51
|
Nene A, Geng S, Zhou W, Yu XF, Luo H, Ramakrishna S. Black Phosphorous Aptamer-based Platform for Biomarker Detection. Curr Med Chem 2023; 30:935-952. [PMID: 35220933 DOI: 10.2174/0929867329666220225110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shengyong Geng
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Hongrong Luo
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, 117576, Singapore
| |
Collapse
|
52
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|
53
|
Ni Z, Hu J, Ye Z, Wang X, Shang Y, Liu H. Indocyanine Green Performance Enhanced System for Potent Photothermal Treatment of Bacterial Infection. Mol Pharm 2022; 19:4527-4537. [PMID: 35143213 DOI: 10.1021/acs.molpharmaceut.1c00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The instability in solution and aggregation-induced self-quenching of indocyanine green (ICG) have weakened its fluorescence and photothermal properties, thus inhibiting its application in practice. In this study, the cationic and anionic liposomes containing ICG were prepared based on 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-glycerol (DPPG), respectively. Molecular dynamics (MD) simulations demonstrate that ICG molecules are better distributed in the membranes of cationic DOTAP-based liposomes, leading to a superior fluorescence and photothermal performance. The liposomal ICG also shows the physical and photothermal stability during irradiation and long-term storage. On this basis, the prepared DOTAP-based liposomal ICG was encapsulated in the self-healing hydrogel formed by guar gum through the borate/diol interaction. The proposed liposomal ICG-loaded hydrogel can not only convert near-infrared (NIR) light into heat effectively but also repair itself without external assistance, which will realize potent photothermal therapy (PTT) against bacterial infection and provide the possibility for meeting the rapidly growing needs of modern medicine.
Collapse
Affiliation(s)
- Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiong Wang
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
54
|
Ren Y, An H, Zhang W, Wei S, Xing C, Peng Z. Ultrasmall SnS 2 quantum dot-based photodetectors with high responsivity and detectivity. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4781-4792. [PMID: 39634737 PMCID: PMC11502062 DOI: 10.1515/nanoph-2022-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/14/2022] [Indexed: 12/07/2024]
Abstract
Quantum dots (QDs) often exhibit unique behaviors because the reduction in lateral size leads to stronger quantum confinement effects and a higher surface-to-volume ratio in comparison with larger two-dimensional nanosheets. However, the preparation of homogeneous QDs remains a longstanding challenge. This work reports the preparation of high-yield and ultrasmall tin disulfide (SnS2) QDs by combining top-down and bottom-up approaches. The as-prepared SnS2 QDs have a uniform lateral size of 3.17 ± 0.62 nm and a thicknesses 2.39 ± 0.88 nm. A series of self-powered photoelectrochemical-type photodetectors (PDs) utilizing the SnS2 QDs as photoelectrodes are also constructed. Taking advantage of the tunable bandgaps and high carrier mobility of the SnS2, our PDs achieve a high photocurrent density of 16.38 μA cm-2 and a photoresponsivity of 0.86 mA W-1, and good long-term cycling stability. More importantly, the device can display obvious photoresponse, even at zero bias voltage (max), and greater weak-light sensitivity than previously reported SnS2-based PDs. Density functional theory calculation and optical absorption were employed to reveal the working mechanism of the SnS2 QDs-based PDs. This study highlights the prospective applications of ultrasmall SnS2 QDs and provides a new route towards future design of QDs-based optoelectronic devices.
Collapse
Affiliation(s)
- Yi Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Hua An
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Weiguan Zhang
- School of Mechatronics and Control Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Songrui Wei
- Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| |
Collapse
|
55
|
Yu S, Du Y, Niu X, Li G, Zhu D, Yu Q, Zou G, Ju H. Arginine-modified black phosphorus quantum dots with dual excited states for enhanced electrochemiluminescence in bioanalysis. Nat Commun 2022; 13:7302. [PMID: 36435863 PMCID: PMC9701201 DOI: 10.1038/s41467-022-35015-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The electrochemiluminescence (ECL) is generally emitted via radiative transition of singlet or triplet excited state (S1 or T1). Herein, an ECL mechanism with the transitions of both S1 and T1 of black phosphorus quantum dots (BPQDs) is found, and an arginine (Arg) modification strategy is proposed to passivate the surface oxidation defects of BPQDs, which could modulate the excited states for enhancing the ECL efficiency of BPQDs. The Arg modification leads to greater spatial overlap of highest and lowest occupied molecular orbitals, and spectral shift of radiative transitions, and improves the stability of anion radical of BPQDs. To verify the application of the proposed mechanism, it is used to construct a sensitive method for conveniently evaluating the inhibiting efficiency of cyclo-arginine-glycine-aspartic acid-d-tyrosine-lysine to cell surface integrin by using Arg containing peptide modified BPQDs as signal tag. The dual excited states mediated ECL emitters provide a paradigm for adjustable ECL generation and extend the application of ECL analysis.
Collapse
Affiliation(s)
- Siqi Yu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Yu Du
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Xianghong Niu
- grid.453246.20000 0004 0369 3615School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P. R. China
| | - Guangming Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Da Zhu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Qian Yu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Guizheng Zou
- grid.27255.370000 0004 1761 1174School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
| | - Huangxian Ju
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| |
Collapse
|
56
|
Li W, Wang Y, Xue D, Jin L, Liu Y, Lv Z, Cao Y, Niu R, Zhang H, Zhang S, Xu B, Yin N, Zhang S, Zhang H. A Novel Biodegradable Nanoplatform for Tumor Microenvironments Responsive Bimodal Magnetic Resonance Imaging and Sonodynamic/Ion Interference Cascade Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50616-50625. [PMID: 36332001 DOI: 10.1021/acsami.2c15806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The unsatisfactory therapeutic effect and long-term adverse effect markedly prevent inorganic nanomaterials from clinical transformation. In light of this, we developed a novel biodegradable theranostic agent (MnCO3:Ho3+@DOX/Ca3(PO4)2@BSA, HMCDB) based on the sonosensitizer manganese carbonate (MnCO3) coating with calcium phosphate (Ca3(PO4)2) and simultaneously loaded it with the chemotherapeutic drug doxorubicin (DOX). Due to the mild acidity of the tumor microenvironment (TME), the Ca3(PO4)2 shell degraded first, releasing substantial quantities of calcium ions (Ca2+) and DOX. Meanwhile, with the ultrasound (US) irradiation, MnCO3 produced enough reactive oxygen species (ROS) to cause oxidative stress in the cells, resulting in accumulation of Ca2+. Consequently, the cascade effect significantly amplified the therapeutic effect. Importantly, the nanocomposite can be completely degraded and cleared from the body, demonstrating that it was a promising theranostic agent for tumor therapy. Furthermore, the doped holmium ions (Ho3+) and in situ generation of manganese ions (Mn2+) in TME endow the nanoagent with the ability for tumor-specific bimodality T1/T2-weighted magnetic resonance imaging (MRI). This novel nanoplatform with low toxicity and biodegradability holds great potential for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wanying Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
| | - Dongzhi Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhijia Lv
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yue Cao
- The First Hospital of Jilin University, Changchun 130041, China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Zhang
- The First Hospital of Jilin University, Changchun 130041, China
| | - Bo Xu
- The First Hospital of Jilin University, Changchun 130041, China
| | - Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Songtao Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Huang H, Zhang C, Zhou J, Wei D, Ma T, Guo W, Liu X, Li S, Deng Y. Label-Free Aptasensor for Detection of Fipronil Based on Black Phosphorus Nanosheets. BIOSENSORS 2022; 12:bios12100775. [PMID: 36290913 PMCID: PMC9599224 DOI: 10.3390/bios12100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022]
Abstract
A label-free fipronil aptasensor was built based on Polylysine-black phosphorus nanosheets composition (PLL-BPNSs) and Au nanoparticles (AuNPs). A PLL-BP modified glassy carbon electrode (GCE) was fabricated by combining BP NSs and PLL, which included a considerable quantity of -NH2. Au nanoparticles (AuNPs) were placed onto the GCE, and PLL-BPNSs bonded to Au NPs firmly by assembling. The thiolated primers were then added and fixed using an S-Au bond, and competitive binding of the fipronil aptamer was utilized for fipronil quantitative assessment. The sensor’s performance was evaluated using differential pulse voltammetry (DPV) method. The linear equation is ΔI (μA) = 13.04 logC + 22.35, while linear correlation coefficient R2 is 0.998, and detection limit is 74 pg/mL (0.17 nM) when the concentration of fipronil is 0.1 ng/mL–10 μg/mL. This aptasensor can apply to quantitative detection of fipronil.
Collapse
Affiliation(s)
- Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chuanxiang Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Dan Wei
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Correspondence: (S.L.); (Y.D.)
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Correspondence: (S.L.); (Y.D.)
| |
Collapse
|
58
|
Shi F, Wang B, Yan L, Wang B, Niu Y, Wang L, Sun W. In-situ growth of nitrogen-doped carbonized polymer dots on black phosphorus for electrochemical DNA biosensor of Escherichia coli O157: H7. Bioelectrochemistry 2022; 148:108226. [PMID: 36030676 DOI: 10.1016/j.bioelechem.2022.108226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 02/08/2023]
Abstract
Sensitive and accurate detection technology for pathogenic bacteria is of great social and economic significance in foodborne disease and food safety. In this paper, a novel portable electrochemical DNA biosensor for the detection of specific DNA sequence of Escherichia coli (E. coli) O157: H7 was constructed. To enhance the performance of the electrochemical sensor, a functionalized nitrogen-doped carbonized polymer dots in-situ grown on few-layer black phosphorus (N-CPDs@FLBP) was synthesized and used as the modifier on the surface of screen-printed electrode. Combining gold nanoparticles as immobilization matrix and methylene blue as electrochemical indicator, the analytical performance of this electrochemical DNA biosensor was evaluated using standard complementary ssDNA sequence in the linear concentration range from 1.0 × 10-19 to 1.0 × 10-6 mol/L with a low detection limit as 3.33 × 10-20 mol/L (3 σ). Furthermore, the portable electrochemical DNA biosensor was proposed based on polymerase chain reaction amplification for the detection of the E. coli O157: H7 genomic DNA from chicken meat, which verified the feasibility for practical samples detection. The research has great theoretical and practical significance for the development of electrochemical biosensor of pathogenic bacteria.
Collapse
Affiliation(s)
- Fan Shi
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Baoli Wang
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China; College of Health Sciences, Hainan Technology and Business College, Haikou 570102, PR China
| | - Lijun Yan
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Bei Wang
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Yanyan Niu
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Lisi Wang
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Wei Sun
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China.
| |
Collapse
|
59
|
Rizzato S, Monteduro AG, Leo A, Todaro MT, Maruccio G. From ion‐sensitive field‐effect transistor to 2D materials field‐effect‐transistor biosensors. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Angelo Leo
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| |
Collapse
|
60
|
Potential of Black Phosphorus in Immune-Based Therapeutic Strategies. Bioinorg Chem Appl 2022; 2022:3790097. [PMID: 35859703 PMCID: PMC9293569 DOI: 10.1155/2022/3790097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Black phosphorus (BP) consists of phosphorus atoms, an essential element of bone and nucleic acid, which covalently bonds to three adjacent phosphorus atoms to form a puckered bilayer structure. With its anisotropy, band gap, biodegradability, and biocompatibility properties, BP is considered promising for cancer therapy. For example, BP under irradiation can convert near-infrared (NIR) light into heat and reactive oxygen species (ROS) to damage cancer cells, called photothermal therapy (PTT) and photodynamic therapy (PDT). Compared with PTT and PDT, the novel techniques of sonodynamic therapy (SDT) and photoacoustic therapy (PAT) exhibit amplified ROS generation and precise photoacoustic-shockwaves to enhance anticancer effect when BP receives ultrasound or NIR irradiation. Based on the prospective phototherapy, BP with irradiation can cause a “double-kill” to tumor cells, involving tumor-structure damage induced by heat, ROS, and shockwaves and a subsequent anticancer immune response induced by in situ vaccines construction in tumor site, which is referred to as photoimmunotherapy (PIT). In conclusion, BP shows promise in natural antitumor biological activity, biological imaging, drug delivery, PTT/PDT/SDT/PAT/PIT, nanovaccines, nanoadjuvants, and combination immunotherapy regimens.
Collapse
|
61
|
Fan J, Qin X, Jiang W, Lu X, Song X, Guo W, Zhu S. Interface-Coupling of NiFe-LDH on Exfoliated Black Phosphorus for the High-Performance Electrocatalytic Oxygen Evolution Reaction. Front Chem 2022; 10:951639. [PMID: 35873053 PMCID: PMC9301014 DOI: 10.3389/fchem.2022.951639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Electrochemical oxygen evolution reaction (OER) always plays an important role in many electrochemical energy storage and conversion systems. Owing to the slow kinetics mainly brought from multiple proton-coupled electron transfer steps, the design and exploit low-cost, highly active, durable OER electrocatalysts are of significant importance. Although the black phosphorus (BP) shows good electrocatalytic OER performance, it still faces the problems of poor intrinsic activity and low stability due to its instability under ambient conditions. The NiFe-LDH was assembled onto the surfaces of exfoliated BP (EBP) nanoflakes to realize the interfacial coupling between them, achieving an effective improvement in electrocatalytic activity and stability. Benefitting from the interfacial P-O bonding, the NiFe-LDH@EBP hybrid shows high OER activity with a low overpotential of ∼240 mV@10 mA cm−2 toward OER under alkaline conditions, as well as the good stability. Density functional theory (DFT) calculations proved that the interface-coupling of NiFe-LDH on BP promotes charge transfer kinetics and balances the adsorption/desorption of reaction intermediates, ultimately imparting excellent OER electrocatalytic activity.
Collapse
Affiliation(s)
- Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
- *Correspondence: Jinchen Fan, ; Sheng Zhu,
| | - Xi Qin
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Wendan Jiang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xiaolei Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenyao Guo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
- *Correspondence: Jinchen Fan, ; Sheng Zhu,
| |
Collapse
|
62
|
Bartus CP, Hegedűs T, Kozma G, Szenti I, Vajtai R, Kónya Z, Kukovecz Á. Exfoliation of black phosphorus in isopropanol-water cosolvents. J Mol Struct 2022; 1260:132862. [DOI: 10.1016/j.molstruc.2022.132862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Esfandiarpour R, Badalkhani-Khamseh F, Hadipour NL. Exploration of phosphorene as doxorubicin nanocarrier: An atomistic view from DFT calculations and MD simulations. Colloids Surf B Biointerfaces 2022; 215:112513. [PMID: 35483255 DOI: 10.1016/j.colsurfb.2022.112513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
Potential capability of phosphorene nanosheet (PNS) as doxorubicin (DOX) nanocarrier was investigated using density functional theory (DFT) method and molecular dynamics (MD) simulations. Both DFT calculations and MD simulations revealed that the DOX molecule is adsorbed horizontally onto the PNS surface with the nearest interaction distance of 2.5 Å. The binding energy of DOX is predicted to be about - 49.5 kcal.mol-1, based on the DFT calculations. After DOX adsorption, the Eg value of PNS remains almost constant in both gas and solvent phases. The dynamical behavior of PNS-DOX was studied at T = 298, 310, and 326 K that reminiscent of room temperature, body temperature, and temperature of tumor after exposure to 808 nm laser radiation, respectively. The diffusion coefficient values of DOX molecule are proportional to temperature. We found that PNS can hold a high amount of DOX on both sides of its surface (66% in weight). MD simulations showed that the dynamical behavior of simulated systems are not affected by pH variances.
Collapse
Affiliation(s)
- Razieh Esfandiarpour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nasser L Hadipour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
64
|
Joshi N, Pransu G, Adam Conte-Junior C. Critical review and recent advances of 2D materials-Based gas sensors for food spoilage detection. Crit Rev Food Sci Nutr 2022; 63:10536-10559. [PMID: 35647714 DOI: 10.1080/10408398.2022.2078950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many people around the world are concerned about meat safety and quality, which has resulted in the ongoing advancement of packaged food technology. Since the emergence of graphene in 2004, the number of studies on layered two-dimensional materials (2DMs) for applications ranging from food packaging to meat quality monitoring has been expanding quickly. Recently, scientists have been working hard to develop a novel class of 2DMs that keep the good things about graphene but don't have zero bandgaps at room temperature. Much work has been done on layered transition metal dichalcogenides (TMDCs) like different metal sulfides and selenides for meat spoilage gas sensors. This review looks at (i) the main indicators of meat spoilage and (ii) the detection methods that can be used to find out if meat has been spoiled, such as chemiresistive, electrochemical, and optical methods. (iii) the role of 2DMs in meat spoilage detection and (iv) the emergence of advanced methods for selective classification of target analytes in meat/food spoilage detection in recent years. Thus, this review demonstrates the potential scope of 2DMs for developing intelligent sensor systems for food and meat spoilage detection with high viability, simplicity, cost-effectiveness, and other multipurpose tools.
Collapse
Affiliation(s)
- Nirav Joshi
- Physics Department, Federal University of ABC, Campus Santo André, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gaurav Pransu
- Graphene Research Labs, Manchappanahosahalli, Karnataka, India
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Post-Graduation Program of Veterinary Hygiene (PPGHV) Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
65
|
Fu Y, Liao Y, Li P, Li H, Jiang S, Huang H, Sun W, Li T, Yu H, Li K, Li H, Jia B, Ma T. Layer structured materials for ambient nitrogen fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
66
|
Li T, Shang D, Gao S, Wang B, Kong H, Yang G, Shu W, Xu P, Wei G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. BIOSENSORS 2022; 12:314. [PMID: 35624615 PMCID: PMC9138342 DOI: 10.3390/bios12050314] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/28/2023]
Abstract
Two-dimensional materials (2DMs) exhibited great potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and others due to their unique physical, chemical, and biological properties. In this review, we present recent advances in the fabrication of 2DM-based electrochemical sensors and biosensors for applications in food safety and biomolecular detection that are related to human health. For this aim, firstly, we introduced the bottom-up and top-down synthesis methods of various 2DMs, such as graphene, transition metal oxides, transition metal dichalcogenides, MXenes, and several other graphene-like materials, and then we demonstrated the structure and surface chemistry of these 2DMs, which play a crucial role in the functionalization of 2DMs and subsequent composition with other nanoscale building blocks such as nanoparticles, biomolecules, and polymers. Then, the 2DM-based electrochemical sensors/biosensors for the detection of nitrite, heavy metal ions, antibiotics, and pesticides in foods and drinks are introduced. Meanwhile, the 2DM-based sensors for the determination and monitoring of key small molecules that are related to diseases and human health are presented and commented on. We believe that this review will be helpful for promoting 2DMs to construct novel electronic sensors and nanodevices for food safety and health monitoring.
Collapse
Affiliation(s)
- Tao Li
- College of Textile & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Dawei Shang
- Qingdao Product Quality Testing Research Institute, No. 173 Shenzhen Road, Qingdao 266101, China;
| | - Shouwu Gao
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Bo Wang
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Weidong Shu
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Peilong Xu
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| |
Collapse
|
67
|
Zhu R, Qi Y, Meng J. Novel nanomaterials based saturable absorbers for passive mode locked fiber laser at 1.5 μm. NANOTECHNOLOGY 2022; 33:182002. [PMID: 35051916 DOI: 10.1088/1361-6528/ac4d59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Compared with continuous wave lasers, ultrafast lasers have the advantages of ultra-short pulse width and ultra-high peak power, and have significant applications in optical communications, medical diagnostics, and precision machining. Saturable absorber (SA) technology is the most effective technique for the generation of ultra-fast lasers, which are based on artificial SAs and natural SAs. Among them, the semiconductor saturable absorber mirror has become the most commonly used form at present. Recently, basic research and application of nanomaterials such as carbon nanotubes (CNTs) and graphene have been developed rapidly. Researchers have found that nanomaterials exhibit extraordinary characteristics in ultrafast photonics, such as the low saturation intensity of CNTs, zero-band gap of graphene, and extremely high modulation depth of the topological insulator nano-films. Since graphene was first reported as an SA in 2009, many other nanomaterials have been successively explored, resulting in the rapid development of novel nanomaterial-based SAs. In this paper, we classified the nanomaterials used in SA mode-locking technology at 1.5μm and reviewed their research progress with a particular focus on nonlinear optical properties, integration strategies, and applications in the field of ultrafast photonics.
Collapse
Affiliation(s)
- Rui Zhu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, People's Republic of China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, People's Republic of China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401,People's Republic of China
| | - Yaoyao Qi
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, People's Republic of China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, People's Republic of China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401,People's Republic of China
| | - Jianfei Meng
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, People's Republic of China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, People's Republic of China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401,People's Republic of China
| |
Collapse
|
68
|
Komine Y, Urita K, Notohara H, Moriguchi I. Direct Evidence of Black Phosphorus Formation in Carbon Nanospaces by Quasi-high Pressure Effect. CHEM LETT 2022. [DOI: 10.1246/cl.210644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Komine
- Graduate School of Engineering, 1-14 Bunkyo-machi, Nagasaki 852-851, Japan
| | - Koki Urita
- Graduate School of Engineering, 1-14 Bunkyo-machi, Nagasaki 852-851, Japan
| | - Hiroo Notohara
- Graduate School of Engineering, 1-14 Bunkyo-machi, Nagasaki 852-851, Japan
| | - Isamu Moriguchi
- Graduate School of Engineering, 1-14 Bunkyo-machi, Nagasaki 852-851, Japan
| |
Collapse
|
69
|
Tapia MA, Gusmão R, Pérez-Ràfols C, Subirats X, Serrano N, Sofer Z, Díaz-Cruz JM. Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta 2022; 238:123036. [PMID: 34801894 DOI: 10.1016/j.talanta.2021.123036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
The exceptional properties of 2D layered black phosphorus (BP) make it a promising candidate for electrochemical sensing applications and, even though BP is considered unstable and tends to degrade by the presence of oxygen and moisture, its oxidation can be beneficial in some situations. In this work, we present an unequivocal demonstration that the exposition of BP-based working electrodes to normal ambient conditions can indeed be advantageous, leading to an enhancement of voltammetric sensing applications. This point was proved using a BP modified screen-printed carbon electrode (BP-SPCE) for the voltammetric determination of dopamine (DA) as a model target analyte. Oxidized BP-SPCE (up to 35% of PxOy at the surface) presented an enhanced analytical performance with a 5-fold and 2-fold increase in sensitivity, as compared to bare-SPCE and non-oxidized BP-SPCE stored in anhydrous atmosphere, respectively. Good detection limit, repeatability, reproducibility, stability, selectivity, and accuracy were also achieved. Overall, the results presented herein display the prominent possibilities of preparing and working with BP based-sensors in normal ambient settings and showcase their implementation under physiological conditions.
Collapse
Affiliation(s)
- María A Tapia
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Rui Gusmão
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Clara Pérez-Ràfols
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Xavier Subirats
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
70
|
Qiu S, Liang J, Hou Y, Zhou X, Zhou Y, Wang J, Zou B, Xing W, Hu Y. Hindered phenolic antioxidant passivation of black phosphorus affords air stability and free radical quenching. J Colloid Interface Sci 2022; 606:1395-1409. [PMID: 34492475 DOI: 10.1016/j.jcis.2021.08.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023]
Abstract
As an antioxidant, hindered phenol scavenges free radicals. Due to the oxidative degradation of black phosphorus (BP) in the presence of water and oxygen, free radical quenching of hindered phenol antioxidants can solve this issue and improve the environmental stability and flame retardant efficiency of BP. Herein, hydroxyl-modified BP (BP-OH) with active groups on the surface was obtained by hydroxylation, and then the hindered phenol antioxidant was grafted onto the surface of BP-OH through an isophorone diisocyanate bridging covalent reaction to obtain hindered phenol-modified BP (BP-HPL). The fire hazard of thermoplastic polyurethane (TPU) can be significantly reduced by introducing BP-HPL into TPU. Adding 2 wt% BP-HPL can reduce the heat release rate and total heat release values of TPU by 49.9% and 49.0%, respectively. In addition, the reductions in smoke volume and carbon monoxide production were also significant. Compared with BP-OH, the environmental stability of BP-HPL is significantly improved. This work provides a reference for the application of BP in the field of fire safety and simultaneously achieves the improvement of the environmental stability and flame retardant performance of BP.
Collapse
Affiliation(s)
- Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Jing Liang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yanbei Hou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Xia Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Bin Zou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Weiyi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| |
Collapse
|
71
|
Li M, Mao C, Ling L. In Situ Visualization on Surface Oxidative Corrosion with Free Radicals: Black Phosphorus Nanoflake as an Example. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:361-367. [PMID: 34913333 DOI: 10.1021/acs.est.1c06567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Free radicals exert a significant impact on the fate of redox-active substances and play a crucial role in the surface corrosion of solid in environment. Dynamic visualization on the response of the surface to the free radicals at nanoscale is essential to explore the mechanism. Environmental transmission electron microscopy will be a powerful tool for dynamic changes of the interface redox process of solid surface with electron beams induced free radicals, to simulate the redox process of a solid in the environment. Black phosphorus (BP), an environment-sensitive material, is selected as an example to visualize the degradation pathways with environmental transmission electron microscopy. The distribution of the corrosion initiation points, formation and growth of corrosion areas, and the eventual splintering and disappearance of BP nanoflakes are recorded vividly. In situ results are substantiated by the ex situ experiments and density functional theory (DFT) calculations. Results show that degradation originates at the edges and defect structures when the humidity reaches high enough. The microscopic structural oxidative etching of solid surface with radicals in natural light is simulated with radicals produced by electron beam irradiation on suspending medium O2 and H2O for the first time. This method will offer unprecedented details and valuable insights into the mechanism involved in the oxidative etching with natural light.
Collapse
Affiliation(s)
- Meirong Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengliang Mao
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
72
|
Sun Z, Zhang B, Yan Q. Solution phase synthesis of the less-known Form II crystalline red phosphorus. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Form II crystalline red phosphorus was grown by solvothermal reactions. XRD patterns match well with Roth’s results in 1947. Polyphosphide anions captured during phosphorus phase transformation support the “dissolution–crystallization” mechanism.
Collapse
Affiliation(s)
- Zhaojian Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bowen Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
73
|
Liu X, Chen L, Wu Y, Zhang X, Chambaud G, Han Y, Meng C. Pd Speciation on Black Phosphorene in CO and C2H4 Atmosphere: A First-principles Investigation. Phys Chem Chem Phys 2022; 24:14284-14293. [DOI: 10.1039/d2cp01726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deposited transition metal clusters and nanoparticles are widely used as catalysts and have long been thought stable in reaction conditions. We investigated the electronic structure and stability of freestanding and...
Collapse
|
74
|
Zhang S, Ma S, Hao X, Liu Q, Hou Y, Kong Q, Chen Z, Ma H, Xi T, Xu Y, Cao B, Shang L, Han B, Xu B. Crystallization kinetics of amorphous red phosphorus to black phosphorus by chemical vapor transport. CrystEngComm 2022. [DOI: 10.1039/d1ce01425k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aRP–P4-HP–BP three-stage phase transition revealed the crystallization kinetics and nucleation mechanism of the high-quality BP crystal synthesized by the CVT reaction in the aRP–Sn–I system.
Collapse
Affiliation(s)
- Shuai Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingming Liu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanyan Hou
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingbo Kong
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhaoru Chen
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hanyu Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ting Xi
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yang Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ben Cao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
75
|
Dai C, Cai X, Ni Y, Chen Y, Wang H. A new phosphorene allotrope: the assembly of phosphorene nanoribbon and chain. Phys Chem Chem Phys 2022; 24:22572-22579. [DOI: 10.1039/d2cp02172b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorene allotrope monolayers such as blue and red phosphorus are attempted to be designed and synthesized to be used in the optoelectronics field due to their tunable bandgap and high...
Collapse
|
76
|
Fung CM, Er CC, Tan LL, Mohamed AR, Chai SP. Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chem Rev 2021; 122:3879-3965. [PMID: 34968051 DOI: 10.1021/acs.chemrev.1c00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photocatalysis is a perennial solution that promises to resolve deep-rooted challenges related to environmental pollution and energy deficit through harvesting the inexhaustible and renewable solar energy. To date, a cornucopia of photocatalytic materials has been investigated with the research wave presently steered by the development of novel, affordable, and effective metal-free semiconductors with fascinating physicochemical and semiconducting characteristics. Coincidentally, the recently emerged red phosphorus (RP) semiconductor finds itself fitting perfectly into this category ascribed to its earth abundant, low-cost, and metal-free nature. More notably, the renowned red allotrope of the phosphorus family is spectacularly bestowed with strengthened optical absorption features, propitious electronic band configuration, and ease of functionalization and modification as well as high stability. Comprehensively detailing RP's roles and implications in photocatalysis, this review article will first include information on different RP allotropes and their chemical structures, followed by the meticulous scrutiny of their physicochemical and semiconducting properties such as electronic band structure, optical absorption features, and charge carrier dynamics. Besides that, state-of-the-art synthesis strategies for developing various RP allotropes and RP-based photocatalytic systems will also be outlined. In addition, modification or functionalization of RP with other semiconductors for promoting effective photocatalytic applications will be discussed to assess its versatility and feasibility as a high-performing photocatalytic system. Lastly, the challenges facing RP photocatalysts and future research directions will be included to propel the feasible development of RP-based systems with considerably augmented photocatalytic efficiency. This review article aspires to facilitate the rational development of multifunctional RP-based photocatalytic systems by widening the cognizance of rational engineering as well as to fine-tune the electronic, optical, and charge carrier properties of RP.
Collapse
Affiliation(s)
- Cheng-May Fung
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Chen-Chen Er
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, Nibong Tebal, Pulau Pinang 14300, Malaysia
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
77
|
Liu X, Chen K, Li X, Xu Q, Weng J, Xu J. Electron Matters: Recent Advances in Passivation and Applications of Black Phosphorus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005924. [PMID: 34050548 DOI: 10.1002/adma.202005924] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
2D materials have experienced rapid and explosive development in the past decades. Among them, black phosphorus (BP) is one of the most promising materials on account of its thickness-dependent bandgap, high charge-carrier mobility, in-plane anisotropic structure, and excellent biocompatibility, as well as the broad applications brought by the properties. In view of the electron configuration, the most unique feature of BP is the lone-pair electrons on each P atom. The lone-pair electrons inevitably cause high reactivity of BP, particularly toward water/oxygen, which greatly limits the practical application of BP under ambient conditions. The other side of the coin is that BP can serve as an electron donor to promote the construction of BP-based hybrid materials and/or to boost the performance of BP or BP-based hybrid materials in applications. Here, recent advances in passivation and application of BP by addressing the interaction between the lone-pair electrons of BP and the other materials are discussed, and prospects for future research on BP are also proposed.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Kai Chen
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Xingyun Li
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Jian Weng
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
78
|
High Sensitivity of Ammonia Sensor through 2D Black Phosphorus/Polyaniline Nanocomposite. NANOMATERIALS 2021; 11:nano11113026. [PMID: 34835789 PMCID: PMC8622802 DOI: 10.3390/nano11113026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022]
Abstract
Recently, as a two-dimensional (2D) material, black phosphorous (BP) has attracted more and more attention. However, few efforts have been made to investigate the BP/polyaniline (PANI) nanocomposite for ammonia (NH3) gas sensors. In this work, the BP/PANI nanocomposite as a novel sensing material for NH3 detection, has been synthesized via in situ chemical oxidative polymerization, which is then fabricated onto the interdigitated transducer (IDTs). The electrical properties of the BP/PANI thin film are studied in a large detection range from 1 to 4000 ppm, such as conduction mechanism, response, reproducibility, and selectivity. The experimental result indicates that the BP/PANI sensor shows higher sensitivity and larger detection range than that of PANI. The BP added into PANI, that may enlarge the specific surface area, obtain the special trough structure for gas channels, and form the p-π conjugation system and p-p isotype heterojunctions, which are beneficial to increase the response of BP/PANI to NH3 sensing. Meanwhile, in order to support the discussion result, the structure and morphology of the BP/PANI are respectively measured by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and field emissions scanning electron microscopy (SEM). Moreover, the sensor shows good reproducibility, and fast response and recovery behavior, on NH3 sensing. In addition, this route may offer the advantages of an NH3 sensor, which are of simple structure, low cost, easy to assemble, and operate at room temperature.
Collapse
|
79
|
Abstract
In recent years, 2D materials have been implemented in several applications due to their unique and unprecedented properties. Several examples can be named, from the very first, graphene, to transition-metal dichalcogenides (TMDs, e.g., MoS2), two-dimensional inorganic compounds (MXenes), hexagonal boron nitride (h-BN), or black phosphorus (BP). On the other hand, the accessible and low-cost 3D printers and design software converted the 3D printing methods into affordable fabrication tools worldwide. The implementation of this technique for the preparation of new composites based on 2D materials provides an excellent platform for next-generation technologies. This review focuses on the recent advances of 3D printing of the 2D materials family and its applications; the newly created printed materials demonstrated significant advances in sensors, biomedical, and electrical applications.
Collapse
|
80
|
Zhao Y, He L. Charge compensation co-doping enhances the photocatalytic activity of black phosphorus. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
81
|
Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, Li T, Huang W, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zheng F, Al-Sehemi AG, Wang G, Xie Z, Zhang H. 2D materials for bone therapy. Adv Drug Deliv Rev 2021; 178:113970. [PMID: 34509576 DOI: 10.1016/j.addr.2021.113970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Due to their prominent physicochemical properties, 2D materials are broadly applied in biomedicine. Currently, 2D materials have achieved great success in treating many diseases such as cancer and tissue engineering as well as bone therapy. Based on their different characteristics, 2D materials could function in various ways in different bone diseases. Herein, the application of 2D materials in bone tissue engineering, joint lubrication, infection of orthopedic implants, bone tumors, and osteoarthritis are firstly reviewed comprehensively together. Meanwhile, different mechanisms by which 2D materials function in each disease reviewed below are also reviewed in detail, which in turn reveals the versatile functions and application of 2D materials. At last, the outlook on how to further broaden applications of 2D materials in bone therapies based on their excellent properties is also discussed.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Xianjing Han
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jindong Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chenshuo Wu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianzhong Li
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fei Zheng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Abdullah G Al-Sehemi
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Guiqing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, PR China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
82
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
83
|
Du X, Zhang B. Robust Solid Electrolyte Interphases in Localized High Concentration Electrolytes Boosting Black Phosphorus Anode for Potassium-Ion Batteries. ACS NANO 2021; 15:16851-16860. [PMID: 34633188 DOI: 10.1021/acsnano.1c07414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black phosphorus (BP) shows superior capacity toward K ion storage, yet it suffers from poor reversibility and fast capacity degradation. Herein, a BP-graphite (BP/G) composite with a high BP loading of 80 wt % is synthesized and stabilized via the utilization of a localized high concentration electrolyte (LHCE), i.e., potassium bis(fluorosulfonyl)imide in trimethyl phosphate with a fluorinated ether as the diluent. We reveal the benefits of high concentration electrolytes rely on the formation of an inorganic component rich solid electrolyte interphase (SEI), which effectively passivates the electrode from copious parasite reactions. Furthermore, the diluent increases the electrolyte's ionic conductivity for achieving attractive rate capability and homogenizes the elemental distribution in the SEI. The latter essentially improves the SEI's maximum elastic deformation energy for accommodating the volume change, resulting in excellent cyclic performance. This work promotes the application of advanced potassium-ion batteries by adopting high-capacity BP anodes, on the one hand. On the other hand, it unravels the beneficial roles of LHCE in building robust SEIs for stabilizing alloy anodes.
Collapse
Affiliation(s)
- Xiaoqiong Du
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Biao Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
84
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
85
|
Yin H, Lei M, Liu H, Dong Y. Dual-potential electrochemiluminescence from black phosphorus and graphitic carbon nitrides for label-free enzymatic biosensing. Analyst 2021; 146:6281-6287. [PMID: 34549731 DOI: 10.1039/d1an01366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous anodic and cathodic electrochemiluminescence (ECL) emissions of black phosphorus nanosheets (BPNSs) and graphitic carbon nitrides (g-C3N4) were reported based on the co-existence of different co-reactants. Anodic ECL was obtained at the BPNSs modified electrode with tripropylamine (TPrA) as a co-reactant, while g-C3N4 was selected as another emitter to obtain cathodic ECL emission with K2S2O8 as co-reactant. Employing the superiority of two separate ECL systems, a facile ECL method was developed for cholesterol detection based on cholesterol oxidase (ChOx) immobilized g-C3N4/BPNSs modified glassy carbon electrode (g-C3N4/BPNSs/GCE). False positive signals can be significantly reduced based on the separation of anode and cathode ECL signals from BPNSs and g-C3N4, respectively. The proposed biosensor provided a quantitative readout proportional to cholesterol concentrations in the range from 0.5 μM to 0.5 mM with a detection limit of 0.14 μM (cathodic system, 3σ, n = 6) and 0.32 μM (anodic system, 3σ, n = 6). The proposed biosensor demonstrated excellent analytical performance with remarkable sensitivity, manifesting its potential application in enzymatic biosensing field.
Collapse
Affiliation(s)
- Hao Yin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Ming Lei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - YongPing Dong
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| |
Collapse
|
86
|
Zhao K, Yu H, Yang Q, Li W, Han F, Liu H, Zhang S. Emerging Yttrium Phosphides with Tetrahedron Phosphorus and Superconductivity under High Pressures. Chemistry 2021; 27:17420-17427. [PMID: 34609031 DOI: 10.1002/chem.202103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Metal phosphides have triggered growing interest for their exotic structures and striking properties. Hence, within advanced structure search and first-principle calculations, several unprecedented Y-P compounds (e. g., Y3 P, Y2 P, Y3 P2 , Y2 P3 , YP2 , and YP3 ) were identified under compression. Interestingly, as phosphorus content increases, P atoms exhibit diverse behaviors corresponding to standalone anion, dumbbell, zigzag chain, planar sheet, crossing chain-like network, buckled layer, three-dimensional framework, and wrinkled layer. Particularly, Fd-3m YP2 can be viewed as assemblage of diamond-like Y structure and rare vertex-sharing tetrahedral P4 units. Impressively, electron-phonon coupling (EPC) calculations elucidate that Pm-3m Y3 P possesses the highest superconducting critical temperature Tc of 10.2 K among binary transition metal phosphides. Remarkably, the EPC of Pm-3m Y3 P mainly arises from the contribution of low-frequency soft phonon modes, whereas mid-frequency phonon modes of Fd-3m YP2 dominate. These results strengthen knowledge of metal phosphides and pave a way for seeking superconductive transition metal phosphides.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Qiuping Yang
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wenjing Li
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Fanjunjie Han
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hanyu Liu
- International Center for Computational Method & Software and, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.,Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
| | - Shoutao Zhang
- Centre for Advanced Optoelectronic Functional Materials Research and, Key Laboratory for UV Light-Emitting Materials and, Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
87
|
Yuan Q, Zheng F, Shi Z, Li Q, Lv Y, Chen Y, Zhang P, Li S. Direct Growth of van der Waals Tin Diiodide Monolayers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100009. [PMID: 34398529 PMCID: PMC8529434 DOI: 10.1002/advs.202100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/02/2021] [Indexed: 05/21/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) materials have garnered considerable attention for their unique properties and potentials in a wide range of fields, which include nano-electronics/optoelectronics, solar energy, and catalysis. Meanwhile, challenges in the approaches toward achieving high-performance devices still inspire the search for new 2D vdW materials with precious properties. In this study, via molecular beam epitaxy, for the first time, the vdW SnI2 monolayer is successfully fabricated with a new structure. Scanning tunneling microscopy/spectroscopy characterization, as corroborated by the density functional theory calculation, indicates that this SnI2 monolayer exhibits a band gap of ≈2.9 eV in the visible purple range, and an indirect- to direct-band gap transition occurs in the SnI2 bilayer. This study provides a new semiconducting 2D material that is promising as a building block in future electronics/optoelectronics.
Collapse
Affiliation(s)
- Qian‐Qian Yuan
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of PhysicsNanjing UniversityNanjing210093China
| | - Fawei Zheng
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE) and School of PhysicsBeijing Institute of TechnologyBeijing100081China
| | - Zhi‐Qiang Shi
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of PhysicsNanjing UniversityNanjing210093China
| | - Qi‐Yuan Li
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of PhysicsNanjing UniversityNanjing210093China
| | - Yang‐Yang Lv
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- Department of Materials Science and EngineeringNanjing UniversityNanjing210093China
| | - Yanbin Chen
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of PhysicsNanjing UniversityNanjing210093China
| | - Ping Zhang
- Institute of Physics and Computational MathematicsBeijing100088China
| | - Shao‐Chun Li
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of PhysicsNanjing UniversityNanjing210093China
- Jiangsu Provincial Key Laboratory for NanotechnologyNanjing UniversityNanjing210093China
| |
Collapse
|
88
|
Ding Y, He P, Li S, Chang B, Zhang S, Wang Z, Chen J, Yu J, Wu S, Zeng H, Tao L. Efficient Full-Color Boron Nitride Quantum Dots for Thermostable Flexible Displays. ACS NANO 2021; 15:14610-14617. [PMID: 34323482 DOI: 10.1021/acsnano.1c04321] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hexagonal boron nitride quantum dot (BNQD) has aroused great interest in the optoelectronics field due to their metal-free nature with promising optical properties. However, it has been a great challenge to modulate its photoluminescence to the long-wavelength region so far. Herein, BNQDs with full-color emission (420-610 nm) have been implemented by doping diverse amino ligands in different solvents for the first attempt. This color variation from blue, green, yellow-green, yellow to red is ascribed to the surface states tunable via amination degree. Attractively, the quantum yield of our blue BNQDs has set a record at 32.27%, and rare yellow-green BNQDs have been demonstrated. Combining good thermal dissipation capability and high transparency, our full-color BNQD holds great potential for transparent flexible display and security labels at the elevated temperature.
Collapse
Affiliation(s)
- Yamei Ding
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Ping He
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Shaohan Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Bo Chang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Shengli Zhang
- College of Materials Science and Engineering, Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhehan Wang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Jiayi Chen
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
- Center for 2D Materials, Southeast University, Nanjing 211189, China
| | - Jin Yu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Sanxie Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Zeng
- College of Materials Science and Engineering, Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Li Tao
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
- Center for 2D Materials, Southeast University, Nanjing 211189, China
- Center for Flexible RF Technology, Southeast University, Nanjing 211189, China
| |
Collapse
|
89
|
Zhang Y, Ma C, Xie J, Ågren H, Zhang H. Black Phosphorus/Polymers: Status and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100113. [PMID: 34323318 DOI: 10.1002/adma.202100113] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Indexed: 06/13/2023]
Abstract
As a newly emerged mono-elemental nanomaterial, black phosphorus (BP) has been widely investigated for its fascinating physical properties, including layer-dependent tunable band gap (0.3-1.5 eV), high ON/OFF ratio (104 ), high carrier mobility (103 cm2 V-1 s-1 ), excellent mechanical resistance, as well as special in-plane anisotropic optical, thermal, and vibrational characteristics. However, the instability caused by chemical degradation of its surface has posed a severe challenge for its further applications. A focused BP/polymer strategy has more recently been developed and implemented to hurdle this issue, so at present BP/polymers have been developed that exhibit enhanced stability, as well as outstanding optical, thermal, mechanical, and electrical properties. This has promoted researchers to further explore the potential applications of black phosphorous. In this review, the preparation processes and the key properties of BP/polymers are reviewed, followed by a detailed account of their diversified applications, including areas like optoelectronics, bio-medicine, and energy storage. Finally, in accordance with the current progress, the prospective challenges and future directions are highlighted and discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chunyang Ma
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Jianlei Xie
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
90
|
Dispersion of Few-Layer Black Phosphorus in Binary Polymer Blend and Block Copolymer Matrices. NANOMATERIALS 2021; 11:nano11081996. [PMID: 34443827 PMCID: PMC8398111 DOI: 10.3390/nano11081996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022]
Abstract
Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation, is stable to air, light, and humidity, and can be further processed into devices without degrading its properties. Most of the examples of exfoliated bP/polymer composites involve a single polymer matrix. Herein, we report the preparation of biphasic polystyrene/poly(methyl methacrylate) (50/50 wt.%) composites containing few-layer black phosphorus (fl-bP) (0.6–1 wt.%) produced by sonicated-assisted liquid-phase exfoliation. Micro-Raman spectroscopy confirmed the integrity of fl-bP, while scanning electron microscopy evidenced the influence of fl-bP into the coalescence of polymeric phases. Furthermore, the topography of thin films analyzed by atomic force microscopy confirmed the effect of fl-bP into the PS dewetting, and the selective PS etching of thin films revealed the presence of fl-bP flakes. Finally, a block copolymer/fl-bP composite (1.2 wt.%) was prepared via in situ reversible addition–fragmentation chain transfer (RAFT) polymerization by sonication-assisted exfoliation of bP into styrene. For this sample, 31P solid-state NMR and Raman spectroscopy confirmed an excellent preservation of bP structure.
Collapse
|
91
|
Giusti L, Landaeta VR, Vanni M, Kelly JA, Wolf R, Caporali M. Coordination chemistry of elemental phosphorus. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
92
|
Priyadarsini A, Mallik BS. Aqueous Affinity and Interfacial Dynamics of Anisotropic Buckled Black Phosphorous. J Phys Chem B 2021; 125:7527-7536. [PMID: 34213344 DOI: 10.1021/acs.jpcb.1c03344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of black phosphorous (BP) is similar to the honeycomb arrangement of graphene, but the layered BP is found to be buckled and highly anisotropic. The buckled surface structure affects interfacial molecule mobility and plays a vital role in various nanomaterial applications. The BP is also known for wettability, droplet formation, stability, and hydrophobicity in the aqueous environment. However, there is a gap concerning the structural and dynamical behavior of water molecules, which is available in abundance for other monoatomic and polyatomic two-dimensional (2D) materials. Motivated by the technological importance, we try to bridge the gap by explaining the surface anisotropy-facilitated behavior of water molecules on bilayer BP using classical and first principles molecular dynamics (MD) simulations. From our classical MD study, we find three distinct layers of water molecules. The water layer closest to the interface is L1, followed by L2 and L3/bulk perpendicular to the BP surface. Water molecules in the L1 layer experience some structural disintegration in hydrogen bond (HB) phenomena compared to the bulk. There is a loss of HB donor-acceptor count per water molecule. The average HB count decreases because of an elevated rate of HB formation and deformation; this would affect the dynamic properties in terms of HB lifetime. Therefore, we observe the reduced lifetime of HB in the layer in close contact with BP, which again complements our finding on the diffusion coefficient of water molecules in distinct layers. Water diffuses relatively faster with diffusion coefficient 3.25 × 10-9 m2 s-1 in L1, followed by L2 and L3. The BP layer shows moderate hydrophobic nature. Our results also indicate the anisotropic behavior as the diffusion along the x-direction is faster than that along the y-direction. The gap in the slope of the x and y components of mean-squared displacement (MSD) complements the pinning effect in an aqueous environment. We observe blue-shifted and red-shifted libration and O-H stretching modes from the calculated power spectra for the L1 water molecules compared to the L2 and L3 molecules from first principles MD simulations. Our analysis may help understand the physical phenomena that occur during the surface wetting of the predroplet formation process observed experimentally.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| |
Collapse
|
93
|
Li Y, Wang H, Zhang X, Wang S, Jin S, Xu X, Liu W, Zhao Z, Xie Y. Exciton‐Mediated Energy Transfer in Heterojunction Enables Infrared Light Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuanjin Li
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China
| | - Shuhui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Sen Jin
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Xiaoliang Xu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Wenxiu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Zhi Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China
- Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China
| |
Collapse
|
94
|
Tapia MA, Gusmão R, Serrano N, Sofer Z, Ariño C, Díaz-Cruz JM, Esteban M. Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
95
|
Mo J, Xu Y, Zhu L, Wei W, Zhao J. A Cysteine-Mediated Synthesis of Red Phosphorus Nanosheets. Angew Chem Int Ed Engl 2021; 60:12524-12531. [PMID: 33599016 DOI: 10.1002/anie.202101486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Among phosphorus-based nanomaterials, layered black phosphorus and violet phosphorus have been actively explored in the past decade. However, methods for the synthesis of red phosphorus nanosheets (RPNSs) is lacking, even though red phosphorus (RP) is commercially available at low cost and has excellent chemical stability at room temperature. We report an efficient strategy for fabrication of RPNSs and doped RPNSs using cysteine as a reducing reagent. Data from in vitro and in vivo studies suggested that RPNSs can trigger production of reactive oxygen species, DNA damage, and subsequent autophagy-mediated cell death in a shape-dependent manner. Our findings provide a method for construction of layered RP nanomaterials and they present a unique mechanism for the application of phosphorus-based materials in nanomedicines.
Collapse
Affiliation(s)
- Jianbin Mo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yun Xu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Longqian Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,School of Life Sciences, Nanjing University, Nanjing, China.,Shenzhen Research Institute, Nanjing University, Shenzhen, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Shenzhen Research Institute, Nanjing University, Shenzhen, China
| |
Collapse
|
96
|
Mo J, Xu Y, Zhu L, Wei W, Zhao J. A Cysteine‐Mediated Synthesis of Red Phosphorus Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianbin Mo
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| | - Yun Xu
- School of Life Sciences Nanjing University Nanjing China
| | - Longqian Zhu
- School of Life Sciences Nanjing University Nanjing China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing China
- School of Life Sciences Nanjing University Nanjing China
- Shenzhen Research Institute Nanjing University Shenzhen China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing China
- Shenzhen Research Institute Nanjing University Shenzhen China
| |
Collapse
|
97
|
Li Y, Wang H, Zhang X, Wang S, Jin S, Xu X, Liu W, Zhao Z, Xie Y. Exciton-Mediated Energy Transfer in Heterojunction Enables Infrared Light Photocatalysis. Angew Chem Int Ed Engl 2021; 60:12891-12896. [PMID: 33829645 DOI: 10.1002/anie.202101090] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/22/2021] [Indexed: 01/19/2023]
Abstract
Although a few semiconductors can directly absorb infrared light, their intrinsic properties like improper band-edge position and strong electron-hole interaction restrict further photocatalytic applications. Herein, we propose an exciton-mediated energy transfer strategy for realizing efficient infrared light response in heterostructures. Using black phosphorous/polymeric carbon nitride (BP/CN) heterojunction, CN could be indirectly excited by infrared light with the aid of nonradiatively exciton-based energy transfer from BP. At the same time, excitons are dissociated into free charge carriers at the interface of BP/CN heterojunction, followed by hole injection to BP and electron retainment in CN. As a result of these unique photoexcitation processes, BP/CN heterojunction exhibits promoted conversion rate and selectivity in amine-amine oxidative coupling reaction even under infrared light irradiation. This study opens a new way for the design of efficient infrared light activating photocatalysts.
Collapse
Affiliation(s)
- Yuanjin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Shuhui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Sen Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoliang Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Wenxiu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| |
Collapse
|
98
|
Pandey A, Nikam AN, Padya BS, Kulkarni S, Fernandes G, Shreya AB, García MC, Caro C, Páez-Muñoz JM, Dhas N, García-Martín ML, Mehta T, Mutalik S. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
99
|
Lee SY, Yee KJ. Anisotropic Generation and Detection of Coherent A g Phonons in Black Phosphorus. NANOMATERIALS 2021; 11:nano11051202. [PMID: 34062840 PMCID: PMC8147322 DOI: 10.3390/nano11051202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Black phosphorus (BP) has attracted great attention due to its layer-tuned direct bandgap, in-plane anisotropic properties, and novel optoelectronic applications. In this work, the anisotropic characteristics of BP crystal in terms of the Raman tensor and birefringence are studied by investigating polarization dependence in both the generation and detection of Ag mode coherent phonons. While the generated coherent phonons exhibit the typical linear dichroism of BP crystal, the detection process is found here to be influenced by anisotropic multiple thin film interference, showing wavelength and sample thickness sensitive behaviors. We additionally find that the Ag1 and Ag2 optical phonons decay into lower frequency acoustic phonons through the temperature-dependent anharmonic process.
Collapse
|
100
|
Habiba M, Abdelilah B, Abdallah EK, Abdelhafed T, Ennaoui A, Khadija EM, Omar M. Enhanced photocatalytic activity of phosphorene under different pH values using density functional theory (DFT). RSC Adv 2021; 11:16004-16014. [PMID: 35481157 PMCID: PMC9030538 DOI: 10.1039/d0ra10246f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Phosphorene, a new two-dimensional material, was investigated theoretically as a promising photocatalyst material. The structural and electronic properties of phosphorene were studied using hybrid functional based HSE approximation. The effect of the adsorbed molecules on the phosphorene surface was studied for various chemical elements, such as water molecule (H2O), hydronium ion (H3O+), hydrogen atom and ion (H/H+), hydroxide molecule (OH), and hydroxide ion (OH−). The potential application of phosphorene as a photocatalyst in vacuum was proved under different pH values. A pH of 8 was found to be the suitable value for clean phosphorene in which the flat band position was corrected for the oxidizing and reducing potentials of phosphorene, but the presence of OH− ions in a basic solution damaged the surface structure and limited the use of phosphorene in photocatalysis caused by the high content (0.25 ML and 0.5 ML) of the adsorbed OH− on the phosphorene surface. The obtained results matched the required parameters of a photocatalyst for water splitting using clean phosphorene surface in neutral solution (pH = 7). Phosphorene, a new two-dimensional material, was investigated theoretically as a promising photocatalyst material.![]()
Collapse
Affiliation(s)
- Mamori Habiba
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco .,Materials and Nanomaterials Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR Rabat Morocco.,PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| | - Benyoussef Abdelilah
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco .,Hassan II Academy of Sciences and Techniques Rabat Morocco
| | - El Kenz Abdallah
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco
| | - Taleb Abdelhafed
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris 75005 Paris France.,Sorbonne University 4 Place Jussieu 75231 Paris France
| | - Ahmed Ennaoui
- Scientific Council of IRESEN, the Moroccan Solar Energy Research Institute Ben Guerir Morocco
| | - El Maalam Khadija
- Materials and Nanomaterials Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR Rabat Morocco
| | - Mounkachi Omar
- Laboratory of Condensed Matter and Sciences Interdisciplinary (LaMCScI), Faculty of Science, Mohammed V University in Rabat BP 1014 RP Rabat Morocco .,MSDA, Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Ben Guerir 43150 Morocco
| |
Collapse
|