51
|
Wang C, Wang H, Wang B, Miyata H, Wang Y, Nayeem MOG, Kim JJ, Lee S, Yokota T, Onodera H, Someya T. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. SCIENCE ADVANCES 2022; 8:eabo1396. [PMID: 35594357 PMCID: PMC9122322 DOI: 10.1126/sciadv.abo1396] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Long-term high-fidelity electroencephalogram (EEG) recordings are critical for clinical and brain science applications. Conductive liquid-like or solid-like wet interface materials have been conventionally used as reliable interfaces for EEG recording. However, because of their simplex liquid or solid phase, electrodes with them as interfaces confront inadequate dynamic adaptability to hairy scalp, which makes it challenging to maintain stable and efficient contact of electrodes with scalp for long-term EEG recording. Here, we develop an on-skin paintable conductive biogel that shows temperature-controlled reversible fluid-gel transition to address the abovementioned limitation. This phase transition endows the biogel with unique on-skin paintability and in situ gelatinization, establishing conformal contact and dynamic compliance of electrodes with hairy scalp. The biogel is demonstrated as an efficient interface for long-term high-quality EEG recording over several days and for the high-performance capture and classification of evoked potentials. The paintable biogel offers a biocompatible and long-term reliable interface for EEG-based systems.
Collapse
|
52
|
Hu M, Zhang J, Liu Y, Zheng X, Li X, Li X, Yang H. Highly Conformal Polymers for Ambulatory Electrophysiological Sensing. Macromol Rapid Commun 2022; 43:e2200047. [PMID: 35419904 DOI: 10.1002/marc.202200047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Indexed: 11/08/2022]
Abstract
Stable ambulatory electrophysiological sensing is widely utilized for smart e-healthcare monitoring, clinical diagnosis of cardiovascular diseases, treatment of neurological diseases, and intelligent human-machine interaction. As the favorable signal interaction platform of electrophysiological sensing, the conformal property of on-skin electrodes is an extremely crucial factor that can affect the stability of long-term ambulatory electrophysiological sensing. From the perspective of materials, to realize conformal contact between electrodes and skin for stable sensing, highly conformal polymers are strongly demanding and attracting ever-growing attention. In this review, we focused on the recent progress of highly conformal polymers for ambulatory electrophysiological sensing, including their synthetic methods, conformal property, and potential applications. Specifically, three main types of highly conformal polymers for stable long-term electrophysiological signals monitoring were proposed, including nature silk fibroin based conformal polymers, marine mussels bio-inspired conformal polymers, and other conformal polymers such as zwitterionic polymers and polyacrylamide. Furthermore, the future challenges and opportunities of preparing highly conformal polymers for on-skin electrodes were also highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingshuang Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Jun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Yixuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xinran Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xiangxiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Ximing Li
- Chest hospital, Tianjin University, Tianjin, 300072, China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| |
Collapse
|
53
|
Liu Y, Cheng Y, Shi L, Wang R, Sun J. Breathable, Self-Adhesive Dry Electrodes for Stable Electrophysiological Signal Monitoring During Exercise. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12812-12823. [PMID: 35234456 DOI: 10.1021/acsami.1c23322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
On-skin electrodes with high air permeability, low thickness, low elastic modulus, and high adhesion are essential for biomedical signal recordings, which provide data for sports management and biomedical applications. However, nanothickness electrodes interacting with the skin by van der Waals force can be interfered with by sweating, and elastomers with high adhesion prepared by modification are not satisfactory in terms of air permeability. Here, a dry electrode with high stretchability (598%), low elastic modulus (5 MPa), high air permeability (726 g m-2 d-1), and high adhesion (6.33 kPa) was fabricated by semi-embedding Ag nanowires into nonyl and glycerol-modified polyvinyl alcohol. Furthermore, a small amount of 40 wt % ethanol was sprayed on the skin to facilitate microdissolution of the substrate and form immediate conformability with skin texture. The dry electrodes can record high-quality electrocardiogram and electromyogram signals through a robust contact with the skin under skin deformation, with a water stream, or after running for 1 h. The film can also be served as the substrate for self-adhesive strain sensors to monitor motion with higher quality than nonadhesive polydimethylsilane-based sensors.
Collapse
Affiliation(s)
- Yan Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yin Cheng
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Liangjing Shi
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Jing Sun
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| |
Collapse
|
54
|
Liang C, Liu Y, Lu W, Tian G, Zhao Q, Yang D, Sun J, Qi D. Strategies for interface issues and challenges of neural electrodes. NANOSCALE 2022; 14:3346-3366. [PMID: 35179152 DOI: 10.1039/d1nr07226a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural electrodes, as a bridge for bidirectional communication between the body and external devices, are crucial means for detecting and controlling nerve activity. The electrodes play a vital role in monitoring the state of neural systems or influencing it to treat disease or restore functions. To achieve high-resolution, safe and long-term stable nerve recording and stimulation, a neural electrode with excellent electrochemical performance (e.g., impedance, charge storage capacity, charge injection limit), and good biocompatibility and stability is required. Here, the charge transfer process in the tissues, the electrode-tissue interfaces and the electrode materials are discussed respectively. Subsequently, the latest research methods and strategies for improving the electrochemical performance and biocompatibility of neural electrodes are reviewed. Finally, the challenges in the development of neural electrodes are proposed. It is expected that the development of neural electrodes will offer new opportunities for the evolution of neural prosthesis, bioelectronic medicine, brain science, and so on.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jing Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
55
|
Zhang W, Zhang Y, Dai Y, Xia F, Zhang X. Gradient adhesion modification of polyacrylamide/alginate-calcium tough hydrogels. J Mater Chem B 2022; 10:757-764. [PMID: 35024719 DOI: 10.1039/d1tb02599f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strong hydrogel adhesion requires the synergy of adhesion and cohesion. Gradient adhesive-tough hydrogels can balance adhesion and cohesion, however, their construction is still a challenging task. Here, we used ethylenediaminetetraacetic acid (EDTA) on-side coordination-induced diffusion chelating Ca2+ to form an adhesive surface in a polyacrylamide/alginate-calcium (PAAm/Alg-Ca2+) tough hydrogel as a facile method for the construction of gradient adhesive-tough hydrogels. The adhesion energy of a gradient adhesive-tough hydrogel to skin is increased by 128% compared with PAAm/Alg-Ca2+ tough hydrogels and the elongation at break is two times higher than that of PAAm/Alg hydrogels. In addition, gradient adhesive-tough hydrogels also exhibit wide linear sensitivity (the gauge factor (GF) = 0.196 (0% < ε < 400%); GF = 0.260 (400% < ε < 650%)) as a wearable strain sensor to monitor human motions. This work provides a versatile strategy for the design of gradient adhesive-tough hydrogels and also provides a practical model for the development of wearable strain sensors.
Collapse
Affiliation(s)
- Wanglong Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yiwei Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
56
|
Wang T, Cui Z, Liu Y, Lu D, Wang M, Wan C, Leow WR, Wang C, Pan L, Cao X, Huang Y, Liu Z, Tok AIY, Chen X. Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106212. [PMID: 34738253 DOI: 10.1002/adma.202106212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Memristors constitute a promising functional component for information storage and in-memory computing in flexible and stretchable electronics including wearable devices, prosthetics, and soft robotics. Despite tremendous efforts made to adapt conventional rigid memristors to flexible and stretchable scenarios, stretchable and mechanical-damage-endurable memristors, which are critical for maintaining reliable functions under unexpected mechanical attack, have never been achieved. Here, the development of stretchable memristors with mechanical damage endurance based on a discrete structure design is reported. The memristors possess large stretchability (40%) and excellent deformability (half-fold), and retain stable performances under dynamic stretching and releasing. It is shown that the memristors maintain reliable functions and preserve information after extreme mechanical damage, including puncture (up to 100 times) and serious tearing situations (fully diagonally cut). The structural strategy offers new opportunities for next-generation stretchable memristors with mechanical damage endurance, which is vital to achieve reliable functions for flexible and stretchable electronics even in extreme and highly dynamic environments.
Collapse
Affiliation(s)
- Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zequn Cui
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Dingjie Lu
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Changxian Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuangjian Liu
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
57
|
Ni F, Xiao P, Zhang C, Zhou W, Liu D, Kuo SW, Chen T. Atmospheric Hygroscopic Ionogels with Dynamically Stable Cooling Interfaces Enable a Durable Thermoelectric Performance Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103937. [PMID: 34647366 DOI: 10.1002/adma.202103937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In thermoelectric generator (TEG) systems, heat dissipation from their cold sides is an accessible, low-cost, and effective way to increase the temperature gap for their thermoelectric performance enhancement. Although significant efforts have been dedicated mediated by hygroscopic hydrogel coolers as self-sustained alternatives for effective heat removal, it still remains a challenge for overcoming instabilities in their cooling process. The inevitable mechanical deformation of these conventional hydrogels induced by excessive water desorption may cause a detached cooling interface with the targeted substrates, leading to undesirable cooling failure. Herein, a self-sustained and durable evaporative cooling approach for TEG enabled by atmospheric hygroscopic ionogels (RIGs) with stable interfaces to efficiently improve its thermoelectric performance is proposed. Owing to its superior hygroscopicity, the RIGs can achieve higher heat dissipation for TEG through water evaporation than that of common commercial metal heat sinks. Moreover, its favorable adhesion enables the RIG closely interact with the TEG surface either in static or dynamic conditions for a durable thermoelectric performance enhancement. It is believed that such a self-sustained evaporative cooling strategy based on the RIG will have great implications for the enhancement of TEG's efficiency, demonstrating a great promise in intermittent thermal-energy utilizations.
Collapse
Affiliation(s)
- Feng Ni
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhou
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiao-Wei Kuo
- Department of Material and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
58
|
Kaniewska K, Karbarz M. Electrochemical devices based on conducting surfaces modified with smart hydrogels: Outlook and perspective. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Klaudia Kaniewska
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| |
Collapse
|
59
|
Liu C, Li B, Li Z, Cao C, Gao X, Zhang K, Chen H. 3D printable and fringe electric field adhesion enabled variable stiffness artificial muscles for semi-active vibration attenuation. SOFT MATTER 2021; 17:6697-6706. [PMID: 34132322 DOI: 10.1039/d1sm00618e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft robots are able to generate large and compliant deformation in an unconstructed environment, but their operation capability is limited by low stiffness. Thus, developing the function of variable stiffness while preserving its compliance is a challenging issue. This study proposes a new variable stiffness artificial muscle, as a complementary component for soft robots, using the principle of fringe electric field adhesion. Taking inspiration from the mechanism of multi-layer structures in biological muscles, the artificial muscle is composed of patterned conductive layers and interlayers and is 3D printable by direct ink writing (DIW). To further demonstrate the application, a vibration absorber by stacking this artificial muscle is proposed, whose natural frequency is tunable by the varying stiffness. The advantages of the fringe electric field-enabled variable stiffness (FEVS) artificial muscles include lightweight and irrelevance of the stiffness to the thickness of the interlayer, which can be beneficial to soft robots to achieve variable stiffness and semi-active vibration attenuation without extra weighting load.
Collapse
Affiliation(s)
- Chen Liu
- Centre for Advanced Robotics (ARQ), Queen Mary University of London, London E1 4NS, UK.
| | - Bo Li
- State Key Lab of Manufacturing Systems Engineering, Shaanxi Key Lab of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhuoyuan Li
- State Key Lab of Manufacturing Systems Engineering, Shaanxi Key Lab of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Chongjing Cao
- Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xing Gao
- Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Ketao Zhang
- Centre for Advanced Robotics (ARQ), Queen Mary University of London, London E1 4NS, UK.
| | - Hualing Chen
- State Key Lab of Manufacturing Systems Engineering, Shaanxi Key Lab of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
60
|
|
61
|
Luo Y, Li W, Lin Q, Zhang F, He K, Yang D, Loh XJ, Chen X. A Morphable Ionic Electrode Based on Thermogel for Non-Invasive Hairy Plant Electrophysiology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007848. [PMID: 33660373 DOI: 10.1002/adma.202007848] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Plant electrophysiology lays the foundation for smart plant interrogation and intervention. However, plant trichomes with hair-like morphologies present topographical features that challenge stable and high-fidelity non-invasive electrophysiology, due to the inadequate dynamic shape adaptability of conventional electrodes. Here, this issue is overcome using a morphable ionic electrode based on a thermogel, which gradually transforms from a viscous liquid to a viscoelastic gel. This transformation enables the morphable electrode to lock into the abrupt hairy surface irregularities and establish a conformal and adhesive interface. It achieves down to one tenth of the impedance and 4-5 times the adhesive strengths of conventional hydrogel electrodes on hairy leaves. As a result of the improved electrical and mechanical robustness, the morphable electrode can record more than one order of magnitude higher signal-to-noise ratio on hairy plants and maintains high-fidelity recording despite plant movements, achieving superior performance to conventional hydrogel electrodes. The reported morphable electrode is a promising tool for hairy plant electrophysiology and may be applied to diversely textured plants for advanced sensing and modulation.
Collapse
Affiliation(s)
- Yifei Luo
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Wenlong Li
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Feilong Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ke He
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
62
|
Ye G, Qiu J, Fang X, Yu T, Xie Y, Zhao Y, Yan D, He C, Liu N. A Lamellibranchia-inspired epidermal electrode for electrophysiology. MATERIALS HORIZONS 2021; 8:1047-1057. [PMID: 34821335 DOI: 10.1039/d0mh01656j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The capability to accurately monitor electrophysiological signals and instantly provide feedback to users is crucial for wearable healthcare. However, commercial gel electrodes suffer from drying out and irritation on skin with time, severely affecting signal quality for practical use. Toward a gel-free electrophysiology, epidermal electrodes that can accurately detect biosignals and simultaneously achieve the multifunctional properties of on-skin electronics needs are highly desirable. In this work, inspired by Lamellibranchia, which can adhere tightly to various surfaces using their extensible, adhesive and self-healing byssal threads, we developed a gel-free epidermal electrode to acquire high-quality electrophysiological signals based on a novel polymer substrate design. This polymer (STAR) features extreme stretchability (>2300% strain), high transparency (>90% transmittance at λ = 550 nm), gentle adhesion (adhesion strengths: tens of kPa), and rapid self-healing ability (95% healing efficiency in 10 min). Combined with silver nanowires as conductors, STAR was employed as a self-healing, stretchable and adhesive epidermal electrode for electrophysiological signal recording, showing a signal-to-noise ratio (SNR) even higher than that of commercial electrodes, and being able to control an artificial limb as an intermediate for human-machine interface. We believe our Lamellibranchia inspired STAR will pave a new way to design multifunctional polymers for epidermal electronics, accelerating the development of emerging wearable healthcare.
Collapse
Affiliation(s)
- Guo Ye
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021; 121:2109-2146. [DOI: 10.1021/acs.chemrev.0c00897] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chunya Wang
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|