51
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
52
|
A Longitudinal 1H NMR-Based Metabolic Profile Analysis of Urine from Hospitalized Premature Newborns Receiving Enteral and Parenteral Nutrition. Metabolites 2022; 12:metabo12030255. [PMID: 35323698 PMCID: PMC8952338 DOI: 10.3390/metabo12030255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Preterm newborns are extremely vulnerable to morbidities, complications, and death. Preterm birth is a global public health problem due to its socioeconomic burden. Nurturing preterm newborns is a critical medical issue because they have limited nutrient stores and it is difficult to establish enteral feeding, which leads to inadequate growth frequently associated with poor neurodevelopmental outcomes. Parenteral nutrition (PN) provides nutrients to preterm newborns, but its biochemical effects are not completely known. To study the effect of PN treatment on preterm newborns, an untargeted metabolomic 1H nuclear magnetic resonance (NMR) assay was performed on 107 urine samples from 34 hospitalized patients. Multivariate data (Principal Component Analysis, PCA, Orthogonal partial least squares discriminant analysis OPLS-DA, parallel factor analysis PARAFAC-2) and univariate analyses were used to identify the association of specific spectral data with different nutritional types (NTs) and gestational ages. Our results revealed changes in the metabolic profile related to the NT, with the tricarboxylic acid cycle and galactose metabolic pathways being the most impacted pathways. Low citrate and succinate levels, despite higher glucose relative urinary concentrations, seem to constitute the metabolic profile found in the studied critically ill preterm newborns who received PN, indicating an energetic dysfunction that must be taken into account for better nutritional management.
Collapse
|
53
|
Reiss JD, Peterson LS, Nesamoney SN, Chang AL, Pasca AM, Marić I, Shaw GM, Gaudilliere B, Wong RJ, Sylvester KG, Bonifacio SL, Aghaeepour N, Gibbs RS, Stevenson DK. Perinatal infection, inflammation, preterm birth, and brain injury: A review with proposals for future investigations. Exp Neurol 2022; 351:113988. [DOI: 10.1016/j.expneurol.2022.113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
54
|
Verdonk F, Einhaus J, Tsai AS, Hedou J, Choisy B, Gaudilliere D, Kin C, Aghaeepour N, Angst MS, Gaudilliere B. Measuring the human immune response to surgery: multiomics for the prediction of postoperative outcomes. Curr Opin Crit Care 2021; 27:717-725. [PMID: 34545029 PMCID: PMC8585713 DOI: 10.1097/mcc.0000000000000883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Postoperative complications including infections, cognitive impairment, and protracted recovery occur in one-third of the 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on our healthcare system. However, the accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain as major clinical challenges. RECENT FINDINGS Although multifactorial in origin, the dysregulation of immunological mechanisms that occur in response to surgical trauma is a key determinant of postoperative complications. Prior research, primarily focusing on inflammatory plasma markers, has provided important clues regarding their pathogenesis. However, the recent advent of high-content, single-cell transcriptomic, and proteomic technologies has considerably improved our ability to characterize the immune response to surgery, thereby providing new means to understand the immunological basis of postoperative complications and to identify prognostic biological signatures. SUMMARY The comprehensive and single-cell characterization of the human immune response to surgery has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers, ultimately providing patients and surgeons with actionable information to improve surgical outcomes. Although recent studies have generated a wealth of knowledge, laying the foundation for a single-cell atlas of the human immune response to surgery, larger-scale multiomic studies are required to derive robust, scalable, and sufficiently powerful models to accurately predict the risk of postoperative complications in individual patients.
Collapse
Affiliation(s)
- Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Jakob Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Julien Hedou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Benjamin Choisy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | | | - Cindy Kin
- Department of Surgery, Stanford University School of Medicine
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
- Department of Biomedical Data Science, Stanford University
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| |
Collapse
|
55
|
Khanam R, Fleischer TC, Boghossian NS, Nisar I, Dhingra U, Rahman S, Fox AC, Ilyas M, Dutta A, Naher N, Polpitiya AD, Mehmood U, Deb S, Choudhury AA, Badsha MB, Muhammad K, Ali SM, Ahmed S, Hickok DE, Iqbal N, Juma MH, Quaiyum MA, Boniface JJ, Yoshida S, Manu A, Bahl R, Jehan F, Sazawal S, Burchard J, Baqui AH. Performance of a validated spontaneous preterm delivery predictor in South Asian and Sub-Saharan African women: a nested case control study. J Matern Fetal Neonatal Med 2021; 35:8878-8886. [PMID: 34847802 DOI: 10.1080/14767058.2021.2005573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To address the disproportionate burden of preterm birth (PTB) in low- and middle-income countries, this study aimed to (1) verify the performance of the United States-validated spontaneous PTB (sPTB) predictor, comprised of the IBP4/SHBG protein ratio, in subjects from Bangladesh, Pakistan and Tanzania enrolled in the Alliance for Maternal and Newborn Health Improvement (AMANHI) biorepository study, and (2) discover biomarkers that improve performance of IBP4/SHBG in the AMANHI cohort. STUDY DESIGN The performance of the IBP4/SHBG biomarker was first evaluated in a nested case control validation study, then utilized in a follow-on discovery study performed on the same samples. Levels of serum proteins were measured by targeted mass spectrometry. Differences between the AMANHI and U.S. cohorts were adjusted using body mass index (BMI) and gestational age (GA) at blood draw as covariates. Prediction of sPTB < 37 weeks and < 34 weeks was assessed by area under the receiver operator curve (AUC). In the discovery phase, an artificial intelligence method selected additional protein biomarkers complementary to IBP4/SHBG in the AMANHI cohort. RESULTS The IBP4/SHBG biomarker significantly predicted sPTB < 37 weeks (n = 88 vs. 171 terms ≥ 37 weeks) after adjusting for BMI and GA at blood draw (AUC= 0.64, 95% CI: 0.57-0.71, p < .001). Performance was similar for sPTB < 34 weeks (n = 17 vs. 184 ≥ 34 weeks): AUC = 0.66, 95% CI: 0.51-0.82, p = .012. The discovery phase of the study showed that the addition of endoglin, prolactin, and tetranectin to the above model resulted in the prediction of sPTB < 37 with an AUC= 0.72 (95% CI: 0.66-0.79, p-value < .001) and prediction of sPTB < 34 with an AUC of 0.78 (95% CI: 0.67-0.90, p < .001). CONCLUSION A protein biomarker pair developed in the U.S. may have broader application in diverse non-U.S. populations.
Collapse
Affiliation(s)
- Rasheda Khanam
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States
| | | | - Nansi S Boghossian
- Department of Epidemiology and Biostatistics, University of South Carolina, Arnold School of Public Health, Columbia, United States
| | - Imran Nisar
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Usha Dhingra
- Global Division, Center for Public Health Kinetics, New Delhi, India
| | | | - Angela C Fox
- Sera Prognostics, Inc., Salt Lake City, United States
| | - Muhammad Ilyas
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Arup Dutta
- Global Division, Center for Public Health Kinetics, New Delhi, India
| | - Nurun Naher
- Projahnmo Research Foundation, Dhaka, Bangladesh
| | | | - Usma Mehmood
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Saikat Deb
- Global Division, Center for Public Health Kinetics, New Delhi, India.,Public Health Laboratory-IDC, Pemba, Tanzania
| | | | | | - Karim Muhammad
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Md Abdul Quaiyum
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | | | - Alexandar Manu
- World Health Organization (MCA/MRD), Geneva, Switzerland
| | - Rajiv Bahl
- World Health Organization (MCA/MRD), Geneva, Switzerland
| | - Fyezah Jehan
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sunil Sazawal
- Global Division, Center for Public Health Kinetics, New Delhi, India.,Public Health Laboratory-IDC, Pemba, Tanzania
| | | | - Abdullah H Baqui
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States
| |
Collapse
|
56
|
Ward RA, Aghaeepour N, Bhattacharyya RP, Clish CB, Gaudillière B, Hacohen N, Mansour MK, Mudd PA, Pasupneti S, Presti RM, Rhee EP, Sen P, Spec A, Tam JM, Villani AC, Woolley AE, Hsu JL, Vyas JM. Harnessing the Potential of Multiomics Studies for Precision Medicine in Infectious Disease. Open Forum Infect Dis 2021; 8:ofab483. [PMID: 34805429 PMCID: PMC8598922 DOI: 10.1093/ofid/ofab483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The field of infectious diseases currently takes a reactive approach and treats infections as they present in patients. Although certain populations are known to be at greater risk of developing infection (eg, immunocompromised), we lack a systems approach to define the true risk of future infection for a patient. Guided by impressive gains in "omics" technologies, future strategies to infectious diseases should take a precision approach to infection through identification of patients at intermediate and high-risk of infection and deploy targeted preventative measures (ie, prophylaxis). The advances of high-throughput immune profiling by multiomics approaches (ie, transcriptomics, epigenomics, metabolomics, proteomics) hold the promise to identify patients at increased risk of infection and enable risk-stratifying approaches to be applied in the clinic. Integration of patient-specific data using machine learning improves the effectiveness of prediction, providing the necessary technologies needed to propel the field of infectious diseases medicine into the era of personalized medicine.
Collapse
Affiliation(s)
- Rebecca A Ward
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, California, USA
| | - Roby P Bhattacharyya
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael K Mansour
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shravani Pasupneti
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, California, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of lnternal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eugene P Rhee
- The Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pritha Sen
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of lnternal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jenny M Tam
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ann E Woolley
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joe L Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Medical Service, Palo Alto, California, USA
| | - Jatin M Vyas
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
57
|
Kumar M, Saadaoui M, Elhag DA, Murugesan S, Al Abduljabbar S, Fagier Y, Ortashi O, Abdullahi H, Ibrahim I, Alberry M, Abbas A, Ahmed SR, Hendaus MA, Kalache K, Terranegra A, Al Khodor S. Omouma: a prospective mother and child cohort aiming to identify early biomarkers of pregnancy complications in women living in Qatar. BMC Pregnancy Childbirth 2021; 21:570. [PMID: 34412611 PMCID: PMC8377974 DOI: 10.1186/s12884-021-04029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pregnancy is governed by multiple molecular and cellular processes, which might influence pregnancy health and outcomes. Failure to predict and understand the cause of pregnancy complications, adverse pregnancy outcomes, infant's morbidity and mortality, have limited effective interventions. Integrative multi-omics technologies provide an unbiased platform to explore the complex molecular interactions with an unprecedented depth. The objective of the present protocol is to build a longitudinal mother-baby cohort and use multi-omics technologies to help identify predictive biomarkers of adverse pregnancy outcomes, early life determinants and their effect on child health. METHODS/DESIGN One thousand pregnant women with a viable pregnancy in the first trimester (6-14 weeks of gestation) will be recruited from Sidra Medicine hospital. All the study participants will be monitored every trimester, at delivery, and one-year post-partum. Serial high-frequency sampling, including blood, stool, urine, saliva, skin, and vaginal swabs (mother only) from the pregnant women and their babies, will be collected. Maternal and neonatal health, including mental health and perinatal growth, will be recorded using a combination of questionnaires, interviews, and medical records. Downstream sample processing including microbial profiling, vaginal immune response, blood transcriptomics, epigenomics, and metabolomics will be performed. DISCUSSION It is expected that the present study will provide valuable insights into predicting pregnancy complications and neonatal health outcomes. Those include whether specific microbial and/or epigenomics signatures, immune profiles are associated with a healthy pregnancy and/or complicated pregnancy and poor neonatal health outcome. Moreover, this non-interventional cohort will also serve as a baseline dataset to understand how familial, socioeconomic, environmental and lifestyle factors interact with genetic determinants to influence health outcomes later in life. These findings will hold promise for the diagnosis and precision-medicine interventions.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Yassin Fagier
- Obstetrics and Gynecology, Sidra Medicine, Doha, Qatar
| | - Osman Ortashi
- Obstetrics and Gynecology, Sidra Medicine, Doha, Qatar
| | | | | | | | - Anthony Abbas
- Maternal Fetal Medicine, Sidra Medicine, Doha, Qatar
| | | | | | - Karim Kalache
- Maternal Fetal Medicine, Sidra Medicine, Doha, Qatar
| | | | | |
Collapse
|
58
|
The amniotic fluid cell-free transcriptome in spontaneous preterm labor. Sci Rep 2021; 11:13481. [PMID: 34188072 PMCID: PMC8242007 DOI: 10.1038/s41598-021-92439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023] Open
Abstract
The amniotic fluid (AF) cell-free RNA was shown to reflect physiological and pathological processes in pregnancy, but its value in the prediction of spontaneous preterm delivery is unknown. Herein we profiled cell-free RNA in AF samples collected from women who underwent transabdominal amniocentesis after an episode of spontaneous preterm labor and subsequently delivered within 24 h (n = 10) or later (n = 28) in gestation. Expression of known placental single-cell RNA-Seq signatures was quantified in AF cell-free RNA and compared between the groups. Random forest models were applied to predict time-to-delivery after amniocentesis. There were 2385 genes differentially expressed in AF samples of women who delivered within 24 h of amniocentesis compared to gestational age-matched samples from women who delivered after 24 h of amniocentesis. Genes with cell-free RNA changes were associated with immune and inflammatory processes related to the onset of labor, and the expression of placental single-cell RNA-Seq signatures of immune cells was increased with imminent delivery. AF transcriptomic prediction models captured these effects and predicted delivery within 24 h of amniocentesis (AUROC = 0.81). These results may inform the development of biomarkers for spontaneous preterm birth.
Collapse
|
59
|
Tarca AL, Pataki BÁ, Romero R, Sirota M, Guan Y, Kutum R, Gomez-Lopez N, Done B, Bhatti G, Yu T, Andreoletti G, Chaiworapongsa T, Hassan SS, Hsu CD, Aghaeepour N, Stolovitzky G, Csabai I, Costello JC. Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth. Cell Rep Med 2021; 2:100323. [PMID: 34195686 PMCID: PMC8233692 DOI: 10.1016/j.xcrm.2021.100323] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Identification of pregnancies at risk of preterm birth (PTB), the leading cause of newborn deaths, remains challenging given the syndromic nature of the disease. We report a longitudinal multi-omics study coupled with a DREAM challenge to develop predictive models of PTB. The findings indicate that whole-blood gene expression predicts ultrasound-based gestational ages in normal and complicated pregnancies (r = 0.83) and, using data collected before 37 weeks of gestation, also predicts the delivery date in both normal pregnancies (r = 0.86) and those with spontaneous preterm birth (r = 0.75). Based on samples collected before 33 weeks in asymptomatic women, our analysis suggests that expression changes preceding preterm prelabor rupture of the membranes are consistent across time points and cohorts and involve leukocyte-mediated immunity. Models built from plasma proteomic data predict spontaneous preterm delivery with intact membranes with higher accuracy and earlier in pregnancy than transcriptomic models (AUROC = 0.76 versus AUROC = 0.6 at 27-33 weeks of gestation).
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Bálint Ármin Pataki
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Marina Sirota
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rintu Kutum
- Informatics and Big Data Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | | | - Gaia Andreoletti
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - The DREAM Preterm Birth Prediction Challenge Consortium
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Informatics and Big Data Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Sage Bionetworks, Seattle, WA, USA
- Office of Women’s Health, Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Office of Women’s Health, Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
60
|
Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105058. [PMID: 34064710 PMCID: PMC8151939 DOI: 10.3390/ijerph18105058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Tremendous scientific and technological achievements have been revolutionizing the current medical era, changing the way in which physicians practice their profession and deliver healthcare provisions. This is due to the convergence of various advancements related to digitalization and the use of information and communication technologies (ICTs)—ranging from the internet of things (IoT) and the internet of medical things (IoMT) to the fields of robotics, virtual and augmented reality, and massively parallel and cloud computing. Further progress has been made in the fields of addictive manufacturing and three-dimensional (3D) printing, sophisticated statistical tools such as big data visualization and analytics (BDVA) and artificial intelligence (AI), the use of mobile and smartphone applications (apps), remote monitoring and wearable sensors, and e-learning, among others. Within this new conceptual framework, big data represents a massive set of data characterized by different properties and features. These can be categorized both from a quantitative and qualitative standpoint, and include data generated from wet-lab and microarrays (molecular big data), databases and registries (clinical/computational big data), imaging techniques (such as radiomics, imaging big data) and web searches (the so-called infodemiology, digital big data). The present review aims to show how big and smart data can revolutionize gynecology by shedding light on female reproductive health, both in terms of physiology and pathophysiology. More specifically, they appear to have potential uses in the field of gynecology to increase its accuracy and precision, stratify patients, provide opportunities for personalized treatment options rather than delivering a package of “one-size-fits-it-all” healthcare management provisions, and enhance its effectiveness at each stage (health promotion, prevention, diagnosis, prognosis, and therapeutics).
Collapse
|
61
|
Errors in the eTable. JAMA Netw Open 2021; 4:e210399. [PMID: 33576811 PMCID: PMC7881358 DOI: 10.1001/jamanetworkopen.2021.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
62
|
Ramakrishnan R, Rao S, He JR. Perinatal health predictors using artificial intelligence: A review. WOMEN'S HEALTH (LONDON, ENGLAND) 2021; 17:17455065211046132. [PMID: 34519596 PMCID: PMC8445524 DOI: 10.1177/17455065211046132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
Advances in public health and medical care have enabled better pregnancy and birth outcomes. The rates of perinatal health indicators such as maternal mortality and morbidity; fetal, neonatal, and infant mortality; low birthweight; and preterm birth have reduced over time. However, they are still a public health concern, and considerable disparities exist within and between countries. For perinatal researchers who are engaged in unraveling the tangled web of causation for maternal and child health outcomes and for clinicians involved in the care of pregnant women and infants, artificial intelligence offers novel approaches to prediction modeling, diagnosis, early detection, and monitoring in perinatal health. Machine learning, a commonly used artificial intelligence method, has been used to predict preterm birth, birthweight, preeclampsia, mortality, hypertensive disorders, and postpartum depression. Real-time electronic health recording and predictive modeling using artificial intelligence have found early success in fetal monitoring and monitoring of women with gestational diabetes especially in low-resource settings. Artificial intelligence-based methodologies have the potential to improve prenatal diagnosis of birth defects and outcomes in assisted reproductive technology too. In this scenario, we envision artificial intelligence for perinatal research to be based on three goals: (1) availability of population-representative, routine clinical data (rich multimodal data of large sample size) for perinatal research; (2) modification and application of current state-of-the-art artificial intelligence for prediction and classification in health care research to the field of perinatal health; and (3) development of methods for explaining the decision-making processes of artificial intelligence models for perinatal health indicators. Achieving these three goals via a multidisciplinary approach to the development of artificial intelligence tools will enable trust in these tools and advance research, clinical practice, and policies to ensure optimal perinatal health.
Collapse
Affiliation(s)
- Rema Ramakrishnan
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Shishir Rao
- Deep Medicine, Oxford Martin School, University of Oxford, Oxford, UK
| | - Jian-Rong He
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|