51
|
Wei S, Xu P, Yao Z, Cui X, Lei X, Li L, Dong Y, Zhu W, Guo R, Cheng B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater 2021; 124:205-218. [PMID: 33524559 DOI: 10.1016/j.actbio.2021.01.046] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Diabetic wound healing remains a major challenge due to its vulnerability to bacterial infection, as well as the less vascularization and prolonged inflammatory phase. In this study, we developed a hydrogel system for the treatment of chronic infected wounds, which can regulate inflammatory (through the use of antimicrobial peptides) and enhance collagen deposition and angiogenesis (through the addition of platelet-rich plasma (PRP)). Based on the formation of Schiff base linkage, the ODEX/HA-AMP/PRP hydrogel was prepared by mixing oxidized dextran (ODEX), antimicrobial peptide-modified hyaluronic acid (HA-AMP) and PRP under physiological conditions, which exhibited obvious inhibition zones against three pathogenic bacterial strains (E. coli, S. aureus and P. aeruginosa) and slow release ability of antimicrobials and growth factors. Moreover, CCK-8, live/dead fluorescent staining and scratch test confirmed that ODEX/HA-AMP/PRP hydrogel could facilitate the proliferation and migration of L929 fibroblast cells. More importantly, in vivo experiments further demonstrated that the prepared hydrogels could significantly improve wound healing in a diabetic mouse infection by regulating inflammation, accelerating collagen deposition and angiogenesis. In addition, prepared hydrogel showed a significant antibacterial activity against S. aureus and P. aeruginosa, inhibited pro-inflammatory factors (TNF-α, IL-1β and IL-6), enhanced anti-inflammatory factors (TGF-β1) and vascular endothelial growth factor (VEGF) production. The findings of this study suggested that the composite hydrogel with AMP and PRP controlled release ability could be used as a promising candidate for chronic wound healing and infection-related wound healing.
Collapse
Affiliation(s)
- Shikun Wei
- The Graduate School of Southern Medical University, Guangzhou 510515, China; The Second People's Hospital of Panyu Guangzhou, Guangzhou 510120, China
| | - Pengcheng Xu
- The Graduate School of Southern Medical University, Guangzhou 510515, China
| | - Zexin Yao
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China; The Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Cui
- The Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510010, China
| | - Xiaoxuan Lei
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Linlin Li
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Weidong Zhu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China.
| |
Collapse
|
52
|
Quadri F, Soman SS, Vijayavenkataraman S. Progress in cardiovascular bioprinting. Artif Organs 2021; 45:652-664. [PMID: 33432583 DOI: 10.1111/aor.13913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease has been the leading cause of death globally for the past 15 years. Following a major cardiac disease episode, the ideal treatment would be the replacement of the damaged tissue, due to the limited regenerative capacity of cardiac tissues. However, we suffer from a chronic organ donor shortage which causes approximately 20 people to die each day waiting to receive an organ. Bioprinting of tissues and organs can potentially alleviate this burden by fabricating low cost tissue and organ replacements for cardiac patients. Clinical adoption of bioprinting in cardiovascular medicine is currently limited by the lack of systematic demonstration of its effectiveness, high costs, and the complexity of the workflow. Here, we give a concise review of progress in cardiovascular bioprinting and its components. We further discuss the challenges and future prospects of cardiovascular bioprinting in clinical applications.
Collapse
Affiliation(s)
- Faisal Quadri
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| |
Collapse
|
53
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
54
|
Bakht SM, Pardo A, Gómez-Florit M, Reis RL, Domingues RMA, Gomes ME. Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. J Mater Chem B 2021; 9:5025-5038. [PMID: 34014245 DOI: 10.1039/d1tb00717c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of additive manufacturing in the biomedical field has become a hot topic in the last decade owing to its potential to provide personalized solutions for patients. Different bioinks have been designed trying to obtain a unique concoction that addresses all the needs for tissue engineering and drug delivery purposes, among others. Despite the remarkable progress made, the development of suitable bioinks which combine printability, cytocompatibility, and biofunctionality is still a challenge. In this sense, the well-established synthetic and functionalization routes to prepare nanoparticles with different functionalities make them excellent candidates to be combined with polymeric systems in order to generate suitable multi-functional bioinks. In this review, we briefly discuss the most recent advances in the design of functional nanocomposite hydrogels considering their already evaluated or potential use as bioinks. The scientific development over the last few years is reviewed, focusing the discussion on the wide range of functionalities that can be incorporated into 3D bioprinted constructs through the addition of multifunctional nanoparticles in order to increase their regenerative potential in the field of tissue engineering.
Collapse
Affiliation(s)
- Syeda M Bakht
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and Colloids and Polymers Physics Group, Particle Physics Department and Health Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
55
|
Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021; 9:535-573. [DOI: 10.1039/d0bm00973c] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, 3D bioprinting has received immense attention from research communities to bridge the divergence between artificially engineered tissue constructs and native tissues.
Collapse
Affiliation(s)
- Mohsen Askari
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Moqaddaseh Afzali Naniz
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Monireh Kouhi
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | - Azadeh Saberi
- Nanotechnology and Advanced Materials Department
- Materials and Energy Research Center
- Tehran
- Iran
| | | | - Mahdi Bodaghi
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| |
Collapse
|
56
|
Gomez-Florit M, Pardo A, Domingues RMA, Graça AL, Babo PS, Reis RL, Gomes ME. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020; 25:E5858. [PMID: 33322369 PMCID: PMC7763437 DOI: 10.3390/molecules25245858] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
In the field of tissue engineering and regenerative medicine, hydrogels are used as biomaterials to support cell attachment and promote tissue regeneration due to their unique biomimetic characteristics. The use of natural-origin materials significantly influenced the origin and progress of the field due to their ability to mimic the native tissues' extracellular matrix and biocompatibility. However, the majority of these natural materials failed to provide satisfactory cues to guide cell differentiation toward the formation of new tissues. In addition, the integration of technological advances, such as 3D printing, microfluidics and nanotechnology, in tissue engineering has obsoleted the first generation of natural-origin hydrogels. During the last decade, a new generation of hydrogels has emerged to meet the specific tissue necessities, to be used with state-of-the-art techniques and to capitalize the intrinsic characteristics of natural-based materials. In this review, we briefly examine important hydrogel crosslinking mechanisms. Then, the latest developments in engineering natural-based hydrogels are investigated and major applications in the field of tissue engineering and regenerative medicine are highlighted. Finally, the current limitations, future challenges and opportunities in this field are discussed to encourage realistic developments for the clinical translation of tissue engineering strategies.
Collapse
Affiliation(s)
- Manuel Gomez-Florit
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Alberto Pardo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ana L. Graça
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Pedro S. Babo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
57
|
Ratheesh G, Vaquette C, Xiao Y. Patient-Specific Bone Particles Bioprinting for Bone Tissue Engineering. Adv Healthc Mater 2020; 9:e2001323. [PMID: 33166078 DOI: 10.1002/adhm.202001323] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Although bioinks with both high printability and shape fidelity while maintaining high cell viability are developed, the biofunctionality of the resulting bioprinted construct is often overlooked. To address this, a methacrylated gelatin (GelMA)-based bioink biofunctionalized with bone particles (BPs) is developed as a personalized treatment strategy for bone regeneration. The bioink consists of incorporating BPs of various sizes (0-500 µm) in GelMA at various concentrations (ranging from 5 to 15% w/v). The printability of the bioink is systematically investigated and it is demonstrated that a 15% w/v BP-loading results in high print quality for 10% and 12.5% GelMA concentrations. Rheological evaluation reveals a strong shear thinning behavior essential for printing and a high gel strength in bioink with 15% w/v 0-500 µm BPs for both GelMA concentrations. In addition, the printability of the bioink and the metabolic activity of the resulting scaffolds are dependent on both the concentration of hydrogel and size of the BPs. Importantly, the cells initially contained in the BPs are able to migrate and colonize the bioprinted scaffold while maintaining their capacity to express early osteogenic markers. This study demonstrates the feasibility of bioprinted viable BPs and may have some potential for chairside clinical translation.
Collapse
Affiliation(s)
- Greeshma Ratheesh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
58
|
Yang WS, Kim WJ, Ahn JY, Lee J, Ko DW, Park S, Kim JY, Jang CH, Lim JM, Kim GH. New Bioink Derived from Neonatal Chicken Bone Marrow Cells and Its 3D-Bioprinted Niche for Osteogenic Stimulators. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49386-49397. [PMID: 32948093 DOI: 10.1021/acsami.0c13905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study examined whether neonatal chicken bone marrow cells (cBMCs) could support the osteogenesis of human stromal cells in a three-dimensional (3D) extracellular bioprinting niche. The majority (>95%) of 4-day-old cBMCs subcultured 5 times were positive for osteochondrogenesis-related genes (Col I, Col II, Col X, aggrecan, Sox9, osterix, Bmp2, osteocalcin, Runx2, and osteopontin) and their related proteins (Sox9, collagen type I, and collagen type II). LC-MS/MS analysis demonstrated that cBMC-conditioned medium (c-medium) contained proteins related to bone regeneration, such as periostin and members of the TGF-β family. Next, a significant increase in osteogenesis was detected in three human adipose tissue-derived stromal cell (hASC) lines, after exposure to c-medium concentrates in 2D culture (p < 0.05). To evaluate biological function in a 3D environment, we employed the cBMC-derived bioactive components as a cell-supporting biomaterial in collagen bioink, which was printed to construct a 3D hASC-laden scaffold for observing osteogenesis. Complete osteogenesis was detected in vitro. Moreover, after transplantation of the hASC-laden structure into rats, prominent bone formation was observed compared with that in control rats receiving scaffold-free hASC transplantation. These results demonstrated that substance(s) secreted by chick bone marrow cells clearly activated the osteogenesis of hASCs in 2D- or 3D-niches.
Collapse
Affiliation(s)
- Woo Sub Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Won Jin Kim
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - JiUn Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Woo Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Sumin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Ji Yoon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Geun Hyung Kim
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
59
|
Angiogenic Potential in Biological Hydrogels. Biomedicines 2020; 8:biomedicines8100436. [PMID: 33092064 PMCID: PMC7589931 DOI: 10.3390/biomedicines8100436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are three-dimensional (3D) materials able to absorb and retain water in large amounts while maintaining their structural stability. Due to their considerable biocompatibility and similarity with the body’s tissues, hydrogels are one of the most promising groups of biomaterials. The main application of these hydrogels is in regenerative medicine, in which they allow the formation of an environment suitable for cell differentiation and growth. Deriving from these hydrogels, it is, therefore, possible to obtain bioactive materials that can regenerate tissues. Because vessels guarantee the right amount of oxygen and nutrients but also assure the elimination of waste products, angiogenesis is one of the processes at the base of the regeneration of a tissue. On the other hand, it is a very complex mechanism and the parameters to consider are several. Indeed, the factors and the cells involved in this process are numerous and, for this reason, it has been a challenge to recreate a biomaterial able to adequately sustain the angiogenic process. However, in this review the focal point is the application of natural hydrogels in angiogenesis enhancing and their potential to guide this process.
Collapse
|
60
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
61
|
Sanz-Garcia A, Sodupe-Ortega E, Pernía-Espinoza A, Shimizu T, Escobedo-Lucea C. A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting. Polymers (Basel) 2020; 12:E2346. [PMID: 33066265 PMCID: PMC7602012 DOI: 10.3390/polym12102346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting promises to be essential in tissue engineering for solving the rising demand for organs and tissues. Some bioprinters are commercially available, but their impact on the field of Tissue engineering (TE) is still limited due to their cost or difficulty to tune. Herein, we present a low-cost easy-to-build printhead for microextrusion-based bioprinting (MEBB) that can be installed in many desktop 3D printers to transform them into 3D bioprinters. We can extrude bioinks with precise control of print temperature between 2-60 °C. We validated the versatility of the printhead, by assembling it in three low-cost open-source desktop 3D printers. Multiple units of the printhead can also be easily put together in a single printer carriage for building a multi-material 3D bioprinter. Print resolution was evaluated by creating representative calibration models at different temperatures using natural hydrogels such as gelatin and alginate, and synthetic ones like poloxamer. Using one of the three modified low-cost 3D printers, we successfully printed cell-laden lattice constructs with cell viabilities higher than 90% after 24-h post printing. Controlling temperature and pressure according to the rheological properties of the bioinks was essential in achieving optimal printability and great cell viability. The cost per unit of our device, which can be used with syringes of different volume, is less expensive than any other commercially available product. These data demonstrate an affordable open-source printhead with the potential to become a reliable alternative to commercial bioprinters for any laboratory.
Collapse
Affiliation(s)
- Andres Sanz-Garcia
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), 00014 Helsinki, Finland; (A.S.-G.); (E.S.-O.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Enrique Sodupe-Ortega
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), 00014 Helsinki, Finland; (A.S.-G.); (E.S.-O.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
- Department of Mechanical Engineering, University of La Rioja, San José de Calasanz 31, Edificio Departamental, 26004 Logroño, Spain;
| | - Alpha Pernía-Espinoza
- Department of Mechanical Engineering, University of La Rioja, San José de Calasanz 31, Edificio Departamental, 26004 Logroño, Spain;
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Carmen Escobedo-Lucea
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), 00014 Helsinki, Finland; (A.S.-G.); (E.S.-O.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| |
Collapse
|
62
|
T. Somasekharan L, Kasoju N, Raju R, Bhatt A. Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel) 2020; 7:bioengineering7030108. [PMID: 32916945 PMCID: PMC7552778 DOI: 10.3390/bioengineering7030108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Layer-by-layer additive manufacturing process has evolved into three-dimensional (3D) "bio-printing" as a means of constructing cell-laden functional tissue equivalents. The process typically involves the mixing of cells of interest with an appropriate hydrogel, termed as "bioink", followed by printing and tissue maturation. An ideal bioink should have adequate mechanical, rheological, and biological features of the target tissues. However, native extracellular matrix (ECM) is made of an intricate milieu of soluble and non-soluble extracellular factors, and mimicking such a composition is challenging. To this end, here we report the formulation of a multi-component bioink composed of gelatin and alginate -based scaffolding material, as well as a platelet-rich plasma (PRP) suspension, which mimics the insoluble and soluble factors of native ECM respectively. Briefly, sodium alginate was subjected to controlled oxidation to yield alginate dialdehyde (ADA), and was mixed with gelatin and PRP in various volume ratios in the presence of borax. The formulation was systematically characterized for its gelation time, swelling, and water uptake, as well as its morphological, chemical, and rheological properties; furthermore, blood- and cytocompatibility were assessed as per ISO 10993 (International Organization for Standardization). Printability, shape fidelity, and cell-laden printing was evaluated using the RegenHU 3D Discovery bioprinter. The results indicated the successful development of ADA-gelatin-PRP based bioink for 3D bioprinting and biofabrication applications.
Collapse
Affiliation(s)
- Lakshmi T. Somasekharan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India;
| | - Riya Raju
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India; (L.T.S.); (R.R.)
- Correspondence: ; Tel.: +91-471-252-0219
| |
Collapse
|
63
|
Correia Carreira S, Begum R, Perriman AW. 3D Bioprinting: The Emergence of Programmable Biodesign. Adv Healthc Mater 2020; 9:e1900554. [PMID: 31407502 DOI: 10.1002/adhm.201900554] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Indexed: 11/10/2022]
Abstract
Until recently, bioprinting was largely limited to highly interdisciplinary research teams, as the process requires significant input from specialists in the fields of materials science, engineering, and cell biology. With the advent of commercially available high-performance bioprinters, the field has become accessible to a wider range of research groups, who can now buy the hardware off the shelf instead of having to build it from scratch. As a result, bioprinting has rapidly expanded to address a wide array of research foci, which include organotypic in vitro models, complex engineered tissues, and even bioprinted microbial systems. Moreover, in the early days, the range of suitable bioinks was limited. Now, there is a plethora of viable options to suit many cell phenotypes. This rapidly evolving dynamic environment creates endless opportunities for scientists to design and construct highly complex biological systems. However, this scientific diversity presents its own set of challenges, such as defining standardized protocols for characterizing bioprinted structures, which is essential for eventual organ replacement. In this progress report, the current state-of-the-art in the field of bioprinting is discussed, with a special emphasis on recent hardware developments, bioprinting for regenerative medicine, and late-breaking nontraditional topics.
Collapse
Affiliation(s)
- Sara Correia Carreira
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| | - Runa Begum
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| | - Adam W. Perriman
- School of Cellular and Molecular MedicineUniversity of Bristol University Walk Bristol BS8 1TD UK
| |
Collapse
|
64
|
Suarez-Arnedo A, Torres Figueroa F, Clavijo C, Arbeláez P, Cruz JC, Muñoz-Camargo C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS One 2020; 15:e0232565. [PMID: 32722676 PMCID: PMC7386569 DOI: 10.1371/journal.pone.0232565] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro scratch wound healing assay, a simple and low-cost technique that works along with other image analysis tools, is one of the most widely used 2D methods to determine the cellular migration and proliferation in processes such as regeneration and disease. There are open-source programs such as imageJ to analyze images of in vitro scratch wound healing assays, but these tools require manual tuning of various parameters, which is time-consuming and limits image throughput. For that reason, we developed an optimized plugin for imageJ to automatically recognize the wound healing size, correct the average wound width by considering its inclination, and quantify other important parameters such as: area, wound area fraction, average wound width, and width deviation of the wound images obtained from a scratch/ wound healing assay. Our plugin is easy to install and can be used with different operating systems. It can be adapted to analyze both individual images and stacks. Additionally, it allows the analysis of images obtained from bright field, phase contrast, and fluorescence microscopes. In conclusion, this new imageJ plugin is a robust tool to automatically standardize and facilitate quantification of different in vitro wound parameters with high accuracy compared with other tools and manual identification.
Collapse
Affiliation(s)
| | | | - Camila Clavijo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Pablo Arbeláez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | |
Collapse
|
65
|
Pakhomova C, Popov D, Maltsev E, Akhatov I, Pasko A. Software for Bioprinting. Int J Bioprint 2020; 6:279. [PMID: 33088988 PMCID: PMC7557344 DOI: 10.18063/ijb.v6i3.279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
The bioprinting of heterogeneous organs is a crucial issue. To reach the complexity of such organs, there is a need for highly specialized software that will meet all requirements such as accuracy, complexity, and others. The primary objective of this review is to consider various software tools that are used in bioprinting and to reveal their capabilities. The sub-objective was to consider different approaches for the model creation using these software tools. Related articles on this topic were analyzed. Software tools are classified based on control tools, general computer-aided design (CAD) tools, tools to convert medical data to CAD formats, and a few highly specialized research-project tools. Different geometry representations are considered, and their advantages and disadvantages are considered applicable to heterogeneous volume modeling and bioprinting. The primary factor for the analysis is suitability of the software for heterogeneous volume modeling and bioprinting or multimaterial three-dimensional printing due to the commonality of these technologies. A shortage of specialized suitable software tools is revealed. There is a need to develop a new application area such as computer science for bioprinting which can contribute significantly in future research work.
Collapse
Affiliation(s)
- Catherine Pakhomova
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow.,Institute of Engineering Physics for Biomedicine, NRNU Mephi, Moscow
| | - Dmitry Popov
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow
| | - Eugenii Maltsev
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow
| | - Iskander Akhatov
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow
| | - Alexander Pasko
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow.,The National Centre for Computer Animation, Bournemouth University, UK
| |
Collapse
|
66
|
Hedegaard CL, Mata A. Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control. Biofabrication 2020; 12:032002. [DOI: 10.1088/1758-5090/ab84cb] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
|
68
|
Manning KL, Feder J, Kanellias M, Murphy J, Morgan JR. Toward Automated Additive Manufacturing of Living Bio-Tubes Using Ring-Shaped Building Units. SLAS Technol 2020; 25:608-620. [PMID: 32452278 DOI: 10.1177/2472630320920896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tissue engineering has been largely confined to academic research institutions with limited success in commercial settings. To help address this issue, more work is needed to develop new automated manufacturing processes for tissue-related technologies. In this article, we describe the automation of the funnel-guide, an additive manufacturing method that uses living tissue rings as building units to form bio-tubes. We developed a method based on 96-well plates and a modified off-the-shelf liquid-handling robot to retrieve, perform real-time quality control, and transfer tissue rings to the funnel-guide. Cells seeded into 96-well plates containing specially designed agarose micromolds self-assembled and formed ring-shaped microtissues that could be retrieved using a liquid-handling robot. We characterized the effects of time, cell type, and mold geometry on the morphology of the ring-shaped microtissues to inform optimal use of the building parts. We programmed and modified an off-the-shelf liquid-handling robot to retrieve ring-shaped microtissues from the 96-well plates, and we fabricated a custom illuminated pipette to visualize each ring-shaped microtissue prior to deposit in the funnel guide. Imaging at the liquid-air interface presented challenges that were overcome by controlling lighting conditions and liquid curvature. Based on these images, we incorporated into our workflow a real-time quality control step based on visual inspection and morphological criteria to assess each ring prior to use. We used this system to fabricate bio-tubes of endothelial cells with luminal alignment.
Collapse
Affiliation(s)
- Kali L Manning
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Jacob Feder
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Marianne Kanellias
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - John Murphy
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
69
|
Patrício SG, Sousa LR, Correia TR, Gaspar VM, Pires LS, Luís JL, Oliveira JM, Mano JF. Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication 2020; 12:035017. [PMID: 32316003 DOI: 10.1088/1758-5090/ab8bc3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Embedded bio-printing has fostered significant advances toward the fabrication of soft complex tissue-like constructs, by providing a physical support that allows the freeform shape maintenance within the prescribed spatial arrangement, even under gravity force. Current supporting materials still present major drawbacks for up-scaling embedded 3D bio-printing technology towards tissue-like constructs with clinically relevant dimensions. Herein, we report a a cost-effective and widely available supporting material for embedded bio-printing consisting on a continuous pseudo-plastic matrix of xanthan-gum (XG). This natural polisaccharide exhibits peculiar rheological properties that have enabled the rapid generation of complex volumetric 3D constructs with out-of-plane features. The freedom of design within the three orthogonal axes through the independent and controlled bio-printing process opens new opportunities to produce on demand large arbitrary shapes for personalized medicine. Additionally, we have demonstrated the versatile functionality of XG as a photocurable gel reservoir to engineer perfused cell-laden hydrogel constructs, addressing other practical biomedical applications such as in vitro models and organ-on-chip platforms.
Collapse
Affiliation(s)
- Sónia G Patrício
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal. These authors contributed equally to this work. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Prendergast ME, Burdick JA. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902516. [PMID: 31512289 DOI: 10.1002/adma.201902516] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Advances in areas such as data analytics, genomics, and imaging have revealed individual patient complexities and exposed the inherent limitations of generic therapies for patient treatment. These observations have also fueled the development of precision medicine approaches, where therapies are tailored for the individual rather than the broad patient population. 3D printing is a field that intersects with precision medicine through the design of precision implants with patient-directed shapes, structures, and materials or for the development of patient-specific in vitro models that can be used for screening precision therapeutics. Toward their success, advances in 3D printing and biofabrication technologies are needed with enhanced resolution, complexity, reproducibility, and speed and that encompass a broad range of cells and materials. The overall goal of this progress report is to highlight recent advances in 3D printing technologies that are helping to enable advances important in precision medicine.
Collapse
Affiliation(s)
- Margaret E Prendergast
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| |
Collapse
|
71
|
Shahi M, Mohammadnejad D, Karimipour M, Rasta SH, Rahbarghazi R, Abedelahi A. Hyaluronic Acid and Regenerative Medicine: New Insights into the Stroke Therapy. Curr Mol Med 2020; 20:675-691. [PMID: 32213158 DOI: 10.2174/1566524020666200326095837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022]
Abstract
Stroke is known as one of the very important public health problems that are related to societal burden and tremendous economic losses. It has been shown that there are few therapeutic approaches for the treatment of this disease. In this regard, the present therapeutic platforms aim to obtain neuroprotection, reperfusion, and neuro recovery. Among these therapies, regenerative medicine-based therapies have appeared as new ways of stroke therapy. Hyaluronic acid (HA) is a new candidate, which could be applied as a regenerative medicine-based therapy in the treatment of stroke. HA is a glycosaminoglycan composed of disaccharide repeating elements (N-acetyl-Dglucosamine and D-glucuronic acid). Multiple lines of evidence demonstrated that HA has critical roles in normal tissues. It can be a key player in different physiological and pathophysiological conditions such as water homeostasis, multiple drug resistance, inflammatory processes, tumorigenesis, angiogenesis, and changed viscoelasticity of the extracellular matrix. HA has very important physicochemical properties i.e., availability of reactive functional groups and its solubility, which make it a biocompatible material for application in regenerative medicine. Given that HAbased bioscaffolds and biomaterials do not induce inflammation or allergies and are hydrophilic, they are used as soft tissue fillers and injectable dermal fillers. Several studies indicated that HA could be employed as a new therapeutic candidate in the treatment of stroke. These studies documented that HA and HA-based therapies exert their pharmacological effects via affecting stroke-related processes. Herein, we summarized the role of the extracellular matrix in stroke pathogenesis. Moreover, we highlighted the HA-based therapies for the treatment of stroke.
Collapse
Affiliation(s)
- Maryam Shahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Bioengineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
72
|
Ahlfeld T, Cubo-Mateo N, Cometta S, Guduric V, Vater C, Bernhardt A, Akkineni AR, Lode A, Gelinsky M. A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12557-12572. [PMID: 32092249 DOI: 10.1021/acsami.0c00710] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extrusion-based bioprinting, also known as 3D bioplotting, is a powerful tool for the fabrication of tissue equivalents with spatially defined cell distribution. Even though considerable progress has been made in recent years, there is still a lack of bioinks which enable a tissue-like cell response and are plottable at the same time with good shape fidelity. Herein, we report on the development of a bioink which includes fresh frozen plasma from full human blood and thus a donor/patient-specific protein mixture. By blending of the plasma with 3 w/v% alginate and 9 w/v% methylcellulose, a pasty bioink (plasma-alg-mc) was achieved, which could be plotted with high accuracy and furthermore allowed bioplotted mesenchymal stromal cells (MSC) and primary osteoprogenitor cells to spread within the bioink. In a second step, the novel plasma-based bioink was combined with a plottable self-setting calcium phosphate cement (CPC) to fabricate bone-like tissue constructs. The CPC/plasma-alg-mc biphasic constructs revealed open porosity over the entire time of cell culture (35 d), which is crucial for bone tissue engineered grafts. The biphasic structures could be plotted in volumetric and clinically relevant dimensions and complex shapes could be also generated, as demonstrated for a scaphoid bone model. The plasma bioink potentiated that bioplotted MSC were not harmed by the setting process of the CPC. Latest after 7 days, MSC migrated from the hydrogel to the CPC surface, where they proliferated to 20-fold of the initial cell number covering the entire plotted constructs with a dense cell layer. For bioplotted and osteogenically stimulated osteoprogenitor cells, a significantly increased alkaline phosphatase activity was observed in CPC/plasma-alg-mc constructs in comparison to plasma-free controls. In conclusion, the novel plasma-alg-mc bioink is a promising new ink for several forms of bioprinted tissue equivalents and especially gainful for the combination with CPC for enhanced, biofabricated bone-like constructs.
Collapse
Affiliation(s)
- Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Nieves Cubo-Mateo
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Silvia Cometta
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Vera Guduric
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Corina Vater
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - A Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
73
|
Russell CS, Mostafavi A, Quint JP, Panayi AC, Baldino K, Williams TJ, Daubendiek JG, Hugo Sánchez V, Bonick Z, Trujillo-Miranda M, Shin SR, Pourquie O, Salehi S, Sinha I, Tamayol A. In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries. ACS APPLIED BIO MATERIALS 2020; 3:1568-1579. [PMID: 35021647 DOI: 10.1021/acsabm.9b01176] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the geometry of the defect site. However, the time and facilities needed for imaging the defect site, processing to render computer models, and printing a suitable scaffold prevent immediate reconstructive interventions post-traumatic injuries. In addition, the proper implantation of hydrogel-based scaffolds, which have generated promising results in vitro, is a major challenge. To overcome these challenges, a paradigm is proposed in which gelatin-based hydrogels are printed directly into the defect area and cross-linked in situ. The adhesiveness of the bioink hydrogel to the skeletal muscles was assessed ex vivo. The suitability of the in situ printed bioink for the delivery of cells is successfully assessed in vitro. Acellular scaffolds are directly printed into the defect site of mice with VML injury, exhibiting proper adhesion to the surrounding tissue and promoting remnant skeletal muscle hypertrophy. The developed handheld printer capable of 3D in situ printing of adhesive scaffolds is a paradigm shift in the rapid yet precise filling of complex skeletal muscle tissue defects.
Collapse
Affiliation(s)
- Carina S Russell
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| | - Jacob P Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Kodi Baldino
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Tyrell J Williams
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| | - Jocelyn G Daubendiek
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| | - Victor Hugo Sánchez
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| | - Zack Bonick
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| | | | - Su Ryon Shin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Olivier Pourquie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447 Germany
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, 900 North 16th Street, Room NH W330, Lincoln, Nebraska 68588, United States
| |
Collapse
|
74
|
Abasalizadeh F, Moghaddam SV, Alizadeh E, akbari E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 2020; 14:8. [PMID: 32190110 PMCID: PMC7069202 DOI: 10.1186/s13036-020-0227-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Hydrogels are a three-dimensional and crosslinked network of hydrophilic polymers. They can absorb a large amount of water or biological fluids, which leads to their swelling while maintaining their 3D structure without dissolving (Zhu and Marchant, Expert Rev Med Devices 8:607-626, 2011). Among the numerous polymers which have been utilized for the preparation of the hydrogels, polysaccharides have gained more attention in the area of pharmaceutics; Sodium alginate is a non-toxic, biocompatible, and biodegradable polysaccharide with several unique physicochemical properties for which has used as delivery vehicles for drugs (Kumar Giri et al., Curr Drug Deliv 9:539-555, 2012). Owing to their high-water content and resembling the natural soft tissue, hydrogels were studied a lot as a scaffold. The formation of hydrogels can occur by interactions of the anionic alginates with multivalent inorganic cations through a typical ionotropic gelation method. However, those applications require the control of some properties such as mechanical stiffness, swelling, degradation, cell attachment, and binding or release of bioactive molecules by using the chemical or physical modifications of the alginate hydrogel. In the current review, an overview of alginate hydrogels and their properties will be presented as well as the methods of producing alginate hydrogels. In the next section of the present review paper, the application of the alginate hydrogels will be defined as drug delivery vehicles for chemotherapeutic agents. The recent advances in the application of the alginate-based hydrogels will be describe later as a wound dressing and bioink in 3D bioprinting.
Collapse
Affiliation(s)
- Farhad Abasalizadeh
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe akbari
- Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz, 5154853431 Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| |
Collapse
|
75
|
Li Z, Zhang X, Yuan T, Zhang Y, Luo C, Zhang J, Liu Y, Fan W. Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue Eng Part A 2020; 26:886-895. [PMID: 32031056 DOI: 10.1089/ten.tea.2019.0304] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering. Impact statement Three-dimensional bioprinting of silk fibroin (SF) hydrogel as bioinks is a promising strategy for cartilage tissue engineering, but it lacks biological activities, which favors proliferation of seeded cells and secretion of the extracellular matrix. In this study, we have successfully added platelet-rich plasma (PRP) into SF-based bioinks as an autologous source of growth factors. The 3D, printed SF-PRP scaffold showed an enhanced biological property, thus aiding in potential future development of novel cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
76
|
Gerdes S, Mostafavi A, Ramesh S, Memic A, Rivero IV, Rao P, Tamayol A. Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds. Tissue Eng Part A 2020; 26:279-291. [PMID: 31964254 PMCID: PMC7366318 DOI: 10.1089/ten.tea.2019.0237] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Bone defects are common and, in many cases, challenging to treat. Tissue engineering is an interdisciplinary approach with promising potential for treating bone defects. Within tissue engineering, three-dimensional (3D) printing strategies have emerged as potent tools for scaffold fabrication. However, reproducibility and quality control are critical aspects limiting the translation of 3D printed scaffolds to clinical use, which remain to be addressed. To elucidate the factors that yield to the generation of defects in bioprinting and to achieve reproducible biomaterial printing, the objective of this article is to frame a systematic approach for optimizing and validating 3D printing of poly(caprolactone) (PCL)-hydroxyapatite (HAp) composite scaffolds. We delineate the effect of PCL-to-HAp ratio, print velocity, print temperature, and extrusion pressure on the architectural and mechanical properties of the 3D printed scaffold. Furthermore, we present an in situ image-based monitoring approach to quantify key quality-related aspects of constructs, such as the ability to deposit material consistently and print elementary shapes with fewer flaws. Our results show that small defects generated during the printing process have a significant role in lowering the mechanical properties of 3D printed polymeric scaffolds. In addition, the in vitro osteoinductivity of the fabricated scaffolds is demonstrated. Impact statement Identifying quality control measures is essential in the translation of three-dimensional (3D) printed scaffolds into clinical practice. In this article, we highlighted the importance of selected printing parameters on the quality of the 3D printed scaffolds. We also demonstrated that flaws, such as voids, significantly lower the mechanical properties (compressive modulus) of 3D printed polymeric scaffolds.
Collapse
Affiliation(s)
- Sam Gerdes
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Srikanthan Ramesh
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Adnan Memic
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iris V Rivero
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Prahalada Rao
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut
| |
Collapse
|
77
|
Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906423. [PMID: 32045053 PMCID: PMC7116209 DOI: 10.1002/adma.201906423] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Indexed: 05/04/2023]
Abstract
In 2013, the "biofabrication window" was introduced to reflect the processing challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable materials that could serve as cell-laden bioinks, as well as the limitations of printing and assembly methods, presented a major constraint. However, recent developments have now resulted in the availability of a plethora of bioinks, new printing approaches, and the technological advancement of established techniques. Nevertheless, it remains largely unknown which materials and technical parameters are essential for the fabrication of intrinsically hierarchical cell-material constructs that truly mimic biologically functional tissue. In order to achieve this, it is urged that the field now shift its focus from materials and technologies toward the biological development of the resulting constructs. Therefore, herein, the recent material and technological advances since the introduction of the biofabrication window are briefly summarized, i.e., approaches how to generate shape, to then focus the discussion on how to acquire the biological function within this context. In particular, a vision of how biological function can evolve from the possibility to determine shape is outlined.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Ruben G Scheuring
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Juergen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
78
|
Kadri R, Bacharouch J, Elkhoury K, Ben Messaoud G, Kahn C, Desobry S, Linder M, Tamayol A, Francius G, Mano JF, Sánchez-González L, Arab-Tehrany E. Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels. Mater Today Bio 2020; 6:100046. [PMID: 32259100 PMCID: PMC7096761 DOI: 10.1016/j.mtbio.2020.100046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/03/2022] Open
Abstract
Nanoliposomes are widely used as delivery vehicles for active compounds. Nanoliposomes from rapeseed phospholipids were incorporated into interpenetrating polymer network hydrogels of gelatin methacryloyl and alginate. The multiscale physicochemical properties of the hydrogels are studied both on the surface and through the thickness of the 3D network. The obtained composite hydrogels exhibited strong mechanical properties and a highly porous surface. The blend ratio, as well as the concentration of nanoliposomes, affects the properties of the hydrogels. Nanofunctionalized hydrogels induced keratinocyte growth. These advantageous characteristics may open up many applications of the developed hydrogels in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- R Kadri
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - J Bacharouch
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - K Elkhoury
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - G Ben Messaoud
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - C Kahn
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - S Desobry
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - M Linder
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - A Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - G Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour L'Environnement, UMR 7564, Villers-lès-Nancy, F-54601, France.,CNRS, Laboratoire de Chimie Physique et Microbiologie pour L'Environnement, UMR 7564, Villers-lès-Nancy, F-54601, France
| | - J F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L Sánchez-González
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| | - E Arab-Tehrany
- Université de Lorraine, Laboratoire Ingénierie des Biomolécules, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
| |
Collapse
|
79
|
Fallahi A, Yazdi IK, Serex L, Lesha E, Faramarzi N, Tarlan F, Avci H, Costa-Almeida R, Sharifi F, Rinoldi C, Gomes ME, Shin SR, Khademhosseini A, Akbari M, Tamayol A. Customizable Composite Fibers for Engineering Skeletal Muscle Models. ACS Biomater Sci Eng 2020; 6:1112-1123. [PMID: 33464853 DOI: 10.1021/acsbiomaterials.9b00992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Engineering tissue-like scaffolds that can mimic the microstructure, architecture, topology, and mechanical properties of native tissues while offering an excellent environment for cellular growth has remained an unmet need. To address these challenges, multicompartment composite fibers are fabricated. These fibers can be assembled through textile processes to tailor tissue-level mechanical and electrical properties independent of cellular level components. Textile technologies also allow control of the distribution of different cell types and the microstructure of fabricated constructs and the direction of cellular growth within the 3D microenvironment. Here, we engineered composite fibers from biocompatible cores and biologically relevant hydrogel sheaths. The fibers are mechanically robust to being assembled using textile processes and could support adhesion, proliferation, and maturation of cell populations important for the engineering of skeletal muscles. We also demonstrated that the changes in the coating of the multicompartment fibers could potentially enhance myogenesis in vitro.
Collapse
Affiliation(s)
- Afsoon Fallahi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Iman K Yazdi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Ludovic Serex
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Emal Lesha
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Negar Faramarzi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Farhang Tarlan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Huseyin Avci
- Eskisehir Osmangazi University, Faculty of Engineering and Architecture, Metallurgical and Materials Engineering Department, Eskisehir, Turkey
| | - Raquel Costa-Almeida
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Associate Laboratory, Braga, Portugal
| | - Fatemeh Sharifi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Chiara Rinoldi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Associate Laboratory, Braga, Portugal
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohsen Akbari
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8, Canada
| | - Ali Tamayol
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 68508, United States
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 06030, United States
| |
Collapse
|
80
|
Del Amo C, Perez-Valle A, Perez-Zabala E, Perez-del-Pecho K, Larrazabal A, Basterretxea A, Bully P, Andia I. Wound Dressing Selection Is Critical to Enhance Platelet-Rich Fibrin Activities in Wound Care. Int J Mol Sci 2020; 21:ijms21020624. [PMID: 31963580 PMCID: PMC7013388 DOI: 10.3390/ijms21020624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
The use of platelet-rich fibrin (PRF) is investigated in ulcer management because it provides a healing milieu rich in growth factors and cytokines. Although crucial, the relevance of secondary dressings is under-researched and no data support the use of any particular dressing in preference to another. We assessed the properties of different dressing categories, including alginates, hydrocolloids, foams, hydrofibers, films, meshes and gauzes, in terms of affinity for PRF, releasate management (retention/extrusion) and the kinetics of cytokine release as well as the influence of each combination product, [PRF + dressing], on dermal cell behaviour, aiming to provide useful information for choosing the most adequate dressing for each particular patient. Active dressings including alginates, hydrofibers, foams and hydrocolloids blend with PRF, creating a diverse combination of products with different performances. Alginate and hydrofiber showed the highest affinity but moderate retention of releasate, without interfering with cell functions. Instead, the foam sequestered the releasate and hindered the release of growth factors, thereby compromising cell activities. Film and mesh presented very poor releasate retention and performed similarly to PRF by itself. Affinity index and releasate management explained 79% of platelet-derived growth factor (PDGF-BB) concentration variability, p < 0.001. Cell proliferation depended on the ability of the combination product to retain/release supernatant, PDGF-BB concentration and cell adhesion R2 = 0.91, p = 0.014.
Collapse
Affiliation(s)
- Cristina Del Amo
- Bioprinting Laboratory, Regenerative Therapies, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.); (E.P.-Z.); (K.P.-d.-P.); (A.L.); (A.B.)
| | - Arantza Perez-Valle
- Bioprinting Laboratory, Regenerative Therapies, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.); (E.P.-Z.); (K.P.-d.-P.); (A.L.); (A.B.)
| | - Elena Perez-Zabala
- Bioprinting Laboratory, Regenerative Therapies, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.); (E.P.-Z.); (K.P.-d.-P.); (A.L.); (A.B.)
- Hospital-at-home Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Karmele Perez-del-Pecho
- Bioprinting Laboratory, Regenerative Therapies, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.); (E.P.-Z.); (K.P.-d.-P.); (A.L.); (A.B.)
- Hospital-at-home Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Ainara Larrazabal
- Bioprinting Laboratory, Regenerative Therapies, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.); (E.P.-Z.); (K.P.-d.-P.); (A.L.); (A.B.)
- Hospital-at-home Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Andima Basterretxea
- Bioprinting Laboratory, Regenerative Therapies, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.); (E.P.-Z.); (K.P.-d.-P.); (A.L.); (A.B.)
- Hospital-at-home Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Paola Bully
- “Paola Bully”, Statistical and Methodological Consulting, 48190 Sopuerta, Bizkaia, Spain;
| | - Isabel Andia
- Bioprinting Laboratory, Regenerative Therapies, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.); (E.P.-Z.); (K.P.-d.-P.); (A.L.); (A.B.)
- Correspondence: or
| |
Collapse
|
81
|
Gómez-Florit M, Domingues RM, Bakht SM, Mendes BB, Reis RL, Gomes ME. Natural Materials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
82
|
Mendes BB, Gómez-Florit M, Hamilton AG, Detamore MS, Domingues RMA, Reis RL, Gomes ME. Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication 2019; 12:015012. [DOI: 10.1088/1758-5090/ab33e8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
83
|
Villard P, Rezaeeyazdi M, Colombani T, Joshi‐Navare K, Rana D, Memic A, Bencherif SA. Autoclavable and Injectable Cryogels for Biomedical Applications. Adv Healthc Mater 2019; 8:e1900679. [PMID: 31348620 DOI: 10.1002/adhm.201900679] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022]
Abstract
Prior to any clinical application, terminal sterilization of biomaterials is a critical process imposed by the Food and Drug Administration. Of all the methods available for sterilization, high-pressure steam sterilization such as autoclaving is the most widely used. While autoclave sterilization minimizes pathogen contamination, it can dramatically impact both structural and biological properties of biomaterials. It has recently been reported that injectable cryogels with shape memory properties hold great promises as 3D macroporous biomimetic scaffolds for biomedical applications including tissue engineering. In this study, the impact of autoclave sterilization on properties of a series of cryogels is measured. Unlike conventional hydrogels, cryogels made of natural polymers demonstrate a strong resilience to autoclave sterilization. This process does not alter either their macrostructural or unique physical properties including syringe injectability. The scaffolds' bioactive sites are preserved and autoclaved cryogels retain their excellent cytological compatibility post-autoclaving. Furthermore, autoclaved cryogels do not trigger a notable activation of primary murine bone marrow-derived dendritic cells suggesting a minimal risk for biomaterial-induced inflammation, which is further confirmed by an in vivo histologic analysis. In summary, these results further demonstrate the huge potential of cryogels in the biomedical field and their capacity to be translated into clinical applications.
Collapse
Affiliation(s)
- Pierre Villard
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | | | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | | | - Devyesh Rana
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | - Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
- Department of BioengineeringNortheastern University Boston MA 02215 USA
- John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Laboratory of Biomechanics & Bioengineering (BMBI)Sorbonne UniversityUniversity of Technology of Compiègne (UTC) 60200 Compiègne France
| |
Collapse
|
84
|
Elkhoury K, Russell C, Sanchez-Gonzalez L, Mostafavi A, Williams T, Kahn C, Peppas NA, Arab-Tehrany E, Tamayol A. Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications. Adv Healthc Mater 2019; 8:e1900506. [PMID: 31402589 PMCID: PMC6752977 DOI: 10.1002/adhm.201900506] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Tissue engineering has emerged as an important research area that provides numerous research tools for the fabrication of biologically functional constructs that can be used in drug discovery, disease modeling, and the treatment of diseased or injured organs. From a materials point of view, scaffolds have become an important part of tissue engineering activities and are usually used to form an environment supporting cellular growth, differentiation, and maturation. Among various materials used as scaffolds, hydrogels based on natural polymers are considered one of the most suitable groups of materials for creating tissue engineering scaffolds. Natural hydrogels, however, do not always provide the physicochemical and biological characteristics and properties required for optimal cell growth. This review discusses the properties and tissue engineering applications of widely used natural hydrogels. In addition, methods of modulation of their physicochemical and biological properties using soft nanoparticles as fillers or reinforcing agents are presented.
Collapse
Affiliation(s)
| | - Carina Russell
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | | | | | - Tyrell Williams
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Nicholas A. Peppas
- Departments of Biomedical and Chemical Engineering, Departments of Pediatrics and Surgery, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
- Mary and Dick Holland Regenerative Medicine Program University of Nebraska-Medical Center, Omaha, NE, 68198
| |
Collapse
|
85
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
86
|
Romanazzo S, Nemec S, Roohani I. iPSC Bioprinting: Where are We at? MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2453. [PMID: 31374871 PMCID: PMC6696162 DOI: 10.3390/ma12152453] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022]
Abstract
Here, we present a concise review of current 3D bioprinting technologies applied to induced pluripotent stem cells (iPSC). iPSC have recently received a great deal of attention from the scientific and clinical communities for their unique properties, which include abundant adult cell sources, ability to indefinitely self-renew and differentiate into any tissue of the body. Bioprinting of iPSC and iPSC derived cells combined with natural or synthetic biomaterials to fabricate tissue mimicked constructs, has emerged as a technology that might revolutionize regenerative medicine and patient-specific treatment. This review covers the advantages and disadvantages of bioprinting techniques, influence of bioprinting parameters and printing condition on cell viability, and commonly used iPSC sources, and bioinks. A clear distinction is made for bioprinting techniques used for iPSC at their undifferentiated stage or when used as adult stem cells or terminally differentiated cells. This review presents state of the art data obtained from major searching engines, including Pubmed/MEDLINE, Google Scholar, and Scopus, concerning iPSC generation, undifferentiated iPSC, iPSC bioprinting, bioprinting techniques, cartilage, bone, heart, neural tissue, skin, and hepatic tissue cells derived from iPSC.
Collapse
Affiliation(s)
- Sara Romanazzo
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, New South Wales 2052, Australia
| | - Stephanie Nemec
- School of Materials Science and Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Iman Roohani
- Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
87
|
Ostrovidov S, Salehi S, Costantini M, Suthiwanish K, Ebrahimi M, Sadeghian RB, Fujie T, Shi X, Cannata S, Gargioli C, Tamayol A, Dokmeci MR, Orive G, Swieszkowski W, Khademhosseini A. 3D Bioprinting in Skeletal Muscle Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805530. [PMID: 31012262 PMCID: PMC6570559 DOI: 10.1002/smll.201805530] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Indexed: 05/13/2023]
Abstract
Skeletal muscle tissue engineering (SMTE) aims at repairing defective skeletal muscles. Until now, numerous developments are made in SMTE; however, it is still challenging to recapitulate the complexity of muscles with current methods of fabrication. Here, after a brief description of the anatomy of skeletal muscle and a short state-of-the-art on developments made in SMTE with "conventional methods," the use of 3D bioprinting as a new tool for SMTE is in focus. The current bioprinting methods are discussed, and an overview of the bioink formulations and properties used in 3D bioprinting is provided. Finally, different advances made in SMTE by 3D bioprinting are highlighted, and future needs and a short perspective are provided.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth 95440, Germany
| | - Marco Costantini
- Institute of Physical Chemistry – Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kasinan Suthiwanish
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Majid Ebrahimi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto ON M5S3G9, Canada
| | - Ramin Banan Sadeghian
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, B-50, 4259 Nagatsuta -cho, Midori-ku, Yokohama 226-8501, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China, University of Technology, Guangzhou 510006, PR China
| | - Stefano Cannata
- Department of Biology, Tor Vergata Rome University, Rome 00133, Italy
| | - Cesare Gargioli
- Department of Biology, Tor Vergata Rome University, Rome 00133, Italy
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA
| | - Mehmet Remzi Dokmeci
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-106 Warsaw, Poland
| | - Ali Khademhosseini
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
- Department of Chemical and Biomolecular Engineering, California NanoSystems Institute (CNSI), Department of Bioengineering, and Jonsson Comprehensive Cancer Centre University of California, Los Angeles, California 90095, United States
| |
Collapse
|
88
|
Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from Benches to Translational Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805510. [PMID: 31033203 PMCID: PMC6752725 DOI: 10.1002/smll.201805510] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Indexed: 05/07/2023]
Abstract
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Wanjun Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, P.R. China
| | - Andrea Jimenez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biomedical Engineering Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Jingzhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding 071000, P.R. China
| | - Ali Akpek
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Xiao Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, P.R. China
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ning Hu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Jingwei Xie
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
89
|
Ashammakhi N, Ahadian S, Pountos I, Hu SK, Tellisi N, Bandaru P, Ostrovidov S, Dokmeci MR, Khademhosseini A. In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices 2019; 21:42. [PMID: 30955134 DOI: 10.1007/s10544-019-0372-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA.
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA.
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.
- School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA
| | - Ippokratis Pountos
- Department of Trauma and Orthopaedics, University of Leeds, Leeds, UK
- Chapel Allerton Hospital, Leeds Teaching Hospitals, Leeds, UK
| | - Shu-Kai Hu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Nazzar Tellisi
- Department of Trauma and Orthopaedics, University of Leeds, Leeds, UK
| | - Praveen Bandaru
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Mehmet Remzi Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA.
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, California, Los Angeles, USA.
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
90
|
O’Connell CD, Onofrillo C, Duchi S, Li X, Zhang Y, Tian P, Lu L, Trengove A, Quigley A, Gambhir S, Khansari A, Mladenovska T, O’Connor A, Di Bella C, Choong PF, Wallace GG. Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl. Biofabrication 2019; 11:035003. [DOI: 10.1088/1758-5090/ab0b7c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
91
|
PRGF-Modified Collagen Membranes for Guided Bone Regeneration: Spectroscopic, Microscopic and Nano-Mechanical Investigations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of our study was to evaluate the properties of different commercially available resorbable collagen membranes for guided bone regeneration, upon addition of plasma rich in growth factors (PRGF). The structural and morphological details, mechanical properties, and enzymatic degradation were investigated in a new approach, providing clinicians with new data in order to help them in a successful comparison and better selection of membranes with respect to their placement and working condition. Particular characteristics such as porosity, fiber density, and surface topography may influence the mechanical behavior and performances of the membranes, as revealed by SEM/AFM and nanoindentation measurements. The mechanical properties and enzymatic degradation of the membranes were analyzed in a comparative manner, before and after PRGF-modification. The changes in Young modulus values are correlated with the ultrastructural properties of each membrane type. The enzymatic (trypsin) degradation test also emphasized that PRGF-modified membranes exhibit a slower degradation compared to the native ones.
Collapse
|
92
|
Barbosa MZ, Zylbersztejn DS, de Mattos LA, Carvalho LF. Three-dimensionally-printed models in reproductive surgery: systematic review and clinical applications. ACTA ACUST UNITED AC 2019; 71:235-244. [PMID: 30756546 DOI: 10.23736/s0026-4784.19.04319-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION 3D printing has wide application in medicine while it provides customizability and precision for anatomical model development. Our aims were to perform a systematic review and to explore the use of 3D printing applications on human reproduction and reproductive surgery. EVIDENCE ACQUISITION We have performed a systematic review in PubMed database to assess previous publications within 3D printing in human reproduction and gynecology. We have developed 3D models according to patients' magnetic resonance images (MRI). MRI were transformed into DICOM images that originated our 3D virtual models and PolyJet technology was applied for the printing process. We included two infertile patients in reproductive age with surgical indication for hysteroscopy septoplasty and myomectomy. EVIDENCE SYNTHESIS Of 1965 studies searched, we excluded 1934 publications based on their titles. Abstracts of 31 remained studies were read, and 24 studies were selected for full-text analysis. We included 11 studies for the systematic review, based on our eligibility criteria. We have designed four 3D models (uterus, ovaries, uterine cervix and uterus with fibroids) that provided enriched information to improve pre-surgical planning, medical training, fertility-sparing surgery, patient comprehension of surgical procedures and assisted reproduction applications. CONCLUSIONS 3D models for human reproduction are feasible. They might improve assisted reproductive techniques, help in pre-surgical planning for reproductive surgeries, and provide accurate measures of ovarian reserve. Besides, we see future applications in endometrioma research and in the fabrication of devices, such as embryo transfer catheter and a 3D printed embryo.
Collapse
Affiliation(s)
- Marina Z Barbosa
- Baby Center, Institute for Reproductive Medicine, São Paulo, Brazil.,Institute of Clinical Research and Teaching Development, São Paulo, Brazil
| | | | - Leandro A de Mattos
- Department of Diagnostic Imaging, Federal University of São Paulo, São Paulo, Brazil
| | - Luiz F Carvalho
- Baby Center, Institute for Reproductive Medicine, São Paulo, Brazil - .,Institute of Clinical Research and Teaching Development, São Paulo, Brazil
| |
Collapse
|
93
|
Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801039. [PMID: 30643715 PMCID: PMC6325626 DOI: 10.1002/advs.201801039] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Advances in genomic sequencing and bioinformatics have led to the prospect of precision medicine where therapeutics can be advised by the genetic background of individuals. For example, mapping cancer genomics has revealed numerous genes that affect the therapeutic outcome of a drug. Through materials and cell engineering, many opportunities exist for engineers to contribute to precision medicine, such as engineering biosensors for diagnosis and health status monitoring, developing smart formulations for the controlled release of drugs, programming immune cells for targeted cancer therapy, differentiating pluripotent stem cells into desired lineages, fabricating bioscaffolds that support cell growth, or constructing "organs-on-chips" that can screen the effects of drugs. Collective engineering efforts will help transform precision medicine into a more personalized and effective healthcare approach. As continuous progress is made in engineering techniques, more tools will be available to fully realize precision medicine's potential.
Collapse
Affiliation(s)
- Wujin Sun
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Junmin Lee
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Shiming Zhang
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Cole Benyshek
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Mehmet R. Dokmeci
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California–Los Angeles10833 Le Conte AveLos AngelesCA90024USA
- Department of Chemical and Biomolecular EngineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center of NanotechnologyDepartment of PhysicsKing Abdulaziz UniversityJeddah21569Saudi Arabia
- Department of Bioindustrial TechnologiesCollege of Animal Bioscience and TechnologyKonkuk UniversitySeoul05029Republic of Korea
| |
Collapse
|
94
|
Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019; 1:100008. [PMID: 32159140 PMCID: PMC7061634 DOI: 10.1016/j.mtbio.2019.100008] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
The native tissues are complex structures consisting of different cell types, extracellular matrix materials, and biomolecules. Traditional tissue engineering strategies have not been able to fully reproduce biomimetic and heterogeneous tissue constructs because of the lack of appropriate biomaterials and technologies. However, recently developed three-dimensional bioprinting techniques can be leveraged to produce biomimetic and complex tissue structures. To achieve this, multicomponent bioinks composed of multiple biomaterials (natural, synthetic, or hybrid natural-synthetic biomaterials), different types of cells, and soluble factors have been developed. In addition, advanced bioprinting technologies have enabled us to print multimaterial bioinks with spatial and microscale resolution in a rapid and continuous manner, aiming to reproduce the complex architecture of the native tissues. This review highlights important advances in heterogeneous bioinks and bioprinting technologies to fabricate biomimetic tissue constructs. Opportunities and challenges to further accelerate this research area are also described.
Collapse
Affiliation(s)
- N. Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, 8000, Finland
| | - S. Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - C. Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
| | - H. Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - H. Ko
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - R. Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - N. Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - A. Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
95
|
Farzin A, Miri AK, Sharifi F, Faramarzi N, Jaberi A, Mostafavi A, Solorzano R, Zhang YS, Annabi N, Khademhosseini A, Tamayol A. 3D-Printed Sugar-Based Stents Facilitating Vascular Anastomosis. Adv Healthc Mater 2018; 7:e1800702. [PMID: 30375196 DOI: 10.1002/adhm.201800702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Microvascular anastomosis is a common part of many reconstructive and transplant surgical procedures. While venous anastomosis can be achieved using microvascular anastomotic coupling devices, surgical suturing is the main method for arterial anastomosis. Suture-based microanastomosis is time-consuming and challenging. Here, dissolvable sugar-based stents are fabricated as an assistive tool for facilitating surgical anastomosis. The nonbrittle sugar-based stent holds the vessels together during the procedure and are dissolved upon the restoration of the blood flow. The incorporation of sodium citrate minimizes the chance of thrombosis. The dissolution rate and the mechanical properties of the sugar-based stent can be tailored between 4 and 8 min. To enable the fabrication of stents with desirable geometries and dimensions, 3D printing is utilized to fabricate the stents. The effectiveness of the printed sugar-based stent is assessed ex vivo. The fabrication procedure is fast and can be performed in the operating room.
Collapse
Affiliation(s)
- Ali Farzin
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
| | - Fatemeh Sharifi
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
- School of Mechanical Engineering; Sharif University of Technology; Tehran 14588-89694 Iran
| | - Negar Faramarzi
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
| | - Arian Jaberi
- School of Mechanical Engineering; Shiraz University; Shiraz 71936-16548 Iran
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering; University of Nebraska; Lincoln NE 68588 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
| | - Nasim Annabi
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
| | - Ali Khademhosseini
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
- Center of Nanotechnology; Department of Physics; King Abdulaziz University; Jeddah 21569 Saudi Arabia
- Center for Minimally Invasive Therapeutics (CMIT); Department of Bioengineering; Department of Chemical and Biomolecular Engineering; Department of Radiology; California NanoSystems Institute (CNSI); University of California; Los Angeles CA 90095 USA
| | - Ali Tamayol
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02139 USA
- Department of Mechanical and Materials Engineering; University of Nebraska; Lincoln NE 68588 USA
| |
Collapse
|
96
|
Derakhshandeh H, Kashaf SS, Aghabaglou F, Ghanavati IO, Tamayol A. Smart Bandages: The Future of Wound Care. Trends Biotechnol 2018; 36:1259-1274. [PMID: 30197225 DOI: 10.1016/j.tibtech.2018.07.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 01/16/2023]
Abstract
Chronic non-healing wounds are major healthcare challenges that affect a noticeable number of people; they exert a severe financial burden and are the leading cause of limb amputation. Although chronic wounds are locked in a persisting inflamed state, they are dynamic and proper therapy requires identifying abnormalities, administering proper drugs and growth factors, and modulating the conditions of the environment. In this review article, we discuss technologies that have been developed to actively monitor the wound environment. We also highlight drug delivery tools that have been integrated with bandages to facilitate precise temporal and spatial control over drug release and review automated or semi-automated systems that can respond to the wound environment.
Collapse
Affiliation(s)
- Hossein Derakhshandeh
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68508, USA
| | - Sara Saheb Kashaf
- The University of Chicago Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Fariba Aghabaglou
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68508, USA
| | - Ian O Ghanavati
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68508, USA
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68508, USA; Current address: 900 N16th Street, Room NH W332, Lincoln, NE 68508, USA.
| |
Collapse
|
97
|
Rajkovic O, Potjewyd G, Pinteaux E. Regenerative Medicine Therapies for Targeting Neuroinflammation After Stroke. Front Neurol 2018; 9:734. [PMID: 30233484 PMCID: PMC6129611 DOI: 10.3389/fneur.2018.00734] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a major pathological event following ischemic stroke that contributes to secondary brain tissue damage leading to poor functional recovery. Following the initial ischemic insult, post-stroke inflammatory damage is driven by initiation of a central and peripheral innate immune response and disruption of the blood-brain barrier (BBB), both of which are triggered by the release of pro-inflammatory cytokines and infiltration of circulating immune cells. Stroke therapies are limited to early cerebral blood flow reperfusion, and whilst current strategies aim at targeting neurodegeneration and/or neuroinflammation, innovative research in the field of regenerative medicine aims at developing effective treatments that target both the acute and chronic phase of inflammation. Anti-inflammatory regenerative strategies include the use of nanoparticles and hydrogels, proposed as therapeutic agents and as a delivery vehicle for encapsulated therapeutic biological factors, anti-inflammatory drugs, stem cells, and gene therapies. Biomaterial strategies-through nanoparticles and hydrogels-enable the administration of treatments that can more effectively cross the BBB when injected systemically, can be injected directly into the brain, and can be 3D-bioprinted to create bespoke implants within the site of ischemic injury. In this review, these emerging regenerative and anti-inflammatory approaches will be discussed in relation to ischemic stroke, with a perspective on the future of stroke therapies.
Collapse
Affiliation(s)
- Olivera Rajkovic
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Geoffrey Potjewyd
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
98
|
Affiliation(s)
- Samad Ahadian
- Department of Bioengineering, University of California, Los Angeles, CA 90095-1600, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095-1600, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1600, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, CA 90095-1600, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095-1600, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1600, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095-1600, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|