51
|
Wang X, Chen X, Song L, Zhou R, Luan S. An enzyme-responsive and photoactivatable carbon-monoxide releasing molecule for bacterial infection theranostics. J Mater Chem B 2020; 8:9325-9334. [PMID: 32968746 DOI: 10.1039/d0tb01761b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infections caused by pathogenic bacteria, especially the drug-resistant bacteria, are posing a devastating threat to public health, which underscores the urgent needs for advanced strategies to effectively prevent and treat these intractable issues. Here we report a feasible and effective theranostic platform based on an enzyme-sensitive and photoactivatable carbon monoxide releasing molecule (CORM-Ac) for the successive detection and elimination of bacterial infection. The extracellular bacterial lipase can trigger the excited state intramolecular proton transfer (ESIPT) via elimination of the ester group in CORM-Ac, thus providing a fluorescence switch for an early warning of infection. Subsequently, the potent bactericidal therapy against the model bacterial strains, Staphylococcus aureus (S. aureus) and notorious methicillin-resistant Staphylococcus aureus (MRSA), was readily realized via photoinduced release of CO. In addition, the CORM-Ac and CORM showed good biocompatibility within a wide range of concentrations. The results of an infected animal wound test also demonstrated that the CORM-Ac-loaded gauze was effective in indicating the wound infection and accelerating the wound healing via the photoinduced CO release. The simplicity, functional integration, good biocompatibility and broad adaptability make CORM-Ac very attractive for bacterial theranostic applications.
Collapse
Affiliation(s)
- Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xin Chen
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China and Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Rongtao Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
52
|
Sanderson TJ, Black CM, Southwell JW, Wilde EJ, Pandey A, Herman R, Thomas GH, Boros E, Duhme-Klair AK, Routledge A. A Salmochelin S4-Inspired Ciprofloxacin Trojan Horse Conjugate. ACS Infect Dis 2020; 6:2532-2541. [PMID: 32786274 DOI: 10.1021/acsinfecdis.0c00568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel ciprofloxacin-siderophore Trojan Horse antimicrobial was prepared by incorporating key design features of salmochelin, a stealth siderophore that evades mammalian siderocalin capture via its glycosylated catechol units. Assessment of the antimicrobial activity of the conjugate revealed that attachment of the salmochelin mimic resulted in decreased potency, compared to ciprofloxacin, against two Escherichia coli strains, K12 and Nissle 1917, in both iron replete and deplete conditions. This observation could be attributed to a combination of reduced DNA gyrase inhibition, as confirmed by in vitro DNA gyrase assays, and reduced bacterial uptake. Uptake was monitored using radiolabeling with iron-mimetic 67Ga3+, which revealed limited cellular uptake in E. coli K12. In contrast, previously reported staphyloferrin-based conjugates displayed a measurable uptake in analogous 67Ga3+ labeling studies. These results suggest that, in the design of Trojan Horse antimicrobials, the choice of siderophore and the nature and length of the linker remain a significant challenge.
Collapse
Affiliation(s)
- Thomas J. Sanderson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Conor M. Black
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - James W. Southwell
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ellis J. Wilde
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Apurva Pandey
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | - Reyme Herman
- Department of Biology (Area 10), University of York, Wentworth Way, Heslington, York YO10 5DD,United Kingdom
| | - Gavin H. Thomas
- Department of Biology (Area 10), University of York, Wentworth Way, Heslington, York YO10 5DD,United Kingdom
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790, United States
| | | | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
53
|
Ghosh R, Malhotra M, Sathe RR, Jayakannan M. Biodegradable Polymer Theranostic Fluorescent Nanoprobe for Direct Visualization and Quantitative Determination of Antimicrobial Activity. Biomacromolecules 2020; 21:2896-2912. [PMID: 32539360 DOI: 10.1021/acs.biomac.0c00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a biodegradable fluorescent theranostic nanoprobe design strategy for simultaneous visualization and quantitative determination of antibacterial activity for the treatment of bacterial infections. Cationic-charged polycaprolactone (PCL) was tailor-made through ring-opening polymerization methodology, and it was self-assembled into well-defined tiny 5.0 ± 0.1 nm aqueous nanoparticles (NPs) having a zeta potential of +45 mV. Excellent bactericidal activity at 10.0 ng/mL concentration was accomplished in Gram-negative bacterium Escherichia coli (E. coli) while maintaining their nonhemolytic nature in mice red blood cells (RBC) and their nontoxic trend in wild-type mouse embryonic fibroblast cells with a selectivity index of >104. Electron microscopic studies are evident of the E. coli membrane disruption mechanism by the cationic NP with respect to their high selectivity for antibacterial activity. Anionic biomarker 8-hydroxy-pyrene-1,3,6-trisulfonic acid (HPTS) was loaded in the cationic PCL NP via electrostatic interaction to yield a new fluorescent theranostic nanoprobe to accomplish both therapeutics and diagnostics together in a single nanosystem. The theranostic NP was readily degradable by a bacteria-secreted lipase enzyme as well as by lysosomal esterase enzymes at the intracellular compartments in <12 h and support their suitability for biomedical application. In the absence of bactericidal activity, the theranostic nanoprobe functions exclusively as a biomarker to exhibit strong green-fluorescent signals in live E. coli. Once it became active, the theranostic probe induces membrane disruption on E. coli, which enabled the costaining of nuclei by red fluorescent propidium iodide. As a result, live and dead bacteria could be visualized via green and orange signals (merging of red+green), respectively, during the course of the antibacterial activity by the theranostic probe. This has enabled the development of a new image-based fluorescence assay to directly visualize and quantitatively estimate the real-time antibacterial activity. Time-dependent bactericidal activity was coupled with selective photoexcitation in a confocal microscope to demonstrate the proof-of-concept of the working principle of a theranostic probe in E. coli. This new theranostic nanoprobe creates a new platform for the simultaneous probing and treating of bacterial infections in a single nanodesign, which is very useful for a long-term impact in healthcare applications.
Collapse
|
54
|
Song X, Deng X, Wang Q, Tian J, He FL, Hu HY, Tian W. Self-assembling morphology-tunable single-component supramolecular antibiotics for enhanced antibacterial manipulation. Polym Chem 2020. [DOI: 10.1039/c9py01440c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This single-component supramolecular antibiotic can undergo reversible self-assembling morphology transitions under sequential ultrasonic and redox stimuli. The self-assemblies with different morphologies display effective antibacterial regulation.
Collapse
Affiliation(s)
- Xin Song
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Jinjin Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Feng-Li He
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| |
Collapse
|
55
|
Testolin G, Cirnski K, Rox K, Prochnow H, Fetz V, Grandclaudon C, Mollner T, Baiyoumy A, Ritter A, Leitner C, Krull J, van den Heuvel J, Vassort A, Sordello S, Hamed MM, Elgaher WAM, Herrmann J, Hartmann RW, Müller R, Brönstrup M. Synthetic studies of cystobactamids as antibiotics and bacterial imaging carriers lead to compounds with high in vivo efficacy. Chem Sci 2019; 11:1316-1334. [PMID: 34123255 PMCID: PMC8148378 DOI: 10.1039/c9sc04769g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric para-aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase. In this study, structural determinants of cystobactamid's antibacterial potency were defined at five positions, which were varied using three different synthetic routes to the cystobactamid scaffold. The potency against Acinetobacter baumannii could be increased ten-fold to an MIC (minimum inhibitory concentration) of 0.06 μg mL-1, and the previously identified spectrum gap of Klebsiella pneumoniae could be closed compared to the natural products (MIC of 0.5 μg mL-1). Proteolytic degradation of cystobactamids by the resistance factor AlbD was prevented by an amide-triazole replacement. Conjugation of cystobactamid's N-terminal tetrapeptide to a Bodipy moiety induced the selective localization of the fluorophore for bacterial imaging purposes. Finally, a first in vivo proof of concept was obtained in an E. coli infection mouse model, where derivative 22 led to the reduction of bacterial loads (cfu, colony-forming units) in muscle, lung and kidneys by five orders of magnitude compared to vehicle-treated mice. These findings qualify cystobactamids as highly promising lead structures against infections caused by Gram-positive and Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Giambattista Testolin
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Katarina Cirnski
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Hans Prochnow
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Verena Fetz
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Charlotte Grandclaudon
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Tim Mollner
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Alain Baiyoumy
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Antje Ritter
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Christian Leitner
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Jana Krull
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Joop van den Heuvel
- Group Recombinant Protein Expression, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Aurelie Vassort
- Evotec ID 1541 Avenue Marcel Merieux 69289 Marcy l'Etoile France
| | | | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Jennifer Herrmann
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Rolf W Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Helmholtz Institute for Pharmaceutical Research Saarland Universitätscampus E8.1 66123 Saarbrücken Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany .,German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz Universität 30167 Hannover Germany
| |
Collapse
|
56
|
Kaeopookum P, Summer D, Pfister J, Orasch T, Lechner BE, Petrik M, Novy Z, Matuszczak B, Rangger C, Haas H, Decristoforo C. Modifying the Siderophore Triacetylfusarinine C for Molecular Imaging of Fungal Infection. Mol Imaging Biol 2019; 21:1097-1106. [PMID: 30838551 PMCID: PMC6877352 DOI: 10.1007/s11307-019-01325-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Aspergillus fumigatus produces the siderophore triacetylfusarinine C (TAFC) for iron acquisition which is essential for its virulence. Therefore, TAFC is a specific marker for invasive aspergillosis. We have shown previously that positron emission tomography (PET) imaging with [68Ga]TAFC exhibited excellent targeting properties in an A. fumigatus rat infection model. In this study, we aimed to prepare TAFC analogs modifying fusarinine C (FSC) by acylation with different carbon chain lengths as well as with charged substituents and investigated the influence of introduced substituents on preservation of TAFC characteristics in vitro and in vivo. PROCEDURES Fifteen TAFC derivatives were prepared and labeled with gallium-68. In vitro uptake assays were carried out in A. fumigatus under iron-replete as well as iron-depleted conditions and distribution coefficient was determined. Based on these assays, three compounds, [68Ga]tripropanoyl(FSC) ([68Ga]TPFC), [68Ga]diacetylbutanoyl(FSC) ([68Ga]DABuFC), and [68Ga]trisuccinyl(FSC) ([68Ga]FSC(suc)3), with high, medium, and low in vitro uptake in fungal cultures, were selected for further evaluation. Stability and protein binding were evaluated and in vivo imaging performed in the A. fumigatus rat infection model. RESULTS In vitro uptake studies using A. fumigatus revealed specific uptake of mono- and trisubstituted TAFC derivatives at RT. Lipophilicities as expressed by logD were 0.34 to - 3.80. The selected compounds displayed low protein binding and were stable in PBS and serum. Biodistribution and image contrast in PET/X-ray computed tomography of [68Ga]TPFC and [68Ga]DABuFC were comparable to [68Ga]TAFC, whereas no uptake in the infected region was observed with [68Ga]FSC(suc)3. CONCLUSIONS Our studies show the possibility to modify TAFC without losing its properties and specific recognition by A. fumigatus. This opens also new ways for multimodality imaging or theranostics of fungal infection by introducing functionalities such as fluorescent dyes or antifungal moieties.
Collapse
Affiliation(s)
- Piriya Kaeopookum
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
- Research and Development Division, Thailand Institute of Nuclear Technology, Nakhon Nayok, Thailand
| | - Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Orasch
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Beatrix E Lechner
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbara Matuszczak
- Institute of Pharmacy, Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
57
|
Pandey A, Savino C, Ahn SH, Yang Z, Van Lanen SG, Boros E. Theranostic Gallium Siderophore Ciprofloxacin Conjugate with Broad Spectrum Antibiotic Potency. J Med Chem 2019; 62:9947-9960. [PMID: 31580658 DOI: 10.1021/acs.jmedchem.9b01388] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathogenic bacteria scavenge ferric iron from the host for survival and proliferation using small-molecular chelators, siderophores. Here, we introduce and assess the gallium(III) complex of ciprofloxacin-functionalized desferrichrome (D2) as a potential therapeutic for bacterial infection using an in vitro assay and radiochemical, tracer-based approach. Ga-D2 exhibits a minimum inhibitory concentration of 0.23 μM in Escherichia coli, in line with the parent fluoroquinolone antibiotic. Competitive and mutant strain assays show that Ga-D2 relies on FhuA-mediated transport for internalization. Ga-D2 is potent against Pseudomonas aeruginosa (3.8 μM), Staphylococcus aureus (0.94 μM), and Klebsiella pneumoniae (12.5 μM), while Fe-D2 is inactive in these strains. Radiochemical experiments with E. coli reveal that 67Ga-D2 is taken up more efficiently than 67Ga-citrate. In naive mice, 67Ga-D2 clears renally and is excreted 13% intact in the urine. These pharmacokinetic and bacterial growth inhibitory properties qualify Ga-D2 for future investigations as a diagnosis and treatment tool for infection.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Chloé Savino
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Shin Hye Ahn
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington 40536 , Kentucky , United States
| | - Eszter Boros
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| |
Collapse
|
58
|
Lejault P, Duskova K, Bernhard C, Valverde IE, Romieu A, Monchaud D. The Scope of Application of Macrocyclic Polyamines Beyond Metal Chelation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pauline Lejault
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Katerina Duskova
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Claire Bernhard
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Ibai E. Valverde
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Anthony Romieu
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - David Monchaud
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| |
Collapse
|
59
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019; 7:125-138. [DOI: 10.1007/s40336-019-00322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
60
|
Chupakhin E, Bakulina O, Dar'in D, Krasavin M. Facile Access to Fe(III)-Complexing Cyclic Hydroxamic Acids in a Three-Component Format. Molecules 2019; 24:molecules24050864. [PMID: 30823493 PMCID: PMC6429155 DOI: 10.3390/molecules24050864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
Cyclic hydroxamic acids can be viewed as effective binders of soluble iron and can therefore be useful moieties for employing in compounds to treat iron overload disease. Alternatively, they are analogs of bacterial siderophores (iron-scavenging metabolites) and can find utility in designing antibiotic constructs for targeted delivery. An earlier described three-component variant of the Castagnoli—Cushman reaction of homophthalic acid (via in situ cyclodehydration to the respective anhydride) was extended to involve hydroxylamine in lieu of the amine component of the reaction. Using hydroxylamine acetate and O-benzylhydroxylamine was key to the success of this transformation due to greater solubility of the reagents in refluxing toluene (compared to hydrochloride salt). The developed protocol was found suitable for multigram-scale syntheses of N-hydroxy- and N-(benzyloxy)tetrahydroisoquinolonic acids. The cyclic hydroxamic acids synthesized in the newly developed format have been tested and shown to be efficient ligands for Fe3+, which makes them suitable candidates for the above-mentioned applications.
Collapse
Affiliation(s)
- Evgeny Chupakhin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| |
Collapse
|
61
|
Pardeshi KA, Kumar TA, Ravikumar G, Shukla M, Kaul G, Chopra S, Chakrapani H. Targeted Antibacterial Activity Guided by Bacteria-Specific Nitroreductase Catalytic Activation to Produce Ciprofloxacin. Bioconjug Chem 2019; 30:751-759. [DOI: 10.1021/acs.bioconjchem.8b00887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kundansingh A. Pardeshi
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune-411 008, Maharashtra, India
| | - T. Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune-411 008, Maharashtra, India
| | - Govindan Ravikumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune-411 008, Maharashtra, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune-411 008, Maharashtra, India
| |
Collapse
|
62
|
Shetty Y, Prabhu P, Prabhakar B. Emerging vistas in theranostic medicine. Int J Pharm 2018; 558:29-42. [PMID: 30599229 DOI: 10.1016/j.ijpharm.2018.12.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a paradigm shift in the focus of healthcare towards development of customized therapies which cater to the unmet needs in a myriad of disease areas such as cancer, infections, cardiovascular diseases, neurodegenerative disorders and inflammatory disorders. The term 'theranostic' refers to such multifunctional systems which combine the features of diagnosis and treatment in a single platform for superior control of the disease. Theranostic systems enable detection of disease, treatment and real time monitoring of the diseased tissue. Theranostic nanocarriers endowed with multiple features of imaging, targeting, and providing on-demand delivery of therapeutic agents have been designed for enhancement of therapeutic outcomes. Fabrication of theranostics involves utilization of materials having distinct properties for imaging, targeting, and programming drug release spatially and temporally. Although the field of theranostics has been widely researched and explored so far for treatment of different types of cancer, there have been considerable efforts in the past few years to extend its scope to other areas such as infections, neurodegenerative disorders and cardiovascular diseases. This review showcases the potential applications of theranostics in disease areas other than cancer. It also highlights the cardinal issues which need to be addressed for successful clinical translation of these theranostic tools.
Collapse
Affiliation(s)
- Yashna Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Priyanka Prabhu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
63
|
Ecker F, Haas H, Groll M, Huber EM. Eisenaufnahme in Pilzen der Gattung Aspergillus: strukturelle und biochemische Einblicke in Siderophoresterasen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Felix Ecker
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Hubertus Haas
- Sektion für Molekularbiologie/Biocenter; Medizinische Universität Innsbruck; Innrain 80/III 6020 Innsbruck Österreich
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Eva M. Huber
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
64
|
Yan Z, Bing W, Ding C, Dong K, Ren J, Qu X. A H 2O 2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms in vivo. NANOSCALE 2018; 10:17656-17662. [PMID: 30206634 DOI: 10.1039/c8nr03963a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peroxidase-like nanoparticles are promising materials to treat bacterial infection through catalyzing H2O2 into more toxic highly reactive oxygen species (hROS; such as hydroxyl radicals). However, all the reported related strategies, to the best of our knowledge, depend on the usage of extra H2O2, limiting the applications of peroxidase-like nanoparticles. Thus, it is necessary to develop peroxidase-based materials without extra H2O2. In this report, H2O2-free depots are prepared by integrating CaO2 and hemin-loading graphene (H-G) into alginate (CaO2/H-G@alginate). They can convert H2O into hROS through localized cascade reactions at the site of bacterial infection and damage the main components of biofilms (bacteria, polysaccharides, proteins, and nucleic acids). Besides, the confined environment of depots can reduce the potential risk from H2O2 and improve the cascade catalytic activity. This is the first example of exploring peroxidase-like nanozymes without extra H2O2 to treat bacterial infection.
Collapse
Affiliation(s)
- Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | | | | | |
Collapse
|
65
|
Ecker F, Haas H, Groll M, Huber EM. Iron Scavenging inAspergillusSpecies: Structural and Biochemical Insights into Fungal Siderophore Esterases. Angew Chem Int Ed Engl 2018; 57:14624-14629. [DOI: 10.1002/anie.201807093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Felix Ecker
- Center for Integrated Protein Science Munich (CIPSM); Department of Chemistry; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter; Medizinische Universität Innsbruck; Innrain 80/III 6020 Innsbruck Austria
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM); Department of Chemistry; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
| | - Eva M. Huber
- Center for Integrated Protein Science Munich (CIPSM); Department of Chemistry; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
66
|
Xu S, Hu HY. Fluorogen-activating proteins: beyond classical fluorescent proteins. Acta Pharm Sin B 2018; 8:339-348. [PMID: 29881673 PMCID: PMC5989828 DOI: 10.1016/j.apsb.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 01/09/2023] Open
Abstract
Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs)/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs), FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems.
Collapse
Affiliation(s)
- Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
67
|
Liu Y, Zhang L, Nazare M, Yao Q, Hu HY. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging. Acta Pharm Sin B 2018; 8:401-408. [PMID: 29881679 PMCID: PMC5989822 DOI: 10.1016/j.apsb.2017.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/01/2017] [Accepted: 10/18/2017] [Indexed: 01/30/2023] Open
Abstract
Nitroreductases (NTRs) are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH) as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI) contrast agent Gd-DOTA-PNB (probe 1) has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC-MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC-MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Yun Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Marc Nazare
- Leibniz-Forschngsinstitut fϋr Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin 13125, Germany
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
68
|
Zhang L, Liu Y, Zhang Q, Li T, Yang M, Yao Q, Xie X, Hu HY. Gadolinium-Labeled Aminoglycoside and Its Potential Application as a Bacteria-Targeting Magnetic Resonance Imaging Contrast Agent. Anal Chem 2018; 90:1934-1940. [PMID: 29293308 DOI: 10.1021/acs.analchem.7b04029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful diagnostic technique that can penetrate deep into tissue providing excellent spatial resolution without the need for ionizing radiation or harmful radionuclides. However, diagnosing bacterial infections in vivo with clinical MRI is severely hampered by the lack of contrast agents with high relaxivity, targeting capabilities, and bacterial penetration and specificity. Here, we report the development of the first gadolinium (Gd)-based bacteria-specific targeting MRI contrast agent, probe 1, by conjugating neomycin, an aminoglycoside antibiotic, with Dotarem (Gd-DOTA, an FDA approved T1-weighted MRI contrast agent). The T1 relaxivity of probe 1 was found to be comparable to that of Gd-DOTA; additionally, probe 1-treated bacteria generated a significantly brighter T1-weighted MR signal than Gd-DOTA-treated bacteria. More importantly, in vitro cellular studies and preliminary in vivo MRI demonstrated probe 1 exhibits the ability to efficiently target bacteria over macrophage-like cells, indicating its great potential for high-resolution imaging of bacterial infections in vivo.
Collapse
Affiliation(s)
| | - Yun Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences , Jinan, Shandong 250200, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan, Shandong 250062, China
| | | | | | | | - Qingqiang Yao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan, Shandong 250062, China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University , Jinan 250014, China
| | | |
Collapse
|
69
|
Zhang Y, Liu X, Li Z, Zhu S, Yuan X, Cui Z, Yang X, Chu PK, Wu S. Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1266-1277. [PMID: 29227620 DOI: 10.1021/acsami.7b17351] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interfacial characteristics play an important role in infection prevention and osteointegration of artificial bone implants. In this work, both Ag nanoparticles (AgNPs) and ZnO NPs are incorporated into hydroxyapatite (HA) nanopowders and deposited onto Ti6Al4V (Ti6) implants by laser cladding. The composite coatings possess a hierarchical surface structure with homogeneous distributions of Ag and ZnO. The Ag and ZnO NPs that are immobilized by laser cladding ensure long-term and gradual release of Ag and Zn ions at low cumulative concentrations of 36.2 and 56.4 μg/L after immersion for 21 days. A large concentration of Ag released initially increases the cytotoxicity but the large initial ZnO content enhances the cell viability and osteogenetic ability. The nano Ag/ZnO-embedded HA coating (Ag/ZnO/HA = 7:3:90 wt %, namely Ag7ZnO3HA) exhibits optimal antibacterial efficacy and osteogenetic capability, as exemplified by the broad spectrum antibacterial efficacy of 96.5 and 85.8% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, together with enhanced osteoinductivity with higher alkaline phosphatase (ALP) activity of 134.60 U/g protein compared to 70.79 U/g protein for the untreated implants after culturing for 7 days. The rabbit femoral implant model further confirms that the optimized composite coating accelerates the formation of new bone tissues indicating 87.15% of the newly formed bone area and osteointegration showing 83.75% of the bone-implant contact area even in the presence of injected S. aureus. The laser-cladded Ag7ZnO3HA composite coatings are promising metallic implants with excellent intrinsic antibacterial activity and osteointegration ability.
Collapse
Affiliation(s)
- Yanzhe Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Xubo Yuan
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| |
Collapse
|
70
|
Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2018. [PMID: 29531507 PMCID: PMC5817300 DOI: 10.1155/2018/9713691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management.
Collapse
|
71
|
Bakulina O, Bannykh A, Dar'in D, Krasavin M. Cyclic Hydroxamic Acid Analogues of Bacterial Siderophores as Iron-Complexing Agents prepared through the Castagnoli-Cushman Reaction of Unprotected Oximes. Chemistry 2017; 23:17667-17673. [PMID: 29072340 DOI: 10.1002/chem.201704389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/13/2022]
Abstract
The first application of multicomponent chemistry (the Castagnoli-Cushman reaction) toward the convenient one-step preparation of cyclic hydroxamic acids is described. Cyclic hydroxamic acids are close analogues of bacterial siderophores (iron-binding compounds) and form stable complexes with Fe3+ ions as confirmed by spectrophotometric measurements. These compounds are potential components for the design of chelating agents for iron overload disease therapy, as well as siderophore-based carrier systems for antibiotic delivery across the bacterial cell wall.
Collapse
Affiliation(s)
- Olga Bakulina
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Anton Bannykh
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Dmitry Dar'in
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Mikhail Krasavin
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| |
Collapse
|
72
|
Chen PHC, Ho SY, Chen PL, Hung TC, Liang AJ, Kuo TF, Huang HC, Wang TSA. Selective Targeting of Vibrios by Fluorescent Siderophore-Based Probes. ACS Chem Biol 2017; 12:2720-2724. [PMID: 28991433 DOI: 10.1021/acschembio.7b00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Siderophores are small molecules used to specifically transport iron into bacteria via related receptors. By adapting siderophores and hijacking their pathways, we may discover an efficient and selective way to target microbes. Herein, we report the synthesis of a siderophore-fluorophore conjugate VF-FL derived from vibrioferrin (VF). Using flow cytometry and fluorescence microscopy, the probe selectively labeled vibrios, including V. parahaemolyticus, V. cholerae, and V. vulnificus, even in the presence of other species such as S. aureus and E. coli. The labeling is siderophore-related and both iron-limited conditions and the siderophore moiety are required. The competitive relationship between VF-FL and VF in vibrios implies an unreported VF-related transport mechanism in V. cholerae and V. vulnificus. These studies demonstrate that the siderophore scaffold provides a method to selectively target microbes expressing cognate receptors under iron-limited conditions.
Collapse
Affiliation(s)
- Peng-Hsun Chase Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Sheng-Yang Ho
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Pin-Lung Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tzu-Chiao Hung
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - An-Jou Liang
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tang-Feng Kuo
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Hsiao-Chun Huang
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tsung-Shing Andrew Wang
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| |
Collapse
|
73
|
Xu S, Wang Q, Zhang Q, Zhang L, Zuo L, Jiang JD, Hu HY. Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe. Chem Commun (Camb) 2017; 53:11177-11180. [PMID: 28953270 DOI: 10.1039/c7cc07050k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of bacterial pathogens is the critical first step in conquering infection diseases. A novel turn-on fluorescent probe for the selective sensing of nitroreductase (NTR) activity and its initial applications in rapid, real-time detection and identification of ESKAPE pathogens have been reported.
Collapse
Affiliation(s)
- Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | | | | | | | | | | | | |
Collapse
|
74
|
Beckmann A, Hüttel S, Schmitt V, Müller R, Stadler M. Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti. Microb Cell Fact 2017; 16:143. [PMID: 28818083 PMCID: PMC5561589 DOI: 10.1186/s12934-017-0756-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Recently, the discovery of the elansolids, a group of macrolides, was reported. The molecules show activity against methicillin-resistant Staphylococcus aureus as well as other gram-positive organisms. This fact renders those substances a promising starting point for future chemical development. The active atropisomers A1/A2 are formed by macrolactonization of the biosynthesis product A3 but are prone to ring opening and subsequent formation of several unwanted side products. Recently it could be shown that addition of different nucleophiles to culture extracts of Chitinophaga sancti enable the formation of new stable elansolid derivatives. Furthermore, addition of such a nucleophile directly into the culture led exclusively to formation of a single active elansolid derivative. Due to low product yields, methods for production of gram amounts of these molecules have to be established to enable further development of this promising compound class. RESULTS Production of elansolid A2 by C. sancti was enabled using a synthetic medium with sucrose as carbon source to a final concentration of 18.9 mg L-1. A fed-batch fermentation was ensued that resulted in an elansolid A2 concentration of 55.3 mg L-1. When using glucose as carbon source in a fed-batch fermentation only 34.4 mg L-1 elansolid A2 but 223.1 mg L-1 elansolid C1 were produced. This finding was not unexpected since elansolids A1/A2 and A3 have been reported to easily react with nucleophiles like anthranilic acid, a precursor of tryptophan biosynthesis. Due to the fact that nucleophiles can be incorporated in vivo, a fed-batch cultivation under identical conditions, with addition of anthranilic acid was carried out and lead to almost exclusive formation of elansolid C1 (257.5 mg L-1). CONCLUSION Reproducible elansolid A2 and C1 production is feasible in different synthetic media at relatively high concentrations that will allow further investigation and semi-synthetic optimization. The feeding of anthranilic acid enables the exclusive production of the stable elansolid derivative C1, which reduces product loss by unspecific reactions and eases downstream processing. This derivative shows activity in the same range as the elansolids A1/A2. Hence, the method can possibly serve as a model-process for incorporation of other nucleophiles and biotechnological production of specifically designed molecules.
Collapse
Affiliation(s)
- Amelie Beckmann
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Viktoria Schmitt
- Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Dept. Pharmaceutical Biotechnology of Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Rolf Müller
- Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Dept. Pharmaceutical Biotechnology of Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| |
Collapse
|