51
|
Zhang Y, Shen Z, Wen R. In situ visualization of synergistic effects between electrolyte additives and catalytic electrodes in Li-O 2 batteries. Chem Commun (Camb) 2022; 58:13381-13384. [PMID: 36377814 DOI: 10.1039/d2cc04808f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
By using in situ atomic force microscopy, Li-O2 interfacial reactions promoted synergistically by the electrolyte additive K+ and Pt nanoparticles electrode are visualized. The Pt nanoparticles electrode promotes the formation of the intermediate lithium superoxide (LiO2) and K+ assists its diffusion into the electrolyte, thereby promoting the formation of large-sized discharge products during discharging and increasing the discharge capacity of the Li-O2 battery. These results provide direct evidence for clarifying the interfacial synergy mechanism of electrolyte additives and solid catalysts.
Collapse
Affiliation(s)
- Yaozu Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Shen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
52
|
Chen P, Bai F, Deng JW, Liu B, Zhang T. Recent progresses and challenges in aqueous lithium-air batteries relating to the solid electrolyte separator: A mini-review. Front Chem 2022; 10:1035691. [PMID: 36300027 PMCID: PMC9589035 DOI: 10.3389/fchem.2022.1035691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The lithium-air (Li-air) battery utilizes infinite oxygen in the air to store or release energy through a semi-open cathode structure and bears an ultra-high theoretical energy density of more than 1,000 Wh/kg. Therefore, it has been denoted as the candidate for next-generation energy storage in versatile fields such as electric vehicles, telecommunications, and special power supply. Among all types of Li-air batteries, an aqueous Li-air battery bears the advantages of a high theoretical energy density of more than 1,700 Wh/kg and does not have the critical pure oxygen atmosphere issues in a non-aqueous lithium-air battery system, which is more promising for the actual application. To date, great achievements have been made in materials' design and cell configurations, but critical challenges still remain in the field of the solid electrolyte separator, its related lithium stripping/plating at the lithium anode, and catholyte design. In this mini-review, we summarized recent progress related to the solid electrolyte in aqueous Li-air batteries focusing on both material and battery device development. Moreover, we proposed a discussion and unique outlook on improving solid electrolyte compatibility and battery performance, thus designing an aqueous Li-air battery with higher energy density and better cycle performance in the future.
Collapse
Affiliation(s)
- Peng Chen
- School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing, China
| | - Fan Bai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Jun wen Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Bin Liu
- Department of Applied Chemistry, Kyushu University, Fukuoka, Japan
| | - Tao Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
53
|
Xue Z, Wang Z, Li Q, Wang D, Xiang L, Mai Z, Du P, Sun H, Xing G. Tailored Plasmonic Ru/O V-MoO 2 on TiO 2 Catalysts via Solid-Phase Interface Engineering: Toward Highly Efficient Photoassisted Li-O 2 Batteries with Enhanced Cycling Reliability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44251-44260. [PMID: 36126181 DOI: 10.1021/acsami.2c08834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photoassisted electrochemical reactions are considered an effective method to reduce the overpotential of Li-O2 batteries. However, achieving long-term cell cycling stability remains a challenge. Here, we report a solid-phase interfacial reaction (SPIR) strategy that introduces both oxygen vacancies (OV) and metal centers (Ru) into the MoO2 to synthesize the surface plasmon (i.e., Ru/OV-MoO2). Then, Ru/OV-MoO2 can be uniformly loaded on the TiO2 nanowires by the hydrothermal method. The plasma effect of Ru/OV-MoO2 demonstrates the effective reduction of the photoexcited electron and hole recombination to improve visible light-harvesting ability. The lifetime of electrons and holes can be extended by Ru nanoparticles, which is beneficial for promoting the formation and decomposition of Li2O2. In addition, the generated OV further enhanced the migration of electrons and Li+, thus improving the ORR performance. The Ru/OV-MT/CC cathode corroborates excellent stability and catalytic performance in the photoassisted Li-O2 battery, with an overpotential value of 0.47 V, achieving the highest energy efficiency of 93.94%, retaining at 89.13% after 800 h. This work offers a platform for preparing a stable, bifunctional catalyst with the high total activity of a photoassisted Li-O2 battery.
Collapse
Affiliation(s)
- Zhichao Xue
- School of Science, Shenyang Jianzhu University, Shenyang 110168, P. R. China
| | - Zhizhe Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, P. R. China
| | - Qiang Li
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, P. R. China
| | - Dandan Wang
- Hubei JiuFengShan Laboratory, Wuhan, Hubei 420000, P. R. China
| | - Lei Xiang
- Hubei JiuFengShan Laboratory, Wuhan, Hubei 420000, P. R. China
| | - Zhihong Mai
- Hubei JiuFengShan Laboratory, Wuhan, Hubei 420000, P. R. China
| | - Peng Du
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Hong Sun
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, P. R. China
| | - Guozhong Xing
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
54
|
Yu X, Liu G, Wang T, Gong H, Qu H, Meng X, He J, Ye J. Recent Advances in the Research of Photo‐Assisted Lithium‐Based Rechargeable Batteries. Chemistry 2022; 28:e202202104. [DOI: 10.1002/chem.202202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xingyu Yu
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Guoping Liu
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 063210 P. R. China
| | - Tao Wang
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China
| | - Hongjiao Qu
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Xianguang Meng
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 063210 P. R. China
| | - Jianping He
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory School of Material Science and Engineering Tianjin University Tianjin 300072 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
55
|
Su L, Zhang Y, Zhan X, Zhang L, Zhao Y, Zhu X, Wu H, Chen H, Shen C, Wang L. Pr 6O 11: Temperature-Dependent Oxygen Vacancy Regulation and Catalytic Performance for Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40975-40984. [PMID: 36049121 DOI: 10.1021/acsami.2c10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many challenges still exist in lithium-oxygen batteries (LOBs), particularly exploring an efficient catalyst to optimize the reaction pathway and regulate the Li2O2 nucleation. Pr6O11 has a unique 4f electronic structure and the highest oxygen ion mobility among rare earth oxides, exhibiting superior electronic, optical, and chemical properties. These unique properties might endow it with advanced catalytic activities for LOBs. This work reports two crystal forms of Pr6O11 as novel catalysts and regulates the oxygen vacancy (Vo) concentrations by feasible calcination. Thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) confirm the conversion from commercial Pr6O11 to cubic fluorite Pr6O11 and Vo-rich Pr6O11. Photographs, high-resolution transmission electron microscopy, selected area electron diffraction, XPS, and electron paramagnetic resonance robustly demonstrate the temperature-dependent evolution of Vo. Ex situ XPS, scanning electron microscopy, and electrochemical techniques are used to study the catalytic mechanism and electrochemical reversibility. It is found that an appropriate Vo concentration can boost O2 adsorption/desorption, accelerate electron transport, and reduce the reaction energy barrier. Vo-rich Pr6O11 optimizes the reaction pathway by offering an intermediate Li2-xO2 (with metalloid conductivity) and adjusting Li2O2 into vertically staggered nanoflakes, effectively avoiding the suffocation of the catalytic surface and presenting excellent capacity, cycling stability, and rate performance.
Collapse
Affiliation(s)
- Liwei Su
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yifan Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xingyi Zhan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lei Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yizhe Zhao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaolan Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hao Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Huan Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chaoqi Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lianbang Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
56
|
Zhang Y, Xie S, Li D, Liu Y, Li C, Liu J, Xie H. Suppressing Redox Shuttling with Lithiated Nafion-Modified Separators for Li-O 2 Batteries. CHEMSUSCHEM 2022; 15:e202200769. [PMID: 35750649 DOI: 10.1002/cssc.202200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Although the employment of redox mediator (RM) is an effective strategy to reduce the overpotential by avoiding the direct electrochemical oxidization of Li2 O2 during charging, an unexpected redox shuttling in Li-O2 system leads to RM degradation and continuous deterioration of Li anode, finally resulting in a limited cycling stability. Here, a functional lithiated Nafion-modified separator was firstly introduced to inhibit the shuttle effect by coulombic/electrostatic interactions in RM-involved Li-O2 batteries. The fabrication of the separator involved easily accessible raw materials and an easy-to-operate process, which made it suitable for large-scale production. The enhancement of lithiated process on electrochemical properties was systematically investigated. In addition, the influence of decorated amount on cycling stability was also studied. Furthermore, the functional contribution of lithiated Nafion on inhibition of redox shuttling and the working mechanism for cells with and without as-prepared separators were proposed. This work can give an insight into the development of functional separator (i. e., activity issue) and the suppression of parasitic reactions (i. e., selectivity issue) in Li-O2 batteries.
Collapse
Affiliation(s)
- Yuqing Zhang
- Nation & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Shuyuan Xie
- Nation & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Dan Li
- Nation & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yulong Liu
- Nation & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Chao Li
- School of Business Administration, Changchun Sci-Tech University, Changchun, Jilin, 130600, P. R. China
| | - Jia Liu
- Nation & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Haiming Xie
- Nation & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
57
|
|
58
|
Jiao H, Sun G, Wang Y, Zhang Z, Wang Z, Wang H, Li H, Feng M. Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
59
|
Liu W, Yang Y, Hu X, Zhang Q, Wang C, Wei J, Xie Z, Zhou Z. Light-Assisted Li-O 2 Batteries with Lowered Bias Voltages by Redox Mediators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200334. [PMID: 35678600 DOI: 10.1002/smll.202200334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The enormous overpotential caused by sluggish kinetics of the oxygen reduction reaction and the oxygen evolution reaction prevents the practical application of Li-O2 batteries. The recently proposed light-assisted strategy is an effective way to improve round-trip efficiency; however, the high-potential photogenerated holes during the charge would degrade the electrolyte with side reactions and poor cycling performance. Herein, a synergistic interaction between a polyterthiophene photocatalyst and a redox mediator is employed in Li-O2 batteries. During the discharge, the voltage can be compensated by the photovoltage generated on the photoelectrode. Upon the charge with illumination, the photogenerated holes can be consumed by the oxidization of iodide ions, and thus the external circuit voltage is compensated by photogenerated electrons. Accordingly, a smaller bias voltage is needed for the semiconductor to decompose Li2 O2 , and the potential of photogenerated holes decreases. Finally, the round-trip efficiency of the battery reaches 97% with a discharge voltage of 3.10 V and a charge voltage of 3.19 V. The batteries show stable operation up to 150 cycles without increased polarization. This work provides new routes for light-assisted Li-O2 batteries with reduced overpotential and boosted efficiency.
Collapse
Affiliation(s)
- Weiwei Liu
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China
| | - Yuting Yang
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China
| | - Xu Hu
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China
| | - Qinming Zhang
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China
| | - Chengyi Wang
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China
| | - Jinping Wei
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China
| | - Zhaojun Xie
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China
| | - Zhen Zhou
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
60
|
Yan Y, Shu C, Zeng T, Wen X, Liu S, Deng D, Zeng Y. Surface-Preferred Crystal Plane Growth Enabled by Underpotential Deposited Monolayer toward Dendrite-Free Zinc Anode. ACS NANO 2022; 16:9150-9162. [PMID: 35696327 DOI: 10.1021/acsnano.2c01380] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aqueous Zn batteries with ideal energy density and absolute safety are deemed the most promising candidates for next-generation energy storage systems. Nevertheless, stubborn dendrite formation and notorious parasitic reactions on the Zn metal anode have significantly compromised the Coulombic efficiency (CE) and cycling stability, severely impeding the Zn metal batteries from being deployed in the proposed applications. Herein, instead of random growth of Zn dendrites, a guided preferential growth of planar Zn layers is accomplished via atomic-scale matching of the surface lattice between the hexagonal close-packed (hcp) Zn(002) and face-centered cubic (fcc) Cu(100) crystal planes, as well as underpotential deposition (UPD)-enabled zincophilicity. The underlying mechanism of uniform Zn plating/stripping on the Cu(100) surface is demonstrated by ab initio molecular dynamics simulations and density functional theory calculations. The results show that each Zn atom layer is driven to grow along the exposed closest packed plane (002) in hcp Zn metal with a low lattice mismatch with Cu(100), leading to compact and planar Zn deposition. In situ optical visualization inspection is adopted to monitor the dynamic morphology evolution of such planar Zn layers. With this surface texture, the Zn anode exhibits exceptional reversibility with an ultrahigh Coulombic efficiency (CE) of 99.9%. The MnO2//Zn@Cu(100) full battery delivers long cycling stability over 548 cycles and outstanding specific energy and power density (112.5 Wh kg-1 even at 9897.1 W kg-1). This work is expected to address the issues associated with Zn metal anodes and promote the development of high-energy rechargeable Zn metal batteries.
Collapse
Affiliation(s)
- Yu Yan
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, People's Republic of China
| | - Chaozhu Shu
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, People's Republic of China
| | - Ting Zeng
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, People's Republic of China
| | - Xiaojuan Wen
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, People's Republic of China
| | - Sheng Liu
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, People's Republic of China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Ying Zeng
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, People's Republic of China
| |
Collapse
|
61
|
Silva JFL, Policano MC, Tonon GC, Anchieta CG, Doubek G, Filho RM. The Potential of Hydrophobic Membranes in Enabling the Operation of Lithium-Air Batteries with Ambient Air. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
62
|
Wu Y, Ding H, Yang T, Xia Y, Zheng H, Wei Q, Han, J, Peng D, Yue G. Composite NiCo 2 O 4 @CeO 2 Microsphere as Cathode Catalyst for High-Performance Lithium-Oxygen Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200523. [PMID: 35475326 PMCID: PMC9189671 DOI: 10.1002/advs.202200523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/27/2022] [Indexed: 05/06/2023]
Abstract
The large overpotential and poor cycle stability caused by inactive redox reactions are tough challenges for lithium-oxygen batteries (LOBs). Here, a composite microsphere material comprising NiCo2 O4 @CeO2 is synthesized via a hydrothermal approach followed by an annealing processing, which is acted as a high performance electrocatalyst for LOBs. The unique microstructured catalyst can provide enough catalytic surface to facilitate the barrier-free transport of oxygen as well as lithium ions. In addition, the special microsphere and porous nanoneedles structure can effectively accelerate electrolyte penetration and the reversible formation and decomposition process of Li2 O2 , while the introduction of CeO2 can increase oxygen vacancies and optimize the electronic structure of NiCo2 O4 , thereby enhancing the electron transport of the whole electrode. This kind of catalytic cathode material can effectively reduce the overpotential to only 1.07 V with remarkable cycling stability of 400 loops under 500 mA g-1 . Based on the density functional theory calculations, the origin of the enhanced electrochemical performance of NiCo2 O4 @CeO2 is clarified from the perspective of electronic structure and reaction kinetics. This work demonstrates the high efficiency of NiCo2 O4 @CeO2 as an electrocatalyst and confirms the contribution of the current design concept to the development of LOBs cathode materials.
Collapse
Affiliation(s)
- Yuanhui Wu
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Haoran Ding
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Tianlun Yang
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Yongji Xia
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Hongfei Zheng
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Qiulong Wei
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Jiajia Han,
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Dong‐Liang Peng
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Guanghui Yue
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
63
|
Bimetallic ZIF-derived cobalt nanoparticles anchored on N- and S-codoped porous carbon nanofibers as cathode catalyst for Li-O2 batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Ma S, Lu Y, Zhu X, Li Z, Liu Q. Efficient Modulation of Electron Pathways by Constructing a MnO 2-x@CeO 2 Interface toward Advanced Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22104-22113. [PMID: 35533014 DOI: 10.1021/acsami.2c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A major challenge for Li-O2 batteries is to facilely achieve the formation and decomposition of the discharge product Li2O2, and the development of an active and synergistic cathode is of great significance to efficiently accelerate its formation/decomposition kinetics. Herein, a novel strategy is presented by constructing a MnO2-x@CeO2 heterostructure on the porous carbon matrix. When it was used as a cathode for Li-O2 batteries, excellent electrochemical performances, including low overpotential, large discharge capacity, and superior cycling stability were obtained. Series theoretical calculations were conducted to reveal the mechanism for the reversible battery reactions and explain how Li2O2 interacts with the MnO2-x@CeO2 interface. Apart from the electronic ladders formed between MnO2-x 3d and CeO2 4f orbitals, which can act as a highly efficient "electron transfer expressway", the specific adsorption of MnO2-x and CeO2 with Li2O2 molecules contributes to the enhanced anchoring force of Li2O2 and delocalization of the electron cloud on the Li-O bond. Thanks to the constructed heterostructure and synergistic effect, filmlike Li2O2 can be formed through a surface pathway, and when charging, it accelerates the separation of electrons and Li+ in Li2O2, thus achieving fast redox kinetics and low overpotential.
Collapse
Affiliation(s)
- Shiyu Ma
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Youcai Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaodan Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhongjun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qingchao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
65
|
Fukushima K, Lee SY, Tanaka K, Sasaki K, Ishizaki T. Effect of Surface Modification for Carbon Cathode Materials on Charge-Discharge Performance of Li-Air Batteries. MATERIALS 2022; 15:ma15093270. [PMID: 35591605 PMCID: PMC9102737 DOI: 10.3390/ma15093270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/07/2022]
Abstract
Li-air batteries have attracted considerable attention as rechargeable secondary batteries with a high theoretical energy density of 11,400 kWh/g. However, the commercial application of Li-air batteries is hindered by issues such as low energy efficiency and a short lifetime (cycle numbers). To overcome these issues, it is important to select appropriate cathode materials that facilitate high battery performance. Carbon materials are expected to be ideal materials for cathodes due to their high electrical conductivity and porosity. The physicochemical properties of carbon materials are known to affect the performance of Li-air batteries because the redox reaction of oxygen, which is an important reaction for determining the performance of Li-air batteries, occurs on the carbon materials. In this study, we evaluated the effect of the surface modification of carbon cathode materials on the charge-discharge performance of Li-air batteries using commercial Ketjenblack (KB) and KB subjected to vacuum ultraviolet (VUV) irradiation as cathodes. The surface wettability of KB changed from hydrophobic to hydrophilic as a result of the VUV irradiation. The ratio of COOH and OH groups on the KB surface increased after VUV irradiation. Raman spectra demonstrated that no structural change in the KB before and after VUV irradiation was observed. The charge and discharge capacities of a Li-air battery using VUV-irradiated KB as the cathode decreased compared to original KB, whereas the cycling performance of the Li-air battery improved considerably. The sizes and shapes of the discharge products formed on the cathodes changed considerably due to the VUV irradiation. The difference in the cycling performance of the Li-air battery was discussed from the viewpoint of the chemical properties of KB and VUV-irradiated KB.
Collapse
Affiliation(s)
- Kaito Fukushima
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.F.); (K.T.); (K.S.)
| | - So Yoon Lee
- Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Kenichi Tanaka
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.F.); (K.T.); (K.S.)
| | - Kodai Sasaki
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.F.); (K.T.); (K.S.)
| | - Takahiro Ishizaki
- Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
- Correspondence: ; Tel.: +81-3-5859-8115
| |
Collapse
|
66
|
He M, Long J, Li M, Zheng R, Hu A, Du D, Yan Y, Ran Z, Ren L, Li R, Zhao C, Wen X, Xu H, Shu C. Synergy of cobalt vacancies and iron doping in cobalt selenide to promote oxygen electrode reactions in lithium-oxygen batteries. J Colloid Interface Sci 2022; 612:171-180. [PMID: 34992017 DOI: 10.1016/j.jcis.2021.12.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
Electronic structural engineering plays a key role in the design of high-efficiency catalysts. Here, to achieve optimal electronic states, introduction of exotic Fe dopant and Co vacancy into CoSe2 nanosheet (denoted as Fe-CoSe2-VCo) is presented. The obtained Fe-CoSe2-VCo demonstrates excellent catalytic activity as compared to CoSe2. Experimental results and density functional theory (DFT) calculations confirm that Fe dopant and Co defects cause significant electron delocalization, which reduces the adsorption energy of LiO2 intermediate on the catalyst surface, thereby obviously improving the electrocatalytic activity of Fe-CoSe2-VCo towards oxygen redox reactions. Moreover, the synergistic effect between Co vacancy and Fe dopant is able to optimize the microscopic electronic structure of Co ion, further reducing the energy barrier of oxygen electrode reactions on Fe-CoSe2-VCo. And the lithium-oxygen batteries (LOBs) based on Fe-CoSe2-VCo electrodes demonstrate a high Coulombic efficiency (CE) of about 72.66%, a large discharge capacity of about 13723 mA h g-1, and an excellent cycling life of about 1338 h. In general, the electronic structure modulation strategy with the reasonable introduction of vacancy and dopant is expected to inspire the design of highly efficient catalysts for various electrochemical systems.
Collapse
Affiliation(s)
- Miao He
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| | - Minglu Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Ruixin Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Anjun Hu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Dayue Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yu Yan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Zhiqun Ran
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Longfei Ren
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Runjing Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Chuan Zhao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
67
|
Lu S, Zhu K, Hu X. Ab Initio Exploration of Energetically and Kinetically Favorable ORR Activity on a 1T-ZrO 2 Monolayer for a Nonaqueous Lithium-Oxygen Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13410-13418. [PMID: 35271770 DOI: 10.1021/acsami.2c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we explore the potential applications of the experimentally synthesized ZrO2 monolayer as the cathode catalyst for nonaqueous lithium-oxygen batteries. First, we show that a new peroxide-like adsorption geometry is the most stable configuration for LiO2, which is distinct from the previously known O-Li-O triangular geometry. The proposed most stable adsorption configuration is because the Zr atoms in the substrate play a critical role in stabilizing the LiO2 cluster. Second, our ab initio calculations indicate that both the ORR and OER catalytic activities are most likely to adopt the four-electron mechanism with a considerably low overpotential of only 0.44 and 0.76 V, respectively. Finally, we show that the adsorption energy of Li2O2 is a good descriptor for both ORR and OER catalytic activities, and weak Li2O2 adsorption behavior is positively related to low overpotentials and satisfactory catalytic performance.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Kai Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaojun Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
68
|
Yan Y, Ran Z, Zeng T, Wen X, Xu H, Li R, Zhao C, Shu C. Interfacial Electron Redistribution of Hydrangea-like NiO@Ni 2 P Heterogeneous Microspheres with Dual-Phase Synergy for High-Performance Lithium-Oxygen Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106707. [PMID: 35032095 DOI: 10.1002/smll.202106707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Lithium-oxygen batteries (LOBs) with ultra-high theoretical energy density (≈3500 Wh kg-1 ) are considered as the most promising energy storage systems. However, the sluggish kinetics during the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) can induce large voltage hysteresis, inferior roundtrip efficiency and unsatisfactory cyclic stability. Herein, hydrangea-like NiO@Ni2 P heterogeneous microspheres are elaborately designed as high-efficiency oxygen electrodes for LOBs. Benefitting from the interfacial electron redistribution on NiO@Ni2 P heterostructure, the electronic structure can be modulated to ameliorate the chemisorption of the intermediates, which is confirmed by density functional theory (DFT) calculations and experimental characterizations. In addition, the interpenetration of the PO bond at the NiO@Ni2 P heterointerface leads to the internal doping effect, thereby boosting electron transfer to further improve ORR and OER activities. As a result, the NiO@Ni2 P electrode shows a low overpotential of only 0.69 V, high specific capacity of 18254.1 mA h g-1 and superior long-term cycling stability of over 1400 h. The exploration of novel bifunctional electrocatalyst in this work provides a new solution for the practical application of LOBs.
Collapse
Affiliation(s)
- Yu Yan
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Zhiqun Ran
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Ting Zeng
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Xiaojuan Wen
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - HaoYang Xu
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Runjing Li
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chuan Zhao
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| |
Collapse
|
69
|
Chirkov YG, Rostokin VI, Korchagin OV, Andreev VN, Bogdanovskaya VA. Galvanostatic Discharge of Lithium–Oxygen Battery: The Influence of the Active Layer Thickness on the Positive Electrode Characteristics. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Li D, Liang J, Robertson SJ, Chen Y, Wang N, Shao M, Shi Z. Heterogeneous Bimetallic Organic Coordination Polymer-Derived Co/Fe@NC Bifunctional Catalysts for Rechargeable Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5459-5467. [PMID: 35075893 DOI: 10.1021/acsami.1c22643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Li-O2 battery has attracted substantial attention due to its high theoretical energy density. In particular, high-efficiency oxygen catalysts are very important for the design of practical Li-O2 batteries. Herein, we have synthesized heterogeneous crystalline-coated partially crystalline bimetallic organic coordination polymers (PC@C-BMOCPs), which are further pyrolyzed to obtain Co- and Fe-based nanoparticles embedded within rodlike N-doped carbon (Co/Fe@NC) as a bifunctional oxygen reduction reaction/oxygen evolution reaction (ORR/OER) catalyst used in the Li-O2 battery. Owing to excellent ORR/OER catalytic ability, the Co/Fe@NC bifunctional catalyst exhibits an efficient reversible reaction between O2 and Li2O2. Additionally, a large number of mesoporous channels are present in the core-shell Co/Fe@NC nanoparticles. These channels not only promote the diffusion of Li+ and O2, but also create ample room to store insoluble discharge product Li2O2. The Li-O2 batteries utilizing the bifunctional Co/Fe@NC oxygen electrode exhibit a large capacity of 17,326 mAh g-1, a long cycling life of more than 250 cycles, and excellent reversibility. This work provides a universally applicable strategy for designing nonnoble metal ORR/OER catalysts with excellent electrochemical performance for metal-air batteries.
Collapse
Affiliation(s)
- Dongdong Li
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianwen Liang
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Stuart J Robertson
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yingtong Chen
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Naiguang Wang
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Guangzhou HKUST, HKUST-Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Zhicong Shi
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
71
|
Effect of O2 flow in discharge products and performance of Li-O2 batteries. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
72
|
Li X, Han G, Qian Z, Liu Q, Qiang Z, Song Y, Huo H, Du C, Lou S, Yin G. π-Conjugation Induced Anchoring of Ferrocene on Graphdiyne Enable Shuttle-Free Redox Mediation in Lithium-Oxygen Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103964. [PMID: 34821481 PMCID: PMC8811833 DOI: 10.1002/advs.202103964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Soluble redox mediators (RMs), an alternative to conventional solid catalysts, have been considered an effective countermeasure to ameliorate sluggish kinetics in the cathode of a lithium-oxygen battery recently. Nevertheless, the high mobility of RMs leads to serious redox shuttling, which induces an undesired lithium-metal degeneration and RM decomposition during trade-off catalysis against the sustainable operation of batteries. Here, a novel carbon family of graphdiyne matrix is first proposed to decouple the charge-carrying redox property of ferrocene and the shuttle effects. It is demonstrated that a ferrocene-anchored graphdiyne framework can function as stationary RM, not only preserving the redox-mediating capability of ferrocene, but also promoting the local orientated three-dimensional (3D) growth of Li2 O2 . As a result, the RM-assisted catalysis in lithium-oxygen battery remains of remarkable efficiency and stability without the depletion of oxidized RMs or lithium degradation, resulting in a significantly enhanced electrochemical performance.
Collapse
Affiliation(s)
- Xudong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Guokang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhengyi Qian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Qingsong Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhuomin Qiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Yajie Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Hua Huo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| |
Collapse
|
73
|
Yoon Y, Shin S, Shin MW. Ammonium Ionic Liquid-Functionalized Phenothiazine as a New Redox Mediator for High Chemical Stability on the Anode Surface in Lithium-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4220-4229. [PMID: 35005895 DOI: 10.1021/acsami.1c22261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The application of redox mediators (RMs) as soluble catalysts can address the problem of insufficient contact between conventional solid catalysts for lithium-air batteries (LABs). However, oxidized RM molecules migrate to the lithium anode and react with lithium, which results in the accumulation of surface corrosion products that weaken the redox activity of the RM. This paper presents a new combination of phenothiazine (PTZ) as an RM and an ammonium-based ionic liquid (IL) source as a protective agent to prevent the side reactions with lithium and to enhance the electrochemical performance of LABs. IL-functionalized PTZ (IL-PTZ) was successfully synthesized through N-alkylation, quaternization, and anion-exchange reactions. IL-PTZ improved the chemical stability of the RM molecules on the lithium surface as well as the electrochemical performance. A microstructural analysis revealed that the IL group in the IL-PTZ molecules facilitated smooth lithium stripping/plating by blocking the side reactions between the RM and lithium. Compared with the LAB with the PTZ electrolyte, that with the IL-PTZ electrolyte exhibited a significantly higher discharge capacity (2500 mA h/g vs 1500 mA h/g) and a cycle life that was 2 times longer. The IL-PTZ molecule was demonstrated to exhibit great potential as a novel soluble catalyst for application in high-performance LABs.
Collapse
Affiliation(s)
- Yeowon Yoon
- School of Integrated Technology, College of Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Seoyoon Shin
- School of Integrated Technology, College of Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Moo Whan Shin
- School of Integrated Technology, College of Engineering, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
74
|
Hase Y, Uyama T, Nishioka K, Seki J, Morimoto K, Ogihara N, Mukouyama Y, Nakanishi S. Positive Feedback Mechanism to Increase the Charging Voltage of Li-O 2 Batteries. J Am Chem Soc 2022; 144:1296-1305. [PMID: 35014793 DOI: 10.1021/jacs.1c10986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The large overpotential of nonaqueous Li-O2 batteries when charging causes low round-trip efficiency and decomposition of the electrode materials and electrolyte. The origins of this overpotential have been enthusiastically explored to date; however, a full understanding has not yet been reached because of the complexity of multistep reaction mechanisms. Here, we applied structural and electrochemical analysis techniques to investigate the reaction step that results in the increase of the overpotential when charging. Rietveld refinement of ex situ powder X-ray diffraction showed that a Li-deficient phase of Li2O2, Li2-xO2, formed when discharging and was present over the course of charging. The galvanostatic intermittent titration technique revealed that the rate-determining process in the first step of charging was a solid-solution type of delithiation. The chemical diffusion coefficient of Li+ ions in Li2-xO2, DLi, decreases as the cell voltage increases, which in turn leads to a decrease in the oxidation rate of Li2-xO2. Under galvanostatic conditions, the deceleration of oxidation induces further increase of the cell voltage; therefore, an intrinsic mechanism of positive feedback to increase the cell voltage occurs in the first step. The results demonstrate that the continuity of the first step can be extended by the suppression of changes in any of the elements of the positive feedback loop, i.e., the oxidation rate, cell voltage, or DLi.
Collapse
Affiliation(s)
- Yoko Hase
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Takeshi Uyama
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kiho Nishioka
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Juntaro Seki
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kota Morimoto
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuhiro Ogihara
- Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Yoshiharu Mukouyama
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Division of Science, College of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
75
|
Tan C, Cao D, Zheng L, Shen Y, Chen L, Chen Y. True Reaction Sites on Discharge in Li-O 2 Batteries. J Am Chem Soc 2022; 144:807-815. [PMID: 34991315 DOI: 10.1021/jacs.1c09916] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the pursuit of an advanced Li-O2 battery, the true reaction sites in the cathode determined its cell performance and the catalyst design. When the first layer of insulating Li2O2 solid is deposited on the electrode substrate during discharging, the following O2 reduction to Li2O2 could take place either at the electrode|Li2O2 interface or at the Li2O2|electrolyte interface. The mechanism decides the strategies of catalyst design; however, it is still mysterious. Here, we used rotate ring-disk electrode to deposit a dense Li2O2 film and labeled the Li2O2 product with 16O/18O isotope. By identification of the distribution of the Li216O2 and Li218O2 in the Li2O2 film using new characteristic signals of Li216O2 and Li218O2, our results show that O2 is reduced to Li2O2 at both interfaces. A sandwich structure of Li218O2|Li216O2|Li218O2 was identified at the electrode surface when the electrode was discharged under 16O2 and then 18O2. The electrode|Li2O2 interface is the major reaction site, and it contributes to 75% of the overall reaction. This new mechanism raises new challenges and new strategies for the catalyst design of Li-O2 batteries.
Collapse
Affiliation(s)
- Chuan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Deqing Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Zheng
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yanbin Shen
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Liwei Chen
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and In Situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
76
|
Zhou B, Long J, He M, Zheng R, Du D, Yan Y, Ren L, Zeng T, Shu C. A multifunctional protective layer with biomimetic ionic channel suppressing dendrite and side reactions on zinc metal anodes. J Colloid Interface Sci 2022; 613:136-145. [PMID: 35033760 DOI: 10.1016/j.jcis.2022.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
A multifunctional graphitic carbon nitride (GCN) protective layer with bionic ion channels and high stability is prepared to inhibit dendrite growth and side reactions on zinc (Zn) metal anodes. The high electronegativity of the nitrogen-containing organic groups (NOGs) in the GCN layer can effectively promote the dissociation of solvated Zn2+ and its rapid transportation in bionic ion channels via a hopping mechanism. In addition, this GCN layer exhibits excellent mechanical strength to suppress the growth of Zn dendrites and the volume expansion of Zn metal anodes during the plating process. Consequently, the electrodeposited Zn presents a uniform and densely packed morphology with negligible side-product accumulation. As a result, the half-cell composed of the Cu-GCN anode can deliver a remarkable long-term cycling performance of 1000 h at 0.5 mA cm-2 and 0.25 mAh cm-2. A full cell assembled with MnO2 cathode also displays improved long-term cycling performance (150 cycles at 200 mA g-1) when the Cu-GCN@Zn composite anode is applied. This work deepens our understanding of the kinetics of ion migration in the interface layer and paves the way for next-generation high energy-density Zn-metal batteries (ZMBs).
Collapse
Affiliation(s)
- Bo Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; Zhangjiajie Institute of Aeronautical Engineering, 1#, xueyuan Rd, Wulingshan Avenue, Zhangjiajie 427000, Hunan, PR China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| | - Miao He
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Ruixin Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Dayue Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yu Yan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Longfei Ren
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Ting Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
77
|
Lv Q, Zhu Z, Ni Y, Geng J, Li F. Spin‐State Manipulation of Two‐Dimensional Metal–Organic Framework with Enhanced Metal–Oxygen Covalency for Lithium‐Oxygen Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qingliang Lv
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Jiarun Geng
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
78
|
In situ decoration of CoP/Ti3C2T composite as efficient electrocatalyst for Li-oxygen battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
Song K, Yuan L, Liu Z, Qiao H, Yu Y, Shen X, Hu X. Synthesis of Fe-doped NiO nanosheets on carbon cloth for improved catalytic performance in Li–O 2 batteries. NEW J CHEM 2022. [DOI: 10.1039/d1nj05277b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The substitution of Ni2+ in NiO with Fe3+ can significantly improve the cycling stability and discharge/recharge capacities of Li–O2 batteries.
Collapse
Affiliation(s)
- Kefan Song
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Lefan Yuan
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Zeyu Liu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Handan Qiao
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Yawei Yu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Xiulan Hu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| |
Collapse
|
80
|
Dou Y, Xie Z, Wei Y, Peng Z, Zhou Z. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac040. [PMID: 35548381 PMCID: PMC9084180 DOI: 10.1093/nsr/nwac040] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Aprotic lithium–oxygen (Li–O2) batteries are receiving intense research interest by virtue of their ultra-high theoretical specific energy. However, current Li–O2 batteries are suffering from severe barriers, such as sluggish reaction kinetics and undesired parasitic reactions. Recently, molecular catalysts, i.e. redox mediators (RMs), have been explored to catalyse the oxygen electrochemistry in Li–O2 batteries and are regarded as an advanced solution. To fully unlock the capability of Li–O2 batteries, an in-depth understanding of the catalytic mechanisms of RMs is necessary. In this review, we summarize the working principles of RMs and their selection criteria, highlight the recent significant progress of RMs and discuss the critical scientific and technical challenges on the design of efficient RMs for next-generation Li–O2 batteries.
Collapse
Affiliation(s)
- Yaying Dou
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaojun Xie
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | | | | | |
Collapse
|
81
|
Shen ZZ, Zhang YZ, Zhou C, Wen R, Wan LJ. Revealing the Correlations between Morphological Evolution and Surface Reactivity of Catalytic Cathodes in Lithium-Oxygen Batteries. J Am Chem Soc 2021; 143:21604-21612. [PMID: 34874155 DOI: 10.1021/jacs.1c09700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lithium-oxygen batteries suffer from the degradation of the catalytic cathode during long-term operation, which limits their practical use. Understanding the direct correlations between the surface morphological evolution of catalytic cathodes at nanoscale and their catalytic activity during cycling has proved challenging. Here, using in situ electrochemical atomic force microscopy, the dynamic evolution of the Pt nanoparticles electrode in a working Li-O2 battery and its effects on the Li-O2 interfacial reactions are visualized. In situ views show that repeated oxidation-reduction cycles (ORCs) trigger the increase in the size of Pt nanoparticles, eventually causing the Pt nanoparticles to fall off the electrode. In 0-80 ORCs, the grown Pt nanoparticles promote the conversion of the Li-O2 reaction route from the surface-mediated pathway to the solution-mediated pathway during discharging and significantly increase the discharge capacity. After 250 ORCs, accompanied by the part of the Pt nanoparticles detaching from the electrode, the nucleation potential of reaction product decreases, and the reaction dynamic slows down, which cause the performance to degrade. Modification of a proper amount of Au nanoparticle on the Pt nanoparticles electrode could improve its stability and maintain the high catalytic activity. These results provide a direct evidence for clarifying the correlations between morphological evolution and surface reactivity of catalytic cathodes during cycling, which is critical for developing high-performance catalysts.
Collapse
Affiliation(s)
- Zhen-Zhen Shen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yao-Zu Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chi Zhou
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Wen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
82
|
Jiang Y, Tian M, Wang H, Wei C, Sun Z, Rummeli MH, Strasser P, Sun J, Yang R. Mildly Oxidized MXene (Ti 3C 2, Nb 2C, and V 2C) Electrocatalyst via a Generic Strategy Enables Longevous Li-O 2 Battery under a High Rate. ACS NANO 2021; 15:19640-19650. [PMID: 34860000 DOI: 10.1021/acsnano.1c06896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-oxygen batteries (LOBs) with ultrahigh theoretical energy density have emerged as one appealing candidate for next-generation energy storage devices. Unfortunately, some fundamental issues remain unsettled, involving large overpotential and inferior rate capability, mainly induced by the sluggish reaction kinetics and parasitic reactions at the cathode. Hence, the pursuit of suitable catalyst capable of efficiently catalyzing the oxygen redox reaction and eliminating the side-product generation, become urgent for the development of LOBs. Here, we report a universal synthesis approach to fabricate a suite of mildly oxidized MXenes (mo-Nb2CTx, mo-Ti3C2Tx, and mo-V2CTx) as cathode catalysts for LOBs. The readily prepared mo-MXenes possess expanded interlayer distance to accommodate massive Li2O2 formation, and in-situ-formed light metal oxide to enhance the electrocatalytic activity of MXenes. Taken together, the mo-V2CTx manages to deliver a high specific capacity of 22752 mAh g-1 at a current density of 100 mA g-1, and a long lifespan of 100 cycles at 500 mA g-1. More impressively, LOBs with mo-V2CTx can continuously operate for 90, 89, and 70 cycles, respectively, under a high current density of 1000, 2000, and 3000 mA g-1 with a cutoff capacity of 1000 mAh g-1. The theoretical calculations further reveal the underlying mechanism lies in the optimized surface, where the overpotentials for the formation/decomposition of Li2O2 are significantly reduced and the catalytic kinetics is accelerated. This contribution offers a feasible strategy to prepare MXenes as efficient and robust electrocatalyst toward advanced LOBs and other energy storage devices.
Collapse
Affiliation(s)
- Yongxiang Jiang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Meng Tian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Haibo Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Chaohui Wei
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Zhihui Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Mark H Rummeli
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
- Institute of Environmental Technology, VSB-Technical University of Ostrava, Listopadu 15, Ostrava, 708 33, Czech Republic
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin10623, Germany
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
83
|
Lv Q, Zhu Z, Ni Y, Geng J, Li F. Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries. Angew Chem Int Ed Engl 2021; 61:e202114293. [PMID: 34921706 DOI: 10.1002/anie.202114293] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/05/2022]
Abstract
Aprotic Li-O 2 battery has attracted extensive attention in the past decade owing to the high theoretical energy density, however it is obstructed by the sluggish reaction kinetics at cathodes and large voltage hysteresis. Herein, we regulate the spin state of partial Ni 2+ metal centers ( t 2g 6 e g 2 ) of conductive nickel catecholate framework (Ni II -NCF) nanowire arrays to high-valence Ni 3+ ( t 2g 6 e g 1 ) for Ni III -NCF. The spin-state modulation enables enhanced nickel-oxygen covalency in Ni III -NCF, which facilitates electron exchange between the Ni sites and oxygen adsorbates and accelerates the oxygen redox kinetics. The high affinity of Ni 3+ sites with the intermediate LiO 2 promotes formation of nanosheet-like Li 2 O 2 in the void space among Ni III -NCF nanowires upon discharging. These merit the Li-O 2 battery based on Ni III -NCF with remarkably reduced discharge/charge voltage gaps, superior rate capability, and long cycling stability of over 200 cycles. This work highlights the domination of electron spin state on the redox kinetics and will shed insights into electronic structure regulation of electrocatalysts for Li-O 2 battery and beyond.
Collapse
Affiliation(s)
- Qingliang Lv
- Nankai University, College of Chemistry, Nankai University, College of Chemistry, 300071, Tianjin, CHINA
| | - Zhuo Zhu
- Nankai University College of Chemistry, College of Chemistry, CHINA
| | - Youxuan Ni
- Nankai University, College of Chemistry, CHINA
| | - Jiarun Geng
- Nankai University College of Chemistry, College of Chemistry, CHINA
| | - Fujun Li
- Nankai University, Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), 94 Weijin Road, 300071, Tianjin, CHINA
| |
Collapse
|
84
|
Modeling discharge performance of Li-O2 batteries with different electrolyte compositions. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
85
|
Xu Y, Zheng H, Yang H, Yu Y, Luo J, Li T, Li W, Zhang YN, Kang Y. Thermodynamic Regulation of Dendrite-Free Li Plating on Li 3Bi for Stable Lithium Metal Batteries. NANO LETTERS 2021; 21:8664-8670. [PMID: 34618467 DOI: 10.1021/acs.nanolett.1c02613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rechargeable batteries with metallic lithium (Li) anodes are attracting ever-increasing interests because of their high theoretical specific capacity and energy density. However, the dendrite growth of the Li anode during cycling leads to poor stability and severe safety issues. Here, Li3Bi alloy coated carbon cloth is rationally chosen as the substrate of the Li anode to suppress the dendrite growth from a thermodynamic aspect. The adsorption energy of a Li atom on Li3Bi is larger than the cohesive energy of bulk Li, enabling uniform Li nucleation and deposition, while the high diffusion barrier of the Li atom on Li3Bi blocks the migration of adatoms from adsorption sites to the regions of fast growth, which further ensures uniform Li deposition. With the dendrite-free Li deposition, the composite Li/Li3Bi anode enables over 250 cycles at an ultrahigh current density of 20 mA cm-2 in a symmetrical cell and delivers superior electrochemical performance in full batteries.
Collapse
Affiliation(s)
- Ying Xu
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03786, United States
| | - Huanqin Zheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - He Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Yanan Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Jianmin Luo
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03786, United States
| | - Tao Li
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Weiyang Li
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03786, United States
| | - Yan-Ning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
86
|
Yang L, Chen J, Xu S, Jing N, Hao H, Wang Z, Wang M, Wang G, Wang G. Binder-Free Flexible Three-Dimensional Porous Electrodes by Combining Microstructures and Catalysis to Enhance the Performance of Lithium-Oxygen Batteries. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liangxuan Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianyue Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Sheng Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Nana Jing
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huming Hao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqiang Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyao Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
87
|
Shen Z, Zhou C, Wen R, Wan L. Charge Rate‐Dependent Decomposition Mechanism of Toroidal Li2O2 in Li‐O2 Batteries. CHINESE J CHEM 2021; 39:2668-2672. [DOI: 10.1002/cjoc.202100222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 10/10/2024]
Abstract
Main observation and conclusionUsing in situ atomic force microscopy, we visualized the oxidation dynamic process of toroidal lithium peroxide (Li2O2) in a working Li‐O2 battery and clarified the correlation between the decomposition behavior and the charging rate. It was found that at a low charge rate, the decomposition could occur at the Li2O2/electrolyte interface, providing strong evidence that a tiny current is allowed to pass through the bulk phase of toroidal Li2O2. Further, the evolution of the periphery thickness, diameter and center thickness of the toroid as a function of charge capacity was quantitatively analyzed. In the early stage of charging, the diameter of the toroid radially shrinks and the shrinking rate slows down in the later stage. Besides, the periphery thickness of the toroid decreases at a faster and uniform rate, while the center thickness decreases obviously in the later stage of charging. Increasing the charging rate promotes the decomposition occurring at the Li2O2/electrode interface, causing direct desorption of the Li2O2 from the electrode and irreversible capacity degradation.
Collapse
Affiliation(s)
- Zhen‐Zhen Shen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chi Zhou
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Rui Wen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
88
|
Effect of CO2-induced side reactions on the deposition in the non-aqueous Li-air batteries. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
89
|
Li D, Xu K, Zhu M, Xu T, Fan Z, Zhu L, Zhu Y. Synergistic Catalysis by Single-Atom Catalysts and Redox Mediator to Improve Lithium-Oxygen Batteries Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101620. [PMID: 34378313 DOI: 10.1002/smll.202101620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Lithium-oxygen (Li-O2 ) batteries with ultrahigh theoretical energy density have attracted widespread attention while there are still problems with high overpotential and poor cycle stability. Rational design and application of efficient catalysts to improve the performance of Li-O2 batteries is of significant importance. In this work, Co single atoms catalysts are successfully combined with redox mediator (lithium bromide [LiBr]) to synergistically catalyze electrochemical reactions in Li-O2 batteries. Single-atom cobalt anchored in porous N-doped hollow carbon spheres (CoSAs-NHCS) with high specific surface area and high catalytic activity are utilized as cathode material. However, the potential performances of batteries are difficult to adequately achieve with only CoSAs-NHCS, owing to the blocked electrochemical active sites covered by insulating solid-state discharge product Li2 O2 . Combined with LiBr as redox mediator, the enhanced OER catalytic effect extends throughout all formed Li2 O2 during discharge. Meantime, the certain adsorption effect of CoSAs-NHCS on Br2 and Br3 - can reduce the shuttle of RMox . The synergistic effect of Co single atoms and LiBr can not only promote more Li2 O2 decomposition but also reduce the shuttle effect by absorbing the oxidized redox mediator. Li-O2 batteries with Co single atoms and LiBr achieve ultralow overpotential of 0.69 V and longtime stable cyclability.
Collapse
Affiliation(s)
- Danying Li
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Kangli Xu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Maogen Zhu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Tao Xu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Zhechen Fan
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Linqin Zhu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Yongchun Zhu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
90
|
Zhang Y, Gikonyo B, Khodja H, Gauthier M, Foy E, Goetz B, Serre C, Coste Leconte S, Pimenta V, Surblé S. MIL-53 Metal-Organic Framework as a Flexible Cathode for Lithium-Oxygen Batteries. MATERIALS 2021; 14:ma14164618. [PMID: 34443140 PMCID: PMC8399480 DOI: 10.3390/ma14164618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Li-air batteries possess higher specific energies than the current Li-ion batteries. Major drawbacks of the air cathode include the sluggish kinetics of the oxygen reduction (OER), high overpotentials and pore clogging during discharge processes. Metal-Organic Frameworks (MOFs) appear as promising materials because of their high surface areas, tailorable pore sizes and catalytic centers. In this work, we propose to use, for the first time, aluminum terephthalate (well known as MIL-53) as a flexible air cathode for Li-O2 batteries. This compound was synthetized through hydrothermal and microwave-assisted routes, leading to different particle sizes with different aspect ratios. The electrochemical properties of both materials seem to be equivalent. Several behaviors are observed depending on the initial value of the first discharge capacity. When the first discharge capacity is higher, no OER occurs, leading to a fast decrease in the capacity during cycling. The nature and the morphology of the discharge products are investigated using ex situ analysis (XRD, SEM and XPS). For both MIL-53 materials, lithium peroxide Li2O2 is found as the main discharge product. A morphological evolution of the Li2O2 particles occurs upon cycling (stacked thin plates, toroids or pseudo-spheres).
Collapse
Affiliation(s)
- Yujie Zhang
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Ben Gikonyo
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
- Laboratoire des Multimatériaux et Interfaces, Université Claude Bernard Lyon 1, UMR CNRS 5615, 69622 Villeurbanne, France
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Hicham Khodja
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Magali Gauthier
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Eddy Foy
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Bernard Goetz
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Christian Serre
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Servane Coste Leconte
- INSTN, Ecole de spécialisation des énergies bas carbone et des technologies de la santé, Unité d’Enseignement de Saclay, CEA, 91191 Gif-sur-Yvette, France;
| | - Vanessa Pimenta
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Suzy Surblé
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
- Correspondence: ; Tel.: +33-01-6908-8190
| |
Collapse
|
91
|
Li J, Hou L, Yu M, Li Q, Zhang T, Sun H. Review and Recent Advances of Oxygen Transfer in Li‐air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- School of Mechanical Engineering Shenyang Jianzhu University Shenyang 110168 China
| | - Linfa Hou
- School of Mechanical Engineering Shenyang Jianzhu University Shenyang 110168 China
| | - Mingfu Yu
- School of Mechanical Engineering Shenyang Jianzhu University Shenyang 110168 China
| | - Qiang Li
- School of Mechanical Engineering Shenyang Jianzhu University Shenyang 110168 China
| | - Tianyu Zhang
- School of Mechanical Engineering Shenyang Jianzhu University Shenyang 110168 China
| | - Hong Sun
- School of Mechanical Engineering Shenyang Jianzhu University Shenyang 110168 China
| |
Collapse
|
92
|
Wei L, Ma Y, Gu Y, Yuan X, He Y, Li X, Zhao L, Peng Y, Deng Z. Ru-Embedded Highly Porous Carbon Nanocubes Derived from Metal-Organic Frameworks for Catalyzing Reversible Li 2O 2 Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28295-28303. [PMID: 34102061 DOI: 10.1021/acsami.1c06572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rechargeable lithium-oxygen batteries (LOBs) have attracted increasing attention due to their high energy density but highly rely on the development of efficient oxygen catalysts for reversible Li2O2 deposition/decomposition. Herein, highly porous carbon nanocubes with a specific surface area up to 1600 m2 g-1 are synthesized and utilized to tightly anchor Ru nanoparticles for using as the oxygen-cathode catalyst in LOBs, achieving a low charge/discharge potential gap of only 0.75 V, a high total discharge capacity of 17,632 mA h g-1, and a superb cycling performance of 550 cycles at 1000 mA g-1. Comprehensive ex situ and operando characterizations unravel that the outstanding LOB performance is ascribed to the highly porous catalyst structure embedding rich active sites that synergistically function in reducing overpotentials, suppressing parasitic reactions, accommodating reaction products, and promoting mass and charge transportation.
Collapse
Affiliation(s)
- Le Wei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yong Ma
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yuting Gu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xuzhou Yuan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Ying He
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xinjian Li
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Liang Zhao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| |
Collapse
|
93
|
Wu Y, Zhao X, Shang Y, Chang S, Dai L, Cao A. Application-Driven Carbon Nanotube Functional Materials. ACS NANO 2021; 15:7946-7974. [PMID: 33988980 DOI: 10.1021/acsnano.0c10662] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carbon nanotube functional materials (CNTFMs) represent an important research field in transforming nanoscience and nanotechnology into practical applications, with potential impact in a wide realm of science, technology, and engineering. In this review, we combine the state-of-the-art research activities of CNTFMs with the application prospect, to highlight critical issues and identify future challenges. We focus on macroscopic long fibers, thin films, and bulk sponges which are typical CNTFMs in different dimensions with distinct characteristics, and also cover a variety of derived composite/hierarchical materials. Critical issues related to their structures, properties, and applications as robust conductive skeletons or high-performance flexible electrodes in mechanical and electronic devices, advanced energy conversion and storage systems, and environmental areas have been discussed specifically. Finally, possible solutions and directions are proposed for overcoming current obstacles and promoting future efforts in the field.
Collapse
Affiliation(s)
- Yizeng Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xuewei Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuanyuan Shang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Shulong Chang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Linxiu Dai
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
94
|
Dai W, Liu Y, Wang M, Lin M, Lian X, Luo Y, Yang J, Chen W. Monodispersed Ruthenium Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for an Efficient Lithium-Oxygen Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19915-19926. [PMID: 33881825 DOI: 10.1021/acsami.0c23125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-oxygen batteries with ultrahigh energy densities have drawn considerable attention as next-generation energy storage devices. However, their practical applications are challenged by sluggish reaction kinetics aimed at the formation/decomposition of discharge products on battery cathodes. Developing effective catalysts and understanding the fundamental catalytic mechanism are vital to improve the electrochemical performance of lithium-oxygen batteries. Here, uniformly dispersed ruthenium nanoparticles anchored on nitrogen-doped reduced graphene oxide are prepared by using an in situ pyrolysis procedure as a bifunctional catalyst for lithium-oxygen batteries. The abundance of ruthenium active sites and strong ruthenium-support interaction enable a feasible discharge product formation/decomposition route by modulating the surface adsorption of lithium superoxide intermediates and the nucleation and growth of lithium peroxide species. Benefiting from these merits, the electrode provides a drastically increased discharge capacity (17,074 mA h g-1), a decreased charge overpotential (0.51 V), and a long-term cyclability (100 cycles at 100 mA g-1). Our observations reveal the significance of the dispersion and coordination of metal catalysts, shedding light on the rational design of efficient catalysts for future lithium-oxygen batteries.
Collapse
Affiliation(s)
- Wenrui Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Yuan Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Meng Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Ming Lin
- Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), Innovis, 138634, Singapore
| | - Xu Lian
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Yani Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jinlin Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| |
Collapse
|
95
|
Nishioka K, Morimoto K, Kusumoto T, Harada T, Kamiya K, Mukouyama Y, Nakanishi S. Isotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li-O 2 Battery with a Redox Mediator. J Am Chem Soc 2021; 143:7394-7401. [PMID: 33945262 DOI: 10.1021/jacs.1c00868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prior to the practical application of rechargeable aprotic Li-O2 batteries, the high charging overpotentials of these devices (which inevitably cause irreversible parasitic reactions) must be addressed. The use of redox mediators (RMs) that oxidatively decompose the discharge product, Li2O2, is one promising solution to this problem. However, the mitigating effect of RMs is currently insufficient, and so it would be beneficial to clarify the Li2O2 reductive growth and oxidative decomposition mechanisms. In the present work, Nanoscale secondary ion mass spectrometry (Nano-SIMS) isotopic three-dimensional imaging and differential electrochemical mass spectrometry (DEMS) analyses of individual Li2O2 particles established that both growth and decomposition proceeded at the Li2O2/electrolyte interface in a system containing the Br-/Br3- redox couple as the RM. The results of this study also indicated that the degree of oxidative decomposition of Li2O2 was highly dependent on the cell voltage. These data show that increasing the RM reaction rate at the Li2O2/electrolyte interface is critical to improve the cycle life of Li-O2 batteries.
Collapse
Affiliation(s)
- Kiho Nishioka
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kota Morimoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Kusumoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuhide Kamiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiharu Mukouyama
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Division of Science, College of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Shuji Nakanishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
96
|
Zhan Y, Yu SZ, Luo SH, Feng J, Wang Q. Nitrogen-Coordinated CoS 2@NC Yolk-Shell Polyhedrons Catalysts Derived from a Metal-Organic Framework for a Highly Reversible Li-O 2 Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17658-17667. [PMID: 33826308 DOI: 10.1021/acsami.1c02564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal sulfides (TMS) are one of the most promising cathode catalysts for Li-O2 batteries (LOBs) owing to their excellent stabilities and inherent metallicity. In this work, a highly efficient mode has been used to synthesize Co@CNTs [pyrolysis products of metal-organic frameworks (MOFs)]-derived CoS2(CoS)@NC. Benefiting from the special yolk-shell hierarchical porous morphology, the existence of Co-N bonds, and dual-function catalytic activity (ORR/OER) of the open metal sites contributed by MOFs, the CoS2@NC-400/AB electrode illustrated excellent charge-discharge cycling for up to nearly 100 times at a current density of 0.1 mA cm-2 under a limited capacity of 500 mA h g-1 (based on the total weight of CoS2@NC and AB) with a high discharge voltage plateau and a low charge cut-off voltage. Meanwhile, the average transferred electron number (n) is around 3.7 per O2 molecule for CoS2@NC-400, which is the chief approach for a four-electron pathway of the ORR under alkaline media. Therefore, we believe that the novel CoS2@NC-400/AB electrode could serve as an excellent catalyst in the LOBs.
Collapse
Affiliation(s)
- Yang Zhan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Shun-Zhi Yu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| | - Shao-Hua Luo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| | - Jian Feng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Qing Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| |
Collapse
|
97
|
Li YN, Jiang FL, Sun Z, Yamamoto O, Imanishi N, Zhang T. Bifunctional 1-Boc-3-Iodoazetidine Enhancing Lithium Anode Stability and Rechargeability of Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16437-16444. [PMID: 33788529 DOI: 10.1021/acsami.1c02192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium anode protection is an effective strategy to prohibit the continuous loss of redox mediators (RMs) resulting from the unfavorable "shuttle effect" in lithium-oxygen batteries. In this work, an in situ Li anode protection method is designed by utilizing an organic compound, 1-Boc-3-iodoazetidine (BIA), as both a RM and an additive, to form a lithium anode protective layer. The reaction between Li metal and BIA can form lithium iodide (LiI) and lithium-based organometallic. LiI can effectively reduce the charging overpotential. Meanwhile, the in situ-formed anode protection layer (lithium-based organometallic) can not only effectively prevent RMs from being reduced by the lithium metal, but also inhibit the growth of lithium dendrites. As a result, the lithium-oxygen battery with BIA shows a long cycle life of 260 cycles with a notably reduced charging potential. In particular, the battery with BIA achieves an excellent lifespan of 160 cycles at a large current density of 2000 mA g-1.
Collapse
Affiliation(s)
- Yan-Ni Li
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang-Ling Jiang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
| | - Zhuang Sun
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
| | - Osamu Yamamoto
- Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Nobuyuki Imanishi
- Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Tao Zhang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
98
|
Li L, Liu W, Dong H, Gui Q, Hu Z, Li Y, Liu J. Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electrochemical Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004959. [PMID: 33615578 DOI: 10.1002/adma.202004959] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Indexed: 06/12/2023]
Abstract
The overall performance of electrochemical energy storage devices (EESDs) is intrinsically correlated with surfaces and interfaces. As a promising electrode architecture, 3D nanoarrays (3D-NAs) possess relatively ordered, continuous, and fully exposed active surfaces of individual nanostructures, facilitating mass and electron transport within the electrode and charge transfer across interfaces and providing an ideal platform for engineering. Herein, a critical overview of the surface and interface engineering of 3D-NAs, from electrode and interface designs to device integration, is presented. The general merits of 3D-NAs and surface/interface engineering principles of 3D-NA hybrid electrodes are highlighted. The focus is on the use of 3D-NAs as a superior platform to regulate the interface nature and unveiling new mechanism/materials without the interference of binders. The engineering and utilization of the surface of 3D-NAs to develop flexible/solid-state EESDs with 3D integrated electrode/electrolyte interfaces, or 3D triphase interfaces involving other active species, which are characteristic of (quasi-)solid-state electrolyte infiltration into the entire device, are also considered. Finally, the challenges and future directions of surface/interface engineering of 3D-NAs are outlined. In particular, potential strategies to obtain electrode charge balance, optimize the multiphase solid-state interface, and attain 3D solid electrolyte infiltration are proposed.
Collapse
Affiliation(s)
- Linpo Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- School of Chemistry, Chemical Engineering and Life Science and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenyi Liu
- School of Chemistry, Chemical Engineering and Life Science and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Haoyang Dong
- School of Chemistry, Chemical Engineering and Life Science and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiuyue Gui
- School of Chemistry, Chemical Engineering and Life Science and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zuoqi Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuanyuan Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jinping Liu
- School of Chemistry, Chemical Engineering and Life Science and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials and School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
99
|
|
100
|
Yao L, Lin J, Li S, Wu Y, Ding H, Zheng H, Xu W, Xie T, Yue G, Peng D. Metal-organic frameworks-derived hollow dodecahedral carbon combined with FeN x moieties and ruthenium nanoparticles as cathode electrocatalyst for lithium oxygen batteries. J Colloid Interface Sci 2021; 596:1-11. [PMID: 33826967 DOI: 10.1016/j.jcis.2021.03.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Owing to their high energy density, lithium-oxygen batteries (LOBs) have been drawn great attention as one of the promising electrochemical energy sources. However, the sluggish kinetics of oxygen reduction/evolution reaction (ORR/OER) hamper the widespread application of LOBs. Herein, an elaborate designed catalysts which are constructed by FeNx moieties dispersed on the network-like hollow dodecahedral carbon and then decorated with Ru nanoparticles (FeNx-HDC@Ru). Since the homogeneously dispersed FeNx moieties could promote ORR performance, and the Ru nanoparticles could facilitate OER capability, the FeNx-HDC@Ru nanocomposites used as cathode catalysts can significantly improve LOBs performance. A lower discharge and charge overpotentials of 0.15 V and 0.78 V can be detected in the first cycle, respectively, and an excellent cycle performance of 90 cycles at 200 mA g-1 and 89 cycles at 500 mA g-1 can be demonstrated. Herein, the charge transfer kinetics has been enhanced with the internal network-like hollow structure and a low impedance Li2O2/catalysts contact interface could be earned by the constructed Ru nanoparticles, these factors would lead to an efficient acceleration to the formation and decomposition of Li2O2 during discharge and charge process.
Collapse
Affiliation(s)
- Luxi Yao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Jian Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Shuai Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Yuanhui Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Haoran Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Hongfei Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Wanjie Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Te Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Guanghui Yue
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China.
| | - Dongliang Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, PR China.
| |
Collapse
|