51
|
Chen X, Wang Z, Tang M, He Z, Yu M, Yu T, Cai J, Emer H, Ma J, Wang Y. Reusable Shape‐Memory Photonic Crystal Paper for Pin‐Printing and High‐Resolution Press Printing. ADVANCED ENGINEERING MATERIALS 2023; 25. [DOI: 10.1002/adem.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 11/28/2024]
Abstract
Rewritable photonic crystal (PC) paper has the potential to significantly reduce the consumption of forest resources in the printing industry, while also being environmentally friendly and efficient. However, traditional PC papers based on solvent or photothermal responses can lead to diffusion, which can hinder printing accuracy. In this study, a novel rewritable PC paper compatible with pin‐printing is presented based on a pressure‐responsive shape‐memory PC paper. High‐resolution printing can be realized by both computer‐programmed 3D‐printed seals and pin‐printing techniques. The information written on this PC rewritable paper can be erased by water, enabling the paper to be rewritten and reused at least 8 times without any change in performance. Furthermore, the information stored on the PC paper is stable and can be stored in ordinary environments for at least 6 months without fading. The PC paper has the capability of multicolor printing with a precision finer than 100 μm and has potential in office papers, smart price tags, and anti‐counterfeiting labels.
Collapse
Affiliation(s)
- Xianmei Chen
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Zhihao Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Mingshuo Tang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Zhiwei He
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Miao Yu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Tianran Yu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Jian Cai
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Hanayxam Emer
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Jun Ma
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| | - Yunlong Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China
| |
Collapse
|
52
|
Huang K, Li Q, Xue Y, Wang Q, Chen Z, Gu Z. Application of colloidal photonic crystals in study of organoids. Adv Drug Deliv Rev 2023; 201:115075. [PMID: 37625595 DOI: 10.1016/j.addr.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
As alternative disease models, other than 2D cell lines and patient-derived xenografts, organoids have preferable in vivo physiological relevance. However, both endogenous and exogenous limitations impede the development and clinical translation of these organoids. Fortunately, colloidal photonic crystals (PCs), which benefit from favorable biocompatibility, brilliant optical manipulation, and facile chemical decoration, have been applied to the engineering of organoids and have achieved the desirable recapitulation of the ECM niche, well-defined geometrical onsets for initial culture, in situ multiphysiological parameter monitoring, single-cell biomechanical sensing, and high-throughput drug screening with versatile functional readouts. Herein, we review the latest progress in engineering organoids fabricated from colloidal PCs and provide inputs for future research.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Xue
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
53
|
Liu J, Li L, Cao C, Feng Z, Liu Y, Ma H, Luo W, Guan J, Mou F. Swarming Multifunctional Heater-Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS NANO 2023; 17:16731-16742. [PMID: 37651715 DOI: 10.1021/acsnano.3c03131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Micro-/nanorobots (MNRs) are envisioned to act as "motile-targeting" platforms for biomedical tasks due to their ability to propel and navigate in challenging, hard-to-reach biological environments. However, it remains a great challenge for current swarming MNRs to accurately report and regulate therapeutic doses during disease treatment. Here we present the development of swarming multifunctional heater-thermometer nanorobots (HT-NRs) and their application in precise feedback photothermal hyperthermia delivery. The HT-NRs are designed as photothermal-responsive photonic nanochains consisting of magnetic Fe3O4 nanoparticles arranged periodically in one dimension and encapsulated in a temperature-responsive hydrogel shell. The HT-NRs exhibit energetic and controllable swarming motions under a rotating magnetic field, while simultaneously functioning as motile nanoheaters and nanothermometers, utilizing their photothermal conversion and (photo)thermal-responsive structural color changes (photothermochromism). Consequently, the HT-NRs can be quickly deployed to a remote target area (e.g., a superficial tumor lesion) using their collective motion and selectively eliminate diseased cells in a specific targeted region by utilizing their self-reporting photothermochromism as visual feedback for precisely regulating external light irradiation. This work may inspire the development of intelligent multifunctional theranostic micro-/nanorobots and their practical applications in precise disease treatment.
Collapse
Affiliation(s)
- Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Chuan Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Huiru Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
54
|
Xu L, Jia H, Zhang C, Yin B, Yao J. Magnetically controlled assembly: a new approach to organic integrated photonics. Chem Sci 2023; 14:8723-8742. [PMID: 37621424 PMCID: PMC10445431 DOI: 10.1039/d3sc01779f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Hierarchical self-assembly of organic molecules or assemblies is of great importance for organic photonics to move from fundamental research to integrated and practical applications. Magnetic fields with the advantages of high controllability, non-contact manipulation, and instantaneous response have emerged as an elegant way to prepare organic hierarchical nanostructures. In this perspective, we outline the development history of organic photonic materials and highlight the importance of organic hierarchical nanostructures for a wide range of applications, including microlasers, optical displays, information encoding, sensing, and beyond. Then, we will discuss recent advances in magnetically controlled assembly for creating organic hierarchical nanostructures, with a particular focus on their potential for enabling the development of integrated photonic devices with unprecedented functionality and performance. Finally, we present several perspectives on the further development of magnetically controlled assembly strategies from the perspective of performance optimization and functional design of organic integrated photonics.
Collapse
Affiliation(s)
- Lixin Xu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Baipeng Yin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
55
|
Huang NN, Gao J, Sheng SZ, Shang QG, Xian ZY, Wang JL, Liu JW. Structural Design of Intelligent Reversible Two-Way Structural Color Films. NANO LETTERS 2023; 23:7389-7396. [PMID: 37498627 DOI: 10.1021/acs.nanolett.3c01788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Structural color always shows a reversible switch between reflection and transmission states when viewed from different angles, attracting increasing attention in display applications. However, this switching between reflection and transmission states of structural color suffers from the inherent lack of autonomous regulation, which is unmanageable in the case of different application scenarios. Here, we design an intelligent two-way structural color film which can reversibly change its color when applied with an extra stimulation such as voltage, heat signal, or light. A special structural feature contains a traditional photonic crystal film of polystyrene (PS) microspheres assembled by smart windows. Remarkably, our structural color film shows a prominent polarization sensitivity, and the angle dependence of the structural color broadens the gamut of display color demonstrated by both finite element theoretical analysis and experimental observation. Prospectively, this hierarchically designed film provides a promising pathway toward next-generation multicolor displays and smart windows.
Collapse
Affiliation(s)
- Ning-Ning Huang
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jie Gao
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Si-Zhe Sheng
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qi-Guo Shang
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhi-Yu Xian
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jin-Long Wang
- Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jian-Wei Liu
- Department of Chemistry, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
56
|
Xu D, Wang Y, Sun L, Luo Z, Luo Y, Wang Y, Zhao Y. Living Anisotropic Structural Color Hydrogels for Cardiotoxicity Screening. ACS NANO 2023; 17:15180-15188. [PMID: 37459507 DOI: 10.1021/acsnano.3c04817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Environmental toxins can result in serious and fatal damage in the human heart, while the development of a viable stratagem for assessing the effects of environmental toxins on human cardiac tissue is still a challenge. Herein, we present a heart-on-a-chip based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured living anisotropic structural color hydrogels for cardiotoxicity screening. Such anisotropic structural color hydrogels with a conductive parallel carbon nanotube (CNT) upper layer, gelatin methacryloyl (GelMA) interlayer, and inverse opal bottom layer were fabricated by a sandwich replicating approach. The inverse opal structure endowed the anisotropic hydrogels with stable structural color property, while the parallel and conductive CNTs could induce the hiPSC-CMs to grow in a directional manner with consistent autonomous beating. Notably, the resultant hiPSC-CM-cultured hydrogel exhibited synchronous shifts in structural color, responding to contraction and relaxation of hiPSC-CMs, offering a visual platform for monitoring cell activity. Given these features, the hiPSC-CM-cultured living anisotropic structural color hydrogels were integrated into a heart-on-a-chip, which provided a superior cardiotoxicity screening platform for environmental toxins.
Collapse
Affiliation(s)
- Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
57
|
Fan Q, Li Z, Wu C, Yin Y. Magnetically Induced Anisotropic Interaction in Colloidal Assembly. PRECISION CHEMISTRY 2023; 1:272-298. [PMID: 37529717 PMCID: PMC10389807 DOI: 10.1021/prechem.3c00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
The wide accessibility to nanostructures with high uniformity and controllable sizes and morphologies provides great opportunities for creating complex superstructures with unique functionalities. Employing anisotropic nanostructures as the building blocks significantly enriches the superstructural phases, while their orientational control for obtaining long-range orders has remained a significant challenge. One solution is to introduce magnetic components into the anisotropic nanostructures to enable precise control of their orientations and positions in the superstructures by manipulating magnetic interactions. Recognizing the importance of magnetic anisotropy in colloidal assembly, we provide here an overview of magnetic field-guided self-assembly of magnetic nanoparticles with typical anisotropic shapes, including rods, cubes, plates, and peanuts. The Review starts with discussing the magnetic energy of nanoparticles, appreciating the vital roles of magneto-crystalline and shape anisotropies in determining the easy magnetization direction of the anisotropic nanostructures. It then introduces superstructures assembled from various magnetic building blocks and summarizes their unique properties and intriguing applications. It concludes with a discussion of remaining challenges and an outlook of future research opportunities that the magnetic assembly strategy may offer for colloidal assembly.
Collapse
Affiliation(s)
- Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
58
|
Jiang H, Li Y, Liu F, Sheng L, Tao CA, Wang J. An Angle-Independent Multi-Color Display Electro-Responsive Hydrogel Film. Gels 2023; 9:568. [PMID: 37504447 PMCID: PMC10379048 DOI: 10.3390/gels9070568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
In nature, some organisms have the ability to camouflage to adapt to environmental changes; they blend with the environment by changing their skin colors. Such a phenomenon is of great significance for the research of adaptive camouflage materials. In this study, we propose a novel design scheme for the study of angle-independent photonic materials and successfully prepare an electrically tunable multi-color display angle-independent inverse opal photonic gel (IOPG). After photopolymerization of hydroxyethyl methacrylate with ionizable monomer acrylic acid (AA) in a long-range disordered opal template and etching, the angle-independent inverse opal photonic gel is obtained, presenting a single structural color. The electrically responsive color changes can be achieved at different angles. The color of the disordered AA-IOPG changes from green to blue-green when applying +4 V bias voltage and from green to orange when applying -4 V bias voltage. The electrochromism of the disordered AA-IOPG is mainly due to the local pH change caused by water electrolysis under bias voltage, which leads to a change of the swelling ratio. The disordered AA-IOPG shows high color tunability and durability through repeated opposite bias voltage tests, indicating that it is a promising conductive photonic material.
Collapse
Affiliation(s)
- Huan Jiang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Yujiao Li
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Fangfang Liu
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Liping Sheng
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
59
|
Dong S, Zheng Q, Tang M, Zhu S, Nie J, Du B. Ionic Microgel Colloidal Crystals: Responsive Chromism in Dual Physical and Chemical Colors for High-End Information Security and Encryption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418692 DOI: 10.1021/acsami.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Chromic materials play a decisive and escalating role in information security. However, it is challenging to develop chromic materials for encryption technologies that can hardly be imitated. Inspired by versatile metachrosis in nature, a series of coumarin-based 7-(6-bromohexyloxy)-coumarin microgel colloidal crystals (BrHC MGCC) with multiresponsive chromism are able to be assembled by ionic microgels in poly(vinyl alcohol) (PVA) solution followed by two cycles of freezing-thawing. The ionic microgels can be finely tailored by in situ quaternization with tunable size under varied temperatures and hydration energies of counterions as well as quenched luminescence under UV irradiation, which endows BrHC MGCC with intriguing chromism in the dual-channel coloration of physical structural color and chemical fluorescent color. Three types of BrHC MGCC exhibit various change ranges in structural coloration and similar quenching in fluorescence emission, which can be utilized for the development of the static-dynamic combined anticounterfeiting system with dual coloration. The information conveyed by the BrHC MGCC array presents dynamic variation versus temperature, while the static information can be only integrally read in both sunlight and a 365 nm UV lamp. The fabrication of a microgel colloidal crystal with dual coloration opens a facile and ecofriendly window for multilevel information security, camouflage, and a cumbersome authentication process.
Collapse
Affiliation(s)
- Shunni Dong
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianqian Zheng
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiqi Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaoxiong Zhu
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
60
|
Ke Y, Ruan Q, Li Y, Wang H, Wang H, Zhang W, Pan C, Suseela Nair PN, Yin J, Yang JKW. Engineering Dynamic Structural Color Pixels at Microscales by Inhomogeneous Strain-Induced Localized Topographic Change. NANO LETTERS 2023; 23:5520-5527. [PMID: 37290093 DOI: 10.1021/acs.nanolett.3c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Structural colors in homogeneous elastomeric materials predominantly exhibit uniform color changes under applied strains. However, juxtaposing mechanochromic pixels that exhibit distinct responses to applied strain remains challenging, especially on the microscale where the demand for miscellaneous spectral information increases. Here, we present a method to engineer microscale switchable color pixels by creating localized inhomogeneous strain fields at the level of individual microlines. Trenches produced by transfer casting from 2.5D structures into elastomers exhibit a uniform structural color in the unstretched state due to interference and scattering effects, while they show different colors under an applied uniaxial strain. This programmable topographic change resulting in color variation arises from strain mismatch between layers and trench width. We utilized this effect to achieve the encryption of text strings with Morse code. The effective and facile design principle is promising for diverse optical devices based on dynamic structures and topographic changes.
Collapse
Affiliation(s)
- Yujie Ke
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hongtao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Wang Zhang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Chengfeng Pan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Parvathi Nair Suseela Nair
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
61
|
Das G, Prakasam T, Alkhatib N, AbdulHalim RG, Chandra F, Sharma SK, Garai B, Varghese S, Addicoat MA, Ravaux F, Pasricha R, Jagannathan R, Saleh N, Kirmizialtin S, Olson MA, Trabolsi A. Light-driven self-assembly of spiropyran-functionalized covalent organic framework. Nat Commun 2023; 14:3765. [PMID: 37353549 PMCID: PMC10290075 DOI: 10.1038/s41467-023-39402-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.
Collapse
Affiliation(s)
- Gobinda Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Nour Alkhatib
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rasha G AbdulHalim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Falguni Chandra
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Bikash Garai
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Sabu Varghese
- CTP, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, UK
| | - Florent Ravaux
- Quantum research center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- CTP, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Na'il Saleh
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA.
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates.
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
62
|
McGovern FR, Hernik A, Grogan C, Amarandei G, Naydenova I. The Development of Optomechanical Sensors-Integrating Diffractive Optical Structures for Enhanced Sensitivity. SENSORS (BASEL, SWITZERLAND) 2023; 23:5711. [PMID: 37420875 DOI: 10.3390/s23125711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The term optomechanical sensors describes devices based on coupling the optical and mechanical sensing principles. The presence of a target analyte leads to a mechanical change, which, in turn, determines an alteration in the light propagation. Having higher sensitivity in comparison with the individual technologies upon which they are based, the optomechanical devices are used in biosensing, humidity, temperature, and gases detection. This perspective focuses on a particular class, namely on devices based on diffractive optical structures (DOS). Many configurations have been developed, including cantilever- and MEMS-type devices, fiber Bragg grating sensors, and cavity optomechanical sensing devices. These state-of-the-art sensors operate on the principle of a mechanical transducer coupled with a diffractive element resulting in a variation in the intensity or wavelength of the diffracted light in the presence of the target analyte. Therefore, as DOS can further enhance the sensitivity and selectivity, we present the individual mechanical and optical transducing methods and demonstrate how the DOS introduction can lead to an enhanced sensitivity and selectivity. Their (low-) cost manufacturing and their integration in new sensing platforms with great adaptability across many sensing areas are discussed, being foreseen that their implementation on wider application areas will further increase.
Collapse
Affiliation(s)
- Faolan Radford McGovern
- School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
- Centre for Industrial & Engineering Optics, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Aleksandra Hernik
- School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
- Centre for Industrial & Engineering Optics, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Catherine Grogan
- School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
- The Group of Applied Physics, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - George Amarandei
- School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
- The Group of Applied Physics, Technological University Dublin, D07 ADY7 Dublin, Ireland
| | - Izabela Naydenova
- School of Physics, Clinical & Optometric Sciences, Technological University Dublin, D07 ADY7 Dublin, Ireland
- Centre for Industrial & Engineering Optics, Technological University Dublin, D07 ADY7 Dublin, Ireland
| |
Collapse
|
63
|
Wang YL, Wang X, Yu HR, Liang T, Lv XB, Cheng CJ. A K +-sensitive photonic crystal hydrogel sensor for efficient visual monitoring of hyperkalemia/hypokalemia. SOFT MATTER 2023. [PMID: 37335556 DOI: 10.1039/d3sm00513e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Potassium ions (K+) play crucial roles in many biological processes. Abnormal K+ levels in the body are usually associated with physiological disorders or diseases, and thus, developing K+-sensitive sensors/devices is of great importance for disease diagnosis and health monitoring. Herein, we report a K+-sensitive photonic crystal hydrogel (PCH) sensor with bright structural colors for efficient monitoring of serum potassium. This PCH sensor consists of a poly(acrylamide-co-N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) (PANBC) smart hydrogel with embedded Fe3O4 colloidal photonic crystals (CPCs), which could strongly diffract visible light and endow the hydrogel with brilliant structural colors. The rich 15-crown-5 (15C5) units appended on the polymer backbone could selectively bind K+ ions to form stable 2 : 1 [15C5]2/K+ supramolecular complexes. These bis-bidentate complexes served as physical crosslinkers to crosslink the hydrogel and contracted its volume, and thus reduced the lattice spacing of Fe3O4 CPCs and blue-shifted the light diffraction, and finally reported on the K+ concentrations by a color change of the PCH. Our fabricated PCH sensor possessed high K+ selectivity and pH- and thermo-sensitive response performances to K+. Most interestingly, the K+-responding PANBC PCH sensor could be conveniently regenerated via simple alternate flushing with hot/cold water due to the excellent thermosensitivity of the introduced PNIPAM moieties into the hydrogel. Such a PCH sensor provides a simple, low-cost and efficient strategy for visualized monitoring of hyperkalemia/hypokalemia, which will significantly promote the development of biosensors.
Collapse
Affiliation(s)
- Yan-Lin Wang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| | - Xi Wang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| | - Hai-Rong Yu
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China.
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Ting Liang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China.
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xing-Bin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China.
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Chang-Jing Cheng
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China.
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China
| |
Collapse
|
64
|
Li L, Yu Z, Liu J, Yang M, Shi G, Feng Z, Luo W, Ma H, Guan J, Mou F. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. NANO-MICRO LETTERS 2023; 15:141. [PMID: 37247162 PMCID: PMC10226971 DOI: 10.1007/s40820-023-01095-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/30/2023]
Abstract
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Huiru Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
65
|
Kobori M, Hirano Y, Tanaka M, Kanai T. Practical Preparation of Elastomer-Immobilized Nonclose-Packed Colloidal Photonic Crystal Films with Various Uniform Colors. Polymers (Basel) 2023; 15:polym15102294. [PMID: 37242868 DOI: 10.3390/polym15102294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Colloidal photonic crystals, which are three-dimensional periodic structures of monodisperse submicron-sized particles, are expected to be suitable for novel photonic applications and color materials. In particular, nonclose-packed colloidal photonic crystals immobilized in elastomers exhibit significant potential for use in tunable photonic applications and strain sensors that detect strain based on color change. This paper reports a practical method for preparing elastomer-immobilized nonclose-packed colloidal photonic crystal films with various uniform Bragg reflection colors using one kind of gel-immobilized nonclose-packed colloidal photonic crystal film. The degree of swelling was controlled by the mixing ratio of the precursor solutions, which used a mixture of solutions with high and low affinities for the gel film as the swelling solvent. This facilitated color tuning over a wide range, enabling the facile preparation of elastomer-immobilized nonclose-packed colloidal photonic crystal films with various uniform colors via subsequent photopolymerization. The present preparation method can contribute to the development of practical applications of elastomer-immobilized tunable colloidal photonic crystals and sensors.
Collapse
Affiliation(s)
- Momoko Kobori
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yuna Hirano
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mikako Tanaka
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Toshimitsu Kanai
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
66
|
Chen H, Li N, Gu Z, Gu H, Wang J. Magnetic photonic crystals for biomedical applications. SMART MEDICINE 2023; 2:e20220039. [PMID: 39188282 PMCID: PMC11235834 DOI: 10.1002/smmd.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 08/28/2024]
Abstract
Magnetic photonic crystals (PhCs), as a representative responsive structural color material, have attracted increasing research focus due to merits such as brilliant refraction colors, instant responsiveness, and excellent manipuility, thus having been widely applied for color displaying, three-dimensional printing, sensing, and so on. Featured with traits such as contactless manner, flexible orientations, and adjustable intensity of external magnetism, magnetic PhCs have shown great superiority especially in the field of biomedical applications such as bioimaging and auxiliary clinical diagnosis. In this review, we summarize the current advancements of magnetic PhCs. We first introduce the fundamental principles and typical characteristics of PhCs. Afterward, we present several typical self-assembly strategies with their frontiers in practical applications. Finally, we analyze the current situations of magnetic PhCs and put forward the prospective challenges and future development directions.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Ning Li
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
67
|
Li L, Wen ZB, Li D, Xu ZY, Shi LY, Yang KK, Wang YZ. Fabricating Freestanding, Broadband Reflective Cholesteric Liquid-Crystal Networks via Topological Tailoring of the Sm-Ch Phase Transition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21425-21434. [PMID: 37079877 DOI: 10.1021/acsami.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Numerous biological systems in nature provide much inspiration for humanity to master diverse coloration strategies for creating stimuli-responsive materials and display devices, such as to access gorgeous structural colors from well-defined photonic structures. Cholesteric liquid crystals (CLCs) are a fascinating genre of photonic materials displaying iridescent colors responsive to circumstance changes; however, it is still a big challenge to design materials with broadband color variation as well as good flexibility and freestanding capacity. Herein, we report a feasible and flexible strategy to fabricate cholesteric liquid-crystal networks (CLCNs) with precise colors across the entire visible spectrum through molecular structure tailoring and topology engineering and demonstrate their application as smart displays and rewritable photonic paper. Influences of chiral and achiral LC monomers on the thermochromic behaviors of CLC precursors as well as on the topology of the polymerized CLCNs are systematically investigated, demonstrating that the monoacrylate achiral LC facilitated the formation of a smectic phase-chiral phase (Sm-Ch) pretransitional phase in the CLC mixture and improved the flexibility of the photopolymerized CLCNs. High-resolution multicolor patterns in one CLCN film are generated through photomask polymerization. In addition, the freestanding CLCN films show perceivable mechanochromic behaviors and repeated erasing-rewriting performances. This work opens avenues toward the realization of pixelated colorful patterns and rewritable CLCN films promising in technology fields ranging from information storage and smart camouflage to anti-counterfeiting and smart display.
Collapse
Affiliation(s)
- Lu Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Zhi-Bin Wen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Zhi-Yuan Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
68
|
Wu X, Luo H, Liu HL, Ma R, Xu B. Manipulation of the photoluminescence of lead halide perovskite quantum dots with mechanically reconfigurable 3D photonic crystals. OPTICS LETTERS 2023; 48:1415-1418. [PMID: 36946941 DOI: 10.1364/ol.484835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Reconfigurable 3D photonic crystals (3DPCs) are promising for dynamic emission devices, owing to their unique properties. Here, we integrated the perovskite quantum dot film together with 3D reconfigurable photonic crystals (PCs) to form quantum dot/photonic crystal heterostructures and investigated their interactions at their interfaces. The photonic bandgaps of the presented 3DPCs can be dynamically tuned by heating and applying external mechanical forces, and they can be stably fixed in the intermediate states. By tuning the photonic bandgaps of the 3DPCs, a maximum photoluminescence (PL) enhancement of 11 times that of CsPb(I/Br)3 quantum dots has been achieved. It has been revealed that the combined effects of increased density of photon states and the greatly confined and enhanced electric field on the upper surface of 3DPCs contribute to the enhanced Purcell effect, which in turn leads to the enhanced photoluminescence.
Collapse
|
69
|
Zhang Z, Wei B, Yang D, Ma D, Huang S. Precisely sensing hydrofluoric acid by photonic crystal hydrogels. J Colloid Interface Sci 2023; 634:314-322. [PMID: 36535167 DOI: 10.1016/j.jcis.2022.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022]
Abstract
It is a great challenge to detect hydrofluoric acid (HF) with high precision, good selectivity, and visual readouts characteristics. Herein, a new photonic crystal (PC) hydrogel HF sensor based on the "selective etching-induced swelling" mechanism has been developed. This HF sensor consisting of silica/water/hydroxyethyl acrylate and non-closely packed structures was fabricated through simple non-close-assembling, photopolymerization, and water swelling processes. Silica slightly etched by HF induces the swelling of PC hydrogel, leading to the variation of reflection wavelength and structural colors, thereby realizing visually and spectrally sensing HF (0-10 mM). The unique structure and compositions of PC hydrogel are the keys to the high sensing precision, outstanding selectivity, and low detection limit (0.1 mM). Furthermore, the sensor possesses tailorable, portable, easy-to-operation, and low-cost (<0.01 $/sensor) advantages. This work provides an efficient and convenient tool for sensing and recognizing HF in the aqueous solution for practical applications and upgrades the basic understanding of the photonic sensing mechanism.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Boru Wei
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongpeng Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, PR China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
70
|
Wu C, Fan Q, Wu W, Liang T, Liu Y, Yu H, Yin Y. Magnetically Tunable One-Dimensional Plasmonic Photonic Crystals. NANO LETTERS 2023; 23:1981-1988. [PMID: 36847818 DOI: 10.1021/acs.nanolett.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Integrating plasmonic resonance into photonic bandgap nanostructures promises additional control over their optical properties. Here, one-dimensional (1D) plasmonic photonic crystals with angular-dependent structural colors are fabricated by assembling magnetoplasmonic colloidal nanoparticles under an external magnetic field. Unlike conventional 1D photonic crystals, the assembled 1D periodic structures show angular-dependent colors based on the selective activation of optical diffraction and plasmonic scattering. They can be further fixed in an elastic polymer matrix to produce a photonic film with angular-dependent and mechanically tunable optical properties. The magnetic assembly enables precise control over the orientation of the 1D assemblies within the polymer matrix, producing photonic films with designed patterns displaying versatile colors from the dominant backward optical diffraction and forward plasmonic scattering. The combination of optical diffraction and plasmonic properties within a single system holds the potential for developing programmable optical functionalities for applications in various optical devices, color displays, and information encryption systems.
Collapse
Affiliation(s)
- Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wanling Wu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
| | - Tian Liang
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yun Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Huakang Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
71
|
Zhou J, Chen R, Wu J, Tang Z, Pan G, Fang Z, Zhu Y, Lin W, Lin X, Yi G. Portable Comestible-Liquid Quality Test Enabled by Stretchable and Reusable Ion-Detection Photonic Papers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884009 DOI: 10.1021/acsami.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, there have been widespread investigation conducted into responsive photonic crystal hydrogels (RPCHs) characterized by high selectivity and sensitivity for colorimetric indicators and physical/chemical sensors. In spite of this, it remains challenging to use RPCHs for sensing due to their limited mechanical property and molding capability. In the present study, a double-network structure is proposed to design highly stretchable, sensitive, and reusable ion-detection photonic papers (IDPPs) for assessing the quality of visual and portable comestible liquids (e.g., soy sauce). It is constructed by integrating polyacrylamide and poly-methacryloxyethyl trimethyl ammonium chloride with highly ordered polystyrene microspheres. The double-network structure improves the mechanical properties of IDPPs with their elongation at break increasing from 110 to 1600%. Meanwhile, the optical properties of photonic crystals are retained. The IDPPs achieve a fast ion response by applying control on the swelling behavior of the hydration radius of the counter ions through ion exchange. Given a certain concentration range (0.01-0.10 M), chloride ions can be detected fast (3-30 s) by exchanging ions with a small hydration radius through an IDPP, which is clearly observable. Due to the improvement of mechanical properties and the reversible exchange of ions derived from IDPPs, their reusability is significantly enhanced (>30 times). Characterized by a simple operation, high durability, and excellent sustainability, these IDPPs are promising for practical application in food security and human health assessment.
Collapse
Affiliation(s)
- Jie Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Guoyi Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ziquan Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yongxiang Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
72
|
McDonald MN, Zhu Q, Paxton WF, Peterson CK, Tree DR. Active control of equilibrium, near-equilibrium, and far-from-equilibrium colloidal systems. SOFT MATTER 2023; 19:1675-1694. [PMID: 36790855 DOI: 10.1039/d2sm01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input. We review seminal works within this framework, provide a summary of important application areas, and present a brief introduction to the fundamental concepts of control theory that are necessary for the soft materials community to understand this literature. In addition, we outline current and potential future applications of actively-controlled colloidal systems, and we highlight important open questions and future directions.
Collapse
Affiliation(s)
- Mark N McDonald
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Cameron K Peterson
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
73
|
Stein A. Achieving Functionality and Multifunctionality through Bulk and Interfacial Structuring of Colloidal-Crystal-Templated Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2890-2910. [PMID: 36757136 DOI: 10.1021/acs.langmuir.2c03297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Over the past 25 years, the field of colloidal crystal templating of inverse opal or three-dimensionally ordered macroporous (3DOM) structures has made tremendous progress. The degree of structural control over multiple length scales, understanding of mechanical properties, and complexity of systems in which 3DOM materials are a component have increased substantially. In addition, we are now seeing applications of 3DOM materials that make use of multiple features of their architecture at the same time. This Feature Article focuses on the different properties of 3DOM materials that provide functionality, including a relatively large surface area, the interconnectedness of the pores and the resulting good accessibility of the internal surface, the nanostructured features of the walls, the structural hierarchy and periodicity, well-defined surface roughness, and relative mechanical robustness at low density. It provides representative examples that illustrate the properties of interest related to applications including energy storage and conversion systems, sensors, catalysts, sorbents, photonics, actuators, and biomedical materials or devices.
Collapse
Affiliation(s)
- Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
74
|
Nanostructure-free crescent-shaped microparticles as full-color reflective pigments. Nat Commun 2023; 14:793. [PMID: 36774360 PMCID: PMC9922275 DOI: 10.1038/s41467-023-36482-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Structural colors provide a promising visualization with high color saturation, iridescent characteristics, and fade resistance. However, pragmatic uses are frequently impeded by complex manufacturing processes for sophisticated nanostructures. Here, we report a facile emulsion-templating strategy to produce crescent-shaped microparticles as structural color pigments. The micro-crescents exhibit brilliant colors under directional light originating from total internal reflections and optical interferences in the absence of periodic nanostructures while being transparent under ambient light. The colors are finely tunable by adjusting the size of the micro-crescents, which can be further mixed to enrich the variety. Importantly, the pre-defined convex surface secures high stability of colors and enables structural coloration on target surfaces through direct deposition as inks. We anticipate this class of nanostructure-free structural colorants is pragmatic as invisible inks in particular for anti-counterfeiting patches and color cosmetics with distinctive impressions due to low-cost, scalable manufacturing, unique optical properties, and versatility.
Collapse
|
75
|
Han WC, Lee YJ, Kim SU, Lee HJ, Kim YS, Kim DS. Versatile Mechanochromic Sensor based on Highly Stretchable Chiral Liquid Crystalline Elastomer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206299. [PMID: 36464625 DOI: 10.1002/smll.202206299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 06/17/2023]
Abstract
A mechanochromic strain sensor that is capable of distinguishing the orientation, the location, and the degree of deformation based on the highly stretchable membrane of main-chain chiral liquid crystalline elastomer (MCLCE) is proposed. The MCLCE film is designed to exhibit uniform and significant color shift upon the small strain by using step-growth polymerization of liquid crystal (LC) oligomer and its phase-stabilization in solvent mesogen. As conformally placed on the bottom elastomer sheet, the MCLCE film shows multimodal, instantaneous color change for sensing arbitrary in-plane deformation, out-of-plane bending, and nonzero Gaussian deformation. Based on high freedom in the device design, it is also demonstrated that this sensor can display color patterns or encrypted images in response to the localized weight or strain. The simple and straightforward concept proposed here can be applicable in the fields of wearable devices, displays, and soft robotics.
Collapse
Affiliation(s)
- Woong Chan Han
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Hye Joo Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| | - Young-Seok Kim
- Display Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Bundang-gu, Seoungnam-si, Kyounggi-do, 13509, Republic of Korea
| | - Dae Seok Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| |
Collapse
|
76
|
Wei X, Shang Y, Zhu Y, Gu Z, Zhang D. Encoding microcarriers for biomedicine. SMART MEDICINE 2023; 2:e20220009. [PMID: 39188559 PMCID: PMC11235794 DOI: 10.1002/smmd.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 08/28/2024]
Abstract
High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms. Biosensor analysis, drug screening, cell culture, and the construction and evaluation of bionic organ chips can be realized by decoding the microcarriers and quantifying the detection signal intensity. In this review, the encoding strategy of microcarriers was divided into the optical and non-optical encoding approaches according to their encoding elements, and the research progress of the microcarrier encoding strategy was elaborated. Finally, we summarized the biomedical applications and predicted their future prospects.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yixuan Shang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yefei Zhu
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dagan Zhang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
77
|
Fookes F, Polo Parada L, Fidalgo M. A Robust Method for the Elaboration of SiO 2-Based Colloidal Crystals as a Template for Inverse Opal Structures. SENSORS (BASEL, SWITZERLAND) 2023; 23:1433. [PMID: 36772472 PMCID: PMC9920682 DOI: 10.3390/s23031433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Photonic crystals (PCs) are nanomaterials with photonic properties made up of periodically modulated dielectric materials that reflect light between a wavelength range located in the photonic band gap. Colloidal PCs (C-PC) have been proposed for several applications such as optical platforms for the formation of physical, chemical, and biological sensors based on a chromatic response to an external stimulus. In this work, a robust protocol for the elaboration of photonic crystals based on SiO2 particle (SP) deposition using the vertical lifting method was studied. A wide range of lifting speeds and particle suspension concentrations were investigated by evaluating the C-PC reflectance spectrum. Thinner and higher reflectance peaks were obtained with a decrease in the lifting speed and an increase in the SP concentrations up to certain values. Seven batches of twelve C-PCs employing a SP 3% suspension and a lifting speed of 0.28 µm/s were prepared to test the reproducibility of this method. Every C-PC fabricated in this assay has a wavelength peak in a range of 10 nm and a peak width lower than 90 nm. Inverse-opal polymeric films with a highly porous and interconnected morphology were obtained using the developed C-PC as a template. Overall, these results showed that reproducible colloidal crystals could be elaborated on a large scale with a simple apparatus in a short period, providing a step forward in the scale-up of the fabrication of photonic colloidal crystal and IO structures as those employed for the elaboration of photonic polymeric sensors.
Collapse
Affiliation(s)
- Federico Fookes
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral–Conicet, Güemes 3450, Santa Fe 3000, Argentina
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Luis Polo Parada
- Department of Medical Pharmacology & Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - María Fidalgo
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
78
|
Xu Z, Liu M, Liu Y, Pan Y, Yang L, Ge D. Mechano-Optical Response Behavior of Polymer-Dispersed Cholesteric Liquid Crystals for Reversible and Highly Sensitive Force Recorders. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3673-3679. [PMID: 36608174 DOI: 10.1021/acsami.2c20959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Force recording (mode, intensity, and orientation) is of great importance in medical rehabilitation, military reconnaissance, space exploration, etc. However, sensors with both reversibility and memorability are still challenging. Here, a reversible sensor based on polymer-dispersed cholesteric liquid crystals (CLC) is developed as a force recorder. Based on the microarea mechano-optical response and finite element analysis, it is confirmed that the mechanochromic response is mediated by the shear deformation of the polymer network and neighboring CLC. There is an obvious quantitative relationship between force intensity, mode, orientation, and the microarea optical response. Moreover, the sensing layer with a lower modulus or thickness is advantageous for a more sensitive device with lower starting pressure. Additionally, the excellent sensitivity and accuracy also highlight the potential applications in force analysis, path tracking, or pattern detection.
Collapse
Affiliation(s)
- Zhao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
- Institute of Functional Materials, Donghua University, Shanghai201620, China
| | - Meng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Yang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Yan Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Lili Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Dengteng Ge
- Institute of Functional Materials, Donghua University, Shanghai201620, China
| |
Collapse
|
79
|
Kuk K, Abgarjan V, Gregel L, Zhou Y, Carrasco Fadanelli V, Buttinoni I, Karg M. Compression of colloidal monolayers at liquid interfaces: in situ vs. ex situ investigation. SOFT MATTER 2023; 19:175-188. [PMID: 36426847 DOI: 10.1039/d2sm01125e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The assembly of colloidal particles at liquid/liquid or air/liquid interfaces is a versatile procedure to create microstructured monolayers and study their behavior under compression. When combined with soft and deformable particles such as microgels, compression is used to tune not only the interparticle distance but also the underlying microstructure of the monolayer. So far, the great majority of studies on microgel-laden interfaces are conducted ex situ after transfer to solid substrates, for example, via Langmuir-Blodgett deposition. This type of analysis relies on the stringent assumption that the microstructure is conserved during transfer and subsequent drying. In this work, we couple a Langmuir trough to a custom-built small-angle light scattering setup to monitor colloidal monolayers in situ during compression. By comparing the results with ex situ and in situ microscopy measurements, we conclude that Langmuir-Blodgett deposition can alter the structural properties of the colloidal monolayers significantly.
Collapse
Affiliation(s)
- Keumkyung Kuk
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Vahan Abgarjan
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Lukas Gregel
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Yichu Zhou
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Virginia Carrasco Fadanelli
- Institut für Experimentelle Physik der kondensierten Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ivo Buttinoni
- Institut für Experimentelle Physik der kondensierten Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
80
|
Recent advances in photonic crystal-based sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
81
|
Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Adv Colloid Interface Sci 2023; 311:102810. [PMID: 36417827 DOI: 10.1016/j.cis.2022.102810] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Impelled by the need to find solutions to new challenges of modern technologies new materials with unique properties are being explored. Among various new materials that emerged over the decades, magnetic fluids exhibiting interesting physiochemical properties (optical, thermal, magnetic, rheological, apparent density, etc.) under a magnetic stimulus have been at the forefront of research. In the initial phase, there has been a fervent scientific curiosity to understand the field-induced intriguing properties of such fluids but later a plethora of technological applications emerged. Magnetic nanofluid, popularly known as ferrofluid, is a colloidal suspension of fine magnetic nanoparticles, has been at the forefront of research because of its magnetically tunable physicochemical properties and applications. Due to their stimuli-responsive behaviour, they have been finding more applications in biology and other engineering disciplines in recent years. Therefore, a critical review of this topic highlighting the necessary background, the potential of this material for emerging technologies, and the latest developments is warranted. This review also provides a summary of various applications, along with the key challenges and future research directions. The first part of the review addresses the different types of magnetic fluids, the genesis of magnetic fluids, their synthesis methodologies, properties, and stabilization techniques are discussed in detail. The second part of the review highlights the applications of magnetic nanofluids and nanoemulsions (as model systems) in probing order-disorder transitions, scattering, diffraction, magnetically reconfigurable internal structures, molecular interaction, and weak forces between colloidal particles, conformational changes of macromolecules at interfaces and polymer-surfactant complexation at the oil-water interface. The last part of the review summarizes the interesting applications of magnetic fluids such as heat transfer, sensors (temperature, pH, urea detection, cations, defect detection sensors), tunable optical filters, removal of dyes, dynamic seals, magnetic hyperthermia-based cancer therapy and other biomedical applications. The applications of magnetic nanofluids in diverse disciplines are growing day by day, yet there are challenges in their practical adaptation as field-worthy or packaged products. This review provides a pedagogical description of magnetic fluids, with the necessary background, key concepts, physics, experimental protocols, design of experiments, challenges and future directions.
Collapse
Affiliation(s)
- John Philip
- Smart Materials Section, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India.
| |
Collapse
|
82
|
Kalidindi S, Yi H. Robust and Reliable Fabrication of Gelatin Films Containing Micropatterned Opal Structures via Evaporative Deposition and Thermal Gelation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57481-57491. [PMID: 36512441 DOI: 10.1021/acsami.2c20266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biopolymeric hydrogel materials containing tunable optical properties such as micropatterned artificial opal structures hold significant potential in various applications. Despite recent advances in fabrication techniques, simple, reliable, and tunable production of stimuli-responsive micropatterned opal hydrogels under mild conditions remains challenging. We report a simple micromolding-based evaporative deposition-thermal gelation technique for gelatin films that capture uniform opal micropatterns, aided by a potent aminopolysaccharide chitosan (CS) that provides binding affinity and structural stability. Our results show reliable, tunable, and high-fidelity fabrication of gelatin hydrogel films containing CS-opal micropatterns, while the as-prepared films show responsiveness to pH, ionic strength, and water content indicating a robust nature. Uniform CS-opal microparticles can also be readily prepared via removal of the gelatin through various simple routes, illustrating the crucial roles of CS and gelatin. We envision that this robust, reliable, and simple evaporative deposition-thermal gelation technique can be readily extended to prepare responsive biopolymeric materials for various applications.
Collapse
Affiliation(s)
- Subhash Kalidindi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| |
Collapse
|
83
|
Park MS, Kim K, Lee YJ, Na JH, Kim SU. Deformable Photonic Crystals Based on Chiral Liquid Crystals with Thermal-Mediative Shape Memory Effect. MATERIALS (BASEL, SWITZERLAND) 2022; 16:35. [PMID: 36614374 PMCID: PMC9821410 DOI: 10.3390/ma16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We propose a deformable photonic crystal that exhibits the thermal-mediative shape memory effect. The chiral liquid crystalline polymeric scaffold, which produces the structural colors from a helical twist of the liquid crystal director, is prepared through phase-stabilization of a reactive mesogen in a small molecular chiral liquid crystal (CLC), polymerization, and removal of the CLC. The prepolymer of polyurethane acrylate (PUA) is then infiltrated in the prepared scaffold and subsequently photo-polymerized to form a CLC-PUA composite film. Upon compression, this film shows the blue shift of the structural color and retains this color-shift as released from compression. As the temperature increases, the color is recovered to a pristine state. The concept proposed in this study will be useful for designing mechanochromic soft materials.
Collapse
Affiliation(s)
- Min-Seok Park
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Kitae Kim
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Jun-Hee Na
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
84
|
Xue J, Yin X, Xue L, Zhang C, Dong S, Yang L, Fang Y, Li Y, Li L, Cui J. Self-growing photonic composites with programmable colors and mechanical properties. Nat Commun 2022; 13:7823. [PMID: 36535934 PMCID: PMC9763393 DOI: 10.1038/s41467-022-35555-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Many organisms produce stunning optical displays based on structural color instead of pigmentation. This structural or photonic color is achieved through the interaction of light with intricate micro-/nano-structures, which are "grown" from strong, sustainable biological materials such as chitin, keratin, and cellulose. In contrast, current synthetic structural colored materials are usually brittle, inert, and produced via energy-intensive processes, posing significant challenges to their practical uses. Inspired by the brilliantly colored peacock feathers which selectively grow keratin-based photonic structures with different photonic bandgaps, we develop a self-growing photonic composite system in which the photonic bandgaps and hence the coloration can be easily tuned. This is achieved via the selective growth of the polymer matrix with polymerizable compounds as feeding materials in a silica nanosphere-polymer composite system, thus effectively modulating the photonic bandgaps without compromising nanostructural order. Such strategy not only allows the material system to continuously vary its colors and patterns in an on-demand manner, but also endows it with many appealing properties, including flexibility, toughness, self-healing ability, and reshaping capability. As this innovative self-growing method is simple, inexpensive, versatile, and scalable, we foresee its significant potential in meeting many emerging requirements for various applications of structural color materials.
Collapse
Affiliation(s)
- Juan Xue
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China ,grid.54549.390000 0004 0369 4060Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
| | - Xuewu Yin
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China
| | - Lulu Xue
- grid.25879.310000 0004 1936 8972Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104 USA
| | - Chenglin Zhang
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China
| | - Shihua Dong
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China
| | - Li Yang
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China
| | - Yuanlai Fang
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China
| | - Yong Li
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China
| | - Ling Li
- grid.438526.e0000 0001 0694 4940Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd, Blacksburg, VA 24060 USA
| | - Jiaxi Cui
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 5, Section 2, North Jianshe Road, Chengdu, Sichuan 610057 P. R. China ,grid.54549.390000 0004 0369 4060Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
| |
Collapse
|
85
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
86
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
87
|
Chen Y, Zuo ZH, Liu ZQ, Yin Y. Rapid Color-Switching of MnO 2 Hollow-Nanosphere Films in Dynamic Water Vapor for Reversible Optical Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204484. [PMID: 36310132 DOI: 10.1002/smll.202204484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drop-casting manganese oxide (MnO2 ) hollow nanospheres synthesized via a simple surface-initiated redox route produces thin films exhibiting angle-independent structural colors. The colors can rapidly change in response to high-humidity dynamic water vapor (relative humidity > 90%) with excellent reversibility. When the film is triggered by dynamic water vapor with a relative humidity of ≈100%, the color changes with an optimal wavelength redshift of ≈60 nm at ≈600 ms while there is no shift under static water vapor. The unique selective response originates from the nanoscale porosity formed in the shells by randomly stacked MnO2 nanosheets, which enhances the capillary condensation of dynamic water vapor and promotes the change of their effective refractive index for rapid color switching. The repeated color-switching tests over 100 times confirm the durability and reversibility of the MnO2 film. The potential of these films for applications in anti-counterfeiting and information encryption is further demonstrated by reversible encoding and decoding initiated exclusively by exposure to human breath.
Collapse
Affiliation(s)
- Yibo Chen
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Zhi-Han Zuo
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
88
|
Lan R, Bao J, Li Z, Wang Z, Song C, Shen C, Huang R, Sun J, Wang Q, Zhang L, Yang H. Orthogonally Integrating Programmable Structural Color and Photo‐Rewritable Fluorescence in Hydrazone Photoswitch‐bonded Cholesteric Liquid Crystalline Network. Angew Chem Int Ed Engl 2022; 61:e202213915. [DOI: 10.1002/anie.202213915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Ruochen Lan
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Institute of Advanced Materials Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jinying Bao
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Zhaozhong Li
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zizheng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Chenjie Song
- Department of Ophthalmology Beijing Anzhen Hospital Capital Medical University Beijing 100029 P. R. China
| | - Chen Shen
- China National Machinery Industry Corporation (Sinomach) Beijing 100080 P. R. China
| | - Rui Huang
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jian Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Qian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Lanying Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| |
Collapse
|
89
|
Wang Z, Wang Y, Ge Z, Tian Y, Ai M, Cao S, Wang M, Wang S, Ma J. Color-phase readout radiochromic photonic crystal dosimeter. MATTER 2022; 5:4060-4075. [DOI: 10.1016/j.matt.2022.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
90
|
Lan R, Bao J, Huang R, Wang Z, Zhang L, Shen C, Wang Q, Yang H. Amplifying Molecular Scale Rotary Motion: The Marriage of Overcrowded Alkene Molecular Motor with Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109800. [PMID: 35732437 DOI: 10.1002/adma.202109800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Design and fabrication of macroscopic functional devices by molecular engineering is an emerging and effective strategy in exploration of advanced materials. Photoresponsive overcrowded alkene-based molecular motor (OAMM) is considered as one of the most promising molecular machines due to the unique rotary motion driven by light with high temporal and spatial precision. Amplifying the molecular rotary motions into macroscopic behaviors of photodirected systems links the molecular dynamics with macroscopic motions of materials, providing new opportunities to design novel materials and devices with a bottom-up strategy. In this review, recent developments of the light-responsive liquid crystal system triggered by OAMM will be summarized. The mechanism of amplification effect of liquid crystal matrix will be introduced first. Then progress of the OAMM-driven liquid crystal materials will be described including light-controlled photonic crystals, texture-tunable liquid crystal coating and microspheres, photoactuated soft robots, and dynamic optical devices. It is hoped that this review provides inspirations in design and exploration of light-driven soft matters and novel functional materials from molecular engineering to structural modification.
Collapse
Affiliation(s)
- Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qian Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
91
|
Luo C, Lu Y, Zhu H, Yao B, Liu Y, Zhou J, Xu G, Ding Y, Wang S, Chen Y, Li J, Reheman A, Wang J. Cholesteric liquid crystal-based printing inks with temperature and reflection angles response properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
92
|
Kozlov AA, Aksenov AS, Bolshakov ES, Ivanov AV, Flid VR. Colloidal photonic crystals with controlled morphology. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
93
|
Yoshioka D, Kishikawa K, Kohri M. A Flexible and Robust Structural Color Film Obtained by Assembly of Surface-Modified Melanin Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193338. [PMID: 36234466 PMCID: PMC9565605 DOI: 10.3390/nano12193338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/12/2023]
Abstract
In this study, core-shell-hairy-type melanin particles surface modified with a polydopamine shell layer and a polymer brush hairy layer were fabricated and assembled to readily obtain bright structural color films. The hot pressing of freeze-dried samples of melanin particles decorated with a hydrophilic, low glass transition temperature polymer brush results in films that exhibit an angle-dependent structural color due to a highly periodic microstructure, with increased regularity in the arrangement of the particle array due to the fluidity of the particles. Flexible, self-supporting, and easy-to-cut and process structural color films are obtained, and their flexibility and robustness are demonstrated using compression tests. This method of obtaining highly visible structural color films using melanin particles as a single component will have a significant impact on practical materials and applications.
Collapse
|
94
|
Combining TiO2 photonic crystals and reagents enhances the sensitivity of endotoxin detection. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
95
|
Zhang L, Cui Y, Wang Q, Zhou H, Wang H, Li Y, Yang Z, Cao H, Wang D, He W. Spatial Patterning of Fluorescent Liquid Crystal Ink Based on Inkjet Printing. Molecules 2022; 27:molecules27175536. [PMID: 36080303 PMCID: PMC9458137 DOI: 10.3390/molecules27175536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Fluorescent cholesteric liquid crystal materials (FCLC) with aggregation-induced emission (AIE) properties can effectively solve the contradiction between aggregation-induced quenching (ACQ) and liquid crystal self-assembly when light-emitting materials are aggregated, and they have great application value in the fields of anti-counterfeit detection and information hiding. However, generating a visually appealing design, logo, or image in the application typically requires an intricate fabrication process, such as the use of prefabricated molds and photomasks, which greatly limits the practical application of FCLC materials. Herein is reported a new method for spatially patterned liquid crystal (LC) microdroplet arrays using drop-on-demand inkjet printing technology. Through rational composition design, a spatial array composed of different liquid crystal microdroplets was established, and the array contains two entirely distinct but intact patterns at the same time, which can be reversibly switched under the irradiation of UV and natural light. This study provides a new method for the integrated preparation of different component liquid crystal materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wanli He
- Correspondence: ; Tel.: +86-13522735763
| |
Collapse
|
96
|
Xia L, Wang Q, Hu M. Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:763-777. [PMID: 36051312 PMCID: PMC9379653 DOI: 10.3762/bjnano.13.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/09/2023]
Abstract
Various kinds of monocrystalline coordination polymers are available thanks to the rapid development of related synthetic strategies. The intrinsic properties of coordination polymers have been carefully investigated on the basis of the available monocrystalline samples. Regarding the great potential of coordination polymers in various fields, it becomes important to tailor the properties of coordination polymers to meet practical requirements, which sometimes cannot be achieved through molecular/crystal engineering. Nanoarchitectonics offer unique opportunities to manipulate the properties of materials through integration of the monocrystalline building blocks with other components. Recently, nanoarchitectonics has started to play a significant role in the field of coordination polymers. In this short review, we summarize recent advances in nanoarchitectures based on monocrystalline coordination polymers that are formed through confined assembly. We first discuss the crystallization of coordination polymer single crystals inside confined liquid networks or on substrates through assembly of nodes and ligands. Then, we discuss assembly of preformed coordination polymer single crystals inside confined liquid networks or on substrates. In each part, we discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications.
Collapse
Affiliation(s)
- Lingling Xia
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinyue Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
97
|
Liu K, Ding H, Li S, Niu Y, Zeng Y, Zhang J, Du X, Gu Z. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Nat Commun 2022; 13:4563. [PMID: 35931721 PMCID: PMC9355982 DOI: 10.1038/s41467-022-32317-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
The orderly arrangement of nanomaterials’ tiny units at the nanometer-scale accounts for a substantial part of their remarkable properties. Maintaining this orderness and meanwhile endowing the nanomaterials with highly precise and free-designed 3D micro architectures will open an exciting prospect for various novel applications. In this paper, we developed a sacrificial-scaffold-mediated two-photon lithography (TPL) strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly-arranged nanoparticles inside. We show that, with the help of a degradable hydrogel scaffold, the disturbance effect of the femtosecond laser to the nanoparticle self-assembling could be overcome. Therefore, hydrogel-state and solid-state colloidal crystal microstructures with diverse compositions, free-designed geometries and variable structural colors could be easily fabricated. This enables the possibility to create novel colloidal crystal microsensing systems that have not been achieved before. Colloidal crystals are widely applied in the fabrication of optoelectronic devices, but realizing freedom of design, such as in 3D printing, in colloidal crystal fabrication remains challenging. Here, the authors demonstrate a sacrificial-scaffold-mediated two-photon lithography strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly arranged nanoparticles in the bulk.
Collapse
Affiliation(s)
- Keliang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Sen Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yanfang Niu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Zeng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
98
|
Amorphous photonic structure in a charged colloidal system showing angle-independent uniform color. J Colloid Interface Sci 2022; 629:225-232. [DOI: 10.1016/j.jcis.2022.08.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
99
|
Zhang Q, Jin Q, Mertens A, Rainer C, Huber R, Fessler J, Hernandez-Sosa G, Lemmer U. Fabrication of Bragg Mirrors by Multilayer Inkjet Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201348. [PMID: 35608235 DOI: 10.1002/adma.202201348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bragg mirrors are widely applied in optical and photonic devices due to their capability of light management. However, the fabrication of Bragg mirrors is mainly accomplished by physical and chemical vapor deposition processes, which are costly and do not allow for lateral patterning. Here, the fabrication of Bragg mirrors by fully inkjet printing is reported. The photonic bandgap of Bragg mirrors is tailored by adjusting the number of bilayers in the stack and the layer thickness via simply varying printing parameters. An ultrahigh reflectance of 99% is achieved with the devices consisting of ten bilayers only, and the central wavelength of Bragg mirrors is tuned from visible into near-infrared wavelength range. Inkjet printing allows for fabricating Bragg mirrors on various substrates (e.g., glass and foils), in different sizes and variable lateral patterns. The printed Bragg mirrors not only exhibit a high reflection at designed wavelengths but also show an outstanding homogeneity in color over a large area. The approach thus enables additive manufacturing for various applications ranging from microscale photonic elements to enhanced functionality and aesthetics in large-area displays and solar technologies.
Collapse
Affiliation(s)
- Qiaoshuang Zhang
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Qihao Jin
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Adrian Mertens
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology (KIT), Engesserstrasse 5, 76131, Karlsruhe, Germany
| | - Christian Rainer
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Robert Huber
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Jan Fessler
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany
| |
Collapse
|
100
|
Che S, Zhang J, Mou F, Guo X, Kauffman JE, Sen A, Guan J. Light-Programmable Assemblies of Isotropic Micromotors. Research (Wash D C) 2022; 2022:9816562. [PMID: 35928302 PMCID: PMC9297725 DOI: 10.34133/2022/9816562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
“Life-like” nonequilibrium assemblies are of increasing significance, but suffering from limited steerability as they are generally based on micro/nanomotors with inherent asymmetry in chemical composition or geometry, of which the vigorous random Brownian rotations disturb the local interactions. Here, we demonstrate that isotropic photocatalytic micromotors, due to the persistent phoretic flow from the illuminated to shadowed side irrespective of their Brownian rotations, experience light-programmable local interactions (reversibly from attraction to repulsion and/or alignment) depending on the direction of the incident lights. Thus, they can be organized into a variety of tunable nonequilibrium assemblies, such as apolar solids (i.e., immobile colloidal crystal), polar liquids (i.e., phototactic colloidal stream), and polar solids (i.e., phototactic colloidal crystal), which can further be “cut” into a predesigned pattern by utilizing the switching motor-motor interactions at superimposed-light edges. This work facilitates the development of active matters and motile functional microdevices.
Collapse
Affiliation(s)
- Shengping Che
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Jianhua Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Joshua E. Kauffman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|