51
|
Tones M, Cross M, Simons C, Napier KR, Hunter A, Bellgard MI, Heussler H. Research protocol: The initiation, design and establishment of the Global Angelman Syndrome Registry. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:431-443. [PMID: 29633452 DOI: 10.1111/jir.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental disorder affecting between 1 in 15 000 and 1 in 24 000 individuals. The condition results in severe developmental and expressive language delays, motor impairments and a unique behavioural phenotype consisting of excessive laughter, smiling and sociability. While many studies have contributed knowledge about the causes and natural history of the syndrome, large scale longitudinal studies are required to advance research and therapeutics for this rare syndrome. METHOD This article describes the protocol for the Global Angelman Syndrome Registry, and some initial findings. Due to the rarity of AS and the variability in symptom presentation, the registry team will strive for complete case ascertainment. Parents and caregivers will submit data to the registry via a secure internet connection. The registry consists of 10 modules that cover patient demographics; developmental, diagnostic, medical and surgical history, behaviour and development, epilepsy, medications and interventions and sleep. RESULTS Since its launch at https://angelmanregistry.info in September 2016, almost 470 individuals with AS have been signed up to the registry worldwide: 59% are from North and South America, 23% are from Europe, 17% are from the Asia Pacific region and 1% are from the Middle East or Africa. The majority of registrants are children, with only 16% aged over 20 years. Most participants indicated a chromosome deletion (76%), with fewer participants indicating a mutation, uniparental disomy or imprinting defect (20%). CONCLUSION Findings indicate a need to consider recruitment strategies that target caregivers of older children and adults, and parents and caregivers from non-English speaking backgrounds.
Collapse
Affiliation(s)
- M Tones
- Developmental Paediatric Group, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - M Cross
- Foundation for Angelman Syndrome Therapeutics Australia, Brisbane, Queensland, Australia
| | - C Simons
- Foundation for Angelman Syndrome Therapeutics Australia, Brisbane, Queensland, Australia
| | - K R Napier
- Murdoch University, Centre for Comparative Genomics, Murdoch, Western Australia, Australia
| | - A Hunter
- Murdoch University, Centre for Comparative Genomics, Murdoch, Western Australia, Australia
| | - M I Bellgard
- eResearch Directorate, Queensland University of Technology, Brisbane, Queensland, Australia
| | - H Heussler
- Centre for Children's Health Research University of Queensland, Australia
| |
Collapse
|
52
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Tomei KL, Mau CY, Ghali M, Pak J, Goldstein IM. Vagal nerve stimulation for medically refractory epilepsy in Angelman syndrome: a series of three cases. Childs Nerv Syst 2018; 34:395-400. [PMID: 29350262 DOI: 10.1007/s00381-018-3723-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND We describe three children with Angelman syndrome and medically refractory epilepsy. METHODS Case series of three pediatric patients with Angelman syndrome and medically refractory epilepsy. All three patients failed medical treatment and were recommended for vagal nerve stimulator (VNS) implantation. RESULTS Following VNS implantation, all three patients experienced reduction in seizure frequency greater than that afforded by medication alone. CONCLUSION We present vagal nerve stimulator implantation as a viable treatment option for medically refractory epilepsy associated with Angelman syndrome.
Collapse
Affiliation(s)
- Krystal L Tomei
- University Hospitals Case Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Christine Y Mau
- Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael Ghali
- Department of General Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jayoung Pak
- Department of Neurology, Rutgers New Jersey Medical School Newark, Newark, NJ, USA
| | - Ira M Goldstein
- Department of Neurological Surgery, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 8100, Newark, NJ, 07101-1709, USA.
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here, we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. RECENT FINDINGS Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, post-mortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. SUMMARY To understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders.
Collapse
|
55
|
Abstract
The epigenome is a collection of chemical compounds that attach to and overlay the DNA sequence to direct gene expression. Epigenetic marks do not alter DNA sequence but instead allow or silence gene activity and the subsequent production of proteins that guide the growth and development of an organism, direct and maintain cell identity, and allow for the production of primordial germ cells (PGCs; ova and spermatozoa). The three main epigenetic marks are (1) histone modification, (2) DNA methylation, and (3) noncoding RNA, and each works in a different way to regulate gene expression. This article reviews these concepts and discusses their role in normal functions such as X-chromosome inactivation, epigenetic reprogramming during embryonic development and PGC production, and the clinical example of the imprinting disorders Angelman and Prader-Willi syndromes.
Collapse
Affiliation(s)
| | - Fay Wright
- Rory Meyers College of Nursing, New York, NY, USA
| |
Collapse
|
56
|
Le Fevre A, Beygo J, Silveira C, Kamien B, Clayton-Smith J, Colley A, Buiting K, Dudding-Byth T. Atypical Angelman syndrome due to a mosaic imprinting defect: Case reports and review of the literature. Am J Med Genet A 2017; 173:753-757. [PMID: 28211971 DOI: 10.1002/ajmg.a.38072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Angelman syndrome (AS) is characterized by severe intellectual disability, limited, or absent speech and a generally happy demeanor. The four known etiological mechanisms; deletions, uniparental disomy, imprinting defects, and UBE3A mutation all affect expression of the UBE3A gene at 15q11-q13. An atypical phenotype is seen in individuals who are mosaic for a chromosome 15q11-q13 imprinting defect on the maternal allele. These patients present with a milder phenotype, often with hyperphagia and obesity or non-specific intellectual disability. Unlike typical AS syndrome, they can have a vocabulary up to 100 words and speak in sentences. Ataxia and seizures may not be present, and the majority of individuals do not have microcephaly. Here we review the current literature and present three individuals with atypical AS caused by a mosaic imprinting defect to demonstrate why DNA methylation analysis at the SNRPN locus needs to be considered in a broader clinical context. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Germany
| | | | | | - Jill Clayton-Smith
- Genetic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
| | - Alison Colley
- Clinical Genetics Services, South West Sydney Local Health District, Liverpool, Australia
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Germany
| | - Tracy Dudding-Byth
- Hunter Genetics, Newcastle, Australia.,Hunter Genetics, Genetics of Learning Disability (GOLD) Service, Newcastle, Australia.,Grow Up Well Priority Research Centre, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
57
|
Wheeler AC, Sacco P, Cabo R. Unmet clinical needs and burden in Angelman syndrome: a review of the literature. Orphanet J Rare Dis 2017; 12:164. [PMID: 29037196 PMCID: PMC5644259 DOI: 10.1186/s13023-017-0716-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Angelman syndrome (AS) is a rare disorder with a relatively well-defined phenotype. Despite this, very little is known regarding the unmet clinical needs and burden of this condition, especially with regard to some of the most prevalent clinical features—movement disorders, communication impairments, behavior, and sleep. Main text A targeted literature review using electronic medical databases (e.g., PubMed) was conducted to identify recent studies focused on specific areas of the AS phenotype (motor, communication, behavior, sleep) as well as epidemiology, diagnostic processes, treatment, and burden. 142 articles were reviewed and summarized. Findings suggest significant impairment across the life span in all areas of function. While some issues may resolve as individuals get older (e.g., hyperactivity), others become worse (e.g., movement disorders, aggression, anxiety). There are no treatments focused on the underlying etiology, and the symptom-based therapies currently prescribed do not have much, if any, empirical support. Conclusions The lack of standardized treatment protocols or approved therapies, combined with the severity of the condition, results in high unmet clinical needs in the areas of motor functioning, communication, behavior, and sleep for individuals with AS and their families.
Collapse
Affiliation(s)
- Anne C Wheeler
- RTI International, 3040 Cornwallis Road, PO Box 12194, Research Triangle Park, NC, 27709-2194, USA.
| | - Patricia Sacco
- RTI Health Solutions, 200 Park Offices Drive, Research Triangle Park, NC, 27709, USA
| | - Raquel Cabo
- Ovid Therapeutics Inc., 1460 Broadway, New York, NY, 10036, USA
| |
Collapse
|
58
|
Tan WH, Bird LM, Sadhwani A, Barbieri-Welge RL, Skinner SA, Horowitz LT, Bacino CA, Noll LM, Fu C, Hundley RJ, Wink LK, Erickson CA, Barnes GN, Slavotinek A, Jeremy R, Rotenberg A, Kothare SV, Olson HE, Poduri A, Nespeca MP, Chu HC, Willen JM, Haas KF, Weeber EJ, Rufo PA. A randomized controlled trial of levodopa in patients with Angelman syndrome. Am J Med Genet A 2017; 176:1099-1107. [PMID: 28944563 DOI: 10.1002/ajmg.a.38457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022]
Abstract
Treatment for Angelman syndrome (AS) is currently limited to symptomatic interventions. A mouse model of AS has reduced calcium/calmodulin-dependent kinase II activity due to excessive phosphorylation of specific threonine residues, leading to diminished long-term potentiation. In a rat model of Parkinson disease, levodopa reduced phosphorylation of various proteins, including calcium/calmodulin-dependent kinase II. Further studies demonstrated that AS mice treated with levodopa performed better on rotarod testing than untreated AS mice. We conducted a multi-center double-blind randomized placebo-controlled 1-year trial of levodopa / carbidopa with either 10 or 15 mg/kg/day of levodopa in children with AS. The outcome of this intervention was assessed using either the Bayley Scales of Infant Development or the Mullen Scales of Early Learning, as well as the Vineland Adaptive Behavior Scales, and the Aberrant Behavior Checklist. Of the 78 participants enrolled, 67 participants received study medication (33 on levodopa, 34 on placebo), and 55 participants (29 on levodopa, 26 on placebo) completed the 1-year study. There were no clinically or statistically significant changes in any of the outcome measures over a 1-year period comparing the levodopa and placebo groups. The number of adverse events reported, including the more serious adverse events, was similar in both groups, but none were related to treatment with levodopa. Our data demonstrate that levodopa is well-tolerated by children with AS. However, in the doses used in this study, it failed to improve their neurodevelopment or behavioral outcome.
Collapse
Affiliation(s)
- Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Lynne M Bird
- Genetics / Dysmorphology, Rady Children's Hospital San Diego; Department of Pediatrics, University of California, San Diego, California
| | - Anjali Sadhwani
- Department of Psychiatry, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Carlos A Bacino
- Genetics Service, Texas Children's Hospital; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Lisa M Noll
- Psychology Service, Texas Children's Hospital; Baylor College of Medicine, Houston, Texas
| | - Cary Fu
- Division of Pediatric Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Rachel J Hundley
- Division of Developmental Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Logan K Wink
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gregory N Barnes
- Division of Pediatric Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, California
| | - Rita Jeremy
- Department of Pediatrics, University of California, San Francisco, California
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Sanjeev V Kothare
- Department of Neurology, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Heather E Olson
- Department of Neurology, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Mark P Nespeca
- Neurology, Rady Children's Hospital San Diego; University of California, San Diego, California
| | - Hillary C Chu
- Division of Genetics and Genomics, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Jennifer M Willen
- Division of Genetics and Genomics, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Kevin F Haas
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Paul A Rufo
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
59
|
Hong MP, Guilfoyle JL, Mooney LN, Wink LK, Pedapati EV, Shaffer RC, Sweeney JA, Erickson CA. Eye gaze and pupillary response in Angelman syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 68:88-94. [PMID: 28750207 PMCID: PMC7169996 DOI: 10.1016/j.ridd.2017.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurological disorder characterized by severe developmental disability, communication impairment, elevated seizure risk, and motor system abnormalities. AIMS The aims of this study were to determine the feasibility of social scene eye tracking and pupillometry measures in individuals with AS and to compare the performance of AS participants to individuals with idiopathic Autism Spectrum Disorder (ASD) and typically developing controls (TDC). METHODS AND PROCEDURES Individuals with AS and age- and gender- matched controls completed a social eye tracking paradigm. Neurobehavioral characterization of AS participants was completed via a battery of psychological testing and caregiver behavioral evaluations. OUTCOMES AND RESULTS Eight of seventeen recruited AS participants completed the eye tracking paradigm. Compared to TDC, AS subjects demonstrated significantly less preference for social scenes than geometric shapes. Additionally, AS subjects showed less pupil dilation, compared to TDC, when viewing social scenes versus geometric shapes. There was no statistically significant difference found between AS and ASD subjects in either social eye tracking or pupillometry. CONCLUSIONS AND IMPLICATIONS The use of eye tracking and pupillometry may represent an innovative measure for quantifying AS-associated impairments in social salience.
Collapse
Affiliation(s)
- Michael P Hong
- Cincinnati Children's Hospital Medical Center, United States
| | | | | | - Logan K Wink
- Cincinnati Children's Hospital Medical Center, United States; University of Cincinnati, College of Medicine, United States
| | - Ernest V Pedapati
- Cincinnati Children's Hospital Medical Center, United States; University of Cincinnati, College of Medicine, United States
| | | | - John A Sweeney
- University of Cincinnati, College of Medicine, United States
| | - Craig A Erickson
- Cincinnati Children's Hospital Medical Center, United States; University of Cincinnati, College of Medicine, United States; Indiana University School of Medicine, United States.
| |
Collapse
|
60
|
Quinn ED, Rowland C. Exploring Expressive Communication Skills in a Cross-Sectional Sample of Children and Young Adults With Angelman Syndrome. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2017; 26:369-382. [PMID: 28384804 DOI: 10.1044/2016_ajslp-15-0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/19/2016] [Indexed: 06/07/2023]
Abstract
PURPOSE This study explores data on expressive communication skills of 300 individuals aged 0.0-21.11 years with Angelman syndrome (AS). These data provide a composite portrait of communication skills in a large sample of children and young adults with this rare disorder, specifying new detailed information about expressive communication. METHOD The database associated with the Communication Matrix assessment (Rowland, 2004, 2011; Rowland & Fried-Oken, 2010) was mined for data regarding individuals with AS. We extracted data on the reasons for communicating, level of communication achieved, and use of various expressive communication modes to convey 24 specific messages. The performance of children and young adults in 5 age groups in the cross-sectional sample were contrasted. RESULTS Results confirmed earlier studies showing that few individuals with AS use natural speech. However, in addition to using presymbolic modes, many children used alternative symbolic modes such as picture symbols, object symbols, and manual signs. Assessment scores increased slightly with age, F(4, 295) = 2.416, p = .049. CONCLUSIONS Aggregating data on a large sample of individuals with AS provides a reference point for practitioners and family members and a basis for future investigations.
Collapse
|
61
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|
62
|
Buiting K, Williams C, Horsthemke B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat Rev Neurol 2016; 12:584-93. [DOI: 10.1038/nrneurol.2016.133] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
63
|
Granild Bie Mertz L, Christensen R, Vogel I, Hertz JM, Østergaard JR. Epilepsy and cataplexy in Angelman syndrome. Genotype-phenotype correlations. RESEARCH IN DEVELOPMENTAL DISABILITIES 2016; 56:177-182. [PMID: 27323320 DOI: 10.1016/j.ridd.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability, epilepsy, and low threshold for laughter. AIMS We investigated the occurrence and severity of epilepsy and laughter-induced loss of postural muscle tone determined by the different genetic subtypes. METHODS This study included 39 children with AS. Deletion breakpoints were determined by high resolution CGH microarray (1×1M Agilent). Clinical data were based on a parent interview and medical record review. RESULTS All patients with AS based on a deletion had epilepsy. Epilepsy was present in 3/4 children with UBE3A mutation, and 4/5 with pUPD. Onset of epilepsy occurred earlier in deletion cases compared to pUPD or UBE3A mutations cases. Laughter-induced postural muscle tone loss occurred only among deletion cases. We found no differences in severity of epilepsy between children with a larger Class I or a smaller Class II deletions, or between the total group with a deletion compared to children with pUPD or a UBE3A mutation. The drugs most frequently prescribed were benzodiazepines in monotherapy, or a combination of benzodiazepines and valproic acid. CONCLUSION Epilepsy is very common in patients with AS, especially in patients with a deletion. Postural muscle tone loss and collapsing during outbursts of laughter were seen in patients with a deletion only.
Collapse
Affiliation(s)
- Line Granild Bie Mertz
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - John R Østergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark
| |
Collapse
|
64
|
Seizure treatment in Angelman syndrome: A case series from the Angelman Syndrome Clinic at Massachusetts General Hospital. Epilepsy Behav 2016; 60:138-141. [PMID: 27206232 DOI: 10.1016/j.yebeh.2016.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 02/01/2023]
Abstract
Epilepsy is a common feature of Angelman syndrome (~80-90%), with the most common seizure types including myoclonic, atonic, atypical absence, focal, and generalized tonic-clonic. Seizure types are similar among the various genetic subtypes, but epilepsy in those with maternal deletions is more frequent and more refractory to medication. Treatment with older antiepileptic drugs such as valproic acid and clonazepam is effective, but these medications tend to have less favorable side effect profiles in Angelman syndrome compared with those in newer medications. This study aimed to assess the use of newer antiepileptic drug therapies in individuals with Angelman syndrome followed at the Angelman Syndrome Clinic at the Massachusetts General Hospital. Many of the subjects in this study were on valproic acid therapy prior to their initial evaluation and exhibited increased tremor, decreased balance, and/or regression of motor skills, which resolved after tapering off of this medication. Newer antiepileptic drugs such as levetiracetam, lamotrigine, and clobazam, and to a lesser extent topiramate, appeared to be as effective - if not more so - as valproic acid and clonazepam while offering more favorable side effect profiles. The low glycemic index treatment also provided effective seizure control with minimal side effects. The majority of subjects remained on combination therapy with levetiracetam, lamotrigine, and clobazam being the most commonly used medications, indicating a changing trend when compared with prior studies.
Collapse
|
65
|
Luk H, Lo IF. Angelman syndrome in Hong Kong Chinese: A 20 years’ experience. Eur J Med Genet 2016; 59:315-9. [DOI: 10.1016/j.ejmg.2016.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/13/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
|
66
|
Eggermann T, Perez de Nanclares G, Maher ER, Temple IK, Tümer Z, Monk D, Mackay DJG, Grønskov K, Riccio A, Linglart A, Netchine I. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Epigenetics 2015; 7:123. [PMID: 26583054 PMCID: PMC4650860 DOI: 10.1186/s13148-015-0143-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families.
Collapse
Affiliation(s)
- Thomas Eggermann
- Department of Human Genetics, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany ; Sorbonne Universites, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France ; 3APHP, Pediatric Endocrinology, Armand Trousseau Hospital, Paris, France
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - I Karen Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK ; Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton, UK
| | - Zeynep Tümer
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain
| | - Deborah J G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK ; Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton, UK
| | - Karen Grønskov
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Agnès Linglart
- Institute of Genetics and Biophysics-ABT, CNR, Napoli, Italy
| | - Irène Netchine
- Endocrinology and diabetology for children and reference center for rare disorders of calcium and phosphorus metabolism, Bicêtre Paris Sud, APHP, Le Kremlin-Bicêtre, France ; INSERM U986, INSERM, Le Kremlin-Bicêtre, France ; INSERM, UMR_S 938, CDR Saint-Antoine, Paris, F-75012 France
| |
Collapse
|
67
|
Sachdeva R, Donkers SJ, Kim SY. Angelman syndrome: A review highlighting musculoskeletal and anatomical aberrations. Clin Anat 2015; 29:561-7. [PMID: 26480021 DOI: 10.1002/ca.22659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/11/2022]
Abstract
Angelman's syndrome (AS) is a genetic neurodevelopment disorder. The cause is a known abnormality involving the maternal inherited ubiquitin-protein ligase (UBE3A) gene. Clinical characteristics universal to the disorder are well documented in the literature and include developmental delay, seizures, ataxia, altered tone, severely impaired speech and intellect, as well as an overall happy demeanor, frequent bouts of laughter, and hypermotoric behavior. Associated with this disorder are several musculoskeletal aberrations. To date, a review of case studies reporting on these musculoskeletal changes has not been carried out. Thus, the purpose of this paper was to provide an overview of the musculoskeletal changes present in individuals with AS. In our review of 21 case reports from 1965-2013, the most consistently reported anatomical changes were of the craniofacial region. These include microcephaly, brachycephaly, a palpable occipital groove, prognathism, and wide spaced teeth. Other musculoskeletal abnormalities less frequently reported in the literature include scoliosis, excessive lumbar lordosis, and pes planus. Given that the majority of the case reports reviewed was of young children, the possibility of underreporting musculoskeletal changes which may manifest in the later years of life may be present. Early diagnosis and interventions to minimize secondary complications are crucial to maintain quality of life. An overall multidisciplinary approach is emphasized to maximize developmental potential for these individuals. Future prospective studies that follow patients into adulthood are needed to better understand the prevalence and development of secondary musculoskeletal changes, which in turn can inform intervention techniques and preventative measures. Clin. Anat. 29:561-567, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rohit Sachdeva
- School of Physical Therapy, University of Saskatchewan, Saskatoon, Canada
| | - Sarah J Donkers
- School of Physical Therapy, University of Saskatchewan, Saskatoon, Canada
| | - Soo Y Kim
- School of Physical Therapy, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
68
|
Darcy D, Atwal PS, Angell C, Gadi I, Wallerstein R. Mosaic paternal genome-wide uniparental isodisomy with down syndrome. Am J Med Genet A 2015. [PMID: 26219535 DOI: 10.1002/ajmg.a.37187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient.
Collapse
Affiliation(s)
- Diana Darcy
- Silicon Valley Genetics Center, Santa Clara Valley Medical Center, San Jose, California
| | | | - Cathy Angell
- Neonatology, O'Connor Hospital, San Jose, California
| | - Inder Gadi
- Laboratory Corporation of America, Research Triangle Park, North Carolina
| | - Robert Wallerstein
- Silicon Valley Genetics Center, Santa Clara Valley Medical Center, San Jose, California
| |
Collapse
|
69
|
Wink LK, Fitzpatrick S, Shaffer R, Melnyk S, Begtrup AH, Fox E, Schaefer TL, Mathieu-Frasier L, Ray B, Lahiri D, Horn PA, Erickson CA. The neurobehavioral and molecular phenotype of Angelman Syndrome. Am J Med Genet A 2015. [DOI: 10.1002/ajmg.a.37254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Logan K. Wink
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | - Rebecca Shaffer
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - Sophia Melnyk
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | - Emma Fox
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | | | - Balmiki Ray
- Indiana University School of Medicine; Indianapolis Indiana
| | - Debomoy Lahiri
- Indiana University School of Medicine; Indianapolis Indiana
| | - Paul A. Horn
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | |
Collapse
|
70
|
Abstract
In this review we summarize the clinical and genetic aspects of Angelman syndrome (AS), its molecular and cellular underpinnings, and current treatment strategies. AS is a neurodevelopmental disorder characterized by severe cognitive disability, motor dysfunction, speech impairment, hyperactivity, and frequent seizures. AS is caused by disruption of the maternally expressed and paternally imprinted UBE3A, which encodes an E3 ubiquitin ligase. Four mechanisms that render the maternally inherited UBE3A nonfunctional are recognized, the most common of which is deletion of the maternal chromosomal region 15q11-q13. Remarkably, duplication of the same chromosomal region is one of the few characterized persistent genetic abnormalities associated with autistic spectrum disorder, occurring in >1-2% of all cases of autism spectrum disorder. While the overall morphology of the brain and connectivity of neural projections appear largely normal in AS mouse models, major functional defects are detected at the level of context-dependent learning, as well as impaired maturation of hippocampal and neocortical circuits. While these findings demonstrate a crucial role for ubiquitin protein ligase E3A in synaptic development, the mechanisms by which deficiency of ubiquitin protein ligase E3A leads to AS pathophysiology in humans remain poorly understood. However, recent efforts have shown promise in restoring functions disrupted in AS mice, renewing hope that an effective treatment strategy can be found.
Collapse
Affiliation(s)
- Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD, 21205, USA,
| | | | | | | |
Collapse
|
71
|
Mandel-Brehm C, Salogiannis J, Dhamne SC, Rotenberg A, Greenberg ME. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci U S A 2015; 112:5129-34. [PMID: 25848016 PMCID: PMC4413330 DOI: 10.1073/pnas.1504809112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder.
Collapse
Affiliation(s)
| | | | - Sameer C Dhamne
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
72
|
Ostergaard JR. Phenotype of a child with Angelman syndrome born to a woman with Prader-Willi syndrome. Am J Med Genet A 2015; 167A:2138-44. [PMID: 25832033 DOI: 10.1002/ajmg.a.37080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022]
Abstract
This report describes the phenotype, from early childhood to adolescence, of a girl with Angelman syndrome (AS) born following a maternal transmission of a germline paternal 15q11.2-q13 deletion. During early childhood, she showed a typical AS phenotype, such as jerky movements, poor sleep, high voltage electroencephalography pattern, epilepsy, and a severe developmental disability. As she grew older, indications of phenotypical traits similar to Prader-Willi syndrome (PWS) appeared, in particular hyperphagic behavior and a body fat distribution similar to that reported in PWS. She generally showed cheerful AS behavior and had the characteristic outbursts of laughter, but her attitude to other people did not reflect the usual shared enjoyment of interaction seen in children with AS. In unfamiliar surroundings, she withdrew socially, similar to children with PWS, and her insistence on the same, rigid routines was similar to behavior patterns in PWS. The dysmorphic facial features that characterize AS were blurred in adolescence. The specified features that this AS patient had in common with PWS were hardly incidental and, if verified by upcoming case reports of children born to women with a paternal 15q11.2-q13 deletion, they may show new aspects of genetic imprinting.
Collapse
Affiliation(s)
- John R Ostergaard
- Department of Pediatrics, Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
73
|
Shi SQ, Bichell TJ, Ihrie RA, Johnson CH. Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr Biol 2015; 25:537-45. [PMID: 25660546 PMCID: PMC4348236 DOI: 10.1016/j.cub.2014.12.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND The paternal allele of Ube3a is silenced by imprinting in neurons, and Angelman syndrome (AS) is a disorder arising from a deletion or mutation of the maternal Ube3a allele, which thereby eliminates Ube3a neuronal expression. Sleep disorders such as short sleep duration and increased sleep onset latency are very common in AS. RESULTS We found a unique link between neuronal imprinting of Ube3a and circadian rhythms in two mouse models of AS, including enfeebled circadian activity behavior and slowed molecular rhythms in ex vivo brain tissues. As a consequence of compromised circadian behavior, metabolic homeostasis is also disrupted in AS mice. Unsilencing the paternal Ube3a allele restores functional circadian periodicity in neurons deficient in maternal Ube3a but does not affect periodicity in peripheral tissues that are not imprinted for uniparental Ube3a expression. The ubiquitin ligase encoded by Ube3a interacts with the central clock components BMAL1 and BMAL2. Moreover, inactivation of Ube3a expression elevates BMAL1 levels in brain regions that control circadian behavior of AS-model mice, indicating an important role for Ube3a in modulating BMAL1 turnover. CONCLUSIONS Ube3a expression constitutes a direct mechanistic connection between symptoms of a human neurological disorder and the central circadian clock mechanism. The lengthened circadian period leads to delayed phase, which could explain the short sleep duration and increased sleep onset latency of AS subjects. Moreover, we report the pharmacological rescue of an AS phenotype, in this case, altered circadian period. These findings reveal potential treatments for sleep disorders in AS patients.
Collapse
Affiliation(s)
- Shu-qun Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Terry Jo Bichell
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Rebecca A Ihrie
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA; Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
74
|
Tan WH, Bird LM, Thibert RL, Williams CA. If not Angelman, what is it? A review of Angelman-like syndromes. Am J Med Genet A 2014; 164A:975-92. [PMID: 24779060 DOI: 10.1002/ajmg.a.36416] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angelman syndrome (AS) is caused by a lack of expression of the maternally inherited UBE3A gene in the brain. However, about 10% of individuals with a clinical diagnosis of AS do not have an identifiable molecular defect. It is likely that most of those individuals have an AS-like syndrome that is clinically and molecularly distinct from AS. These AS-like syndromes can be broadly classified into chromosomal microdeletion and microduplication syndromes, and single-gene disorders. The microdeletion/microduplication syndromes are now easily identified by chromosomal microarray analysis and include Phelan–McDermid syndrome (chromosome 22q13.3 deletion), MBD5 haploinsufficiency syndrome (chromosome 2q23.1 deletion), and KANSL1 haploinsufficiency syndrome (chromosome 17q21.31 deletion). The single-gene disorders include Pitt–Hopkins syndrome (TCF4), Christianson syndrome (SLC9A6), Mowat–Wilson syndrome (ZEB2), Kleefstra syndrome (EHMT1), and Rett (MECP2) syndrome. They also include disorders due to mutations in HERC2, adenylosuccinase lyase (ADSL), CDKL5, FOXG1, MECP2 (duplications), MEF2C, and ATRX. Although many of these single-gene disorders can be caused by chromosomal microdeletions resulting in haploinsufficiency of the critical gene, the individual disorders are often caused by intragenic mutations that cannot be detected by chromosomal microarray analysis. We provide an overview of the clinical features of these syndromes, comparing and contrasting them with AS, in the hope that it will help guide clinicians in the diagnostic work-up of individuals with AS-like syndromes.
Collapse
|
75
|
Giroud M, Daubail B, Khayat N, Chouchane M, Berger E, Muzard E, Medeiros de Bustos E, Thauvin-Robinet C, Faivre L, Masurel A, Darmency-Stamboul V, Huet F, Béjot Y, Giroud M, Moulin T. Angelman syndrome: a case series assessing neurological issues in adulthood. Eur Neurol 2014; 73:119-25. [PMID: 25472600 DOI: 10.1159/000369454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study aimed to evaluate the clinical symptoms of Angelman syndrome (AS) in adults and to identify the neurological pathways affected in this disease. AS is a neurogenetic disorder resulting due to the deletion or inactivation of the ubiquitin-protein-ligase E3A gene on maternal chromosome 15. SUMMARY A retrospective analysis of data from six adults patients with clinical, electroencephalographic and genetic confirmation of AS was performed. Movement disorders of the hands and mouth, laughing spells, severe expressive speech disorders, a happy nature, hyposomnia and anxiety are the major neurological characteristics of AS in adulthood. Cerebellar ataxia, muscle hypotonia and tremor, though constant in childhood, tend to be attenuated in adulthood. Epilepsy, one of the most frequent symptoms in childhood and in adulthood, is characterised by specific electroencephalographic patterns. Key Messages: These clinical characteristics are important to improve the clinical awareness and genetic diagnosis of AS. Clinicians must be better informed concerning the adult phenotype as it is not well described in the literature. We stress the importance of AS as one of the main causes of intractable epilepsy. The authors suggest frontal and cerebellar dysfunction. Further functional cerebral imaging studies are necessary.
Collapse
Affiliation(s)
- Marie Giroud
- Department of Neurology, University Hospital of Besançon, Besançon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Brennan ML, Adam MP, Seaver LH, Myers A, Schelley S, Zadeh N, Hudgins L, Bernstein JA. Increased body mass in infancy and early toddlerhood in Angelman syndrome patients with uniparental disomy and imprinting center defects. Am J Med Genet A 2014; 167A:142-6. [PMID: 25402239 DOI: 10.1002/ajmg.a.36831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The diagnosis of Angelman syndrome (AS) is based on clinical features and genetic testing. Developmental delay, severe speech impairment, ataxia, atypical behavior and microcephaly by two years of age are typical. Feeding difficulties in young infants and obesity in late childhood can also be seen. The NIH Angelman-Rett-Prader-Willi Consortium and others have documented genotype-phenotype associations including an increased body mass index in children with uniparental disomy (UPD) or imprinting center (IC) defects. We recently encountered four cases of infantile obesity in non-deletion AS cases, and therefore examined body mass measures in a cohort of non-deletion AS cases. We report on 16 infants and toddlers (ages 6 to 44 months; 6 female, and 10 male) with severe developmental delay. Birth weights were appropriate for gestational age in most cases, >97th% in one case and not available in four cases. The molecular subclass case distribution consisted of: UPD (n = 2), IC defect (n = 3), UPD or IC defect (n = 3), and UBE3A mutation (n = 8). Almost all (7 out of 8) UPD, IC and UPD/IC cases went on to exhibit >90th% age- and gender-appropriate weight for height or BMI within the first 44 months. In contrast, no UBE3A mutation cases exhibited obesity or pre-obesity measures (percentiles ranged from <3% to 55%). These findings demonstrate that increased body mass may be evident as early as the first year of life and highlight the utility of considering the diagnosis of AS in the obese infant or toddler with developmental delay, especially when severe. Although a mechanism explaining the association of UPD, and IC defects with obesity has not been identified, recognition of this correlation may inform investigation of imprinting at the PWS/AS locus and obesity.
Collapse
|
77
|
Mertz LGB, Christensen R, Vogel I, Hertz JM, Østergaard JR. Eating behavior, prenatal and postnatal growth in Angelman syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2681-2690. [PMID: 25064682 DOI: 10.1016/j.ridd.2014.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
The objectives of the present study were to investigate eating behavior and growth parameters in Angelman syndrome. We included 39 patients with Angelman syndrome. Twelve cases had a larger Class I deletion, eighteen had a smaller Class II deletion, whereas paternal uniparental disomy (pUPD) or a verified UBE3A mutation were present in five and four cases, respectively. Eating behavior was assessed by a questionnaire. Anthropometric measures were obtained from medical records and compared to Danish reference data. Children with pUPD had significantly larger birth weight and birth length than children carrying a deletion or a UBE3A mutation. We found no difference in birth weight or length in children with Class I or Class II deletions. When maternal birth weight and/or birth weight of siblings were taken into consideration, children with Class I deletion had a lower weight at birth than expected, and the weight continued to be reduced during the investigated initial five years of life. In contrast, children with pUPD showed hyperphagic behavior and their weight increased significantly after the age of two years. Accordingly, their body mass index was significantly increased as compared to children with a deletion. At birth, one child showed microcephaly. At five years of age, microcephaly was observed in half of the deletion cases, but in none of the cases with a UBE3A mutation or pUPD. The apparently normal cranial growth in the UBE3A and pUPD patients should however be regarded as the result of a generally increased growth. Eating behavior, pre- and postnatal growth in children with Angelman syndrome depends on genotype.
Collapse
Affiliation(s)
- Line G B Mertz
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jens M Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - John R Østergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
78
|
Pescosolido MF, Stein DM, Schmidt M, El Achkar CM, Sabbagh M, Rogg JM, Tantravahi U, McLean RL, Liu JS, Poduri A, Morrow EM. Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Ann Neurol 2014; 76:581-93. [PMID: 25044251 DOI: 10.1002/ana.24225] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Recently, Christianson syndrome (CS) has been determined to be caused by mutations in the X-linked Na(+) /H(+) exchanger 6 (NHE6). We aimed to determine the diagnostic criteria and mutational spectrum for CS. METHODS Twelve independent pedigrees (14 boys, age = 4-19 years) with mutations in NHE6 were administered standardized research assessments, and mutations were characterized. RESULTS The mutational spectrum was composed of 9 single nucleotide variants, 2 indels, and 1 copy number variation deletion. All mutations were protein-truncating or splicing mutations. We identified 2 recurrent mutations (c.1498 c>t, p.R500X; and c.1710 g>a, p.W570X). Otherwise, all mutations were unique. In our study, 7 of 12 mutations (58%) were de novo, in contrast to prior literature wherein mutations were largely inherited. We also report prominent neurological, medical, and behavioral symptoms. All CS participants were nonverbal and had intellectual disability, epilepsy, and ataxia. Many had prior diagnoses of autism and/or Angelman syndrome. Other neurologic symptoms included eye movement abnormalities (79%), postnatal microcephaly (92%), and magnetic resonance imaging evidence of cerebellar atrophy (33%). Regression was noted in 50%, with recurrent presentations involving loss of words and/or the ability to walk. Medical symptoms, particularly gastrointestinal symptoms, were common. Height and body mass index measures were below normal ranges in most participants. Behavioral symptoms included hyperkinetic behavior (100%), and a majority exhibited high pain threshold. INTERPRETATION This is the largest cohort of independent CS pedigrees reported. We propose diagnostic criteria for CS. CS represents a novel neurogenetic disorder with general relevance to autism, intellectual disability, Angelman syndrome, epilepsy, and regression.
Collapse
Affiliation(s)
- Matthew F Pescosolido
- Department of Molecular Biology, Cell Biology, and Biochemistry and Laboratory for Molecular Medicine, Institute for Brain Science, Brown University, Providence, RI; Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, East Providence, RI
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Olson HE, Poduri A, Pearl PL. Genetic forms of epilepsies and other paroxysmal disorders. Semin Neurol 2014; 34:266-79. [PMID: 25192505 DOI: 10.1055/s-0034-1386765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Phillip L Pearl
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
80
|
Horváth E, Nagy N, Széll M. [Difficulties of genetic counselling in rare, mainly neurogenetic disorders]. Orv Hetil 2014; 155:1221-7. [PMID: 25095282 DOI: 10.1556/oh.2014.29957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In recent decades methods used for the investigation of the genetic background of rare diseases showed a great improvement. AIM The aim of the authors was to demonstrate difficulties of genetic counselling and investigations in case of five rare, mainly neurogenetic diseases. METHOD During pre-test genetic counselling, the disease suspected from the clinical symptoms and the available genetic tests were considered. During post-test genetic counselling, the results of the genetic tests were discussed. RESULTS In three of the five cases genetic tests identified the disease-causing genetic abnormalities, while in two cases the causative abnormalities were not identified. CONCLUSIONS Despite a great improvement of the available genetic methods, the causative genetic abnormalities cannot be identified in some cases. The genetic counsellor has a key role in the assessment and interpretation of the results and in helping the family planning.
Collapse
Affiliation(s)
- Emese Horváth
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Orvosi Genetikai Intézet Szeged Somogyi Béla u. 4. 6720
| | - Nikoletta Nagy
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Orvosi Genetikai Intézet Szeged Somogyi Béla u. 4. 6720
| | - Márta Széll
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Orvosi Genetikai Intézet Szeged Somogyi Béla u. 4. 6720
| |
Collapse
|
81
|
Mertz LGB, Thaulov P, Trillingsgaard A, Christensen R, Vogel I, Hertz JM, Ostergaard JR. Neurodevelopmental outcome in Angelman syndrome: genotype-phenotype correlations. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:1742-1747. [PMID: 24656292 DOI: 10.1016/j.ridd.2014.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability, developmental delay, lack of speech, and epileptic seizures. Previous studies have indicated that children with AS due to 15q11.2-q13 deletions have a more severe developmental delay and present more often autistic features than those with AS caused by other genetic etiologies. The present study investigated the neurodevelopmental profiles of the different genetic etiologies of AS, and examined the evolution of mental development and autistic features over a 12-year period in children with a 15q11.2-q13 deletion. This study included 42 children with AS. Twelve had a Class I deletion, 18 had Class II deletions, three showed atypical large deletions, five had paternal uniparental disomy (pUPD) and four had UBE3A mutations. Children with a deletion (Class I and Class II) showed significantly reduced developmental age in terms of visual perception, receptive language, and expressive language when compared to those with a UBE3A mutation and pUPD. Within all subgroups, expressive language performance was significantly reduced when compared to the receptive performance. A follow-up study of seven AS cases with 15q11.2-q13 deletions revealed that over 12 years, the level of autistic features did not change, but both receptive and expressive language skills improved.
Collapse
Affiliation(s)
- Line Granild Bie Mertz
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Per Thaulov
- Psychiatric Hospital for Children and Adolescents, Aarhus University Hospital, Denmark
| | | | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | | | - John R Ostergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark
| |
Collapse
|
82
|
Abstract
"Angelman syndrome" (AS) is a neurodevelopmental disorder whose main features are intellectual disability, lack of speech, seizures, and a characteristic behavioral profile. The behavioral features of AS include a happy demeanor, easily provoked laughter, short attention span, hypermotoric behavior, mouthing of objects, sleep disturbance, and an affinity for water. Microcephaly and subtle dysmorphic features, as well as ataxia and other movement disturbances, are additional features seen in most affected individuals. AS is due to deficient expression of the ubiquitin protein ligase E3A (UBE3A) gene, which displays paternal imprinting. There are four molecular classes of AS, and some genotype-phenotype correlations have emerged. Much remains to be understood regarding how insufficiency of E6-AP, the protein product of UBE3A, results in the observed neurodevelopmental deficits. Studies of mouse models of AS have implicated UBE3A in experience-dependent synaptic remodeling.
Collapse
Affiliation(s)
- Lynne M Bird
- Department of Pediatrics, University of California, Division of Genetics, Rady Children’s Hospital, San Diego, California, USA
| |
Collapse
|
83
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
84
|
Horváth E, Horváth Z, Isaszegi D, Gergev G, Nagy N, Szabó J, Sztriha L, Széll M, Endreffy E. Early detection of Angelman syndrome resulting from de novo paternal isodisomic 15q UPD and review of comparable cases. Mol Cytogenet 2013; 6:35. [PMID: 24011290 PMCID: PMC3846355 DOI: 10.1186/1755-8166-6-35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/10/2013] [Indexed: 11/24/2022] Open
Abstract
Background Angelman syndrome is a rare neurogenetic disorder that results in intellectual and developmental disturbances, seizures, jerky movements and frequent smiling. Angelman syndrome is caused by two genetic disturbances: either genes on the maternally inherited chromosome 15 are deleted or inactivated or two paternal copies of the corresponding genes are inherited (paternal uniparental disomy). A 16-month-old child was referred with minor facial anomalies, neurodevelopmental delay and speech impairment. The clinical symptoms suggested angelman syndrome. The aim of our study was to elucidate the genetic background of this case. Results This study reports the earliest diagnosed angelman syndrome in a 16-month-old Hungarian child. Cytogenetic results suggested a de novo Robertsonian-like translocation involving both q arms of chromosome 15: 45,XY,der(15;15)(q10;q10). Molecular genetic studies with polymorphic short tandem repeat markers of the fibrillin-1 gene, located in the 15q21.1, revealed that both arms of the translocated chromosome were derived from a single paternal chromosome 15 (isodisomy) and led to the diagnosis of angelman syndrome caused by paternal uniparental disomy. Conclusions AS resulting from paternal uniparental disomy caused by de novo balanced translocation t(15q;15q) of a single paternal chromosome has been reported by other groups. This paper reviews 19 previously published comparable cases of the literature. Our paper contributes to the deeper understanding of the phenotype-genotype correlation in angelman syndrome for non-deletion subclasses and suggests that patients with uniparental disomy have milder symptoms and higher BMI than the ones with other underlying genetic abnormalities.
Collapse
Affiliation(s)
- Emese Horváth
- Department of Medical Genetics, University of Szeged, 4 Somogyi B, utca, H-6720, Szeged, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Gilboa T, Gross-Tsur V. Epilepsy in Prader-Willi syndrome: experience of a national referral centre. Dev Med Child Neurol 2013; 55:857-61. [PMID: 23750756 DOI: 10.1111/dmcn.12182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 12/11/2022]
Abstract
AIM The aim of the study was to characterize epilepsy, febrile seizures, electrographic features, and brain abnormalities in a large, national cohort of individuals with Prader-Willi syndrome (PWS). METHOD This was an observational cohort study. Clinic charts of 126 individuals (63 males, 63 females) with genetically confirmed PWS (due to a deletion in 72 cases, to uniparental disomy [UPD] in 51 cases, and to an imprinting centre defect in two cases), aged from 1 month to 48 years (mean age 13y), were reviewed and 119 interviews conducted. Information regarding seizures, medication, imaging studies, and family history of seizures was collected. Ninety-five individuals (aged 1mo-48y) underwent electroencephalography (EEG). RESULTS Five individuals had epilepsy (4.0%), three of whom had major cerebral findings on imaging, and eight others had febrile seizures (6.4%). Of the three genetic abnormalities, deletion was associated with seizures. Focal epileptiform abnormalities were found in 12 out of 94 individuals, and five out of these 12 had a frank electrographic seizure pattern. Epileptogenic EEG abnormalities were associated with young age. INTERPRETATION The risk of epilepsy and febrile seizures in PWS is significantly lower than in Angelman syndrome and is associated with brain abnormalities. Electrographic seizures and focal epileptiform activity were present in 5% of individuals and were associated with young age. The underpinnings of epileptiform abnormalities in PWS and how they differ from those of the Angelman syndrome should be studied further.
Collapse
Affiliation(s)
- Tal Gilboa
- Child Neurology Unit, Shaare Zedek Medical Center, Jerusalem, Israel.
| | | |
Collapse
|
86
|
Mertz LGB, Christensen R, Vogel I, Hertz JM, Nielsen KB, Grønskov K, Østergaard JR. Angelman syndrome in Denmark. birth incidence, genetic findings, and age at diagnosis. Am J Med Genet A 2013; 161A:2197-203. [PMID: 23913711 DOI: 10.1002/ajmg.a.36058] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/07/2012] [Accepted: 04/20/2013] [Indexed: 11/09/2022]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder caused by loss of expression of the maternal imprinted gene UBE3A on chromosome 15q11.2-q13. Clinical features of AS include severe intellectual disability, a happy disposition, ataxia, mandibular prognatism, and epilepsy. Our objectives were to examine the birth incidence of AS in Denmark and to characterize the size of the 15q11.2-q13 deletions with 1,000K array CGH. In addition, we analyzed genotype differences in regard to age at diagnosis and investigated the occurrence of deletions/duplications outside the 15q11.2-q13 regions. We identified 51 patients with genetically verified AS, which corresponded to a birth incidence of 1:24,580 (95%CI: 1:23,727-1:25,433). Thirty-six patients showed a deletion; 13 had a Class I deletion and 20 had a Class II deletion. There was bimodal distribution of the BP3 breakpoint. Three patients had larger and atypical deletions, with distal breakpoints telomeric to BP3. Five patients had paternal uniparental disomy (pUPD) of chromosome 15, and four had a verified UBE3A mutation. Additional deletions/duplications outside the 15q11.2-q13 areas were demonstrated in half the participants. Six harbored more than one CNV. Mean age at diagnosis was 21 months (95%CI: 17-23 months) for children with a deletion and 46 months (95%CI: 36-55 months) for children with pUPD or a UBE3A mutation (P < 0.01). The presence of a CNV outside 15q11.2-q13 did not have an impact on age at diagnosis.
Collapse
Affiliation(s)
- Line Granild Bie Mertz
- Department of Pediatrics, Center for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
87
|
Tzagkaraki E, Sofocleous C, Fryssira-Kanioura H, Dinopoulos A, Goulielmos G, Mavrou A, Kitsiou-Tzeli S, Kanavakis E, Sofia KT, Kanavakis E. Screening of UBE3A gene in patients referred for Angelman Syndrome. Eur J Paediatr Neurol 2013; 17:366-73. [PMID: 23416059 DOI: 10.1016/j.ejpn.2012.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 01/05/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder characterized by severe developmental delay, speech impairment and unique behaviors including inappropriate laughter and happy disposition. AS is related to deficient maternal UBE3A gene expression caused either by chromosomal deletions, uniparental disomy, molecular defects of the imprinted 15q11-q13 critical region or by loss of function mutations in the maternally inherited UBE3A. In the present study, screening UBE3A was performed in 43 patients who were referred for AS but whom previous molecular diagnostic tests failed to provide a diagnosis. Two causative mutations--one of them novel--and four polymorphic variants one of which is also novel were revealed. Further investigation of 7 patients disclosed defects in other genes involved in clinical phenotypes mimicking AS. A typical EEG pattern and microcephaly in patients with developmental delay prompt for AS investigation while wide genetic screening should be applied to help resolution of the complex phenotypes characterized by developmental delay.
Collapse
Affiliation(s)
- Evmorfia Tzagkaraki
- Department of Medical Genetics, University of Athens School of Medicine, Choremeio Research Laboratory, Aghia Sophia Children's Hospital, Thivon and Levadeias str, 11527 Goudi, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bai JL, Qu YJ, Jin YW, Wang H, Yang YL, Jiang YW, Yang XY, Zou LP, Song F. Molecular and clinical characterization of Angelman syndrome in Chinese patients. Clin Genet 2013; 85:273-7. [PMID: 23551092 DOI: 10.1111/cge.12155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023]
Abstract
Angelman syndrome (AS) is a neurobehavioral disorder caused by lack of function of the maternal copy of the ubiquitin-protein ligase E3A (UBE3A) gene. In our study, 49 unrelated patients with classic AS phenotypes were confirmed by methylation-specific PCR (MS-PCR) analysis, short tandem repeat linkage analysis, and mutation screening of the UBE3A gene. Among the Chinese AS patients, 83.7% (41/49) had deletions on maternal chromosome 15q11.2-13. Paternal uniparental disomy, imprinting defects, and UBE3A gene mutations each accounted for 4.1% (2/49). Two AS patients were confirmed by MS-PCR analysis, but the pathogenic mechanism was unknown because their parents' samples were unavailable. Of the two described UBE3A gene mutations, that is, p.Pro400His (c.1199C>A) and p.Asp563Gly (c.1688A>G), the latter has not been reported previously. Mutation transmission analysis showed that the p.Pro400His and p.Asp563Gly mutations originated from asymptomatic mothers. The patients with the maternal deletion showed AS clinical manifestations that were consistent with other studies. However, the incidence of microcephaly (36.7%, 11/30) was lower than that in the Caucasian population (approximately 80%), but similar to that of the Japanese population (34.5%). Our study demonstrated that the occurrence of microcephaly in AS may vary among different populations.
Collapse
Affiliation(s)
- J-L Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol 2013; 48:271-9. [PMID: 23498559 DOI: 10.1016/j.pediatrneurol.2012.09.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/24/2012] [Indexed: 11/28/2022]
Abstract
Angelman syndrome is a neurogenetic disorder characterized by the loss or reduction of the ubiquitin-protein ligase E3A enzyme. Angelman syndrome results from a deletion or mutation of the maternally inherited 15q11.2-13.1 region, paternal uniparental disomy of chromosome 15, or an imprinting error. Epilepsy is common and may present with multiple seizure types, including nonconvulsive status epilepticus. Seizures are often intractable and typically require broad-spectrum antiepileptic medications. Dietary therapy has also proved successful in Angelman syndrome. Electroencephalographic patterns include notched δ and rhythmic θ activity and epileptiform discharges. Sleep disorders are also common, often characterized by abnormal sleep-wake cycles. Movement disorders are nearly universal in Angelman syndrome, most frequently presenting with ataxia and tremor. Neurocognitive impairment is always present to varying degrees, and expressive speech is typically severely affected. Individuals with Angelman syndrome often manifest psychiatric comorbidities including hyperactivity, anxiety, and challenging behaviors such as aggression and self-injury. We focus on a comprehensive whole-child approach to the diagnosis and long-term clinical care of individuals with Angelman syndrome.
Collapse
Affiliation(s)
- Ronald L Thibert
- Pediatric Epilepsy Program and Angelman Syndrome Clinic, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
90
|
Summers J. Neurodevelopmental outcomes in children with Angelman syndrome after 1 year of behavioural intervention. Dev Neurorehabil 2012; 15:239-52. [PMID: 22646082 DOI: 10.3109/17518423.2012.676101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To examine the impact of teaching approaches based on the principles of applied behaviour analysis (ABA) on neurodevelopmental outcomes in children with Angelman syndrome (AS). METHODS A non-randomized pre-test-post-test control group design was used. The intervention group consisted of four children with AS aged 3.1-9.2 years. Controls were other children with AS who were individually matched on the basis of chronological age, gender and molecular sub-type. Children in the intervention group were provided two-to-three ABA-based therapy sessions per week over a 1-year period. Standardized measures of cognitive, adaptive and language functioning were administered at baseline and after 1 year. RESULTS There were no statistically significant differences between the two groups at baseline or after 1 year. However, positive trends were observed in the intervention group for some cognitive and adaptive measures. CONCLUSION ABA-based intervention improved aspects of neurodevelopment for some children with AS and warrants further study.
Collapse
Affiliation(s)
- Jane Summers
- McMaster Children's Hospital, Hamilton Health Sciences, Ontario, Canada.
| |
Collapse
|
91
|
Treble A, Juranek J, Stuebing KK, Dennis M, Fletcher JM. Functional significance of atypical cortical organization in spina bifida myelomeningocele: relations of cortical thickness and gyrification with IQ and fine motor dexterity. Cereb Cortex 2012; 23:2357-69. [PMID: 22875857 DOI: 10.1093/cercor/bhs226] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cortex in spina bifida myelomeningocele (SBM) is atypically organized, but it is not known how specific features of atypical cortical organization promote or disrupt cognitive and motor function. Relations of deviant cortical thickness and gyrification with IQ and fine motor dexterity were investigated in 64 individuals with SBM and 26 typically developing (TD) individuals, aged 8-28 years. Cortical thickness and 3D local gyrification index (LGI) were quantified from 33 cortical regions per hemisphere using FreeSurfer. Results replicated previous findings, showing regions of higher and lower cortical thickness and LGI in SBM relative to the TD comparison individuals. Cortical thickness and LGI were negatively associated in most cortical regions, though less consistently in the TD group. Whereas cortical thickness and LGI tended to be negatively associated with IQ and fine motor outcomes in regions that were thicker or more gyrified in SBM, associations tended to be positive in regions that were thinner or less gyrified in SBM. The more deviant the levels of cortical thickness and LGI-whether higher or lower relative to the TD group-the more impaired the IQ and fine motor outcomes, suggesting that these cortical atypicalities in SBM are functionally maladaptive, rather than adaptive.
Collapse
Affiliation(s)
- Amery Treble
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | | | | |
Collapse
|
92
|
Vendrame M, Loddenkemper T, Zarowski M, Gregas M, Shuhaiber H, Sarco DP, Morales A, Nespeca M, Sharpe C, Haas K, Barnes G, Glaze D, Kothare SV. Analysis of EEG patterns and genotypes in patients with Angelman syndrome. Epilepsy Behav 2012; 23:261-5. [PMID: 22341959 DOI: 10.1016/j.yebeh.2011.11.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 10/28/2022]
Abstract
We prospectively analyzed EEGs from participants in the ongoing NIH Rare Diseases Clinical Research Network Angelman Syndrome Natural History Study. Of the one-hundred-sixty enrolled patients (2006-2010), 115 had complete data (58 boys, median age 3.6 years). Distinct EEG findings were intermittent rhythmic delta waves (83.5%), interictal epileptiform discharges (74.2%), intermittent rhythmic theta waves (43.5%), and posterior rhythm slowing (43.5%). Centro-occipital and centro-temporal delta waves decreased with age (p=0.01, p=0.03). There were no specific correlations between EEG patterns and genotypes. A classification tree allowed the prediction of deletions class-1 (5.9 Mb) in patients with intermittent theta waves in <50% of EEG and interictal epileptiform abnormalities; UPD, UBE3A mutation or imprinting defects in patients with intermittent theta in <50% of EEG without interictal epileptiform abnormalities; deletions class-2 (5.0 Mb) in patients with >50% theta and normal posterior rhythm; atypical deletions in patients with >50% theta but abnormal posterior rhythm. EEG patterns are important biomarkers in Angelman syndrome and may suggest the underlying genetic etiology.
Collapse
Affiliation(s)
- Martina Vendrame
- Boston University, Neurology Department, C-3, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Peters SU, Horowitz L, Barbieri-Welge R, Taylor JL, Hundley RJ. Longitudinal follow-up of autism spectrum features and sensory behaviors in Angelman syndrome by deletion class. J Child Psychol Psychiatry 2012; 53:152-9. [PMID: 21831244 DOI: 10.1111/j.1469-7610.2011.02455.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angelman syndrome (AS) is a neurogenetic disorder characterized by severe intellectual disability, lack of speech, and low threshold for laughter; it is considered a 'syndromic' form of autism spectrum disorder (ASD). Previous studies have indicated overlap of ASD and AS, primarily in individuals with larger (∼6 Mb) Class I deletions of chromosome 15q11-13. Questions remain regarding whether intellectual disability solely contributes to ASD features in AS and how ASD features in AS change over time. In this study, we used a dimensional approach to examine ASD symptom severity in individuals with AS Class I versus Class II deletions within the context of cognitive development over time. METHODS A total of 17 participants with a larger, Class I deletion and 25 participants with a smaller Class II deletion (∼5 Mb) were enrolled (age range = 2-25 years; 5 years 5 months). Standardized measures of cognition, language, motor skills, adaptive skills, maladaptive behavior, autism, and sensory-seeking behaviors/aversions were given at baseline and after 12 months. RESULTS Despite equivalent cognition and adaptive behavior, the results of repeated measures analyses of variance indicate that participants with Class I deletions have greater impairment in social affect (F = 8.65; p = .006) and more repetitive behaviors (F = 7.92; p = .008) compared to participants with Class II deletions. Although both groups improve in cognition over time, differences in ASD behaviors persist. CONCLUSIONS Despite a lack of differences in cognition or adaptive behavior, individuals with Class I deletions have greater severity in ASD features and sensory aversions that remain over time. There are four genes (NIPA 1, NIPA 2, CYFIP1, and GCP5) missing in Class I and present in Class Il deletions, one or more of which may have a role in modifying the severity of social affect impairment, and level of restricted/repetitive behaviors in AS. Our results also suggest the utility of a dimensional, longitudinal approach to the assessment of ASD features in populations of individuals who are low functioning.
Collapse
Affiliation(s)
- Sarika U Peters
- Departments of Pediatrics Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
94
|
Dagli A, Buiting K, Williams CA. Molecular and Clinical Aspects of Angelman Syndrome. Mol Syndromol 2011; 2:100-112. [PMID: 22670133 DOI: 10.1159/000328837] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Angelman syndrome is caused by disruption of the UBE3A gene and is clinically delineated by the combination of severe mental disability, seizures, absent speech, hypermotoric and ataxic movements, and certain remarkable behaviors. Those with the syndrome have a predisposition toward apparent happiness and paroxysms of laughter, and this finding helps distinguish Angelman syndrome from other conditions involving severe developmental handicap. Accurate diagnosis rests on a combination of clinical criteria and molecular and/or cytogenetic testing. Analysis of parent-specific DNA methylation imprints in the critical 15q11.2-q13 genomic region identifies 75-80% of all individuals with the syndrome, including those with cytogenetic deletions, imprinting center defects and paternal uniparental disomy. In the remaining group, UBE3A sequence analysis identifies an additional percentage of patients, but 5-10% will remain who appear to have the major clinical phenotypic features but do not have any identifiable genetic abnormalities. Genetic counseling for recurrence risk is complicated because multiple genetic mechanisms can disrupt the UBE3A gene, and there is also a unique inheritance pattern associated with UBE3A imprinting. Angelman syndrome is a prototypical developmental syndrome due to its remarkable behavioral phenotype and because UBE3A is so crucial to normal synaptic function and neural plasticity.
Collapse
Affiliation(s)
- A Dagli
- Raymond C. Philips Unit, Division of Genetics and Metabolism, Department of Pediatrics, University of Florida, Gainesville, Fla., USA
| | | | | |
Collapse
|