51
|
Zhang J, Cheng C, Xiao L, Han C, Zhao X, Yin P, Dong C, Liu H, Du X, Yang J. Construction of Co-Se-W at Interfaces of Phase-Mixed Cobalt Selenide via Spontaneous Phase Transition for Platinum-Like Hydrogen Evolution Activity and Long-Term Durability in Alkaline and Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401880. [PMID: 38655767 DOI: 10.1002/adma.202401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Cost-effective transition metal chalcogenides are highly promising electrocatalysts for both alkaline and acidic hydrogen evolution reactions (HER). However, unsatisfactory HER kinetics and stability have severely hindered their applications in industrial water electrolysis. Herein, a nanoflowers-shaped W-doped cubic/orthorhombic phase-mixed CoSe2 catalyst ((c/o)-CoSe2-W) is reported. The W doping induces spontaneous phase transition from stable phase cubic CoSe2 (c-CoSe2) to metastable phase orthorhombic CoSe2, which not only enables precise regulation of the ratio of two phases but also realizes W doping at the interfaces of two phases. The (c/o)-CoSe2-W catalyst exhibits a Pt-like HER activity in both alkaline and acidic media, with record-low HER overpotentials of 29.8 mV (alkaline) and 35.9 mV (acidic) at 10 mA cm-2, respectively, surpassing the vast majority of previously reported non-precious metal electrocatalysts for both alkaline and acidic HER. The Pt-like HER activities originate from the formation of Co-Se-W active species on the c-CoSe2 side at the phase interface, which effectively modulates electron structures of active sites, not only enhancing H2O adsorption and dissociation at Co sites but also optimizing H* adsorption to ΔGH* ≈ 0 at W sites. Benefiting from the abundant phase interfaces, the catalyst also displays outstanding long-term durability in both acidic and alkaline media.
Collapse
Affiliation(s)
- Jingtong Zhang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Liyang Xiao
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chunyan Han
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Pengfei Yin
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cunku Dong
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Liu
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiwen Du
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Yang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
52
|
Zhang L, Xu A, Shi X, Zhang H, Wang Z, Shen S, Zhang J, Zhong W. Electron transfer at the heterojunction interface of CoP/MoS 2 for efficient electrocatalytic hydrogen evolution reaction. RSC Adv 2024; 14:19294-19300. [PMID: 38887637 PMCID: PMC11181296 DOI: 10.1039/d4ra02712d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Modulating the electronic states of electrocatalysts is critical for achieving efficient hydrogen evolution reaction (HER). However, how to develop electrocatalysts with superior electronic states is an urgent challenge that must be addressed. Herein, we prepared the CoP/MoS2 heterojunction with a microsphere morphology consisting of thin nanosheets using a facile two-step method. The catalyst's ultrathin nanosheet structure not only provides an extensive surface area for exposing active sites, but it also enables ion transport and bubble release. Electron transfer occurs between CoP and MoS2, optimizing the heterojunction's charge distribution and enhancing the intermediates' adsorption capabilities. As a result, the CoP/MoS2 heterojunction exhibits outstanding electrocatalytic hydrogen evolution activity with an overpotential of only 88 mV at a current density of 10 mA cm-2, which exceeds both the sulfide heterojunction Co9S8/MoS2 and the phosphide heterojunction CoP/CoMoP2. The experimental results and DFT calculation results show that the former has stronger synergistic effects and higher HER activity. This work sheds light on the exploration of efficient heterojunction electrocatalysts with excellent electronic structures.
Collapse
Affiliation(s)
- Lili Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
| | - Aijiao Xu
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
| | - Xinxing Shi
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
| | - Huanhuan Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
| | - Zongpeng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
| | - Shijie Shen
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
| | - Jitang Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
- ERA Co, Ltd. Taizhou 318020 China
- Zhejiang University, College of Chemical and Biological Engineering Hangzhou 310027 China
| | - Wenwu Zhong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University Taizhou 318000 China
| |
Collapse
|
53
|
Xiong Y, Jiang J, Liu Y, Ji X, Chen C, Wang K. Boosting 5-Hydroxymethylfurfural Electrooxidation by Porous Biochar via Loading Numerous Surface-Exposed Cobalt Phosphonates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11450-11459. [PMID: 38777791 DOI: 10.1021/acs.langmuir.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The electrooxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) demonstrated its unique superiority, not only in reducing overpotential and improving energy conversion efficiency for green hydrogen production but also in utilizing abundant biomass resources and producing high-value-added chemicals. However, designing highly efficient electrocatalysts for HMF electrooxidation (HMF-EOR) with low cost and high performance for large-scale production remained a huge challenge. Herein, we introduced an easy one-step activation process to produce P-doped porous biochar loaded with multiple crystal surfaces exposed to CoP2O6 catalysts (CoP2O6@PC), which exhibited outstanding electrooxidation performance. To achieve a current density of 50 mA cm-2, only a low overpotential of 200 mV was needed for the electrooxidation of HMF in 1.0 M KOH + 10 mM HMF. This performance far surpassed that of other similar materials. CoP2O6@PC exhibited outstanding HMF-EOR performance with high conversion (nearly 100%), selectivity (97.1%), faradaic efficiency (95.3%), and robust stability. This work represents a promising strategy to fabricate macroscale and low-cost HMF-EOR electrocatalysts and achieve potential industrial applications of HMF-EOR.
Collapse
Affiliation(s)
- Yongzhi Xiong
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jianchun Jiang
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| | - Yajun Liu
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xialin Ji
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Changzhou Chen
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Kui Wang
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| |
Collapse
|
54
|
Lei H, Cui M, Cao J, Li K, Chen Z, Sun L, Huang Y. In Situ Pt Migration Enabled Resurrection of Electrocatalyst and Fuel Cell Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309068. [PMID: 38149506 DOI: 10.1002/smll.202309068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 12/28/2023]
Abstract
In direct methanol fuel cells (DMFCs), the poisoning of noble metals is considered to be a major impediment to their commercial development. Here, it is found that the loss of surface Pt is one main reason for the attenuation of catalyst performance during long-time methanol oxidation reaction (MOR). A strategy to realize in situ resurrection of the deactivated catalyst by migrating Pt atoms inside to the surface is innovatively proposed. A high-activity Pt-SnO2 is designed, whose MOR activity is resurrected to 97.4% of the initial value. Based on this, the multiple resurrection of a DMFC device is also achieved for the first time. This work provides a new approach for the solution of catalyst deactivation and the development of sustainable catalysts as well as fuel cells.
Collapse
Affiliation(s)
- Hao Lei
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mangwei Cui
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jian Cao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaikai Li
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zuhuang Chen
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Ligang Sun
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yan Huang
- State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
55
|
Li G, Wu S, Liu J, Wang K, Chen X, Liu H. Narrow Bandgap Schottky Heterojunction Sonosensitizer with High Electron-Hole Separation Boosted Sonodynamic Therapy in Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401252. [PMID: 38549283 DOI: 10.1002/adma.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Indexed: 04/11/2024]
Abstract
Sonodynamic therapy (SDT) is applied to bladder cancer (BC) given its advantages of high depth of tissue penetration and nontoxicity due to the unique anatomical location of the bladder near the abdominal surface. However, low electron-hole separation efficiency and wide bandgap of sonosensitizers limit the effectiveness of SDT. This study aims to develop a TiO2-Ru-PEG Schottky heterojunction sonosensitizer with high electron-hole separation and narrow bandgap for SDT in BC. Density functional theory (DFT) calculations and experiments collectively demonstrate that the bandgap of TiO2-Ru-PEG is reduced due to the Schottky heterojunction with the characteristic of crystalline-amorphous interface formed by the deposition of ruthenium (Ru) within the shell layer of TiO2. Thanks to the enhancement of oxygen adsorption and the efficient separation of electron-hole pairs, TiO2-Ru-PEG promotes the generation of reactive oxygen species (ROS) under ultrasound (US) irradiation, resulting in cell cycle arrest and apoptosis of bladder tumor cells. The in vivo results prove that TiO2-Ru-PEG boosted the subcutaneous and orthotopic bladder tumor models while exhibiting good safety. This study adopts the ruthenium complex for optimizing sonosensitizers, contributing to the progress of SDT improvement strategies and presenting a paradigm for BC therapy.
Collapse
Affiliation(s)
- Guanlin Li
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Sicheng Wu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
56
|
Zheng Z, Dong K, Yang X, Yuan Q. Crystalline-Amorphous Heterophase PdMoCrW Tetrametallene: Highly Efficient Oxygen Reduction Electrocatalysts for a Long-Term Zn-Air Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11307-11316. [PMID: 38739878 DOI: 10.1021/acs.langmuir.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metallenes have received sustained attention owing to their unique microstructure characteristics and compelling catalytic applications, but the synthesis of multielement crystalline-amorphous metallenes remains a formidable challenge. Herein, we report a one-step wet chemical reduction method to synthesize composition-tunable crystalline-amorphous heterophase PdMoCrW tetrametallene. As-synthesized PdMoCrW tetrametallene is composed of approximately six to seven atomic layers and has flexible crimpiness, a crystalline-amorphous heterophase structure, and high-valence metal species. Time-dependent experiments show that PdMoCrW tetrametallene follows a three-step growth mechanism that includes nucleation, lateral growth, and atom diffusion, respectively. The novel ultrathin structure, optimized Pd electronic structure, and hydrophilic surface together greatly promote the activity and stability of PdMoCrW tetrametallene in the alkaline oxygen reduction reaction. Pd75.9Mo9.4Cr8.9W5.8/C exhibits excellent mass and specific activities of 2.81 A mgPd-1 and 4.05 mA cm-2, which are 20.07/14.46 and 23.42/16.20 times higher than those of commercial Pt/C and Pd/C, respectively. Furthermore, a Zn-air battery assembled using Pd75.9Mo9.4Cr8.9W5.8/C as a cathode catalyst achieves a peak power density of 156 mW cm-2 and an ultralong durability of 329 h. This study reports an effective strategy for constructing crystalline-amorphous quaternary metallenes to advance non-Pt electrocatalysts toward oxygen reduction reaction (ORR) performance and for a Zn-air battery.
Collapse
Affiliation(s)
- Zhe Zheng
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kaiyu Dong
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
57
|
Maji M, Dutta S, Jena R, Dey A, Maji TK, Pati SK, Bhattacharyya S. Hydrogen Evolution in Neutral Media by Differential Intermediate Binding at Charge-Modulated Sites of a Bimetallic Alloy Electrocatalyst. Angew Chem Int Ed Engl 2024; 63:e202403697. [PMID: 38512122 DOI: 10.1002/anie.202403697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
The energy barrier to dissociate neutral water has been lowered by the differential intermediate binding on the charge-modulated metal centers of Co85Mo15 sheets supported on Ni-foam (NF), where the overpotential for hydrogen evolution reaction (HER) in 1 M phosphate buffer solution (PBS) is only 50±9 mV at -10 mA cm-2. It has a turnover frequency (TOF) of 0.18 s-1, mass activity of 13.2 A g-1 at -200 mV vs. reversible hydrogen electrode (RHE), and produces 16 ml H2 h-1 at -300 mV vs. RHE, more than double that of 20 % Pt/C. The Moδ+ and Coδ- sites adsorb OH*, and H*, respectively, and the electron injection from Co to H-O-H cleaves the O-H bond to form the Mo-OH* intermediate. Operando spectral analyses indicate a weak H-bonded network for facilitating the H2O*/OH* transport, and a potential-induced reversal of the charge density from Co to the more electronegative Mo, because of the electron withdrawing Co-H* and Mo-OH* species. Co85Mo15/NF can also drive the complete electrolysis of neutral water at only 1.73 V (10 mA cm-2). In alkaline, and acidic media, it demonstrates a Pt-like HER activity, accomplishing -1000 mA cm-2 at overpotentials of 161±7, and 175±22 mV, respectively.
Collapse
Affiliation(s)
- Mamoni Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Rohan Jena
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Anupam Dey
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| |
Collapse
|
58
|
Meng X, Zhao X, Min Y, Li Q, Xu Q. Oxygen Vacancy-Enhanced Ni 3N-CeO 2/NF Nanoparticle Catalysts for Efficient and Stable Electrolytic Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:935. [PMID: 38869560 PMCID: PMC11173528 DOI: 10.3390/nano14110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Highly efficient and cost-effective electrocatalysts are of critical significance in the domain of water electrolysis. In this study, a Ni3N-CeO2/NF heterostructure is synthesized through a facile hydrothermal technique followed by a subsequent nitridation process. This catalyst is endowed with an abundance of oxygen vacancies, thereby conferring a richer array of active sites. Therefore, the catalyst demonstrates a markedly low overpotential of 350 mV for the Oxygen Evolution Reaction (OER) at 50 mA cm-2 and a low overpotential of 42 mV for the Hydrogen Evolution Reaction (HER) at 10 mA cm-2. Serving as a dual-function electrode, this electrocatalyst is employed in overall water splitting in alkaline environments, demonstrating impressive efficiency at a cell voltage of 1.52 V of 10 mA cm-2. The in situ Raman spectroscopic analysis demonstrates that cerium dioxide (CeO2) facilitates the rapid reconfiguration of oxygen vacancy-enriched nickel oxyhydroxide (NiOOH), thereby enhancing the OER performance. This investigation elucidates the catalytic role of CeO2 in augmenting the OER efficiency of nickel nitride (Ni3N) for water electrolysis, offering valuable insights for the design of high-performance bifunctional catalysts tailored for water splitting applications.
Collapse
Affiliation(s)
- Xianghao Meng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
| | - Xin Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
59
|
Zhang Z, Wang P, Wei C, Feng J, Xiong S, Xi B. Synchronous Regulation of D-Band Centers in Zn Substrates and Weakening Pauli Repulsion of Zn Ions Using the Ascorbic Acid Additive for Reversible Zinc Anodes. Angew Chem Int Ed Engl 2024; 63:e202402069. [PMID: 38466145 DOI: 10.1002/anie.202402069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
The advanced aqueous zinc-ion batteries (AZIBs) are still challenging due to the harmful reactions including hydrogen evolution and corrosion. Here, a natural small molecule acid vitamin C (Vc) as an aqueous electrolyte additive has been selectively identified. The small molecule Vc can adjust the d band center of Zn substrate which fixes the active H+ so that the hydrogen evolution reaction (HER) is restrained. Simultaneously, it could also fine-tune the solvation structure of Zn ions due to the enhanced electrostatics and reduced Pauli repulsion verified by energy decomposition analysis (EDA). Hence, the cell retains an ultra-long cycle performance of over 1300 cycles and a superior Coulombic efficiency (CE) of 99.5 %. The prepared full cells display increased rate capability, cycle lifetime, and self-discharge suppression. Our results shed light on the mechanistic principle of electrolyte additives on the performance improvement of ZIBs, which is anticipated to render a new round of studies.
Collapse
Affiliation(s)
- Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Chuanliang Wei
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, 250061, Jinan, P.R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| |
Collapse
|
60
|
Liu X, Yao Y, Li W, Zhang Y, Liu Z, Yin H, Wang D. Molten-Salt Electrochemical Preparation of Co 2B/MoB 2 Heterostructured Nanoclusters for Boosted pH-Universal Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308549. [PMID: 38054764 DOI: 10.1002/smll.202308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Boosting the hydrogen evolution reaction (HER) activity of α-MoB2 at large current densities and in pH-universal medium is significant for efficient hydrogen production. In this work, Co2B/MoB2 heterostructured nanoclusters are prepared by molten-salt electrolysis (MSE) and then used as a HER catalyst. The composition, structure, and morphology of Co2B/MoB2 can be modulated by altering the stoichiometries of raw materials and synthesis temperatures. Impressively, the obtained Co2B/MoB2 at optimized conditions exhibits a low overpotential of 297 and 304 mV at 500 mA cm-2 in 0.5 m H2SO4 and 1 m KOH, respectively. Moreover, the Co2B/MoB2 catalyst possesses a long-term catalytic stability of over 190 h in both acidic and alkaline medium. The excellent HER performance is due to the modified electronic structure at the Co2B/MoB2 heterointerface where electrons are accumulated at the Mo sites to strengthen the H adsorption. Density functional theory (DFT) calculations reveal that the formation of the Co2B/MoB2 heterointerface decreases the H adsorption and H2O dissociation free energies, contributing to the boosted HER intrinsic catalytic activity of Co2B/MoB2. Overall, this work provides an experimental and theoretical paradigm for the design of efficient pH-universal boride heterostructure electrocatalysts.
Collapse
Affiliation(s)
- Xianglin Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuanpeng Yao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenting Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Huayi Yin
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Dihua Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
61
|
Zhang C, Xing H, Duan X, Pan F, Chen KJ, Wang T. Metal Selenide-Based Superstructure Nanoarrays with Ultrahigh Capacity for Alkaline Zn Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307795. [PMID: 38085109 DOI: 10.1002/smll.202307795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Indexed: 05/25/2024]
Abstract
Transition metal selenides (TMSs) have great potential as cathode materials for alkaline Zn batteries (AZBs) owing to their high theoretical capacity and metallic conductivity. However, achieving a high specific capacity remains a formidable challenge due to the low structural stability and sluggish reaction kinetics of single-phase TMS. Herein, a facile method for fabricating a robust CoSe2@Ni3Se4@Ni(OH)2 superstructure nanoarray (CNSNA) as an AZB cathode is presented. The sophisticated design enables structural stability and abundant active surface sites for efficient charge storage. Furthermore, the redox mediator K3[Fe(CN)6] is employed to expedite the reaction kinetics and introduce supplementary redox reactions, further enhancing the charge storage capability. Consequently, the CNSNA electrode delivers an exceptional specific capacitance (609.08 mAh g-1 at 1 A g-1), surpassing all previously reported selenide-based materials. High-rate capability (239.37 mAh g-1 at 20 A g-1) and long cycling stability have also been achieved. The comprehensive charge storage mechanism studies confirmed the structural integrity, kinetic improvement, and high reactivity of the CNSNA superstructure. Moreover, the corresponding AZB based on CNSNA demonstrates an extraordinarily high energy density of 516.58 Wh kg-1. The work offers guidance in the construction of superstructure-based TMS electrode materials, paving the way for the development of high-performance AZBs.
Collapse
Affiliation(s)
- Chiyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, PR China
| | - Hanfang Xing
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
| | - Xiaoyao Duan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
| | - Fuping Pan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
| | - Teng Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, PR China
| |
Collapse
|
62
|
Han Y, Liu Z, Wang C, Guo L, Wang Y. Construction of rod-like cobalt-pyridinedicarboxylic acid/MXene nanosheets composites for hydrogen evolution reaction and supercapacitor. J Colloid Interface Sci 2024; 661:139-149. [PMID: 38295696 DOI: 10.1016/j.jcis.2024.01.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable attention in the field of energy storage and conversion due to their large specific surface area, regulatable pore structure and composition. However, the poor electrical conductivity and few active sites of MOFs impede their application. Herein, highly conductive MXene nanosheets are introduced to modulate the electronic conductivity and structure of rod-like Co-pyridinedicarboxylic acid (Co-PDC), and thus enhancing the electrochemical performance of MOFs. The heterostructural Co-PDC/MXene (CPM) was facily synthesized at room temperature. The as-prepared CPM-30 with 30 % MXene only requires the overpotential of 75.1 mV to achieve a current density of 10 mA cm-2 for hydrogen evolution reaction (HER), and the assembled electrolytic cell with CPM-30 and RuO2 as cathode and anode electrodes can achieve a current density of 10 mA cm-2 at a voltage of 1.65 V. In addition, CPM-10 exhibits a high specific capacitance of 583.1 F g-1 at 0.5 A g-1 and an excellent rate performance of 41.6 % at 50 A g-1. Furthermore, the assembled asymmetric supercapacitor CPM-10//AC exhibited an energy density of 15.55 Wh kg-1 at a power density of 750 W kg-1 and excellent stability with a capacitance retention rate of 95 % after 10,000 cycles. The excellent electrochemical properties of Co-PDC/MXene are attributed to the unique structure and synergistic effect of Co-PDC and MXene.
Collapse
Affiliation(s)
- Yuhao Han
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China
| | - Zijie Liu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China
| | - Chao Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China
| | - Li Guo
- Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China; Institute of Advanced Energy Materials and System, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
63
|
Zhou X, Mukoyoshi M, Kusada K, Yamamoto T, Toriyama T, Murakami Y, Kitagawa H. Phase control of solid-solution RuIn nanoparticles and their catalytic properties. NANOSCALE 2024. [PMID: 38655766 DOI: 10.1039/d4nr00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The properties of solids could be largely affected by their crystal structures. We achieved, for the first time, the phase control of solid-solution RuIn nanoparticles (NPs) from face-centred cubic (fcc) to hexagonal close-packed (hcp) crystal structures by hydrogen heat treatment. The effect of the crystal structure of RuIn alloy NPs on the catalytic performance in the hydrogen evolution reaction (HER) was also investigated. In the hcp RuIn NPs, enhanced HER catalytic performance was observed compared to the fcc RuIn NPs and monometallic Ru NPs. The intrinsic electronic structures of the NPs were investigated by valence-band X-ray photoelectron spectroscopy (VB-XPS). The d-band centre of hcp RuIn NPs obtained from VB-XPS was deeper than that of fcc RuIn NPs and monometallic Ru NPs, which is considered to enable the hcp RuIn NPs to exhibit enhanced HER catalytic performance.
Collapse
Affiliation(s)
- Xin Zhou
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Megumi Mukoyoshi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
- The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yasukazu Murakami
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
64
|
Chen S, Yue K, Shi J, Zheng Z, He Y, Wan H, Chen G, Zhang N, Liu X, Ma R. Crystal Structure Regulation of CoSe 2 Induced by Fe Dopant for Promoted Surface Reconstitution toward Energetic Oxygen Evolution Reaction. Inorg Chem 2024; 63:7430-7441. [PMID: 38605566 DOI: 10.1021/acs.inorgchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Most nonoxide catalysts based on transition metal elements will inevitably change their primitive phases under anodic oxidation conditions in alkaline media. Establishing a relationship between the bulk phase and surface evolution is imperative to reveal the intrinsic catalytic active sites. In this work, it is demonstrated that the introduction of Fe facilitates the phase transition of orthorhombic CoSe2 into its cubic counterpart and then accelerates the Co-Fe hydroxide layer generation on the surface during electrocatalytic oxygen evolution reaction (OER). As a result, the Fe-doped cubic CoSe2 catalyst exhibits a significantly enhanced activity with a considerable overpotential decrease of 79.9 and 66.9 mV to deliver 10 mA·cm-2 accompanied by a Tafel slope of 48.0 mV·dec-1 toward OER when compared to orthorhombic CoSe2 and Fe-doped orthorhombic CoSe2, respectively. Density functional theory (DFT) calculations reveal that the introduction of Fe on the surface hydroxide layers will tune electron density around Co atoms and raise the d-band center. These findings will provide deep insights into the surface reconstitution of the OER electrocatalysts based on transition metal elements.
Collapse
Affiliation(s)
- Shuo Chen
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Kaiqin Yue
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jiawei Shi
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhicheng Zheng
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yuanqing He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hao Wan
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
65
|
Zhang W, Yang L, Li Z, Nie G, Cao X, Fang Z, Wang X, Ramakrishna S, Long Y, Jiao L. Regulating Hydrogen/Oxygen Species Adsorption via Built-in Electric Field -Driven Electron Transfer Behavior at the Heterointerface for Efficient Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202400888. [PMID: 38419146 DOI: 10.1002/anie.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Alkaline water electrolysis (AWE) plays a crucial role in the realization of a hydrogen economy. The design and development of efficient and stable bifunctional catalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are pivotal to achieving high-efficiency AWE. Herein, WC1-x/Mo2C nanoparticle-embedded carbon nanofiber (WC1-x/Mo2C@CNF) with abundant interfaces is successfully designed and synthesized. Benefiting from the electron transfer behavior from Mo2C to WC1-x, the electrocatalysts of WC1-x/Mo2C@CNF exhibit superior HER and OER performance. Furthermore, when employed as anode and cathode in membrane electrode assembly devices, the WC1-x/Mo2C@CNF catalyst exhibits enhanced catalytic activity and remarkable stability for 100 hours at a high current density of 200 mA cm-2 towards overall water splitting. The experimental characterizations and theoretical simulation reveal that modulation of the d-band center for WC1-x/Mo2C@CNF, achieved through the asymmetric charge distribution resulting from the built-in electric field induced by work function, enables optimization of adsorption strength for hydrogen/oxygen intermediates, thereby promoting the catalytic kinetics for overall water splitting. This work provides promising strategies for designing highly active catalysts in energy conversion fields.
Collapse
Affiliation(s)
- Wenjie Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Lei Yang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhi Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Guangzhi Nie
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zizheng Fang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiaojun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, 266061, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
66
|
Liu X, Ma W, Yang T, Qiu Z, Wang J, Li Y, Wang Y, Huang Y. Multilevel Heterogeneous Interfaces Enhanced Polarization Loss of 3D-Printed Graphene/NiCoO 2/Selenides Aerogels for Boosting Electromagnetic Energy Dissipation. ACS NANO 2024; 18:10184-10195. [PMID: 38529933 DOI: 10.1021/acsnano.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Heterointerface engineering is an attractive approach to modulating electromagnetic (EM) parameters and EM wave absorption performance. However, the weak interfacial interactions and poor impedance matching would lead to unsatisfactory EM absorption performance due to the limitation of the construction materials and design strategies. Herein, multilevel heterointerface engineering is proposed by in situ growing nanosheet-like NiCoO2 and selenides with abundant interface structures on 3D-printed graphene aerogel (GA) skeletons, which strengthens the interfacial effect and improves the dielectric polarization loss. Benefiting from the features of substantially enhanced polarization loss and optimized impedance matching, the graphene/S-NiCoO2/selenides (G/S-NCO/Se) have achieved brilliant EM wave absorption performance with a strong reflection loss (RL) value of -60.7 dB and a broad effective absorption bandwidth (EAB) of 8 GHz, which is about six times greater than that of the graphene aerogel (-9.8 dB). Moreover, it is further confirmed by charge density differences and off-axis electron holography that a large amount of polarized charge accumulates at the interface, leading to significant polarization relaxation behaviors. This work provides a deep understanding of the effect of a multilevel heterogeneous interface on dielectric polarization loss, which injects a fresh and infinite vitality for designing high-efficiency EM wave absorbers.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wenle Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tianyue Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Zhengrong Qiu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Jianbin Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yuhao Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yang Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yi Huang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
67
|
Zeng B, Liu X, Wan L, Xia C, Cao L, Hu Y, Dong B. Grafting Ultra-fine Nanoalloys with Amorphous Skin Enables Highly Active and Long-lived Acidic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202400582. [PMID: 38308672 DOI: 10.1002/anie.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/05/2024]
Abstract
Large-scale deployment of proton exchange membranes water electrolysis (PEM-WE) requires a substantial reduction in usage of platinum group metals (PGMs) as indispensable electrocatalyst for cathodic hydrogen evolution reaction (HER). Ultra-fine PGMs nanocatalysts possess abundant catalytic sites at lower loading, but usually exhibit reduced stability in long-term operations under corrosive acidic environments. Here we report grafting the ultra-fine PtRu crystalline nanoalloys with PtxRuySez "amorphous skin" (c-PtRu@a-PtxRuySez) by in situ atomic layer selenation to simultaneously improve catalytic activity and stability. We found that the c-PtRu@a-PtxRuySez-1 with ~0.6 nm thickness amorphous skin achieved an ultra-high mass activity of 26.7 A mg-1 Pt+Ru at -0.07 V as well as a state-of-the-art durability maintained for at least 1000 h at -10 mA cm-2 and 550 h at -100 mA⋅cm-2 for acid HER. Experimental and theoretical investigations suggested that the amorphous skin not only improved the electrochemical accessibility of the catalyst surface and increasing the intrinsic activity of the catalytic sites, but also mitigated the dissolution/diffusion of the active species, thus resulting in improved catalytic activity and stability under acidic electrolyte. This work demonstrates a direction of designing ultra-fine PGMs electrocatalysts both with high utilization and robust durability, offers an in situ "amorphous skin" engineering strategy.
Collapse
Affiliation(s)
- Biao Zeng
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Li Wan
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Chenghui Xia
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, 72 Coastal Highway, Qingdao, 266237, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| |
Collapse
|
68
|
Liu Y, Hu Y, Zhao X, Zhu S, Min Y, Xu Q, Li Q. Oxygen Vacancy and Heterostructure Modulation of Co 2P/Fe 2P Electrocatalysts for Improving Total Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13795-13805. [PMID: 38449335 DOI: 10.1021/acsami.3c19548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Designing a stable and highly active catalyst for hydrogen evolution and oxygen evolution reactions (HER/OER) is essential for the industrialization of hydrogen energy but remains a major challenge. This work reports a simple approach to fabricating coupled Co2P/Fe2P nanorod array catalyst for overall water decomposition, demonstrating the source of excellent activity in the catalytic process. Under alkaline conditions, Co2P/Fe2P heterostructures exhibit an overpotential of 96 and 220 mV for HER and OER, respectively, at 10 mA cm-2. For total water splitting, a low voltage of 1.56 V is required to provide a current density of 10 mA cm-2. And the catalyst exhibits long-term durability for 30 h at a high current density of 250 mA cm-2. The analysis of the results revealed that the presence of interfacial oxygen vacancies and the strong interaction between Co2P/Fe2P provided the catalyst with more electrochemically active sites and a faster charge transfer capability, which improved the hydrolysis dissociation process. Electrochemically active metal (oxygen) hydroxide phases were produced after OER stability testing. The results of this study prove its great potential in practical industrial electrolysis and provide a reasonable and feasible strategy for the design of nonprecious metal phosphide electrocatalysts.
Collapse
Affiliation(s)
- Yue Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yawen Hu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xin Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
69
|
Liu S, Li Z, Chang Y, Gyu Kim M, Jang H, Cho J, Hou L, Liu X. Substantial Impact of Built-in Electric Field and Electrode Potential on the Alkaline Hydrogen Evolution Reaction of Ru-CoP Urchin Arrays. Angew Chem Int Ed Engl 2024; 63:e202400069. [PMID: 38286756 DOI: 10.1002/anie.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Although great efforts on the delicate construction of a built-in electric field (BIEF) to modify the electronic properties of active sites have been conducted, the substantial impact of BIEF coupled with electrode potential on the electrochemical reactions has not been clearly investigated. Herein, we designed an alkaline hydrogen evolution reaction (HER) catalyst composed of heterogeneous Ru-CoP urchin arrays on carbon cloth (Ru-CoP/CC) with a strong BIEF with the guidance of density functional theory (DFT) calculations. Impressively, despite its unsatisfactory activity at 10 mA cm-2 (overpotential of 44 mV), Ru-CoP/CC exhibited better activity (357 mV) than the benchmark Pt/C catalyst (505 mV) at 1 A cm-2 . Experimental and theoretical studies revealed that strong hydrogen adsorption on the interfacial Ru atoms created a high energy barrier for hydrogen desorption and spillover, resulting in unsatisfactory activity at low current densities. However, as the electrode potential became more negative (i.e., the current density increased), the barrier for hydrogen spillover from the interfacial Ru to the Co site, which had near-zero hydrogen adsorption energy, significantly decreased, thus greatly accelerating the whole alkaline HER process. This explains why the activity of Ru-CoP is relatively susceptible to the electrode potential compared to Pt/C.
Collapse
Affiliation(s)
- Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Yaxiang Chang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Korea
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
70
|
Huang LA, Xu Y, Song Y, Xie H, Zhong W. Local electronic structure engineering of vanadium-doped nickel phosphide nanosheet arrays for efficient hydrogen evolution. J Colloid Interface Sci 2024; 658:383-391. [PMID: 38113547 DOI: 10.1016/j.jcis.2023.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Local electronic structure engineering is an effective approach for optimizing the catalytic performance of electrocatalysts. Herein, a dual-phase vanadium-doped nickel phosphide (NiVxP) catalyst supported on nickel foam (NF) was synthesized via a successive hydrothermal and phosphorization process with interconnected nanosheet structures and homogeneous distributions. The catalyst's stable phase and strong adhesion to the substrate ensure good electrochemical stability. The incorporation of V effectively promotes initial H2O adsorption and H* formation, leading to a lower overpotential. As a result, the fabricated NiVxP@NF demonstrates favorable hydrogen evolution reaction (HER) activity and stability, with only 85 mV overpotential needed to reach 10 mA·cm-2 and showing no significant increase in the overpotential during the long-term 78-hour stability test.
Collapse
Affiliation(s)
- Liang-Ai Huang
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China
| | - Yue Xu
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China
| | - Yilin Song
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Wenwu Zhong
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, PR China.
| |
Collapse
|
71
|
Guan H, Liu Y, Hu X, Wu J, Ye TN, Lu Y, Hosono H, Li Q, Pan F. Dipole Coupling Accelerated H 2 O Dissociation by Magnesium-Based Intermetallic Catalysts. Angew Chem Int Ed Engl 2024; 63:e202400119. [PMID: 38268159 DOI: 10.1002/anie.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
The water (H2 O) dissociation is critical for various H2 O-associated reactions, including water gas shift, hydrogen evolution reaction and hydrolysis corrosion. While the d-band center concept offers a catalyst design guideline for H2 O activation, it cannot be applied to intermetallic or main group elements-based systems because Coulomb interaction was not considered. Herein, using hydrolysis corrosion of Mg as an example, we illustrate the critical role of the dipole of the intermetallic catalysts for H2 O dissociation. The H2 O dissociation kinetics can be enhanced using Mgx Mey (Me=Co, Ni, Cu, Si and Al) as catalysts, and the hydrogen generation rate of Mg2 Ni-loaded Mg reached 80 times as high as Ni-loaded Mg. The adsorbed H2 O molecules strongly couple with the Mg-Me dipole of Mgx Mey , lowering the H2 O dissociation barrier. The dipole-based H2 O dissociation mechanism is applicable to non-transition metal-based systems, such as Mg2 Si and Mg17 Al12 , offering a flexible catalyst design strategy for controllable H2 O dissociation.
Collapse
Affiliation(s)
- Haotian Guan
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400045, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China
| | - Yijia Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinmeng Hu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiazhen Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tian-Nan Ye
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangfan Lu
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400045, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China
| | - Hideo Hosono
- MDX Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Qian Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400045, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China
| | - Fusheng Pan
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400045, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China
| |
Collapse
|
72
|
Liu X, Su S, Yin H, Zhang S, Isimjan TT, Huang J, Yang X, Cai D. Precise Anchoring of Fe Sites by Regulating Crystallinity of Novel Binuclear Ni-MOF for Revealing Mechanism of Electrocatalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306085. [PMID: 37875668 DOI: 10.1002/smll.202306085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Indexed: 10/26/2023]
Abstract
Bimetallic metal-organic framework (BMOF) exhibits better electrocatalytic performance than mono-MOF, but deciphering the precise anchoring of foreign atoms and revealing the underlying mechanisms at the atomic level remains a major challenge. Herein, a novel binuclear NiFe-MOF with precise anchoring of Fe sites is synthesized. The low-crystallinity (LC)-NiFe0.33 -MOF exhibited abundant unsaturated active sites and demonstrated excellent electrocatalytic oxygen evolution reaction (OER) performance. It achieved an ultralow overpotential of 230 mV at 10 mA cm-2 and a Tafel slope of 41 mV dec-1 . Using a combination of modulating crystallinity, X-ray absorption spectroscopy, and theoretical calculations, the accurate metal sequence of BMOF and the synergistic effect of the active sites are identified, revealing that the adjacent active site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of BMOF electrocatalysts facilitates the investigation of efficient OER electrocatalysts and the related catalytic mechanisms.
Collapse
Affiliation(s)
- Xinqiang Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shibiao Su
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Haoran Yin
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shifan Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jin Huang
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Dandan Cai
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
73
|
Gao K, Zhou M, Liu Y, Wang S, Fu R, Wang Z, Guo J, Liu Z, Wang H, Zhao Y, Wang Q. The dual built-in electric fields across CoS/MoS 2 heterojunctions for energy-saving hydrogen production coupled with sulfion degradation. J Colloid Interface Sci 2024; 657:290-299. [PMID: 38043230 DOI: 10.1016/j.jcis.2023.11.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Substituting the sluggish oxygen evolution reaction with the sulfur oxidation reaction can significantly reduce energy consumption and eliminate environmental pollutants during hydrogen generation. However, the progress of this technology has been hindered due to the lack of cost-effective, efficient, and durable electrocatalysts. In this study, we present the design and construction of a hierarchical metal sulfide catalyst with a gradient structure comprising nanoparticles, nanosheets, and microparticles. This was achieved through a structure-breaking sulfuration strategy, resulting in a "ball of yarn"-like core/shell CoS/MoS2 microflower with CoS/MoS2/CoS dual-heterojunctions. The difference in work functions between CoS and MoS2 induces an electron polarization effect, creating dual built-in electric fields at the hierarchical interfaces. This effectively modulates the adsorption behavior of catalytic intermediates, thereby reducing the energy barrier for catalytic reactions. The optimized catalyst exhibits outstanding electrocatalytic performance for both the hydrogen evolution reaction and the sulfur oxidation reaction. Remarkably, in the assembled electrocatalytic coupling system, it only requires a cell voltage of 0.528 V at 10 mA cm-2 and maintains long-term durability for over 168 h. This work presents new opportunities for low-cost hydrogen production and environmentally friendly sulfion recycling.
Collapse
Affiliation(s)
- Kaiwen Gao
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Min Zhou
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, PR China
| | - Yifeng Liu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Shuocheng Wang
- School of Chemistry and Materials Science, Hubei Engineering University, No. 272 Traffic Avenue, Xiaogan 432000, Hubei, PR China
| | - Rong Fu
- School of Chemistry and Materials Science, Hubei Engineering University, No. 272 Traffic Avenue, Xiaogan 432000, Hubei, PR China
| | - Zhaoyang Wang
- School of Chemistry and Materials Science, Hubei Engineering University, No. 272 Traffic Avenue, Xiaogan 432000, Hubei, PR China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430062, Hubei, PR China.
| | - Jinghui Guo
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Ziang Liu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, PR China
| | - Hairen Wang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, Hubei, PR China; State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, PR China; College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Qijun Wang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| |
Collapse
|
74
|
Wu K, Lyu C, Cheng J, Guo Z, Li H, Zhu X, Lau WM, Zheng J. Modulating Electronic Structure by Etching Strategy to Construct NiSe 2 /Ni 0.85 Se Heterostructure for Urea-Assisted Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304390. [PMID: 37845029 DOI: 10.1002/smll.202304390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Exploring and developing novel strategies for constructing heterostructure electrocatalysts is still challenging for water electrolysis. Herein, a creative etching treatment strategy is adopted to construct NiSe2 /Ni0.85 Se heterostructure. The rich heterointerfaces between NiSe2 and Ni0.85 Se emerge strong electronic interaction, which easily induces the electron transfer from NiSe2 to Ni0.85 Se, and tunes the charge-state of NiSe2 and Ni0.85 Se. In the NiSe2 /Ni0.85 Se heterojunction nanomaterial, the higher charge-state Ni0.85 Se is capable of affording partial electrons to combine with hydrogen protons, inducing the rapid formation of H2 molecule. Accordingly, the lower charge-state NiSe2 in the NiSe2 /Ni0.85 Se heterojunction nanomaterial is more easily oxidized into high valence state Ni3+ during the oxygen evolution reaction (OER) process, which is beneficial to accelerate the mass/charge transfer and enhance the electrocatalytic activities towards OER. Theoretical calculations indicate that the heterointerfaces are conducive to modulating the electronic structure and optimizing the adsorption energy toward intermediate H* during the hydrogen evolution reaction (HER) process, leading to superior electrocatalytic activities. To expand the application of the NiSe2 /Ni0.85 Se-2h electrocatalyst, urea is served as the adjuvant to proceed with the energy-saving hydrogen production and pollutant degradation, and it is proven to be a brilliant strategy.
Collapse
Affiliation(s)
- Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhonglu Guo
- School of Materials Science and Engineering, Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Hongyu Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| |
Collapse
|
75
|
Liu Z, Feng C, Yang S, Li K, Huang Z, Sun D. 1D/3D dual carbon-supported Mott-Schottky-type Co-Co 2P heterojunctions for pH-universal hydrogen evolution. J Colloid Interface Sci 2024; 657:559-566. [PMID: 38071805 DOI: 10.1016/j.jcis.2023.11.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/02/2024]
Abstract
The rational design of low-cost, efficient, and stable heterojunction catalysts for pH-universal hydrogen evolution is attracting increasing attention towards a sustainable hydrogen economy. Herein, a sequential spatial restriction-pyrolysis route is developed to confine Mott-Schottky-type Co-Co2P heterojunctions embedded in the one-dimensional (1D) carbon nanotube-modified three-dimensional (3D) N,P dual-doped carbon matrix (Co-Co2P@CNT//CM). The synergistic effect between the abundant Mott-Schottky heterointerfaces and the 1D/3D dual carbon confinement system enables fully exposed active sites and facilitated charge transfer dynamics, thus triggering favorable electronic structures of Co-Co2P@CNT//CM. As a result, Co-Co2P@CNT//CM heterojunctions exhibit excellent pH-universal hydrogen evolution reaction (HER) performance with overpotentials of 142, 205, and 262 mV at 10 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M phosphate buffer saline (PBS), respectively. The theoretical results demonstrated that the Mott-Schottky effect can induce an oriented interfacial charge exchange between Co and Co2P. This can lower the reactive kinetic barrier and endow Co-Co2P@CNT//CM with ideal hydrogen adsorption free energy, which efficiently drives the production of H2 from electrolytic water.
Collapse
Affiliation(s)
- Zhengyang Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Feng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Shuting Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kaiwen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhaodi Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
76
|
Niu Z, Lu Z, Qiao Z, Wang S, Cao X, Chen X, Yun J, Zheng L, Cao D. Robust Ru-VO 2 Bifunctional Catalysts for All-pH Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310690. [PMID: 38048484 DOI: 10.1002/adma.202310690] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Designing robust bifunctional catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction in all-pH conditions for overall water splitting (OWS) is an effective way to achieve sustainable development. Herein, a composite Ru-VO2 containing Ru-doped VO2 and Ru nanoparticles (NPs) is synthesized, and it shows a high OWS performance in full-pH range due to their synergist effect. In particular, the OER mass activities of Ru-VO2 at 1.53 V (vs RHE) in acidic, alkaline, and PBS solutions are ≈65, 36, and 235 times of commercial RuO2 in the same conditions. The "Ru-VO2 || Ru-VO2 " two-electrode electrolyzer only needs a voltage of 1.515 V (at 10 mA cm-2 ) in acidic water splitting, which can operate stably for 125 h at 10 mA cm-2 without significant voltage decay. In situ Raman spectra and in situ differential electrochemical mass spectrometry prove that the OER of Ru-VO2 in acid follows the adsorption evolution mechanism. Density functional theory calculations further reveal the synergistic effect between Ru NP and Ru-doped VO2 , which breaks the hydrogen bond network formed by *OH adsorbed on the Ru single-atom site, and thereby significantly enhances the OER activity. This work provides new insights into the design of novel bifunctional pH-universal catalysts for OWS.
Collapse
Affiliation(s)
- Ziqiang Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhankuan Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohua Cao
- School of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Xiudong Chen
- School of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao, 266000, China
- School of Chemical Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
77
|
Xu HM, Zhu HR, Zhang ZJ, Huang CJ, Shuai TY, Zhan QN, Li GR. Co/Co 3O 4 Heterojunctions Encased in Porous N-Doped Carbon Nanocapsules for High-Performance Cathode of Rechargeable Zinc-Air Batteries. Inorg Chem 2024; 63:3702-3711. [PMID: 38335057 DOI: 10.1021/acs.inorgchem.3c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A long-term goal of rechargeable zinc-air batteries (ZABs) has always been to design bifunctional electrocatalysts that are robust, effective, and affordable for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It has become a feasible method to construct metal/metal oxide interfaces to achieve superior electrocatalytic performance for ORR and OER by enhanced charge transfer. In this study, Co/Co3O4 heterojunctions were successfully prepared and encased in porous N-doped mesoporous carbon (Co/Co3O4@NC) via a simple condensation-carbonization-etching method. The extensive specific surface area of Co/Co3O4@NC facilitates effective interaction between the electrolyte and the catalyst, thereby enabling sufficient exposure of active sites for the ORR and the OER, consequently enhancing the rate of transport of active species. The well-designed Co/Co3O4@NC delivers superior ORR catalytic activity with a half-wave potential of 0.82 V (vs RHE) and a low overpotential of 347 mV at 10 mA cm-2 for OER in alkaline solution. The power density of Co/Co3O4@NC-based alkaline aqueous ZAB (156.5 mW cm-2) is superior to the commercial Pt/C + IrO2-based alkaline aqueous ZAB, and the cycling stability of ZAB is up to 220 h. In addition, Co/Co3O4@NC-based ZAB shows a high power density (50.1 mW cm-2). The construction of metal/metal oxide heterojunction encased in N-doped mesoporous carbon provides a novel route for the design of bifunctional electrocatalysts for high-performance ZABs.
Collapse
Affiliation(s)
- Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
78
|
Gu J, Duan F, Liu S, Cha W, Lu J. Phase Engineering of Nanostructural Metallic Materials: Classification, Structures, and Applications. Chem Rev 2024; 124:1247-1287. [PMID: 38259248 DOI: 10.1021/acs.chemrev.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Metallic materials are usually composed of single phase or multiple phases, which refers to homogeneous regions with distinct types of the atom arrangement. The recent studies on nanostructured metallic materials provide a variety of promising approaches to engineer the phases at the nanoscale. Tailoring phase size, phase distribution, and introducing new structures via phase transformation contribute to the precise modification in deformation behaviors and electronic structures of nanostructural metallic materials. Therefore, phase engineering of nanostructured metallic materials is expected to pave an innovative way to develop materials with advanced mechanical and functional properties. In this review, we present a comprehensive overview of the engineering of heterogeneous nanophases and the fundamental understanding of nanophase formation for nanostructured metallic materials, including supra-nano-dual-phase materials, nanoprecipitation- and nanotwin-strengthened materials. We first review the thermodynamics and kinetics principles for the formation of the supra-nano-dual-phase structure, followed by a discussion on the deformation mechanism for structural metallic materials as well as the optimization in the electronic structure for electrocatalysis. Then, we demonstrate the origin, classification, and mechanical and functional properties of the metallic materials with the structural characteristics of dense nanoprecipitations or nanotwins. Finally, we summarize some potential research challenges in this field and provide a short perspective on the scientific implications of phase engineering for the design of next-generation advanced metallic materials.
Collapse
Affiliation(s)
- Jialun Gu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Fenghui Duan
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Sida Liu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenhao Cha
- Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52056, Germany
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- CityU-Shenzhen Futian Research Institute, No. 3, Binglang Road, Futian District, Shenzhen 518000, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518000, China
| |
Collapse
|
79
|
Shi Z, Li Y, Wu X, Chen B, Sun W, Guo C, Li CM. Integrated Sandwich-Paper 3D Cell Sensing Device to In Situ Wirelessly Monitor H 2O 2 Released from Living Cells. Anal Chem 2024. [PMID: 38324759 DOI: 10.1021/acs.analchem.3c05639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Point-of-care testing (POCT) has attracted great interest because of its prominent advantages of rapidness, precision, portability, and real-time monitoring, thus becoming a powerful biomedical device in early clinical diagnosis and convenient medical treatments. However, its complicated manufacturing process and high expense severely impede mass production and broad applications. Herein, an innovative but inexpensive integrated sandwich-paper three-dimensional (3D) cell sensing device is fabricated to in situ wirelessly detect H2O2 released from living cells. The paper-based electrochemical sensing device was constructed by a sealed sandwiched bottom plastic film/fiber paper/top hole-centered plastic film that was printed with patterned electrodes. A new (Fe, Mn)3(PO4)2/N-doped carbon nanorod was developed and immobilized on the sensing carbon electrode while cell culture solution filled the exposed fiber paper, allowing living cells to grow on the fiber paper surrounding the electrode. Due to the significantly shortening diffusion distance to access the sensing sites by such a unique device and a rationally tuned ratio of Fe2+/Mn2+, the device exhibits a fast response time (0.2 s), a low detection limit (0.4 μM), and a wide detection range (2-3200 μM). This work offers great promise for a low-cost and highly sensitive POCT device for practical clinic diagnosis and broad POCT biomedical applications.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yunpeng Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| |
Collapse
|
80
|
Xu X, Wang X, Huo S, Liu X, Ma X, Liu M, Zou J. Modulation of Phase Transition in Cobalt Selenide with Simultaneous Construction of Heterojunctions for Highly-Efficient Oxygen Electrocatalysis in Zinc-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306844. [PMID: 37813107 DOI: 10.1002/adma.202306844] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Phase transformation of cobalt selenide (CoSe2 ) can effectively modulate its intrinsic electrocatalytic activity. However, enhancing electroconductivity and catalytic activity/stability of CoSe2 still remains challenging. Heterostructure engineering may be feasible to optimize interfacial properties to promote the kinetics of oxygen electrocatalysis on a CoSe2 -based catalyst. Herein, a heterostructure consisting of CoSe2 and cobalt nitride (CoN) embedded in a hollow carbon cage is designed via a simultaneous phase/interface engineering strategy. Notably, the phase transition of orthorhombic-CoSe2 to cubic-CoSe2 (c-CoSe2 ) accompanied by in situ CoN formation is realized to build the c-CoSe2 /CoN heterointerface, which exhibits excellent/highly stable activities for oxygen reduction/evolution reactions (ORR/OER). Notably, heterostructure can modulate the local coordination environment and increase Co-Se/N bond lengths. Theoretical calculations show that Co-site (c-CoSe2 ) with an electronic state near Fermi energy level is the main active site for ORR/OER.Energetical tailoring of the d-orbital electronic structure of the Co atom of c-CoSe2 in heterostructure by in situ CoN incorporation lowers thermodynamic barriers for ORR/OER. Attractively, a zinc-air battery with a c-CoSe2 -CoN cathode displays excellent cycling stability (250 h) and charge/discharge voltage loss (0.953/0.96 V). It highlights that heterointerface engineering provides an option for modulating the bifunctional activity of metal selenides with controlled phase transformation.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xinyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Sichen Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xiaofeng Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xuena Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
81
|
Hu M, Qian Y, Yu S, Yang Q, Wang Z, Huang Y, Li L. Amorphous MoS 2 Decorated Ni 3 S 2 with a Core-shell Structure of Urchin-Like on Nickel-Foam Efficient Hydrogen Evolution in Acidic and Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305948. [PMID: 37759414 DOI: 10.1002/smll.202305948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The large-scale commercialization of the hydrogen evolution reaction (HER) necessitates the development of cost-effective and highly efficient electrocatalysts. Although transition metal sulfides, such as MoS2 and Ni3 S2 , hold great potential in the field of HER, their catalytic performance has been unsatisfactory due to incomplete exposure of active sites and poor electrical conductivity. In this work, via a simple hydrothermal strategy, amorphous MoS2 nanoshells in the form of urchin-like MoS2 -Ni3 S2 core-shell heterogeneous structure is realized and in situ loaded on nickel foam (A-MoS2 -Ni3 S2 -NF). In particular, XPS analysis results show that the coupling of amorphous MoS2 and Ni3 S2 makes the electrode surface exhibit electron-abundant property, which will have a positive impact on HER catalytic activity. In addition, the fully exposed active site of amorphous MoS2 is another crucial factor contributing to its high catalytic performance of A-MoS2 -Ni3 S2 -NF electrode. In particular, at a current density of 10 mA cm⁻2 , the overpotential of electrode is 95 mV (1.0 m KOH) and 145 mV (0.5 m H2 SO4 ). This work highlights the importance of amorphous MoS2 and MoS2 -Ni3 S2 of sea-urchin core-shell structure in optimizing HER performance, which provides an important reference for HER research.
Collapse
Affiliation(s)
- Mengliang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yuanpeng Qian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Shuhui Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Qingyao Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Zhinan Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Yishuai Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| |
Collapse
|
82
|
Jiang N, Li J, Wang B, Zhang Y, Gao W, Jiang B. Heterogeneous Co-Ni phosphide with active sites for water dissociation and efficient hydrogen evolution reaction. Dalton Trans 2024; 53:2048-2054. [PMID: 38179865 DOI: 10.1039/d3dt03447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The construction of highly active and stable transition phosphide-based materials is widely regarded as an alternative approach to the use of Pt-based catalysts in the field of electrocatalytic hydrogen evolution. Herein, self-supported heterostructure Co-Ni phosphides (denoted as CoxNi1-x-P) were synthesized with different metal ratios by a low temperature electrodeposition strategy. Impressively, the optimized heterogeneous Co0.5Ni0.5-P nanocomposites displayed outstanding hydrogen evolution performance, with low overpotentials of 67 mV and 181 mV to deliver current densities of 10 mA cm-2 and 100 mA cm-2 in alkaline electrolyte. X-ray photoelectron spectroscopy revealed the optimized electronic structure of Co0.5Ni0.5-P, which led to an improvement in the conductivity. Density functional theory calculations demonstrated that the Co0.5Ni0.5-P heterostructure could provide a more optimal water-dissociation-related Volmer process for hydrogen evolution reaction (HER), in which water molecules could be easily activated on Co0.5Ni0.5-P with a low energy barrier. Moreover, the downshift of the d-band center confirmed the optimized H adsorption, further accelerating the HER kinetics.
Collapse
Affiliation(s)
- Nan Jiang
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266033, China.
| | - Jiayou Li
- School of Environmental and municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Bing Wang
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266033, China.
| | - Yuhan Zhang
- School of Environmental and municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Weijun Gao
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266033, China.
- Faculty of Environmental Engineering, University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Bolong Jiang
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266033, China.
- School of Environmental and municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
83
|
Lan H, Wang J, Cheng L, Yu D, Wang H, Guo L. The synthesis and application of crystalline-amorphous hybrid materials. Chem Soc Rev 2024; 53:684-713. [PMID: 38116613 DOI: 10.1039/d3cs00860f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Crystalline-amorphous hybrid materials (CA-HMs) possess the merits of both pure crystalline and amorphous phases. Abundant dangling bonds, unsaturated coordination atoms, and isotropic structural features in the amorphous phase, as well as relatively high electronic conductivity and thermodynamic structural stability of the crystalline phase simultaneously take effect in CA-HMs. Furthermore, the atomic and bandgap mismatch at the CA-HM interface can introduce more defects as extra active sites, reservoirs for promoted catalytic and electrochemical performance, and induce built-in electric field for facile charge carrier transport. Motivated by these intriguing features, herein, we provide a comprehensive overview of CA-HMs on various aspects-from synthetic methods to multiple applications. Typical characteristics of CA-HMs are discussed at the beginning, followed by representative synthetic strategies of CA-HMs, including hydrothermal/solvothermal methods, deposition techniques, thermal adjustment, and templating methods. Diverse applications of CA-HMs, such as electrocatalysis, batteries, supercapacitors, mechanics, optoelectronics, and thermoelectrics along with underlying structure-property mechanisms are carefully elucidated. Finally, challenges and perspectives of CA-HMs are proposed with an aim to provide insights into the future development of CA-HMs.
Collapse
Affiliation(s)
- Hao Lan
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Jiawei Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Liwei Cheng
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Dandan Yu
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Hua Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Lin Guo
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| |
Collapse
|
84
|
Hou ZQ, Hu WP, Yang GH, Zhang ZX, Cheng TY, Huang KJ. Improving the electrocatalytic hydrogen evolution reaction through a magnetic field and hydrogen peroxide production co-assisted Ni/Fe 3O 4@poly(3,4-ethylene-dioxythiophene)/Ni electrode. J Colloid Interface Sci 2024; 654:1303-1311. [PMID: 37913719 DOI: 10.1016/j.jcis.2023.10.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The production of high-purity hydrogen using surplus electrical energy and abundant water resources has immense potential in mitigating the fossil energy crisis, as hydrogen fuel holds clean, pollution-free, and high-energy characteristics. However, the practical application of large-scale hydrogen production from water faces challenges such as high overpotentials, sluggish dynamics, and limited electrocatalytic lifetime associated with the hydrogen evolution reaction (HER). Here, we fabricated the sandwich structure of a Ni/Fe3O4@poly(3,4-ethylene-dioxythiophene)/Ni (Ni/Fe3O4@PEDOT/Ni) electrode and employed a strong magnet to obtain a magnetic electrode capable of achieving high-activity and durability for HER. Electrochemical analysis reveals that the activated magnetic electrode displays a significantly reduced overpotential and an extended electrocatalytic lifetime of 10 days. Notably, its stability is higher than that of non-magnetic Ni/Fe3O4/Ni and Ni/Fe3O4@PEDOT/Ni electrodes, primarily due to the support from magnetic force and the protective PEDOT layer. Moreover, the minute atomized droplets can form the H2O2 species in a moist environment, facilitating the formation of the NiO layer on the Ni surface, which plays a vital role in boosting catalytic activity. In conclusion, our magnetic electrode strategy, combined with the emergence of the NiO layer, offers valuable insights for the development of advanced HER electrodes.
Collapse
Affiliation(s)
- Zhi-Qiang Hou
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Wen-Ping Hu
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Guo-Hua Yang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Zi-Xuan Zhang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Tian-Yi Cheng
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
85
|
Shen S, Zhang H, Song K, Wang Z, Shang T, Gao A, Zhang Q, Gu L, Zhong W. Multi-d Electron Synergy in LaNi 1-x Co x Ru Intermetallics Boosts Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202315340. [PMID: 37985934 DOI: 10.1002/anie.202315340] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Despite the fact that d-band center theory links the d electron structure of transition metals to their catalytic activity, it is yet unknown how the synergistic effect of multi-d electrons impacts catalytic performance. Herein, novel LaNi1-x Cox Ru intermetallics containing 5d, 4d, and 3d electrons were prepared. In these compounds, the 5d orbital of La transfers electrons to the 4d orbital of Ru, which provides adsorption sites for H*. The 3d orbitals of Ni and Co interact with the 5d and 4d orbitals to generate an anisotropic electron distribution, which facilitates the adsorption and desorption of OH*. The synergistic effect of multi-d electrons ensures efficient catalytic activity. The optimized LaNi0.5 Co0.5 Ru has an overpotential of 43mV at 10 mA cm-2 for alkaline electrocatalytic hydrogen evolution reaction. Beyond offering a variety of new electrocatalysts, this work reveals the multi-d electron synergy in promoting catalytic reaction.
Collapse
Affiliation(s)
- Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Huanhuan Zhang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Kai Song
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Tongtong Shang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ang Gao
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academy of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, 100190, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
86
|
Chen R, Meng L, Xu W, Li L. Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304807. [PMID: 37653598 DOI: 10.1002/smll.202304807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Sluggish oxygen evolution reactions on photoanode surfaces severely limit the application of photoelectrochemical (PEC) water splitting. The loading of cocatalysts on photoanodes has been recognized as the simplest and most efficient optimization scheme, which can reduce the surface barrier, provide more active sites, and accelerate the surface catalytic reaction kinetics. Nevertheless, the introduction of cocatalysts inevitably generates interfaces between photoanodes and oxygen evolution cocatalysts (Ph/OEC), which causes severe interfacial recombination and hinders the carrier transfer. Recently, many researchers have focused on cocatalyst engineering, while few have investigated the effect of the Ph/OEC interface. Hence, to maximize the advantages of cocatalysts, interfacial problems for designing efficient cocatalysts are systematically introduced. In this review, the interrelationship between the Ph/OEC and PEC performance is classified and some methods for characterizing Ph/OEC interfaces are investigated. Additionally, common interfacial optimization strategies are summarized. This review details cocatalyst-design-based interfacial problems, provides ideas for designing efficient cocatalysts, and offers references for solving interfacial problems.
Collapse
Affiliation(s)
- Runyu Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Linxing Meng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Weiwei Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
87
|
Liu Z, Xu H, Fan Y, Hong Q, Huang W, Yu F, Qu Z, Yan N. Cation Concavities Induced d-Band Electronic Modulation on Co/FeO x Nanostructure to Activate Molecular and Interfacial Oxygen for CO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21272-21283. [PMID: 38051813 DOI: 10.1021/acs.est.3c06743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.
Collapse
Affiliation(s)
- Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
88
|
Yu X, Shi W, Wei J, Liu T, Li Y, He M, Wei Z, Ping D, Sun P, Zheng JY, Li S. Green fabrication of ultrafine N-Mo xC/CoP hybrids for boosting electrocatalytic water reduction. NANOTECHNOLOGY 2023; 35:065704. [PMID: 37991485 DOI: 10.1088/1361-6528/ad0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Developing non-noble-metal electrocatalysts for hydrogen evolution reactions with high activity and stability is the key issue in green hydrogen generation based on electrolytic water splitting. It has been recognized that the stacking of large CoP particles limits the intrinsic activity of as-synthesized CoP catalyst for hydrogen evolution reaction. In the present study, N-MoxC/CoP-0.5 with excellent electrocatalytic activity for hydrogen evolution reaction was prepared using N-MoxC as decoration. A reasonable overpotential of 106 mV (at 10 mA cm-2) and a Tafel slope of 59 mV dec-1in 1.0 M KOH solution was achieved with N-MoxC/CoP-0.5 electrocatalyst, which exhibits superior activity even after working for 37 h. Uniformly distributed ultrafine nanoclusters of the N-MoxC/CoP-0.5 hybrids could provide sufficient interfaces for enhanced charge transfer. The effective capacity of the hydrogen evolution reaction could be preserved in the complex, and the enlarged electrocatalytic surface area could be expected to offer more active sites for the reaction.
Collapse
Affiliation(s)
- Xiaomei Yu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei Shi
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jiajiao Wei
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Tiantian Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yuanyuan Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Mengyuan He
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhengyu Wei
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dehai Ping
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Panfei Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jin You Zheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Songjie Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
89
|
Zang S, Hou Y, Chang J, Xu F, Wu D, Jiang K, Gao Z. Amorphous-crystalline heterostructures enable energy-level matching of cobalt sulfide/nickel iron layered double hydroxide for efficient oxygen evolution reaction. J Colloid Interface Sci 2023; 656:485-494. [PMID: 38007940 DOI: 10.1016/j.jcis.2023.11.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Interface engineering of heterostructures has emerged as a promising approach to enhance the catalytic activity of nonprecious electrocatalysts. Herein, a novel amorphous cobalt sulfide-crystalline nickel iron layered double hydroxide (a-CoS@NiFe-LDH) hybrid material is presented for application as an electrocatalyst for oxygen evolution reaction (OER). Benefitting from the well-matched energy level structures, the a-CoS@NiFe-LDH catalyst delivers a low overpotential of 221 ± 14 mV at an OER current density of 20 mA cm-2 and a small Tafel slope of 83.1 mV dec-1, showing good OER properties. First-principle computations reveal that the electronic interaction between amorphous cobalt sulfide (a-CoS) and crystalline nickel iron layered double hydroxide (NiFe-LDH) components within a-CoS@NiFe-LDH promotes the adsorbate evolution mechanism and reduces the adsorption energies for oxygen intermediates, thereby enhancing the activity and stability for OER. This work opens up a new avenue to enhance the OER catalytic efficiency via the construction of amorphous-crystalline heterostructures.
Collapse
Affiliation(s)
- Shiqi Zang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Yan Hou
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China; School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| |
Collapse
|
90
|
Zhang R, Xu Z, Du Z, Wan Y, Yuan S, Zeng F, Xu J, Meng Z, Hu X, Tian H. Electrodeposition of Self-Supported High-Entropy Spinel Oxides for Stable Oxygen Evolution. Inorg Chem 2023; 62:19052-19059. [PMID: 37922206 DOI: 10.1021/acs.inorgchem.3c02930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Spinel oxides have attracted increasing interest due to their excellent activity in the oxygen evolution reaction (OER). However, despite the high intrinsic OER activity, their poor electrical conductivity and weak structural stability prevented their application for a long time. These shortcomings can be solved by effectively adjusting the electronic structures of spinel oxides through a high-entropy strategy. Herein, a rapid two-step method was developed to prepare self-supported high-entropy spinel-type oxides on a carbon cloth (CC) to yield (Fe0.2Co0.2Ni0.2Mn0.2Cr0.2)3O4@CC (abbreviated as FeCoNiMnCr@CC). The unique electronic structure and stable crystal configuration of the resulting FeCoNiMnCr@CC materials required only an overpotential of 287 mV for the OER at a current density of 10 mA cm-2 coupled with excellent cyclic stability. In summary, the proposed high-entropy strategy looks promising for improving the catalytic performance of spinel oxides.
Collapse
Affiliation(s)
- Runlin Zhang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zijin Xu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhengyan Du
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yichen Wan
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Shaojie Yuan
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Fanda Zeng
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Jian Xu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiaoying Hu
- College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun, Jilin 130022, China
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
91
|
Wang D, Zhang Y, Zhang K, Wang X, Wang C, Li Z, Gao F, Du Y. Rapid synthesis of Palladium-Platinum-Nickel ultrathin porous nanosheets with high catalytic performance for alcohol electrooxidation. J Colloid Interface Sci 2023; 650:350-357. [PMID: 37413869 DOI: 10.1016/j.jcis.2023.06.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Bimetallic two-dimensional (2D) nanomaterials are widely used in electrocatalysis owing to their unique physicochemical properties, while trimetallic 2D materials of porous structures with large surface area are rarely reported. In this paper, a one-pot hydrothermal synthesis of ternary ultra-thin PdPtNi nanosheets is developed. By adjusting the volume ratio of the mixed solvents, PdPtNi with porous nanosheets (PNSs) and ultrathin nanosheets (UNSs) was prepared. The growth mechanism of PNSs was investigated through a series of control experiments. Notably, thanks to the high atom utilization efficiency and fast electron transfer, the PdPtNi PNSs have remarkable activity of methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The mass activities of the well-tuned PdPtNi PNSs for MOR and EOR were 6.21 A mg-1 and 5.12 A mg-1, respectively, much higher than those of commercial Pt/C and Pd/C. In addition, after durability test, the PdPtNi PNSs exhibited desirable stability with the highest retained current density. Therefore, this work provides a significant guidance for designing and synthesizing a new 2D material with excellent catalytic performance toward direct fuel cells applications.
Collapse
Affiliation(s)
- Dongqiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Caiqin Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuolin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
92
|
Chen S, Liu D, Zhou P, Qiao L, An K, Zhuo Y, Lu J, Liu Q, Ip WF, Wang Z, Pan H. Multi-metal electrocatalyst with crystalline/amorphous structure for enhanced alkaline water/seawater hydrogen evolution. J Colloid Interface Sci 2023; 650:807-815. [PMID: 37450969 DOI: 10.1016/j.jcis.2023.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The development of well-defined nanomaterials as non-noble metal electrocatalysts has broad application prospect for hydrogen generation technology. Recently, multi-metal electrocatalysts for hydrogen evolution reaction (HER) have attracted extensive attention due to their high catalytic performance arising from the synergistic effect of multi-metal interaction. However, most multi-metal catalysts suffer from the limited synergistic effect because of poor interfacial compatibility between different components. Here, a novel multi-metal catalyst (Ni/MoO2@CoFeOx) nanosheet with a crystalline/amorphous structure is demonstrated, which shows high HER activity. Ni/MoO2@CoFeOx exhibits an ultra-low overpotential of 18, 39, and 93 mV at 10 mA cm-2 in alkaline water, alkaline seawater and natural seawater, respectively, which outperformances most of the state-of-the-art non-noble metal compounds. In addition, the catalyst shows exceptional stability under 500 mA cm-2 in alkaline solution. In-situ Raman and other advanced structural characterization confirms the excellent catalytic activity is mainly contributed by: (1) the strong synergistic effect of multi-metal components provides multiple active sites in the catalytic process; (2) the crystalline/amorphous interface in Ni/MoO2@CoFeOx boosts the catalytically active sites and structure stability; (3) the crystalline phase enhances the intrinsic conductivity greatly; and (4) the amorphous phase provides abundant unsaturated sites for improved intrinsic catalytic activity. This work provides a feasible way to design electrocatalyst with high activity and stability for practical applications.
Collapse
Affiliation(s)
- Songbo Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dong Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China.
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Keyu An
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yuling Zhuo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China; Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Jianxi Lu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Qizhen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China.
| | - Zhenbo Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China.
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China; Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China.
| |
Collapse
|
93
|
Gao G, Zhu G, Chen X, Sun Z, Cabot A. Optimizing Pt-Based Alloy Electrocatalysts for Improved Hydrogen Evolution Performance in Alkaline Electrolytes: A Comprehensive Review. ACS NANO 2023; 17:20804-20824. [PMID: 37922197 DOI: 10.1021/acsnano.3c05810] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The splitting of water through electrocatalysis offers a sustainable method for the production of hydrogen. In alkaline electrolytes, the lack of protons forces water dissociation to occur before the hydrogen evolution reaction (HER). While pure Pt is the gold standard electrocatalyst in acidic electrolytes, since the 5d orbital in Pt is nearly fully occupied, when it overlaps with the molecular orbital of water, it generates a Pauli repulsion. As a result, the formation of a Pt-H* bond in an alkaline environment is difficult, which slows the HER and negates the benefits of using a pure Pt catalyst. To overcome this limitation, Pt can be alloyed with transition metals, such as Fe, Co, and Ni. This approach has the potential not only to enhance the performance but also to increase the Pt dispersion and decrease its usage, thus overall improving the catalyst's cost-effectiveness. The excellent water adsorption and dissociation ability of transition metals contributes to the generation of a proton-rich local environment near the Pt-based alloy that promotes HER. Significant progress has been achieved in comprehending the alkaline HER mechanism through the manipulation of the structure and composition of electrocatalysts based on the Pt alloy. The objective of this review is to analyze and condense the latest developments in the production of Pt-based alloy electrocatalysts for alkaline HER. It focuses on the modified performance of Pt-based alloys and clarifies the design principles and catalytic mechanism of the catalysts from both an experimental and theoretical perspective. This review also highlights some of the difficulties encountered during the HER and the opportunities for increasing the HER performance. Finally, guidance for the development of more efficient Pt-based alloy electrocatalysts is provided.
Collapse
Affiliation(s)
- Guoliang Gao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Xueli Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
94
|
Wu K, Wang C, Lang X, Cheng J, Wu H, Lyu C, Lau WM, Liang Z, Zhu X, Zheng J. Insight into selenium vacancies enhanced CoSe 2/MoSe 2 heterojunction nanosheets for hydrazine-assisted electrocatalytic water splitting. J Colloid Interface Sci 2023; 654:1040-1053. [PMID: 39491062 DOI: 10.1016/j.jcis.2023.10.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
The integration of interface engineering and vacancy engineering was a feasible way to develop highly efficient electrocatalysts toward water electrolysis. Herein, we designed CoSe2/MoSe2 heterojunction nanosheets with abundant Se vacancies (VSe-CoSe2/MoSe2) for electrocatalytic water splitting. In the VSe-CoSe2/MoSe2 electrocatalyst, the electrons more easily transferred from CoSe2 to MoSe2, and interface engineering not only modulated the electronic structure, but also supplied more heterointerfaces and catalytic sites. After chemical etching, partial Se atoms were eliminated, which further activated the inert plane of the VSe-CoSe2/MoSe2 electrocatalyst and induced electron redistribution. The removal of surface Se atoms was also beneficial to expose inner reactive sites, which promoted adsorption toward reaction intermediates. Density functional theory calculations revealed that interface engineering and vacancy engineering collaboratively optimized the adsorption energy of the VSe-CoSe2/MoSe2 electrocatalyst toward the intermediate H* during the hydrogen evolution reaction process, leading to better electrocatalytic activity. The density of state diagram manifested the refined electronic structure of the VSe-CoSe2/MoSe2 electrocatalyst, and it exhibited a higher electronic state near the Fermi level, which indicated superior electronic conductivity, facilitating electron transport during the catalytic process. In alkaline media, the VSe-CoSe2/MoSe2 electrocatalyst delivered low overpotentials of merely 74 and 242 mV to obtain 10 mA cm-2 toward hydrogen evolution reaction and oxygen evolution reaction. This work illustrated the feasibility of combining two or more strategies to develop high-performance catalysts for water electrolysis.
Collapse
Affiliation(s)
- Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiufeng Lang
- Department of Physics, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China.
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Zhengwenda Liang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
| |
Collapse
|
95
|
Cao X, Gao L, Qu J, Li L, Xie Y, Zhao Y, Wang G, Liu H. Modulating Electronic Structure of PtCo-Pt rich Nanowires with Ru atoms for Boosted Hydrogen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302639. [PMID: 37309285 DOI: 10.1002/smll.202302639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Indexed: 06/14/2023]
Abstract
Rational design and development of highly efficient hydrogen evolution reaction (HER) electrocatalysts is of great significance for the development of green water electrolysis hydrogen production technology. Ru-engineered 1D PtCo-Ptrich nanowires (Ru-Ptrich Co NWs) are fabricated by a facile electrodeposition method. The rich Pt surface on 1D Pt3 Co contributes to the fully exposed active sites and enhanced intrinsic catalytic activity (co-engineered by Ru and Co atoms) for HER. The incorporation of Ru atoms can not only accelerate the water dissociation in alkaline condition to provide sufficient H* but also modulate the electronic structure of Pt to achieve optimized H* adsorption energy. As a result, Ru-Ptrich Co NWs have exhibited ultralow HER overpotentials (η) of 8 and 112 mV to achieve current densities of 10 and 100 mA cm-2 in 1 m KOH, respectively, which far exceed those of commercial Pt/C catalyst (η10 = 29 mV, η100 = 206 mV). Density functional theory (DFT) calculations further demonstrate that the incorporated Ru atoms possess strong water adsorption capacity (-0.52 vs -0.12 eV for Pt), facilitating water dissociation. The Pt atoms in the outermost Pt-rich skin of Ru-Ptrich Co NWs achieve optimized H* adsorption free energy (ΔGH* ) of -0.08 eV, boosting hydrogen generation.
Collapse
Affiliation(s)
- Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Li Gao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junpeng Qu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lu Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuhan Xie
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Yufei Zhao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Hao Liu
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| |
Collapse
|
96
|
Xia W, Ma M, Guo X, Cheng D, Wu D, Cao D. Fabricating Ru Atom-Doped Novel FeP 4/Fe 2PO 5 Heterogeneous Interface for Overall Water Splitting in Alkaline Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44827-44838. [PMID: 37713509 DOI: 10.1021/acsami.3c07326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Developing bifunctional electrocatalysts with low-content noble metals and high activity and stability is crucial for water splitting. Herein, we reported a novel Ru doped FeP4/Fe2PO5 heterogeneous interface catalyst (Ru@FeP4/Fe2PO5) for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) by heat treatment coupling electrodeposition strategy. Experiments disclosed that Ru@FeP4/Fe2PO5 proclaimed excellent catalytic activity for the OER (249 mV@100 mA cm-2) and HER (49 mV@10 mA cm-2) in a 1 M KOH environment. More importantly, the mass activity and turnover frequency of Ru@FeP4/Fe2PO5 were 117 and 108 times higher than that of commercial RuO2 at an overpotential of 300 mV during the OER, respectively. In addition, the assembled Ru@FeP4/Fe2PO5 || Ru@FeP4/Fe2PO5 system could retain superior durability in a two-electrode system for 134 h at 300 mA cm-2. Further mechanism studies revealed that Ru atoms in Ru@FeP4/Fe2PO5 act in a key role for the excellent activity during water splitting because the electronic structure of Ru sites could be optimized by the interaction between Ru and Fe atoms at the interface to strengthen the adsorption of reaction intermediates. Besides, the introduction of Ru atoms could also enhance the charge transfer, which effectually accelerates the reaction kinetics. The strategy of anchoring Ru atom on novel heterostructure provides a promising path to boost the overall activity of electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wei Xia
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Mengyao Ma
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dengfeng Wu
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
97
|
Jiang L, Gu M, Wang H, Huang X, Gao A, Sun P, Liu X, Zhang X. Synergistically Regulating the Electronic Structure of CoS by Cation and Anion Dual-Doping for Efficient Overall Water Splitting. CHEMSUSCHEM 2023; 16:e202300592. [PMID: 37313584 DOI: 10.1002/cssc.202300592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Precisely regulating the electronic construction of the reactive center is an essential method to improve the electrocatalysis, but achieving efficient multifunctional characteristics remains a challenge. Herein, CoS sample dual-doped by Cu and F atoms, as bifunctional electrocatalyst, is designed and synthesized for water electrolysis. According to the experimental results, Cu atom doping can perform primary electronic adjustment and obtain bifunctional properties, and then the electronic structure is adjusted for the second time to achieve an optimal state by introducing F atom. Meanwhile, this dual-doping strategy will result in lattice distortion and expose more active sites. As expected, dual-doped Cu-F-CoS show the brilliant electrocatalytic activity, revealing ultralow overpotentials (59 mV for HER, 213 mV for OER) at 10 mA cm-2 in alkaline electrolyte. Besides, it also exhibits distinguished water electrolysis activity with cell voltage as low as 1.52 V at 10 mA cm-2 . Our work can provide an atomic-level perception for adjusting the electronic construction of reactive sites by means of dual-doping engineering and put forward a contributing path for the electrocatalysts with multifunctional designing.
Collapse
Affiliation(s)
- Ling Jiang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Mingzheng Gu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaomin Huang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - An Gao
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Ping Sun
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xudong Liu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaojun Zhang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei, 230601, China
| |
Collapse
|
98
|
Wu D, Liu B, Li R, Chen D, Zeng W, Zhao H, Yao Y, Qin R, Yu J, Chen L, Zhang J, Li B, Mu S. Fe-Regulated Amorphous-Crystal Ni(Fe)P 2 Nanosheets Coupled with Ru Powerfully Drive Seawater Splitting at Large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300030. [PMID: 37144430 DOI: 10.1002/smll.202300030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Water electrolysis is an ideal method for industrial green hydrogen production. However, due to increasing scarcity of freshwater, it is inevitable to develop advanced catalysts for electrolyzing seawater especially at large current density. This work reports a unique Ru nanocrystal coupled amorphous-crystal Ni(Fe)P2 nanosheet bifunctional catalyst (Ru-Ni(Fe)P2 /NF), caused by partial substitution of Fe to Ni atoms in Ni(Fe)P2 , and explores its electrocatalytic mechanism by density functional theory (DFT) calculations. Owing to high electrical conductivity of crystalline phases, unsaturated coordination of amorphous phases, and couple of Ru species, Ru-Ni(Fe)P2 /NF only requires overpotentials of 375/295 and 520/361 mV to drive a large current density of 1 A cm-2 for oxygen/hydrogen evolution reaction (OER/HER) in alkaline water/seawater, respectively, significantly outperforming commercial Pt/C/NF and RuO2 /NF catalysts. In addition, it maintains stable performance at large current density of 1 A cm-2 and 600 mA cm-2 for 50 h in alkaline water and seawater, respectively. This work provides a new way for design of catalysts toward industrial-level seawater splitting.
Collapse
Affiliation(s)
- Dulan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bo Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruidong Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Rui Qin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jianan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bei Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
99
|
Yu L, Wu P, Tian T, He X, Fan M, Cui L. Crystalline/amorphous composite interface of CoP@Ni/Fe-P as a boosted electrocatalyst for full water splitting. Dalton Trans 2023; 52:11941-11948. [PMID: 37575068 DOI: 10.1039/d3dt01745a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Heterojunction materials have become good candidates for electrocatalysts thanks to their unique physicochemical merits. Herein, a crystalline-amorphous CoP@Ni/Fe-P heterojunction is constructed for whole water splitting. Originating from the strong electronic reaction at the amorphous-crystal interfaces, the electron density of Co, Ni, Fe and P is adjusted, which will optimize the adsorption and desorption energy of intermediates for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and lower the kinetic barrier. The CoP@Ni/Fe-P heterojunction displays overpotentials of 125 and 250 mV to drive a current density of 10 mA cm-2 in 1 M KOH. In addition, the whole water splitting performance requires a cell voltage of 1.56 V to deliver 10 mA cm-2 and shows good stability. This work provides a way to design and prepare transition-metal-based materials with good electrocatalytic activity by constructing a crystalline and amorphous heterojunction.
Collapse
Affiliation(s)
- Lijuan Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Peilin Wu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Tenghui Tian
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Lili Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| |
Collapse
|
100
|
Chen Y, Sui T, Lyu C, Wu K, Wu J, Huang M, Hao J, Lau WM, Wan C, Pang D, Zheng J. Constructing abundant interfaces by decorating MoP quantum dots on CoP nanowires to induce electronic structure modulation for enhanced hydrogen evolution reaction. MATERIALS HORIZONS 2023; 10:3761-3772. [PMID: 37404093 DOI: 10.1039/d3mh00644a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Interface engineering is a method of enhancing catalytic activity while maintaining a material's surface properties. Thus, we explored the interface effect mechanism via a hierarchical structure of MoP/CoP/Cu3P/CF. Remarkably, the heterostructure MoP/CoP/Cu3P/CF demonstrates an outstanding overpotential of 64.6 mV at 10 mA cm-2 with a Tafel slope of 68.2 mV dec-1 in 1 M KOH. DFT calculations indicate that the MoP/CoP interface in the catalyst exhibited the most favorable H* adsorption characteristics (-0.08 eV) compared to the pure phases of CoP (0.55 eV) and MoP (0.22 eV). This result can be attributed to the apparent modulation of electronic structures within the interface domains. Additionally, the CoCH/Cu(OH)2/CF‖MoP/CoP/Cu3P/CF electrolyzer demonstrates excellent overall water splitting performance, achieving 10 mA cm-2 in 1 M KOH solution with a modest voltage of only 1.53 V. This electronic structure adjustment via interface effects provides a new and efficient approach to prepare high-performance hydrogen production catalysts.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Tingting Sui
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Jiwen Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Meifang Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Ju Hao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| | - Chubin Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Dawei Pang
- Beijing Key Laboratory of Solid Microstructure and Properties, Department of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| |
Collapse
|