly translated to the clinic.
Collapse
Affiliation(s)
- Nikki H. Stricker
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin L. Twohy
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Sabrina M. Albertson
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Aimee J. Karstens
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter K. Kremers
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M. Machulda
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A. Fields
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
72
|
Lim YY, Yassi N, Bransby L, Ayton S, Buckley RF, Eratne D, Velakoulis D, Li QX, Fowler C, Masters CL, Maruff P. CSF Aβ 42 and tau biomarkers in cognitively unimpaired Aβ- middle-aged and older APOE ε4 carriers. Neurobiol Aging 2023; 129:209-218. [PMID: 37399739 DOI: 10.1016/j.neurobiolaging.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/05/2023]
Abstract
This study aimed to determine the relationship between the apolipoprotein E (APOE) ε4 allele and cerebrospinal fluid (CSF) and neuroimaging biomarkers of Alzheimer's disease, and cognition in cognitively unimpaired (CU) middle-aged adults (n = 82; Mage = 58.2), and in Aβ- CU older adults (n = 71; Mage = 71.8). Aβ- CU middle-aged ε4 carriers showed lower CSF Aβ42 levels, higher levels of CSF total tau (t-tau) and neurofilament light (NfL), and poorer cognitive performance compared to noncarriers (Cohen's d: 0.30-0.56). In Aβ- CU older adults, ε4 carriers also had lower CSF Aβ42 levels and higher levels of CSF t-tau and p-tau181, compared to noncarriers (Cohen's d: 0.65-0.74). In both Aβ- middle-aged and older adults, hippocampal and total brain volume were equivalent between ε4 carriers and noncarriers. In Aβ- CU middle-aged adults, APOE ε4 is associated with decreased levels of Aβ, increased tau and NfL, and poorer cognition. Similar relationships were observed in Aβ- CU older adults. These results have implications for understanding clinicopathological relationships between APOE ε4 and the emergence of cognitive and biomarker abnormalities in Aβ- adults.
Collapse
Affiliation(s)
- Yen Ying Lim
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Nawaf Yassi
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Lisa Bransby
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Dhamidhu Eratne
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Australia
| | - Qiao-Xin Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Christopher Fowler
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Paul Maruff
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Cogstate Ltd., Melbourne, Australia
| |
Collapse
|
73
|
Ginsberg SD, Tarantini S. Editorial: Hippocampal mechanisms in aging and clinical memory decline. Front Aging Neurosci 2023; 15:1204954. [PMID: 37213539 PMCID: PMC10196629 DOI: 10.3389/fnagi.2023.1204954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Affiliation(s)
- Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
74
|
Ponomareva NV, Andreeva TV, Protasova MS, Kunizheva SS, Kuznetsova IL, Kolesnikova EP, Malina DD, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Neuronal Hyperactivation in EEG Data during Cognitive Tasks Is Related to the Apolipoprotein J/Clusterin Genotype in Nondemented Adults. Int J Mol Sci 2023; 24:6790. [PMID: 37047762 PMCID: PMC10095572 DOI: 10.3390/ijms24076790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The clusterin (CLU) rs11136000 CC genotype is a probable risk factor for Alzheimer's disease (AD). CLU, also known as the apolipoprotein J gene, shares certain properties with the apolipoprotein E (APOE) gene with a well-established relationship with AD. This study aimed to determine whether the electrophysiological patterns of brain activation during the letter fluency task (LFT) depend on CLU genotypes in adults without dementia. Previous studies have shown that LFT performance involves activation of the frontal cortex. We examined EEG alpha1 and alpha2 band desynchronization in the frontal regions during the LFT in 94 nondemented individuals stratified by CLU (rs11136000) genotype. Starting at 30 years of age, CLU CC carriers exhibited more pronounced task-related alpha2 desynchronization than CLU CT&TT carriers in the absence of any differences in LFT performance. In CLU CC carriers, alpha2 desynchronization was significantly correlated with age. Increased task-related activation in individuals at genetic risk for AD may reflect greater "effort" to perform the task and/or neuronal hyperexcitability. The results show that the CLU genotype is associated with neuronal hyperactivation in the frontal cortex during cognitive tasks performances in nondemented individuals, suggesting systematic vulnerability of LFT related cognitive networks in people carrying unfavorable CLU alleles.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, 125367 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana S. Kunizheva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina L. Kuznetsova
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
75
|
Mahoney JR, Blumen HM, De Sanctis P, Fleysher R, Frankini C, Hoang A, Hoptman MJ, Jin R, Lipton M, Nunez V, Twizer L, Uy N, Valdivia A, Verghese T, Wang C, Weiss EF, Zwerling J, Verghese J. Visual-somatosensory integration (VSI) as a novel marker of Alzheimer’s disease: A comprehensive overview of the VSI study. Front Aging Neurosci 2023; 15:1125114. [PMID: 37065459 PMCID: PMC10098130 DOI: 10.3389/fnagi.2023.1125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Identification of novel, non-invasive, non-cognitive based markers of Alzheimer’s disease (AD) and related dementias are a global priority. Growing evidence suggests that Alzheimer’s pathology manifests in sensory association areas well before appearing in neural regions involved in higher-order cognitive functions, such as memory. Previous investigations have not comprehensively examined the interplay of sensory, cognitive, and motor dysfunction with relation to AD progression. The ability to successfully integrate multisensory information across multiple sensory modalities is a vital aspect of everyday functioning and mobility. Our research suggests that multisensory integration, specifically visual-somatosensory integration (VSI), could be used as a novel marker for preclinical AD given previously reported associations with important motor (balance, gait, and falls) and cognitive (attention) outcomes in aging. While the adverse effect of dementia and cognitive impairment on the relationship between multisensory functioning and motor outcomes has been highlighted, the underlying functional and neuroanatomical networks are still unknown. In what follows we detail the protocol for our study, named The VSI Study, which is strategically designed to determine whether preclinical AD is associated with neural disruptions in subcortical and cortical areas that concurrently modulate multisensory, cognitive, and motor functions resulting in mobility decline. In this longitudinal observational study, a total of 208 community-dwelling older adults with and without preclinical AD will be recruited and monitored yearly. Our experimental design affords assessment of multisensory integration as a new behavioral marker for preclinical AD; identification of functional neural networks involved in the intersection of sensory, motor, and cognitive functioning; and determination of the impact of early AD on future mobility declines, including incident falls. Results of The VSI Study will guide future development of innovative multisensory-based interventions aimed at preventing disability and optimizing independence in pathological aging.
Collapse
Affiliation(s)
- Jeannette R. Mahoney
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Jeannette R. Mahoney,
| | - Helena M. Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pierfilippo De Sanctis
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Roman Fleysher
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carolina Frankini
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexandria Hoang
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Matthew J. Hoptman
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Runqiu Jin
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Lipton
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Valerie Nunez
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lital Twizer
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Naomi Uy
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana Valdivia
- Department of Radiology, Division of Nuclear Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Tanya Verghese
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Cuiling Wang
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Erica F. Weiss
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Center of Aging Brain, Montefiore Medical Center, Yonkers, NY, United States
| | - Jessica Zwerling
- Center of Aging Brain, Montefiore Medical Center, Yonkers, NY, United States
| | - Joe Verghese
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Bronx, NY, United States
- Center of Aging Brain, Montefiore Medical Center, Yonkers, NY, United States
| |
Collapse
|
76
|
Heinzinger N, Maass A, Berron D, Yakupov R, Peters O, Fiebach J, Villringer K, Preis L, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Bartels C, Jessen F, Maier F, Glanz W, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Killimann I, Göerß D, Laske C, Munk MH, Spottke A, Roy N, Heneka MT, Brosseron F, Dobisch L, Ewers M, Dechent P, Haynes JD, Scheffler K, Wolfsgruber S, Kleineidam L, Schmid M, Berger M, Düzel E, Ziegler G. Exploring the ATN classification system using brain morphology. Alzheimers Res Ther 2023; 15:50. [PMID: 36915139 PMCID: PMC10009950 DOI: 10.1186/s13195-023-01185-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND The NIA-AA proposed amyloid-tau-neurodegeneration (ATN) as a classification system for AD biomarkers. The amyloid cascade hypothesis (ACH) implies a sequence across ATN groups that patients might undergo during transition from healthy towards AD: A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+. Here we assess the evidence for monotonic brain volume decline for this particular (amyloid-conversion first, tau-conversion second, N-conversion last) and alternative progressions using voxel-based morphometry (VBM) in a large cross-sectional MRI cohort. METHODS We used baseline data of the DELCODE cohort of 437 subjects (127 controls, 168 SCD, 87 MCI, 55 AD patients) which underwent lumbar puncture, MRI scanning, and neuropsychological assessment. ATN classification was performed using CSF-Aβ42/Aβ40 (A+/-), CSF phospho-tau (T+/-), and adjusted hippocampal volume or CSF total-tau (N+/-). We compared voxel-wise model evidence for monotonic decline of gray matter volume across various sequences over ATN groups using the Bayesian Information Criterion (including also ROIs of Braak stages). First, face validity of the ACH transition sequence A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was compared against biologically less plausible (permuted) sequences among AD continuum ATN groups. Second, we evaluated evidence for 6 monotonic brain volume progressions from A-T-N- towards A+T+N+ including also non-AD continuum ATN groups. RESULTS The ACH-based progression A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was consistent with cognitive decline and clinical diagnosis. Using hippocampal volume for operationalization of neurodegeneration (N), ACH was most evident in 9% of gray matter predominantly in the medial temporal lobe. Many cortical regions suggested alternative non-monotonic volume progressions over ACH progression groups, which is compatible with an early amyloid-related tissue expansion or sampling effects, e.g., due to brain reserve. Volume decline in 65% of gray matter was consistent with a progression where A status converts before T or N status (i.e., ACH/ANT) when compared to alternative sequences (TAN/TNA/NAT/NTA). Brain regions earlier affected by tau tangle deposition (Braak stage I-IV, MTL, limbic system) present stronger evidence for volume decline than late Braak stage ROIs (V/VI, cortical regions). Similar findings were observed when using CSF total-tau for N instead. CONCLUSION Using the ATN classification system, early amyloid status conversion (before tau and neurodegeneration) is associated with brain volume loss observed during AD progression. The ATN system and the ACH are compatible with monotonic progression of MTL atrophy. TRIAL REGISTRATION DRKS00007966, 04/05/2015, retrospectively registered.
Collapse
Affiliation(s)
- Nils Heinzinger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jochen Fiebach
- Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
| | - Lukas Preis
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany.,University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike Jacob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Killimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Doreen Göerß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- Institute for Medical Biometry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | |
Collapse
|
77
|
Corriveau-Lecavalier N, Gunter JL, Kamykowski M, Dicks E, Botha H, Kremers WK, Graff-Radford J, Wiepert DA, Schwarz CG, Yacoub E, Knopman DS, Boeve BF, Ugurbil K, Petersen RC, Jack CR, Terpstra MJ, Jones DT. Default mode network failure and neurodegeneration across aging and amnestic and dysexecutive Alzheimer's disease. Brain Commun 2023; 5:fcad058. [PMID: 37013176 PMCID: PMC10066575 DOI: 10.1093/braincomms/fcad058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
From a complex systems perspective, clinical syndromes emerging from neurodegenerative diseases are thought to result from multiscale interactions between aggregates of misfolded proteins and the disequilibrium of large-scale networks coordinating functional operations underpinning cognitive phenomena. Across all syndromic presentations of Alzheimer's disease, age-related disruption of the default mode network is accelerated by amyloid deposition. Conversely, syndromic variability may reflect selective neurodegeneration of modular networks supporting specific cognitive abilities. In this study, we leveraged the breadth of the Human Connectome Project-Aging cohort of non-demented individuals (N = 724) as a normative cohort to assess the robustness of a biomarker of default mode network dysfunction in Alzheimer's disease, the network failure quotient, across the aging spectrum. We then examined the capacity of the network failure quotient and focal markers of neurodegeneration to discriminate patients with amnestic (N = 8) or dysexecutive (N = 10) Alzheimer's disease from the normative cohort at the patient level, as well as between Alzheimer's disease phenotypes. Importantly, all participants and patients were scanned using the Human Connectome Project-Aging protocol, allowing for the acquisition of high-resolution structural imaging and longer resting-state connectivity acquisition time. Using a regression framework, we found that the network failure quotient related to age, global and focal cortical thickness, hippocampal volume, and cognition in the normative Human Connectome Project-Aging cohort, replicating previous results from the Mayo Clinic Study of Aging that used a different scanning protocol. Then, we used quantile curves and group-wise comparisons to show that the network failure quotient commonly distinguished both dysexecutive and amnestic Alzheimer's disease patients from the normative cohort. In contrast, focal neurodegeneration markers were more phenotype-specific, where the neurodegeneration of parieto-frontal areas associated with dysexecutive Alzheimer's disease, while the neurodegeneration of hippocampal and temporal areas associated with amnestic Alzheimer's disease. Capitalizing on a large normative cohort and optimized imaging acquisition protocols, we highlight a biomarker of default mode network failure reflecting shared system-level pathophysiological mechanisms across aging and dysexecutive and amnestic Alzheimer's disease and biomarkers of focal neurodegeneration reflecting distinct pathognomonic processes across the amnestic and dysexecutive Alzheimer's disease phenotypes. These findings provide evidence that variability in inter-individual cognitive impairment in Alzheimer's disease may relate to both modular network degeneration and default mode network disruption. These results provide important information to advance complex systems approaches to cognitive aging and degeneration, expand the armamentarium of biomarkers available to aid diagnosis, monitor progression and inform clinical trials.
Collapse
Affiliation(s)
| | | | - Michael Kamykowski
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Essa Yacoub
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kamil Ugurbil
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa J Terpstra
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
78
|
Leffa DT, Ferrari-Souza JP, Bellaver B, Tissot C, Ferreira PCL, Brum WS, Caye A, Lord J, Proitsi P, Martins-Silva T, Tovo-Rodrigues L, Tudorascu DL, Villemagne VL, Cohen AD, Lopez OL, Klunk WE, Karikari TK, Rosa-Neto P, Zimmer ER, Molina BSG, Rohde LA, Pascoal TA. Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of Alzheimer's disease pathophysiology in cognitively unimpaired older adults. Mol Psychiatry 2023; 28:1248-1255. [PMID: 36476732 DOI: 10.1038/s41380-022-01867-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-β (Aβ) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau181), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain Aβ deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau181 levels and frontoparietal atrophy in CU Aβ-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in Aβ-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of Aβ pathology.
Collapse
Affiliation(s)
- Douglas T Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cécile Tissot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada
| | | | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arthur Caye
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Center for Innovation in Mental Health (CISM)/National Institute for Developmental Psychiatry (INPD), São Paulo, Brazil
| | - Jodie Lord
- Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Petroula Proitsi
- Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Thais Martins-Silva
- Human Development and Violence Research Centre (DOVE), Post-Graduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Brooke S G Molina
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
- Center for Innovation in Mental Health (CISM)/National Institute for Developmental Psychiatry (INPD), São Paulo, Brazil.
- UniEduk, Indaiatuba, São Paulo, Brazil.
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
79
|
Sullivan EV, Pfefferbaum A. Alcohol use disorder: Neuroimaging evidence for accelerated aging of brain morphology and hypothesized contribution to age-related dementia. Alcohol 2023; 107:44-55. [PMID: 35781021 PMCID: PMC11424507 DOI: 10.1016/j.alcohol.2022.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
Excessive alcohol use curtails longevity by rendering intoxicated individuals vulnerable to heightened risk from accidents, violence, and alcohol poisoning, and makes chronically heavy drinkers vulnerable to acceleration of age-related medical and psychiatric conditions that can be life threatening (Yoon, Chen, Slater, Jung, & White, 2020). Thus, studies of factors influencing age-alcohol interactions must consider the potential that the alcohol use disorder (AUD) population may not represent the oldest ages of the unaffected population and may well have accrued comorbidities associated with both AUD and aging itself. Herein, we focus on the aging of the brains of men and women with AUD, keeping AUD contextual factors in mind. Knowledge of the potential influence of the AUD-associated co-factors on the condition of brain structure may lead to identifying modifiable risk factors to avert physical declines and may reverse or arrest further AUD-related degradation of the brain. In this narrative review, we 1) describe quantitative, controlled studies of brain macrostructure and microstructure of adults with AUD, 2) consider the possibility of recovery of brain integrity through harm reduction with sustained abstinence or reduced drinking, and 3) speculate on the ramifications of accelerated aging in AUD as contributing to age-related dementia.
Collapse
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States; Center for Health Sciences, SRI International, Menlo Park, CA, United States
| |
Collapse
|
80
|
Lyu X, Duong MT, Xie L, de Flores R, Richardson H, Hwang G, Wisse LEM, DiCalogero M, McMillan CT, Robinson JL, Xie SX, Grossman M, Lee EB, Irwin DJ, Dickerson BC, Davatzikos C, Nasrallah IM, Yushkevich PA, Wolk DA, Das SR. Tau-Neurodegeneration mismatch reveals vulnerability and resilience to comorbidities in Alzheimer's continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.12.23285594. [PMID: 36824762 PMCID: PMC9949174 DOI: 10.1101/2023.02.12.23285594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Variability in the relationship of tau-based neurofibrillary tangles (T) and degree of neurodegeneration (N) in Alzheimer's Disease (AD) is likely attributable to the non-specific nature of N, which is also modulated by such factors as other co-pathologies, age-related changes, and developmental differences. We studied this variability by partitioning patients within the Alzheimer's continuum into data-driven groups based on their regional T-N dissociation, which reflects the residuals after the effect of tau pathology is "removed". We found six groups displaying distinct spatial T-N mismatch and thickness patterns despite similar tau burden. Their T-N patterns resembled the neurodegeneration patterns of non-AD groups partitioned on the basis of z-scores of cortical thickness alone and were similarly associated with surrogates of non-AD factors. In an additional sample of individuals with antemortem imaging and autopsy, T-N mismatch was associated with TDP-43 co-pathology. Finally, T-N mismatch training was then applied to a separate cohort to determine the ability to classify individual patients within these groups. These findings suggest that T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability to Alzheimer's disease.
Collapse
|
81
|
Cai Y, Du J, Li A, Zhu Y, Xu L, Sun K, Ma S, Guo T. Initial levels of β-amyloid and tau deposition have distinct effects on longitudinal tau accumulation in Alzheimer's disease. Alzheimers Res Ther 2023; 15:30. [PMID: 36750884 PMCID: PMC9903587 DOI: 10.1186/s13195-023-01178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND To better assist with the design of future clinical trials for Alzheimer's disease (AD) and aid in our understanding of the disease's symptomatology, it is essential to clarify what roles β-amyloid (Aβ) plaques and tau tangles play in longitudinal tau accumulation inside and outside the medial temporal lobe (MTL) as well as how age, sex, apolipoprotein E (APOE) ε4 (APOE-ε4), and Klotho-VS heterozygosity (KL-VShet) modulate these relationships. METHODS We divided the 325 Aβ PET-positive (A+) participants into two groups, A+/T- (N = 143) and A+/T+ (N = 182), based on the threshold (1.25) of the temporal meta-ROI 18F-flortaucipir (FTP) standardized uptake value ratio (SUVR). We then compared the baseline and slopes of A+/T- and A+/T+ individuals' Aβ plaques and temporal meta-ROI tau tangles with those of A-/T- cognitively unimpaired individuals (N = 162) without neurodegeneration. In addition, we looked into how baseline Aβ and tau may predict longitudinal tau increases and how age, sex, APOE-ε4, and KL-VShet affect these associations. RESULTS In entorhinal, amygdala, and parahippocampal (early tau-deposited regions of temporal meta-ROI), we found that baseline Aβ and tau deposition were positively linked to more rapid tau increases in A+/T- participants. However, in A+/T+ individuals, the longitudinal tau accumulation in fusiform, inferior temporal, and middle temporal cortices (late tau-deposited regions of temporal meta-ROI) was primarily predicted by the level of tau tangles. Furthermore, compared to older participants (age ≥ 65), younger individuals (age < 65) exhibited faster Aβ-dependent but slower tau-related tau accumulations. Additionally, compared to the KL-VShet- group, KL-VShet+ individuals showed a significantly lower rate of tau accumulation associated with baseline entorhinal tau in fusiform and inferior temporal regions. CONCLUSION These findings offer novel perspectives to the design of AD clinical trials and aid in understanding the tau accumulation inside and outside MTL in AD. In particular, decreasing Aβ plaques might be adequate for A+/T- persons but may not be sufficient for A+/T+ individuals in preventing tau propagation and subsequent downstream pathological changes associated with tau.
Collapse
Affiliation(s)
- Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Jing Du
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Yalin Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Linsen Xu
- Department of Medical Imaging, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China.
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
82
|
Gorelick PB. Blood and Cerebrospinal Fluid Biomarkers in Vascular Dementia and Alzheimer's Disease: A Brief Review. Clin Geriatr Med 2023; 39:67-76. [PMID: 36404033 DOI: 10.1016/j.cger.2022.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Maintenance of brain health is a lifelong process whereby potentially deleterious exposures such as cardiovascular risks, amyloid beta, and phosphorylated tau may adversely affect the brain decades before there are clinical manifestations. Thus, the early structural and neuropathological foundation for the development of cognitive impairment and its allied features later in life may provide precursor targets such that interventions may be applied to prevent or slow cognitively impairing processes if the underlying mechanism(s) can be addressed in time.
Collapse
Affiliation(s)
- Philip B Gorelick
- Section of Stroke and Neurocritical Care, Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 North Michigan Avenue Suite 1150, Chicago, IL 60611, USA.
| |
Collapse
|
83
|
Shimohama S, Tezuka T, Takahata K, Bun S, Tabuchi H, Seki M, Momota Y, Suzuki N, Morimoto A, Iwabuchi Y, Kubota M, Yamamoto Y, Sano Y, Shikimoto R, Funaki K, Mimura Y, Nishimoto Y, Ueda R, Jinzaki M, Nakahara J, Mimura M, Ito D. Impact of Amyloid and Tau PET on Changes in Diagnosis and Patient Management. Neurology 2023; 100:e264-e274. [PMID: 36175151 DOI: 10.1212/wnl.0000000000201389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Previous studies have evaluated the diagnostic effect of amyloid PET in selected research cohorts. However, these studies did not assess the clinical impact of the combination of amyloid and tau PETs. Our objective was to evaluate the association of the combination of 2 PETs with changes in diagnosis, treatment, and management in a memory clinic cohort. METHODS All participants underwent amyloid [18F]florbetaben PET and tau PET using [18F]PI-2620 or [18F]Florzolotau, which are potentially useful for the diagnosis of non-Alzheimer disease (AD) tauopathies. Dementia specialists determined a pre- and post-PET diagnosis that existed in both a clinical syndrome (cognitive normal [CN], mild cognitive impairment [MCI], and dementia) and suspected etiology, with a confidence level. In addition, the dementia specialists determined patient treatment in terms of ancillary investigations and management. RESULTS Among 126 registered participants, 84.9% completed the study procedures and were included in the analysis (CN [n = 40], MCI [n = 25], AD [n = 20], and non-AD dementia [n = 22]). The etiologic diagnosis changed in 25.0% in the CN, 68.0% in the MCI, and 23.8% with dementia. Overall changes in management between pre- and post-PET occurred in 5.0% of CN, 52.0% of MCI, and 38.1% of dementia. Logistic regression analysis revealed that tau PET has stronger associations with change management than amyloid PET in all participants and dementia groups. DISCUSSION The combination of amyloid and tau PETs was associated with changes in management and diagnosis of MCI and dementia, and the second-generation tau PET has a strong impact on the changes in diagnosis and management in memory clinics. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that the combination of amyloid and tau PETs was associated with changes in management and diagnosis of MCI and dementia.
Collapse
Affiliation(s)
- Sho Shimohama
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Toshiki Tezuka
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Keisuke Takahata
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Shogyoku Bun
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Hajime Tabuchi
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Morinobu Seki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yuki Momota
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Natsumi Suzuki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Ayaka Morimoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yu Iwabuchi
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Masahito Kubota
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yasuharu Yamamoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yasunori Sano
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Ryo Shikimoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Kei Funaki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yu Mimura
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yoshinori Nishimoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Ryo Ueda
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Masahiro Jinzaki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Jin Nakahara
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Masaru Mimura
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Daisuke Ito
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan.
| |
Collapse
|
84
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted Excitation-Inhibition Balance in Cognitively Normal Individuals at Risk of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1449-1467. [PMID: 37718795 PMCID: PMC11260287 DOI: 10.3233/jad-230035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. OBJECTIVE Examine how AD risk factors (age, APOEɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. METHODS Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). RESULTS In absence of AD risk factors (APOEɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β= -0.007). Regression modeling including APOEɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β= 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β= 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the Trail Making Test (p < 0.05). CONCLUSIONS Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOEɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOEɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott Mackin
- Department of Psychiatry, University of California – San Francisco, San Francisco, CA, USA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
85
|
Nallapu BT, Petersen KK, Lipton RB, Grober E, Sperling RA, Ezzati A. Association of Alcohol Consumption with Cognition in Older Population: The A4 Study. J Alzheimers Dis 2023; 93:1381-1393. [PMID: 37182868 PMCID: PMC10392870 DOI: 10.3233/jad-221079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Alcohol use disorders have been categorized as a 'strongly modifiable' risk factor for dementia. OBJECTIVE To investigate the cross-sectional association between alcohol consumption and cognition in older adults and if it is different across sexes or depends on amyloid-β (Aβ) accumulation in the brain. METHODS Cognitively unimpaired older adults (N = 4387) with objective and subjective cognitive assessments and amyloid positron emission tomography (PET) imaging were classified into four categories based on their average daily alcohol use. Multivariable linear regression was then used to test the main effects and interactions with sex and Aβ levels. RESULTS Individuals who reported no alcohol consumption had lower scores on the Preclinical Alzheimer Cognitive Composite (PACC) compared to those consuming one or two drinks/day. In sex-stratified analysis, the association between alcohol consumption and cognition was more prominent in females. Female participants who consumed two drinks/day had better performance on PACC and Cognitive Function Index (CFI) than those who reported no alcohol consumption. In an Aβ-stratified sample, the association between alcohol consumption and cognition was present only in the Aβ- subgroup. The interaction between Aβ status and alcohol consumption on cognition was not significant. CONCLUSION Low or moderate consumption of alcohol was associated with better objective cognitive performance and better subjective report of daily functioning in cognitively unimpaired individuals. The association was present only in Aβ- individuals, suggesting that the pathophysiologic mechanism underlying the effect of alcohol on cognition is independent of Aβ pathology. Further investigation is required with larger samples consuming three or more drinks/day.
Collapse
Affiliation(s)
- Bhargav T. Nallapu
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Kellen K. Petersen
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Richard B. Lipton
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Ellen Grober
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Reisa A. Sperling
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ali Ezzati
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
86
|
Cullen NC, Janelidze S, Stomrud E, Bateman RJ, Palmqvist S, Hansson O, Mattsson-Carlgren N. Plasma amyloid-β42/40 and apolipoprotein E for amyloid PET pre-screening in secondary prevention trials of Alzheimer's disease. Brain Commun 2023; 5:fcad015. [PMID: 36926368 PMCID: PMC10012324 DOI: 10.1093/braincomms/fcad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/15/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
The extent to which newly developed blood-based biomarkers could reduce screening costs in secondary prevention trials of Alzheimer's disease is mostly unexplored. We collected plasma amyloid-β42/40, apolipoprotein E ε4 status and amyloid PET at baseline in 181 cognitively unimpaired participants [the age of 72.9 (5.3) years; 61.9% female; education of 11.9 (3.4) years] from the Swedish BioFINDER-1 study. We tested whether a model predicting amyloid PET status from plasma amyloid-β42/40, apolipoprotein E status and age (combined) reduced cost of recruiting amyloid PET + cognitively unimpaired participants into a theoretical trial. We found that the percentage of cognitively unimpaired participants with an amyloid PET + scan rose from 29% in an unscreened population to 64% [(49, 79); P < 0.0001] when using the biomarker model to screen for high risk for amyloid PET + status. In simulations, plasma screening also resulted in a 54% reduction of the total number of amyloid PET scans required and reduced total recruitment costs by 43% [(31, 56), P < 0.001] compared to no pre-screening when assuming a 16× PET-to-plasma cost ratio. Total savings remained significant when the PET-to-plasma cost ratio was assumed to be 8× or 4×. This suggests that a simple plasma biomarker model could lower recruitment costs in Alzheimer's trials requiring amyloid PET positivity for inclusion.
Collapse
Affiliation(s)
- Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Lund, Sweden.,Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Lund, Sweden.,Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Lund, Sweden.,Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Lund, Sweden.,Department of Neurology, Skåne University Hospital, 221 85 Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
87
|
Abstract
Tauopathies are a clinically and neuropathologically heterogeneous group of neurodegenerative disorders, characterized by abnormal tau aggregates. Tau, a microtubule-associated protein, is important for cytoskeletal structure and intracellular transport. Aberrant posttranslational modification of tau results in abnormal tau aggregates causing neurodegeneration. Tauopathies may be primary, or secondary, where a second protein, such as Aß, is necessary for pathology, for example, in Alzheimer's disease, the most common tauopathy. Primary tauopathies are classified based on tau isoform and cell types where pathology predominates. Primary tauopathies include Pick disease, corticobasal degeneration, progressive supranuclear palsy, and argyrophilic grain disease. Environmental tauopathies include chronic traumatic encephalopathy and geographically isolated tauopathies such as the Guam-Parkinsonian-dementia complex. The clinical presentation of tauopathies varies based on the brain areas affected, generally presenting with a combination of cognitive and motor symptoms either earlier or later in the disease course. As symptoms overlap and tauopathies such as Alzheimer's disease and argyrophilic grain disease often coexist, accurate clinical diagnosis is challenging when biomarkers are unavailable. Available treatments target cognitive, motor, and behavioral symptoms. Disease-modifying therapies have been the focus of drug development, particularly agents targeting Aß and tau pathology in Alzheimer's disease, although most of these trials have failed.
Collapse
Affiliation(s)
- Gayatri Devi
- Department of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
88
|
Utz J, Olm P, Jablonowski J, Siegmann EM, Spitzer P, Lewczuk P, Kornhuber J, Maler JM, Oberstein TJ. Reconceptualization of the Erlangen Score for the Assessment of Dementia Risk: The ERlangen Score. J Alzheimers Dis 2023; 96:265-275. [PMID: 37742651 PMCID: PMC10657695 DOI: 10.3233/jad-230524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND The established Erlangen Score (ES) for the interpretation of cerebrospinal fluid (CSF) biomarkers in the diagnostics of Alzheimer's disease (AD) uses markers of amyloidopathy and tauopathy, equally weighted to form an easy-interpretable ordinal scale. However, these biomarkers are not equally predictive for AD. OBJECTIVE The higher weighting of the Aβ42/Aβ40 ratio, as a reconceptualized ERlangen Score (ERS), was tested for advantages in diagnostic performance. METHODS Non-demented subjects (N = 154) with a mean follow up of 5 years were assigned to a group ranging from 0 to 4 in ES or ERS. Psychometric trajectories and dementia risk were assessed. RESULTS The distribution of subjects between ES and ERS among the groups differed considerably, as grouping allocated 32 subjects to ES group 2, but only 2 to ERS group 2. The discriminative accuracy between the ES (AUC 73.2%, 95% CI [64.2, 82.2]) and ERS (AUC 72.0%, 95% CI [63.1, 81.0]) for dementia risk showed no significant difference. Without consideration of the Aβ42/Aβ40 ratio in ES grouping, the optimal cut-off of the ES shifted to ≥2. CONCLUSIONS The ERS showed advantages over the ES in test interpretation with comparable overall test performance, as fewer cases were allocated to the intermediate risk group. The established cut-off of ≥2 can be maintained for the ERS, whereas it must be adjusted for the ES when determining the Aβ42/Aβ40 ratio.
Collapse
Affiliation(s)
- Janine Utz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Pauline Olm
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Johannes Jablonowski
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Eva-Maria Siegmann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, and Department of Biochemical Diagnostics, University Hospital of Bialystok, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| |
Collapse
|
89
|
Pink A, Krell‐Roesch J, Syrjanen JA, Christenson LR, Lowe VJ, Vemuri P, Fields JA, Stokin GB, Kremers WK, Scharf EL, Jack CR, Knopman DS, Petersen RC, Vassilaki M, Geda YE. Interactions Between Neuropsychiatric Symptoms and Alzheimer's Disease Neuroimaging Biomarkers in Predicting Longitudinal Cognitive Decline. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2023; 5:4-15. [PMID: 36909142 PMCID: PMC9997077 DOI: 10.1176/appi.prcp.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/22/2023] Open
Abstract
Objective To examine interactions between Neuropsychiatric symptoms (NPS) with Pittsburgh Compound B (PiB) and fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting cognitive trajectories. Methods We conducted a longitudinal study in the setting of the population-based Mayo Clinic Study of Aging in Olmsted County, MN, involving 1581 cognitively unimpaired (CU) persons aged ≥50 years (median age 71.83 years, 54.0% males, 27.5% APOE ɛ4 carriers). NPS at baseline were assessed using the Neuropsychiatric Inventory Questionnaire (NPI-Q). Brain glucose hypometabolism was defined as a SUVR ≤ 1.47 (measured by FDG-PET) in regions typically affected in Alzheimer's disease. Abnormal cortical amyloid deposition was measured using PiB-PET (SUVR ≥ 1.48). Neuropsychological testing was done approximately every 15 months, and we calculated global and domain-specific (memory, language, attention, and visuospatial skills) cognitive z-scores. We ran linear mixed-effect models to examine the associations and interactions between NPS at baseline and z-scored PiB- and FDG-PET SUVRs in predicting cognitive z-scores adjusted for age, sex, education, and previous cognitive testing. Results Individuals at the average PiB and without NPS at baseline declined over time on cognitive z-scores. Those with increased PiB at baseline declined faster (two-way interaction), and those with increased PiB and NPS declined even faster (three-way interaction). We observed interactions between time, increased PiB and anxiety or irritability indicating accelerated decline on global z-scores, and between time, increased PiB and several NPS (e.g., agitation) showing faster domain-specific decline, especially on the attention domain. Conclusions NPS and increased brain amyloid deposition synergistically interact in accelerating global and domain-specific cognitive decline among CU persons at baseline.
Collapse
Affiliation(s)
- Anna Pink
- First Department of MedicineParacelsus Medical UniversitySalzburgAustria
| | - Janina Krell‐Roesch
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
- Institute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Jeremy A. Syrjanen
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
| | - Luke R. Christenson
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
| | - Val J. Lowe
- Department of RadiologyMayo Clinic RochesterRochesterMinnesotaUSA
| | | | - Julie A. Fields
- Department of Psychiatry and PsychologyMayo Clinic RochesterRochesterMinnesotaUSA
| | - Gorazd B. Stokin
- International Clinical Research Center/St. Anne HospitalBrnoCzech Republic
| | - Walter K. Kremers
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
| | - Eugene L. Scharf
- Department of NeurologyMayo Clinic RochesterRochesterMinnesotaUSA
| | - Clifford R. Jack
- Department of RadiologyMayo Clinic RochesterRochesterMinnesotaUSA
| | - David S. Knopman
- Department of NeurologyMayo Clinic RochesterRochesterMinnesotaUSA
| | - Ronald C. Petersen
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
- Department of NeurologyMayo Clinic RochesterRochesterMinnesotaUSA
| | - Maria Vassilaki
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
| | - Yonas E. Geda
- Department of NeurologyFranke Global Neuroscience Education CenterBarrow Neurological InstitutePhoenixArizonaUSA
| |
Collapse
|
90
|
Fletcher E. Multifactorial Modeling of Cognitive Trajectories Using an Advanced Regression Technique: Improving Our Understanding of Biomarkers and Modifiable Variables that Support Cognition. J Alzheimers Dis 2023; 93:815-819. [PMID: 37212065 DOI: 10.3233/jad-230304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Current research trends emphasize complex models of cognitive outcomes, with multiple, interacting predictors, including factors amenable to interventions toward sustaining healthy cognitive aging. Such models often require advanced analysis techniques. The article by Stark et al., 'Partial least squares regression analysis of Alzheimer's disease biomarkers, modifiable health variables, and cognitive change in older adults with mild cognitive impairment', uses partial least squares regression to examine the associations to memory and executive change of 29 biomarker and demographic variables. This commentary discusses the significance of their results and methods within the context of current research foci.
Collapse
Affiliation(s)
- Evan Fletcher
- Department of Neurology, Imaging of Dementia and Aging (IDeA) Laboratory, University of California, Davis, Davis, CA, USA
| |
Collapse
|
91
|
Pascoal TA, Leuzy A, Therriault J, Chamoun M, Lussier F, Tissot C, Strandberg O, Palmqvist S, Stomrud E, Ferreira PCL, Ferrari‐Souza JP, Smith R, Benedet AL, Gauthier S, Hansson O, Rosa‐Neto P. Discriminative accuracy of the A/T/N scheme to identify cognitive impairment due to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12390. [PMID: 36733847 PMCID: PMC9886860 DOI: 10.1002/dad2.12390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
Introduction The optimal combination of amyloid-β/tau/neurodegeneration (A/T/N) biomarker profiles for the diagnosis of Alzheimer's disease (AD) dementia is unclear. Methods We examined the discriminative accuracy of A/T/N combinations assessed with neuroimaging biomarkers for the differentiation of AD from cognitively unimpaired (CU) elderly and non-AD neurodegenerative diseases in the TRIAD, BioFINDER-1 and BioFINDER-2 cohorts (total n = 832) using area under the receiver operating characteristic curves (AUC). Results For the diagnosis of AD dementia (vs. CU elderly), T biomarkers performed as well as the complete A/T/N system (AUC range: 0.90-0.99). A and T biomarkers in isolation performed as well as the complete A/T/N system in differentiating AD dementia from non-AD neurodegenerative diseases (AUC range; A biomarker: 0.84-1; T biomarker: 0.83-1). Discussion In diagnostic settings, the use of A or T neuroimaging biomarkers alone can reduce patient burden and medical costs compared with using their combination, without significantly compromising accuracy.
Collapse
Affiliation(s)
- Tharick A. Pascoal
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Joseph Therriault
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Mira Chamoun
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Firoza Lussier
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Cecile Tissot
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Olof Strandberg
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Erik Stomrud
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Pamela C. L. Ferreira
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - João Pedro Ferrari‐Souza
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Ruben Smith
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Andrea Lessa Benedet
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Serge Gauthier
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
92
|
Beba A, Peterson SM, Brennan PC, O’Byrne J, Machulda MM, Jannetto PI, Vemuri P, Lewallen DG, Kremers HM, Vassilaki M. Correlation of Blood Metal Concentrations with Cognitive Scores and Neuroimaging Findings in Patients with Total Joint Arthroplasty. J Alzheimers Dis 2023; 94:1335-1342. [PMID: 37393495 PMCID: PMC10481381 DOI: 10.3233/jad-221182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Total joint arthroplasty (TJA) implants are composed of metals, ceramics, and/or polyethylene. Studies suggest that the debris released from metal implants may possess neurotoxic properties with reports of neuropsychiatric symptoms and memory deficits, which could be relevant to Alzheimer's disease and related dementias. This exploratory study examined the cross-sectional correlation of blood metal concentrations with cognitive performance and neuroimaging findings in a convenience sample of 113 TJA patients with history of elevated blood metal concentrations of either titanium, cobalt and/or chromium. Associations with neuroimaging measures were observed but not with cognitive scores. Larger studies with longitudinal follow-up are warranted.
Collapse
Affiliation(s)
- Alican Beba
- George Washington University, Columbian College of Arts and Sciences, Washington, DC, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Peter C. Brennan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jamie O’Byrne
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Paul I. Jannetto
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hilal Maradit Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
93
|
Choi J, Lee S, Motter JN, Kim H, Andrews H, Doraiswamy PM, Devanand DP, Goldberg TE. Models of depressive pseudoamnestic disorder. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12335. [PMID: 36523848 PMCID: PMC9746884 DOI: 10.1002/trc2.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022]
Abstract
Objective Little effort has been made in the past to validate depressive pseudodementia based on hypothesis-driven approaches. We extended this concept to individuals with amnestic Mild Cognitive Impairment and Major Depression, that is, pseudodepressive amnestic disorder. We tested two hypotheses consistent with the presentations and mechanisms associated with this potential syndrome: improvements in cognition would be significantly correlated with improvements in depression after treatment (Hypothesis 1), and if not confirmed, the presence of such an association could be identified once moderator variables were taken into account (Hypothesis 2). Methods Within a clinical trial, 61 individuals received open label serotonin reuptake inhibitor (citalopram or venlafaxine) treatment over a 16-week period. Selective Reminding Test and Hamilton Depression scale were conducted serially to measure change in memory and depression, respectively. Magnetic resonance imaging, other cognitive measures (Alzheimer's Disease Assessment Scale-Cognitive and speed of processing tests), and additional depression measure (Beck Depression Inventory [BDI]) were also administered. Results No significant associations between improvement in depression and improvement in cognition were observed. Sensitivity analyses with other cognitive measures, the BDI, and exclusion of possible "placebo" responders were negative as well. There were no significant moderation effects for baseline Hamilton Rating Scale for Depression as a measure of symptom severity or age. APOE ε4 genotype and white matter hyperintensity burden yielded counter-intuitive, albeit marginally significant results. Conclusions Negative findings cast doubt on the frequency of depressive pseudoamnestic disorder in older populations with documented depression and memory impairments.
Collapse
Affiliation(s)
- Jongwoo Choi
- Division of Mental Health Data Science New York State Psychiatric Institute New York New York USA
| | - Seonjoo Lee
- Division of Mental Health Data Science New York State Psychiatric Institute New York New York USA
- Department of Biostatistics Mailman School of Public Health Columbia University New York New York USA
- Department of Psychiatry Columbia University Medical Center New York New York USA
| | - Jeffrey N Motter
- Division of Geriatric Psychiatry New York State Psychiatric Institute New York New York USA
| | - Hyun Kim
- Division of Geriatric Psychiatry New York State Psychiatric Institute New York New York USA
| | - Howard Andrews
- Department of Biostatistics Mailman School of Public Health Columbia University New York New York USA
- Department of Psychiatry Columbia University Medical Center New York New York USA
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences Duke University School of Medicine Durham North Carolina USA
| | - D P Devanand
- Division of Geriatric Psychiatry New York State Psychiatric Institute New York New York USA
| | - Terry E Goldberg
- Department of Psychiatry Columbia University Medical Center New York New York USA
- Division of Geriatric Psychiatry New York State Psychiatric Institute New York New York USA
- Department of Anesthesiology Columbia University Medical Center New York New York USA
| |
Collapse
|
94
|
Kwan ATH, Arfaie S, Therriault J, Azizi Z, Lussier FZ, Tissot C, Chamoun M, Bezgin G, Servaes S, Stevenon J, Rahmouni N, Pallen V, Gauthier S, Rosa-Neto P. Medial temporal tau predicts memory decline in cognitively unimpaired elderly. Brain Commun 2022; 5:fcac325. [PMID: 36627889 PMCID: PMC9814120 DOI: 10.1093/braincomms/fcac325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease can be detected in living people using in vivo biomarkers of amyloid-β and tau, even in the absence of cognitive impairment during the preclinical phase. [18F]-MK-6420 is a high-affinity PET tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early Alzheimer's disease symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau-PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the translational biomarkers in ageing and dementia study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau-PET with [18F]-MK-6420 and amyloid-β PET with [18F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke or other neurological disorders. There were 111 eligible participants selected based on the availability of amyloid-β PET, tau-PET, MRI and APOEɛ4 genotyping. Among these participants, the mean standard deviation age was 70.1 (8.6) years; 20 (18%) were tau-PET-positive and 71 of 111 (63.9%) were women. A significant association between the baseline Braak Stages I-II [18F]-MK-6240 standardized uptake value ratio positivity and change in composite memory score were observed at the 12-month follow-up, after correcting for age, sex and years of education [logical memory and Rey Auditory Verbal Learning Test, standardized beta = -0.52 (-0.82-0.21), P < 0.001, for dichotomized tau-PET and -1.22 (-1.84-(-0.61)], P < 0.0001, for continuous tau-PET]. Moderate cognitive decline was observed for A + T + over the follow-up period, whereas no significant change was observed for A-T+, A + T- and A-T-, although it should be noted that the A-T + group was small. Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [18F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [18F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of Alzheimer's disease defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [18F]-MK-6420 PET provides us with hope that living patients with Alzheimer's disease may be diagnosed during the preclinical phase before it is too late.
Collapse
Affiliation(s)
- Angela T H Kwan
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
| | - Saman Arfaie
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Zahra Azizi
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jenna Stevenon
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
95
|
Lan G, Cai Y, Li A, Liu Z, Ma S, Guo T. Association of Presynaptic Loss with Alzheimer's Disease and Cognitive Decline. Ann Neurol 2022; 92:1001-1015. [PMID: 36056679 DOI: 10.1002/ana.26492] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Increased presynaptic dysfunction measured by cerebrospinal fluid (CSF) growth-associated protein-43 (GAP43) may be observed in Alzheimer's disease (AD), but how CSF GAP43 increases relate to AD-core pathologies, neurodegeneration, and cognitive decline in AD requires further investigation. METHODS We analyzed 731 older adults with baseline β-amyloid (Aβ) positron emission tomography (PET), CSF GAP43, CSF phosphorylated tau181 (p-Tau181 ), and 18 F-fluorodeoxyglucose PET, and longitudinal residual hippocampal volume and cognitive assessments. Among them, 377 individuals had longitudinal 18 F-fluorodeoxyglucose PET, and 326 individuals had simultaneous longitudinal CSF GAP43, Aβ PET, and CSF p-Tau181 data. We compared baseline and slopes of CSF GAP43 among different stages of AD, as well as their associations with Aβ PET, CSF p-Tau181 , residual hippocampal volume, 18 F-fluorodeoxyglucose PET, and cognition cross-sectionally and longitudinally. RESULTS Regardless of Aβ positivity and clinical diagnosis, CSF p-Tau181 -positive individuals showed higher CSF GAP43 concentrations (p < 0.001) and faster rates of CSF GAP43 increases (p < 0.001) compared with the CSF p-Tau181 -negative individuals. Moreover, higher CSF GAP43 concentrations and faster rates of CSF GAP43 increases were strongly related to CSF p-Tau181 independent of Aβ PET. They were related to more rapid hippocampal atrophy, hypometabolism, and cognitive decline (p < 0.001), and predicted the progression from MCI to dementia (area under the curve for baseline 0.704; area under the curve for slope 0.717) over a median 4 years of follow up. INTERPRETATION Tau aggregations rather than Aβ plaques primarily drive presynaptic dysfunction measured by CSF GAP43, which may lead to sequential neurodegeneration and cognitive impairment in AD or neurodegenerative diseases. ANN NEUROL 2022;92:1001-1015.
Collapse
Affiliation(s)
- Guoyu Lan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.,Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.,Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhen Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
| | | |
Collapse
|
96
|
Li L, Shi C, Guo T, Jagust WJ. Sequential Pathway Inference for Multimodal Neuroimaging Analysis. Stat (Int Stat Inst) 2022; 11:e433. [PMID: 35450402 PMCID: PMC9017676 DOI: 10.1002/sta4.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/12/2021] [Indexed: 12/03/2023]
Abstract
Motivated by a multimodal neuroimaging study for Alzheimer's disease, in this article, we study the inference problem, i.e., hypothesis testing, of sequential mediation analysis. The existing sequential mediation solutions mostly focus on sparse estimation, while hypothesis testing is an utterly different and more challenging problem. Meanwhile, the few mediation testing solutions often ignore the potential dependency among the mediators, or cannot be applied to the sequential problem directly. We propose a statistical inference procedure to test mediation pathways when there are sequentially ordered multiple data modalities and each modality involves multiple mediators. We allow the mediators to be conditionally dependent, and the number of mediators within each modality to diverge with the sample size. We produce the explicit significance quantification and establish the theoretical guarantees in terms of asymptotic size, power, and false discovery control. We demonstrate the efficacy of the method through both simulations and an application to a multimodal neuroimaging pathway analysis of Alzheimer's disease.
Collapse
Affiliation(s)
- Lexin Li
- Department of Biostatistics and Epidemiology, University of California, Berkeley, CA, USA
| | - Chengchun Shi
- Department of Statistics, London School of Economics and Political Science, London, UK
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
97
|
Pink A, Krell‐Roesch J, Syrjanen JA, Vassilaki M, Lowe VJ, Vemuri P, Stokin GB, Christianson TJ, Kremers WK, Jack CR, Knopman DS, Petersen RC, Geda YE. A longitudinal investigation of Aβ, anxiety, depression, and mild cognitive impairment. Alzheimers Dement 2022; 18:1824-1831. [PMID: 34877794 PMCID: PMC9174347 DOI: 10.1002/alz.12504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/11/2021] [Accepted: 06/09/2021] [Indexed: 01/28/2023]
Abstract
INTRODUCTION We investigated the longitudinal relationship between cortical amyloid deposition, anxiety, and depression and the risk of incident mild cognitive impairment (MCI). METHODS We followed 1440 community-dwelling, cognitively unimpaired individuals aged ≥ 50 years for a median of 5.5 years. Clinical anxiety and depression were assessed using Beck Anxiety and Depression Inventories (BAI, BDI-II). Cortical amyloid beta (Aβ) was measured by Pittsburgh compound B positron emission tomography (PiB-PET) and elevated deposition (PiB+) was defined as standardized uptake value ratio ≥ 1.48. We calculated Cox proportional hazards models with age as the time scale, adjusted for sex, education, and medical comorbidity. RESULTS Cortical Aβ deposition (PiB+) independent of anxiety (BAI ≥ 10) or depression (BDI-II ≥ 13) increased the risk of MCI. There was a significant additive interaction between PiB+ and anxiety (joint effect hazard ratio 6.77; 95% confidence interval 3.58-12.79; P = .031) that is, being PiB+ and having anxiety further amplified the risk of MCI. DISCUSSION Anxiety modified the association between PiB+ and incident MCI.
Collapse
Affiliation(s)
- Anna Pink
- Department of GeriatricsParacelsus Medical UniversitySalzburgAustria
| | - Janina Krell‐Roesch
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA,Institute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Jeremy A. Syrjanen
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
| | - Maria Vassilaki
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
| | - Val J. Lowe
- Department of RadiologyMayo Clinic, RochesterMinnesotaUSA
| | | | - Gorazd B. Stokin
- International Clinical Research Center/St. Anne HospitalBrnoCzech Republic
| | | | - Walter K. Kremers
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA
| | | | | | - Ronald C. Petersen
- Department of Quantitative Health SciencesMayo Clinic RochesterRochesterMinnesotaUSA,Department of NeurologyMayo Clinic, RochesterMinnesotaUSA
| | - Yonas E. Geda
- Department of NeurologyBarrow Neurological InstitutePhoenixArizonaUSA
| |
Collapse
|
98
|
Parra MA, Calia C, Pattan V, Della Sala S. Memory markers in the continuum of the Alzheimer's clinical syndrome. Alzheimers Res Ther 2022; 14:142. [PMID: 36180965 PMCID: PMC9526252 DOI: 10.1186/s13195-022-01082-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The individual and complementary value of the Visual Short-Term Memory Binding Test (VSTMBT) and the Free and Cued Selective Reminding Test (FCSRT) as markers to trace the AD continuum was investigated. It was hypothesised that the VSTMBT would be an early indicator while the FCSRT would inform on imminent progression. METHODS Healthy older adults (n=70) and patients with mild cognitive impairment (MCI) (n=80) were recruited and followed up between 2012 and 2017. Participants with at least two assessment points entered the study. Using baseline and follow-up assessments four groups were defined: Older adults who were healthy (HOA), with very mild cognitive but not functional impairment (eMCI), and with MCI who did and did not convert to dementia (MCI converters and non-converters). RESULTS Only the VSTMBT predicted group membership in the very early stages (HOA vs eMCI). As the disease progressed, the FCSRT became a strong predictor excluding the VSTMB from the models. Their complementary value was high during the mid-prodromal stages and decreased in stages closer to dementia. DISCUSSION The study supports the notion that neuropsychological assessment for AD needs to abandon the notion of one-size-fits-all. A memory toolkit for AD needs to consider tools that are early indicators and tools that suggest imminent progression. The VSTMBT and the FSCRT are such tools.
Collapse
Affiliation(s)
- Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, G1 1QE, UK.
| | - Clara Calia
- School of Health in Social Science, University of Edinburgh, Edinburgh, UK
| | - Vivek Pattan
- NHS Forth Valley, Stirling Community Hospital, Stirling, UK
| | - Sergio Della Sala
- Human Cognitive Neuroscience, Psychology Department, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
99
|
Kim SE, Kim HJ, Jang H, Weiner MW, DeCarli C, Na DL, Seo SW. Interaction between Alzheimer's Disease and Cerebral Small Vessel Disease: A Review Focused on Neuroimaging Markers. Int J Mol Sci 2022; 23:10490. [PMID: 36142419 PMCID: PMC9499680 DOI: 10.3390/ijms231810490] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) and tau, and subcortical vascular cognitive impairment (SVCI) is characterized by cerebral small vessel disease (CSVD). They are the most common causes of cognitive impairment in the elderly population. Concurrent CSVD burden is more commonly observed in AD-type dementia than in other neurodegenerative diseases. Recent developments in Aβ and tau positron emission tomography (PET) have enabled the investigation of the relationship between AD biomarkers and CSVD in vivo. In this review, we focus on the interaction between AD and CSVD markers and the clinical effects of these two markers based on molecular imaging studies. First, we cover the frequency of AD imaging markers, including Aβ and tau, in patients with SVCI. Second, we discuss the relationship between AD and CSVD markers and the potential distinct pathobiology of AD markers in SVCI compared to AD-type dementia. Next, we discuss the clinical effects of AD and CSVD markers in SVCI, and hemorrhagic markers in cerebral amyloid angiopathy. Finally, this review provides both the current challenges and future perspectives for SVCI.
Collapse
Affiliation(s)
- Si Eun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan 48108, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
| | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco, CA 94121, USA
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
100
|
Valappil DK, Mini NJ, Dilna A, Nath S. Membrane interaction to intercellular spread of pathology in Alzheimer’s disease. Front Neurosci 2022; 16:936897. [PMID: 36161178 PMCID: PMC9500529 DOI: 10.3389/fnins.2022.936897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer’s disease (AD) is the most prevalent among them. Extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aβ aggregates is considered as a trigger point. Interaction of Aβ peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aβ binding to the lipid membranes initiates formation of oligomers of Aβ species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a “prion-like” fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aβ and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aβ aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Nath
- *Correspondence: Sangeeta Nath, ; orcid.org/0000-0003-0050-0606
| |
Collapse
|