51
|
Xie YR, Castro DC, Bell SE, Rubakhin SS, Sweedler JV. Single-Cell Classification Using Mass Spectrometry through Interpretable Machine Learning. Anal Chem 2020; 92:9338-9347. [PMID: 32519839 PMCID: PMC7374983 DOI: 10.1021/acs.analchem.0c01660] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain consists of organized ensembles of cells that exhibit distinct morphologies, cellular connectivity, and dynamic biochemistries that control the executive functions of an organism. However, the relationships between chemical heterogeneity, cell function, and phenotype are not always understood. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry have enabled the high-throughput, multiplexed chemical analysis of single cells, capable of resolving hundreds of molecules in each mass spectrum. We developed a machine learning workflow to classify single cells according to their mass spectra based on cell groups of interest (GOI), e.g., neurons vs astrocytes. Three data sets from various cell groups were acquired on three different mass spectrometer platforms representing thousands of individual cell spectra that were collected and used to validate the single cell classification workflow. The trained models achieved >80% classification accuracy and were subjected to the recently developed instance-based model interpretation framework, SHapley Additive exPlanations (SHAP), which locally assigns feature importance for each single-cell spectrum. SHAP values were used for both local and global interpretations of our data sets, preserving the chemical heterogeneity uncovered by the single-cell analysis while offering the ability to perform supervised analysis. The top contributing mass features to each of the GOI were ranked and selected using mean absolute SHAP values, highlighting the features that are specific to the defined GOI. Our approach provides insight into discriminating the chemical profiles of the single cells through interpretable machine learning, facilitating downstream analysis and validation.
Collapse
Affiliation(s)
- Yuxuan Richard Xie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel C. Castro
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sara E. Bell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jonathan V. Sweedler
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
52
|
Li Z, Wang Z, Pan J, Ma X, Zhang W, Ouyang Z. Single-Cell Mass Spectrometry Analysis of Metabolites Facilitated by Cell Electro-Migration and Electroporation. Anal Chem 2020; 92:10138-10144. [DOI: 10.1021/acs.analchem.0c02147] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zishuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zhengmao Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
53
|
Zhang X, Wei X, Wei Y, Chen M, Wang J. The up-to-date strategies for the isolation and manipulation of single cells. Talanta 2020; 218:121147. [PMID: 32797903 DOI: 10.1016/j.talanta.2020.121147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Due to the large cellular heterogeneity, the strategies for the isolation and manipulation of single cells have been pronounced indispensable in the fields of disease diagnostics, drug delivery, and cancer biology at the single-cell resolution. Herein, an overview of the up-to-date techniques for precise manipulation/separation and analysis of single-cell is accomplished, these include the various approaches for the isolation and detection of individual cells in flow cytometry, microfluidic systems, micromodule systems, and others. In addition, the advanced application of these protocols is discussed. In particular, a few designs are highlighted for visualization, non-invasion, and intelligentization in single cell analysis, i.e., imaging flow cytometry, label-free microfluidic platform, single-cell capillary probe, and other related techniques. At the present, the main barriers in the various schemes for single cell manipulation which limited their practical applications are their cumbersome construction and single-functionality. The future opportunities and outstanding challenges in the isolation/manipulation of single cells are depicted.
Collapse
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yujia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China; Analytical and Testing Center, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
54
|
Dai Y, Li C, Yi J, Qin Q, Liu B, Qiao L. Plasmonic Colloidosome-Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level. Anal Chem 2020; 92:8051-8057. [PMID: 32362117 DOI: 10.1021/acs.analchem.0c00494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuchen Dai
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Chenyu Li
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Changhai Road 168, Shanghai, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| |
Collapse
|
55
|
Ding H, Guo W, Su B. Electrochemiluminescence Single‐Cell Analysis: Intensity‐ and Imaging‐Based Methods. Chempluschem 2020; 85:725-733. [DOI: 10.1002/cplu.202000145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|
56
|
Gallion LA, Anttila MM, Abraham DH, Proctor A, Allbritton NL. Preserving Single Cells in Space and Time for Analytical Assays. Trends Analyt Chem 2020; 122:115723. [PMID: 32153309 PMCID: PMC7061724 DOI: 10.1016/j.trac.2019.115723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical assays performed within clinical laboratories influence roughly 70% of all medical decisions by facilitating disease detection, diagnosis, and management. Both in clinical and academic research laboratories, single-cell assays permit measurement of cell diversity and identification of rare cells, both of which are important in the understanding of disease pathogenesis. For clinically utility, the single-cell assays must be compatible with the clinical workflow steps of sample collection, sample transportation, pre-analysis processing, and single-cell assay; therefore, it is paramount to preserve cells in a state that resembles that in vivo rather than measuring signaling behaviors initiated in response to stressors such as sample collection and processing. To address these challenges, novel cell fixation (and more broadly, cell preservation) techniques incorporate programmable fixation times, reversible bond formation and cleavage, chemoselective reactions, and improved analyte recovery. These technologies will further the development of individualized, precision therapies for patients to yield improved clinical outcomes.
Collapse
Affiliation(s)
- Luke A. Gallion
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew M. Anttila
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David H. Abraham
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
57
|
Spraggins JM, Djambazova KV, Rivera ES, Migas LG, Neumann EK, Fuetterer A, Suetering J, Goedecke N, Ly A, Van de Plas R, Caprioli RM. High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry. Anal Chem 2019; 91:14552-14560. [PMID: 31593446 PMCID: PMC7382025 DOI: 10.1021/acs.analchem.9b03612] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Imaging mass spectrometry (IMS) enables the spatially targeted molecular assessment of biological tissues at cellular resolutions. New developments and technologies are essential for uncovering the molecular drivers of native physiological function and disease. Instrumentation must maximize spatial resolution, throughput, sensitivity, and specificity, because tissue imaging experiments consist of thousands to millions of pixels. Here, we report the development and application of a matrix-assisted laser desorption/ionization (MALDI) trapped ion-mobility spectrometry (TIMS) imaging platform. This prototype MALDI timsTOF instrument is capable of 10 μm spatial resolutions and 20 pixels/s throughput molecular imaging. The MALDI source utilizes a Bruker SmartBeam 3-D laser system that can generate a square burn pattern of <10 × 10 μm at the sample surface. General image performance was assessed using murine kidney and brain tissues and demonstrate that high-spatial-resolution imaging data can be generated rapidly with mass measurement errors <5 ppm and ∼40 000 resolving power. Initial TIMS-based imaging experiments were performed on whole-body mouse pup tissue demonstrating the separation of closely isobaric [PC(32:0) + Na]+ and [PC(34:3) + H]+ (3 mDa mass difference) in the gas phase. We have shown that the MALDI timsTOF platform can maintain reasonable data acquisition rates (>2 pixels/s) while providing the specificity necessary to differentiate components in complex mixtures of lipid adducts. The combination of high-spatial-resolution and throughput imaging capabilities with high-performance TIMS separations provides a uniquely tunable platform to address many challenges associated with advanced molecular imaging applications.
Collapse
Affiliation(s)
- Jeffrey M Spraggins
- Department of Biochemistry , Vanderbilt University , 607 Light Hall , Nashville , Tennessee 37205 , United States
- Department of Chemistry , Vanderbilt University , 7330 Stevenson Center, Station B 351822 , Nashville , Tennessee 37235 , United States
| | - Katerina V Djambazova
- Department of Chemistry , Vanderbilt University , 7330 Stevenson Center, Station B 351822 , Nashville , Tennessee 37235 , United States
| | - Emilio S Rivera
- Department of Biochemistry , Vanderbilt University , 607 Light Hall , Nashville , Tennessee 37205 , United States
| | - Lukasz G Migas
- Delft Center for Systems and Control (DCSC) , Delft University of Technology , 2628 CD Delft , The Netherlands
| | - Elizabeth K Neumann
- Department of Biochemistry , Vanderbilt University , 607 Light Hall , Nashville , Tennessee 37205 , United States
| | - Arne Fuetterer
- Bruker Daltonik GmbH , Fahrenheitstraße 4 , 28359 Bremen , Germany
| | | | - Niels Goedecke
- Bruker Daltonik GmbH , Fahrenheitstraße 4 , 28359 Bremen , Germany
| | - Alice Ly
- Bruker Daltonik GmbH , Fahrenheitstraße 4 , 28359 Bremen , Germany
| | - Raf Van de Plas
- Department of Biochemistry , Vanderbilt University , 607 Light Hall , Nashville , Tennessee 37205 , United States
- Delft Center for Systems and Control (DCSC) , Delft University of Technology , 2628 CD Delft , The Netherlands
| | - Richard M Caprioli
- Department of Biochemistry , Vanderbilt University , 607 Light Hall , Nashville , Tennessee 37205 , United States
- Department of Chemistry , Vanderbilt University , 7330 Stevenson Center, Station B 351822 , Nashville , Tennessee 37235 , United States
- Department of Pharmacology , Vanderbilt University , 2220 Pierce Avenue , Nashville , Tennessee 37232 , United States
| |
Collapse
|
58
|
Tang S, Cheng H, Yan X. On‐Demand Electrochemical Epoxidation in Nano‐Electrospray Ionization Mass Spectrometry to Locate Carbon–Carbon Double Bonds. Angew Chem Int Ed Engl 2019; 59:209-214. [DOI: 10.1002/anie.201911070] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shuli Tang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77845 USA
| | - Heyong Cheng
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77845 USA
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| | - Xin Yan
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77845 USA
| |
Collapse
|
59
|
On‐Demand Electrochemical Epoxidation in Nano‐Electrospray Ionization Mass Spectrometry to Locate Carbon–Carbon Double Bonds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
60
|
Huang Q, Mao S, Khan M, Li W, Zhang Q, Lin JM. Single-cell identification by microfluidic-based in situ extracting and online mass spectrometric analysis of phospholipids expression. Chem Sci 2019; 11:253-256. [PMID: 34040719 PMCID: PMC8132990 DOI: 10.1039/c9sc05143k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
This work describes a microfluidic system for in situ extraction of a single-cell and its phosphatidylcholine analysis through mass spectrometry. This approach uncovered cellular heterogeneity among seemingly identical cells and provided a new platform for identification and classification of cells.
Collapse
Affiliation(s)
- Qiushi Huang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| |
Collapse
|
61
|
Han J, Huang X, Liu H, Wang J, Xiong C, Nie Z. Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry. Chem Sci 2019; 10:10958-10962. [PMID: 32190253 PMCID: PMC7066667 DOI: 10.1039/c9sc03912k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
A single-cell MS approach for multiplexed glycan detection to investigate the relationship between drug resistance and glycans at a single-cell level and quantify multiple glycans, overcoming the limit of low ionization efficiency of glycans.
Glycans binding on the cell surface through glycosylation play a key role in controlling various cellular processes, and glycan analysis at a single-cell level is necessary to study cellular heterogeneity and diagnose diseases in the early stage. Herein, we synthesized a series of laser cleavable probes, which could sensitively detect glycans on single cells and tissues by laser desorption ionization mass spectrometry (LDI-MS). This multiplexed and quantitative glycan detection was applied to evaluate the alterations of four types of glycans on breast cancer cells and drug-resistant cancer cells at a single-cell level, indicating that drug resistance may be related to the upregulation of glycan with a β-d-galactoside (Galβ) group and Neu5Aca2-6Gal(NAc)-R. Moreover, the glycan spatial distribution in cancerous and paracancerous human tissues was also demonstrated by MS imaging, showing that glycans are overexpressed in cancerous tissues. Therefore, this single-cell MS approach exhibits promise for application in studying glycan functions which are essential for clinical biomarker discovery and diagnosis of related diseases.
Collapse
Affiliation(s)
- Jing Han
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ; .,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ; .,University of the Chinese Academy of Sciences , Beijing 100049 , China.,National Center for Mass Spectrometry in Beijing , Beijing 100049 , China
| |
Collapse
|
62
|
Neumann EK, Ellis JF, Triplett AE, Rubakhin SS, Sweedler JV. Lipid Analysis of 30 000 Individual Rodent Cerebellar Cells Using High-Resolution Mass Spectrometry. Anal Chem 2019; 91:7871-7878. [PMID: 31122012 DOI: 10.1021/acs.analchem.9b01689] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single-cell measurements aid our understanding of chemically heterogeneous systems such as the brain. Lipids are one of the least studied chemical classes, and their cell-to-cell heterogeneity remains largely unexplored. We adapted microscopy-guided single-cell profiling using matrix-assisted laser desorption/ionization ion cyclotron resonance mass spectrometry to profile the lipid composition of over 30 000 individual rat cerebellar cells. We detected 520 lipid features, many of which were found in subsets of cells; Louvain clustering identified 101 distinct groups that can be correlated to neuronal and astrocytic classifications and lipid classes. Overall, the two most common lipids found were [PC(32:0)+H]+ and [PC(34:1)+H]+, which were present within 98.9 and 89.5% of cells, respectively; lipid signals present in <1% of cells were also detected, including [PC(34:1)+K]+ and [PG(40:2(OH))+Na]+. These results illustrate the vast lipid heterogeneity found within rodent cerebellar cells and hint at the distinct functional consequences of this heterogeneity.
Collapse
|