51
|
Henriksson A, Neubauer P, Birkholz M. Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors? BIOSENSORS 2022; 12:784. [PMID: 36290922 PMCID: PMC9599301 DOI: 10.3390/bios12100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The performance of receptor-based biosensors is often limited by either diffusion of the analyte causing unreasonable long assay times or a lack of specificity limiting the sensitivity due to the noise of nonspecific binding. Alternating current (AC) electrokinetics and its effect on biosensing is an increasing field of research dedicated to address this issue and can improve mass transfer of the analyte by electrothermal effects, electroosmosis, or dielectrophoresis (DEP). Accordingly, several works have shown improved sensitivity and lowered assay times by order of magnitude thanks to the improved mass transfer with these techniques. To realize high sensitivity in real samples with realistic sample matrix avoiding nonspecific binding is critical and the improved mass transfer should ideally be specific to the target analyte. In this paper we cover recent approaches to combine biosensors with DEP, which is the AC kinetic approach with the highest selectivity. We conclude that while associated with many challenges, for several applications the approach could be beneficial, especially if more work is dedicated to minimizing nonspecific bindings, for which DEP offers interesting perspectives.
Collapse
Affiliation(s)
- Anders Henriksson
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Mario Birkholz
- IHP—Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
52
|
Noji H, Minagawa Y, Ueno H. Enzyme-based digital bioassay technology - key strategies and future perspectives. LAB ON A CHIP 2022; 22:3092-3109. [PMID: 35861036 DOI: 10.1039/d2lc00223j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Digital bioassays based on single-molecule enzyme reactions represent a new class of bioanalytical methods that enable the highly sensitive detection of biomolecules in a quantitative manner. Since the first reports of these methods in the 2000s, there has been significant growth in this new bioanalytical strategy. The principal strategy of this method is to compartmentalize target molecules in micron-sized reactors at the single-molecule level and count the number of microreactors showing positive signals originating from the target molecule. A representative application of digital bioassay is the digital enzyme-linked immunosorbent assay (ELISA). Owing to their versatility, various types of digital ELISAs have been actively developed. In addition, some disease markers and viruses possess catalytic activity, and digital bioassays for such enzymes and viruses have, thus, been developed. Currently, with the emergence of new microreactor technologies, the targets of this methodology are expanding from simple enzymes to more complex systems, such as membrane transporters and cell-free gene expression. In addition, multiplex or multiparametric digital bioassays have been developed to assess precisely the heterogeneities in sample molecules/systems that are obscured by ensemble measurements. In this review, we first introduce the basic concepts of digital bioassays and introduce a range of digital bioassays. Finally, we discuss the perspectives of new classes of digital bioassays and emerging fields based on digital bioassay technology.
Collapse
Affiliation(s)
- Hiroyuki Noji
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Hiroshi Ueno
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
53
|
Chen X, Liu Y, Liu X, Lu C. Nanoparticle-based single molecule fluorescent probes. LUMINESCENCE 2022; 37:1808-1821. [PMID: 35982510 DOI: 10.1002/bio.4364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
Abstract
Single molecule fluorescent probes have attracted considerable attention duet to their ultimate sensitivity, fast response, low sample consumption, and high signal-to-noise ratio. Nanoparticles with outstanding optical properties make them perfect candidates for probes in application of single molecule detection. In this review, we focus on various kinds of nanoparticles acting as single molecule fluorescent probes, including quantum dots, upconverting fluorescent nanoparticles, carbon dots, single-wall carbon nanotubes, fluorescent nanodiamonds, polymeric nanoparticles, nanoclusters, and metallic nanoparticles. Optical properties of various nanoparticles and their recent application in single molecule fluorescent probes are explored. How nanoparticles boost the sensitivity of detection is emphasized in combination with different sensing strategies. Future trends of nanoparticles in single molecule detection are also discussed. We hope this review can provide practical guidance for researchers who work on nanoparticle-based single molecule fluorescent probes.
Collapse
Affiliation(s)
- Xueqian Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yuhao Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Xiaoting Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Chao Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
54
|
Jia D, Fan W, Ren W, Liu C. One-step detection of T4 polynucleotide kinase activity based on single particle-confined enzyme reaction and digital particle counting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
55
|
Ultrasensitive multiplexed chemiluminescent enzyme-linked immunosorbent assays in 384-well plates. J Immunol Methods 2022; 508:113311. [PMID: 35787394 DOI: 10.1016/j.jim.2022.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
Abstract
We have developed an ultrasensitive multiplexed immunoassay using 384-well microtiter plates capable of detecting proteins at subfemtomolar concentrations that requires as little as 2.5 μL of sample. Arrays of up to 4 capture antibodies were patterned on the bottom of the wells of a 384-well plate either by directly printing the capture antibodies or by printing anti-peptide tag anchor antibodies and incubating these arrays with capture antibodies conjugated to the corresponding peptide tags ("customized" assays). Samples were incubated with the antibody arrays and shaken orbitally at 2000 rpm to achieve the greatest sensitivity. Chemiluminescence (CL) from immunocomplexes labeled with horseradish peroxidase was imaged across the entire plate to quantify the amount of protein bound to each antibody spot of the arrays. The 384-well assay had a throughput 5-fold >96-well plates that was achieved from simultaneous imaging of CL in all 384-wells and the use of automated pipettors to allow parallel processing of 384 assays. We developed 4 assays based on the 384-well CL ELISA: a direct print assay for IL-10 (limit of detection (LOD) = 0.075 fM); a customized assay for IL-6 (0.22 fM); a customized pharmacokinetic (PK) assay for measuring adalimumab (7.3 pg/mL); and a customized 4-plex assay for IL-5 (0.1 fM), IL-6 (0.52 fM), IL-10 (0.2 fM), and TNF-α (3.2 fM). The sensitivity and precision of the cytokine assays were comparable to current ultrasensitive protein detection methods in 96-well formats. The PK assay for adalimumab was 650 times more sensitive than a commercially available 96-well plate ELISA. We used the 384-well CL ELISAs to measure endogenous levels of the cytokines in the serum and plasma of healthy humans: the mean concentrations and precision were comparable to those from 96-well immunoassays. This 384-well format with subfemtomolar sensitivity will enable ultrasensitive multiplexed immunoassays to be performed with higher throughput and lower sample volumes than currently possible, a particularly important capability for clinical studies in drug development.
Collapse
|
56
|
Zherdev AV, Dzantiev BB. Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Gorris HH, Soukka T. What Digital Immunoassays Can Learn from Ambient Analyte Theory: A Perspective. Anal Chem 2022; 94:6073-6083. [PMID: 35404586 DOI: 10.1021/acs.analchem.1c05591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunoassays are important tools for clinical diagnosis as well as environmental and food analysis because they enable highly sensitive and quantitative measurements of analyte concentrations. In the 1980s, Roger Ekins suggested to improve the sensitivity of immunoassays by employing microspot assays, which are carried out under ambient analyte conditions and do not change the bulk analyte concentration of a sample during a measurement. More recently, the measurement of single analyte molecules has additionally attracted wide research interest. Although the ability to detect a single analyte molecule is not synonymous with the highest analytical sensitivity, single-molecule detection makes new routes accessible to avoiding background noise. This perspective follows the development of solid-phase immunoassays from the design of label techniques to single-molecule (digital) assays against the backdrop of Ekins's fundamental work on immunoassay theory. The essential aspects of both ambient analyte and digital assay approaches are presented as a guideline to finding a balance between the speed, sensitivity, and precision of immunoassays.
Collapse
Affiliation(s)
- Hans H Gorris
- Department of Biochemistry, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
58
|
Chauhan N, Saxena K, Jain U. Single molecule detection; from microscopy to sensors. Int J Biol Macromol 2022; 209:1389-1401. [PMID: 35413320 DOI: 10.1016/j.ijbiomac.2022.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
Single molecule detection is necessary to find out physical, chemical properties and their mechanism involved in the normal functioning of body cells. In this way, they can provide a new direction to the healthcare system. Various techniques have been developed and employed for their successful detection. Herein, we have emphasized various traditional methods as well as biosensing technology which offer single molecule sensitivity. The various methods including plasmonic resonance, nanopores, whispering gallery mode, Simoa assay and recognition tunneling are discussed in the initial part which has been followed by a discussion about biosensor-based detection. Plasmonic, SERS, CRISPR/Cas, and other types of biosensors are focused in this review and found to be highly sensitive for single molecule detection. This review provides an overview of progression in different techniques employed for single molecule detection.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India.
| |
Collapse
|
59
|
Liu Y, Ye H, Huynh H, Xie C, Kang P, Kahn JS, Qin Z. Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics. Nat Commun 2022; 13:1687. [PMID: 35354801 PMCID: PMC8967834 DOI: 10.1038/s41467-022-29025-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Rapid and sensitive diagnostics of infectious diseases is an urgent and unmet need as evidenced by the COVID-19 pandemic. Here, we report a strategy, based on DIgitAl plasMONic nanobubble Detection (DIAMOND), to address this need. Plasmonic nanobubbles are transient vapor bubbles generated by laser heating of plasmonic nanoparticles (NPs) and allow single-NP detection. Using gold NPs as labels and an optofluidic setup, we demonstrate that DIAMOND achieves compartment-free digital counting and works on homogeneous immunoassays without separation and amplification steps. DIAMOND allows specific detection of respiratory syncytial virus spiked in nasal swab samples and achieves a detection limit of ~100 PFU/mL (equivalent to 1 RNA copy/µL), which is competitive with digital isothermal amplification for virus detection. Therefore, DIAMOND has the advantages including one-step and single-NP detection, direct sensing of intact viruses at room temperature, and no complex liquid handling, and is a platform technology for rapid and ultrasensitive diagnostics.
Collapse
Affiliation(s)
- Yaning Liu
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Haihang Ye
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - HoangDinh Huynh
- Departments of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Peiyuan Kang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jeffrey S Kahn
- Departments of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Departments of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Zhenpeng Qin
- Department of Surgery, University of Texas Southwestern Medical Center, 5323 Harry Lines Blvd, Dallas, TX, 75390, USA.
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
60
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
61
|
Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate‐Affinity Crosslinking‐Amplified Dynamic Light Scattering Immunoassay for Point‐of‐Care Glycoprotein Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yu Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
- Jiangxi-OAI Joint Research Institute Nanchang University Nanchang 330047 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
62
|
Ma F, Li CC, Zhang CY. Nucleic acid amplification-integrated single-molecule fluorescence imaging for in vitro and in vivo biosensing. Chem Commun (Camb) 2021; 57:13415-13428. [PMID: 34796887 DOI: 10.1039/d1cc04799j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule fluorescence imaging is among the most advanced analytical technologies and has been widely adopted for biosensing due to its distinct advantages of simplicity, rapidity, high sensitivity, low sample consumption, and visualization capability. Recently, a variety of nucleic acid amplification approaches have been developed to provide a straightforward and highly efficient way for amplifying low abundance target signals. The integration of single-molecule fluorescence imaging with nucleic acid amplification has greatly facilitated the construction of various fluorescent biosensors for in vitro and in vivo detection of DNAs, RNAs, enzymes, and live cells with high sensitivity and good selectivity. Herein, we review the advances in the development of fluorescent biosensors by integrating single-molecule fluorescence imaging with nucleic acid amplification based on enzyme (e.g., DNA polymerase, RNA polymerase, exonuclease, and endonuclease)-assisted and enzyme-free (e.g., catalytic hairpin assembly, entropy-driven DNA amplification, ligation chain reaction, and hybridization chain reaction) strategies, and summarize the principles, features, and in vitro and in vivo applications of the emerging biosensors. Moreover, we discuss the remaining challenges and future directions in this area. This review may inspire the development of new signal-amplified single-molecule biosensors and promote their practical applications in fundamental and clinical research.
Collapse
Affiliation(s)
- Fei Ma
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chen-Chen Li
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China. .,Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chun-Yang Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
63
|
Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate-Affinity Crosslinking-Amplified Dynamic Light Scattering Immunoassay for Point-of-Care Glycoprotein Detection. Angew Chem Int Ed Engl 2021; 61:e202112031. [PMID: 34881816 DOI: 10.1002/anie.202112031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 12/21/2022]
Abstract
Herein, we report a universal boronate-affinity crosslinking-amplified dynamic light scattering (DLS) immunoassay for point-of-care (POC) glycoprotein detection in complex samples. This enhanced DLS immunoassay consists of two elements, i.e., antibody-coated magnetic nanoparticles (MNP@mAb) for target capture and DLS signal transduction, and phenylboronic acid-based boronate-affinity materials as crosslinking amplifiers. Upon the addition of targets, glycoproteins are first captured by MNP@mAb and amplified by target-induced crosslinking stemming from the selective binding between the boronic acid ligand and cis-diol-containing glycoprotein, thereby resulting in a remarkably increased DLS signal in the average nanoparticle size. Benefiting from the multivalent binding and fast boronate-affinity reaction between glycoproteins and crosslinkers, the proposed immunosensing strategy has achieved the ultrasensitive and rapid quantitative assay of glycoproteins at the fM level within 15 min. Overall, this work provides a promising and versatile design strategy for extending the DLS technique to detect glycoproteins even in the field or at POC.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
64
|
Gao Z, Song Y, Hsiao TY, He J, Wang C, Shen J, MacLachlan A, Dai S, Singer BH, Kurabayashi K, Chent P. Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients. ACS NANO 2021; 15:18023-18036. [PMID: 34714639 PMCID: PMC8577373 DOI: 10.1021/acsnano.1c06623] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 05/08/2023]
Abstract
Cytokine storm, known as an exaggerated hyperactive immune response characterized by elevated release of cytokines, has been described as a feature associated with life-threatening complications in COVID-19 patients. A critical evaluation of a cytokine storm and its mechanistic linkage to COVID-19 requires innovative immunoassay technology capable of rapid, sensitive, selective detection of multiple cytokines across a wide dynamic range at high-throughput. In this study, we report a machine-learning-assisted microfluidic nanoplasmonic digital immunoassay to meet the rising demand for cytokine storm monitoring in COVID-19 patients. Specifically, the assay was carried out using a facile one-step sandwich immunoassay format with three notable features: (i) a microfluidic microarray patterning technique for high-throughput, multiantibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows simultaneous detection of six cytokines in a single run with wide working ranges of 1-10,000 pg mL-1 and ultralow detection limits down to 0.46-1.36 pg mL-1 using a minimum of 3 μL serum samples. The whole chip can afford a 6-plex assay of 8 different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an intelligent immunoassay for next generation immune monitoring.
Collapse
Affiliation(s)
- Zhuangqiang Gao
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Yujing Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Te Yi Hsiao
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jiacheng He
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jialiang Shen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Alana MacLachlan
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Siyuan Dai
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Benjamin H. Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Pengyu Chent
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
65
|
Zhang L, Fan W, Jia D, Feng Q, Ren W, Liu C. Microchamber-Free Digital Flow Cytometric Analysis of T4 Polynucleotide Kinase Phosphatase Based on Single-Enzyme-to-Single-Bead Space-Confined Reaction. Anal Chem 2021; 93:14828-14836. [PMID: 34713697 DOI: 10.1021/acs.analchem.1c03724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Digital bioassays have attracted extensive attention in biomedical applications due to their ultrahigh sensitivity. However, traditional digital bioassays require numerous microchambers such as droplets or microwells, which restricts their application scope. Herein, we propose a microchamber-free flow cytometric method for the digital quantification of T4 polynucleotide kinase phosphatase (T4 PNKP) based on an unprecedented phenomenon that each T4 PNKP molecule-catalyzed reaction can be spatially self-confined on a single microbead, which ultimately enables the one-target-to-one-fluorescence-positive microbead digital signal transduction. The digital signal-readout mode can clearly detect T4 PNKP concentrations as low as 1.28 × 10-10 U/μL, making it most sensitive method to date. Significantly, T4 PNKP can be specifically distinguished from other phosphatases and nucleases in complex samples by digitally counting the fluorescence-positive microbeads, which cannot be realized by traditional bulk measurement-based methods. Taking advantage of the novel space-confined enzymatic feature of T4 PNKP, this digital mechanism can use T4 PNKP as the enzyme label to fabricate digital sensing systems toward various biomolecules such as digital enzyme-linked immunosorbent assay (ELISA). Therefore, this work not only enlarges the toolbox for high-sensitivity biomolecule detection but also opens new gates to fabricate next-generation digital assays.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Qinya Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
66
|
Sun P, Li Y, Li J, Zhang Y. Entrapment of horseradish peroxidase into nanometer-scale metal-organic frameworks: a new nanocarrier for signal amplification in enzyme-linked immunosorbent assay. Mikrochim Acta 2021; 188:409. [PMID: 34739603 DOI: 10.1007/s00604-021-05065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
Horseradish peroxidase (HRP) was highly loaded into large holes of nanometer-scale metal-organic frameworks (i.e., PCN-333(Al)) for signal amplification in enzyme-linked immunosorbent assay (ELISA). The enzyme-labeled antibody complex prepared using nanometer-scale PCN-333(Al) maintained a high catalytic efficiency. Its Vm and Kcat values with 3,3',5,5'-Tetramethylbenzidine (TMB)-H2O2 as substrates were 4.84 × 10-5 mM/s and 4.84 × 104 min-1, respectively. We demonstrated an HRP@PCN-333 signal amplification strategy for colorimetric assay of human prostate-specific antigen (PSA). The linear range of PSA detection by using this method was 15-165 pg/mL, and the limit of detection was 6 pg/mL (S/N = 3), indicating the potential application of this method in detecting disease markers under clinical conditions. The presented strategy exhibited the characteristics of significantly increased amount of labeled enzymes, improved stability and utilization of enzymes, simple preparation process of enzyme-labeled antibodies, and low cost.
Collapse
Affiliation(s)
- Pengyue Sun
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, Xi'an, 710119, China
| | - Yao Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, Xi'an, 710119, China
| | - Jing Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, Xi'an, 710119, China
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, Xi'an, 710119, China.
| |
Collapse
|
67
|
Brandmeier JC, Raiko K, Farka Z, Peltomaa R, Mickert MJ, Hlaváček A, Skládal P, Soukka T, Gorris HH. Effect of Particle Size and Surface Chemistry of Photon-Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin. Adv Healthc Mater 2021; 10:e2100506. [PMID: 34263562 PMCID: PMC11469035 DOI: 10.1002/adhm.202100506] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/22/2021] [Indexed: 12/26/2022]
Abstract
Sensitive immunoassays are required for troponin, a low-abundance cardiac biomarker in blood. In contrast to conventional (analog) assays that measure the integrated signal of thousands of molecules, digital assays are based on counting individual biomarker molecules. Photon-upconversion nanoparticles (UCNP) are an excellent nanomaterial for labeling and detecting single biomarker molecules because their unique anti-Stokes emission avoids optical interference, and single nanoparticles can be reliably distinguished from the background signal. Here, the effect of the surface architecture and size of UCNP labels on the performance of upconversion-linked immunosorbent assays (ULISA) is critically assessed. The size, brightness, and surface architecture of UCNP labels are more important for measuring low troponin concentrations in human plasma than changing from an analog to a digital detection mode. Both detection modes result approximately in the same assay sensitivity, reaching a limit of detection (LOD) of 10 pg mL-1 in plasma, which is in the range of troponin concentrations found in the blood of healthy individuals.
Collapse
Affiliation(s)
- Julian C. Brandmeier
- Institute of Analytical Chemistry, Chemo‐ and BiosensorsUniversity of RegensburgRegensburg93053Germany
| | - Kirsti Raiko
- Department of Life Technologies/BiotechnologyUniversity of TurkuKiinamyllynkatu 10Turku20520Finland
| | - Zdeněk Farka
- Institute of Analytical Chemistry, Chemo‐ and BiosensorsUniversity of RegensburgRegensburg93053Germany
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKamenice 5Brno625 00Czech Republic
| | - Riikka Peltomaa
- Institute of Analytical Chemistry, Chemo‐ and BiosensorsUniversity of RegensburgRegensburg93053Germany
- Department of Life Technologies/BiotechnologyUniversity of TurkuKiinamyllynkatu 10Turku20520Finland
| | - Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo‐ and BiosensorsUniversity of RegensburgRegensburg93053Germany
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciencesv. v. i.Brno602 00Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKamenice 5Brno625 00Czech Republic
| | - Tero Soukka
- Department of Life Technologies/BiotechnologyUniversity of TurkuKiinamyllynkatu 10Turku20520Finland
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo‐ and BiosensorsUniversity of RegensburgRegensburg93053Germany
| |
Collapse
|
68
|
Chernov NM, Shutov RV, Sipkina NY, Krivchun MN, Yakovlev IP. A Flexible Synthetic Approach to Fluorescent Chromeno[4,3-b]pyridines and Pyrano[3,2-c]chromenes from Electron-Deficient 3-Vinylchromones. Chempluschem 2021; 86:1256-1266. [PMID: 34472730 DOI: 10.1002/cplu.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Indexed: 11/09/2022]
Abstract
We report a flexible approach to the synthesis of phenanthrene-like heterocycles through organocatalytic ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) reaction of electron-deficient 3-vinylchromones with cyanoacetamide. Addition of highly basic DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or tetramethylguanidine (TMG) at 80 °C leads to chromeno[4,3-b]pyridines in good yields, whereas Et3 N at 20 °C made it possible to obtain the less accessible pyrano[3,2-c]chromenes and their 2-imines. The synthesis proceeds in mild conditions (EtOH, 20-80 °C), is versatile and applicable for a wide scope of reactants. The obtained compounds show bright fluorescence in the range 460-595 nm with high quantum yields (up to 0.84) in various solvents (MeCN, DMSO, EtOH, H2 O).
Collapse
Affiliation(s)
- Nikita M Chernov
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| | - Roman V Shutov
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| | - Nadezhda Yu Sipkina
- Analytical Center, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| | - Maxim N Krivchun
- Organic Chemistry Department, Saint-Petersburg State Institute of Technology, Moskovsky av., 26, Saint-Petersburg, 190013, Russia
| | - Igor P Yakovlev
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st., 14, Saint-Petersburg, 197376, Russia
| |
Collapse
|
69
|
Li D, Luo Y, Onidas D, He L, Jin M, Gazeau F, Pinson J, Mangeney C. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv Colloid Interface Sci 2021; 294:102479. [PMID: 34237631 DOI: 10.1016/j.cis.2021.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) can be prepared by simple reactions and methods from a number of materials. Their small size opens up a number of applications in different fields, among which biomedicine, including: i) drug delivery, ii) biosensors, iii) bioimaging, iv) antibacterial activity. To be able to perform such tasks, NPs must be modified with a variety of functional molecules, such as drugs, targeting groups, chemical tags or antibacterial agents, and must also be prevented from aggregation. The attachment must be stable to resist during the transportation to the targeted location. Diazonium salts, which have been widely used for coupling applications and surface modification, fulfil such criteria. Moreover, they are simple to prepare and can be easily substituted with a large number of organic groups. This review describes the use of these compounds in nanomedicine with a focus on the construction of nanohybrids derived from metal, oxide and carbon-based NPs as well as viruses.
Collapse
Affiliation(s)
- Da Li
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Yun Luo
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France.
| | | | - Li He
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Ming Jin
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | | | - Jean Pinson
- Université de Paris, ITODYS, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
70
|
Dahlin A. Biochemical Sensing with Nanoplasmonic Architectures: We Know How but Do We Know Why? ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:281-297. [PMID: 33761272 DOI: 10.1146/annurev-anchem-091420-090751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here, the research field of nanoplasmonic sensors is placed under scrutiny, with focus on affinity-based detection using refractive index changes. This review describes how nanostructured plasmonic sensors can deliver unique advantages compared to the established surface plasmon resonance technique, where a planar metal surface is used. At the same time, it shows that these features are actually only useful in quite specific situations. Recent trends in the field are also discussed and some devices that claim extraordinary performance are questioned. It is argued that the most important challenges are related to limited receptor affinity and nonspecific binding rather than instrumental performance. Although some nanoplasmonic sensors may be useful in certain situations, it seems likely that conventional surface plasmon resonance will continue to dominate biomolecular interaction analysis. For detection of analytes in complex samples, plasmonics may be an important tool, but probably not in the form of direct refractometric detection.
Collapse
Affiliation(s)
- Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
| |
Collapse
|
71
|
Zhang JH, Shen Q, Zhou YG. Quantification of Tumor Protein Biomarkers from Lung Patient Serum Using Nanoimpact Electrochemistry. ACS Sens 2021; 6:2320-2329. [PMID: 34033456 DOI: 10.1021/acssensors.1c00361] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein quantification with high throughput and high sensitivity is essential in the early diagnosis and elucidation of molecular mechanisms for many diseases. Conventional approaches for protein assay often suffer from high costs, long analysis time, and insufficient sensitivity. The recently emerged nanoimpact electrochemistry (NIE), as a contrast, allows in situ detection of analytes one at a time with simplicity, fast response, high throughput, and the potential of reducing the detection limits down to the single entity level. Herein, we propose a NIE-enabled electrochemical immunoassay using silver nanoparticles (AgNPs) as labels for the detection of CYFRA21-1, a typical protein marker for lung carcinoma. This strategy is based on the measurement of the impact frequency and the charge intensity of the electrochemical oxidation of individual AgNPs before and after they are modified with anti-CYFRA21-1 and in turn immunocomplexed with CYFRA21-1. Both the frequency and intensity modes of single-nanoparticle electrochemistry correlate well with each other, resulting in a self-validated immunoassay that provides linear ranges of two orders of magnitude and a limit of detection of 0.1 ng/mL for CYFRA21-1 analysis. The proposed immunoassay also exhibits excellent specificity when challenged with other possible interfering proteins. In addition, the CYFRA21-1 content is validated by a conventional, well-known enzyme-linked immunosorbent assay and successfully quantified in a diluted healthy serum with a satisfactory recovery. Moreover, CYFRA21-1 detection in serum samples of lung cancer patients is successfully demonstrated, suggesting the feasibility of the NIE-based immunoassay in clinically relevant diagnosis. To the best of our knowledge, this is the first report to construct NIE-based electrochemical immunoassays for the specific detection of tumor protein biomarkers.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
72
|
Zhang W, Sun X, Zhou A, Li M. When Fluorescent Sensing Meets Electrochemical Amplifying: A Powerful Platform for Gene Detection with High Sensitivity and Specificity. Anal Chem 2021; 93:7781-7786. [PMID: 34019763 DOI: 10.1021/acs.analchem.1c01404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ultrasensitive and ultraselective detection of the gene requires emergency development to meet the medical demands and infectious disease control. Herein we report a versatile and scalable method based on electrochemical-chemical-cyclic amplification (EC-CA) and fluorescence detection for ultrasensitive gene sensing. The EC-CA is achieved by an electro-Fenton reaction (EFR). The hydroxyl radicals generated at EFR are trapped by terephthalic acid to form highly fluorescent 2-hydroxyterephthalic acid, which can be sensitively detected by a fluorescence spectrophotometer. The method is the first to be able to amplify the signal and reduce the noise simultaneously by using the conventional analytical methods directly. This described method can be used for reliable Fe3+ quantification in the range from 0.1 nM to 0.08 mM. The calculated limit of detection (LOD) is 0.02 nM. Then, hepatitis B virus (HBV) and p53 gene were detected by this proposed method through introducing the Fe3O4 nanoparticles into the gene hybridization system. The LODs for HBV and p53 gene even topped out at 2.6 pM and 1.7 fM, respectively. We demonstrated that the finally recorded signal was triply amplified through the EC cycle, Fe3O4 nanoparticles, and sensitive fluorescence detection. At the same time, the background signal arisen from matrix effects and readout noise was effectively suppressed. This method shows it is simple, convenient, and operational through the detection of Fe3+, HBV, and the p53 gene in blood samples, respectively. We believe our method will make a significant, near-term impact on the development of high-sensitivity methods that are versatile and scalable.
Collapse
Affiliation(s)
- Wenzhi Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.,Wannan Medical College, Department of Pharmacy, Wuhu 241002, China
| | - Xiuxiu Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Ani Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Maoguo Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
73
|
Kostiv U, Natile MM, Jirák D, Půlpánová D, Jiráková K, Vosmanská M, Horák D. PEG-Neridronate-Modified NaYF 4:Gd 3+,Yb 3+,Tm 3+/NaGdF 4 Core-Shell Upconverting Nanoparticles for Bimodal Magnetic Resonance/Optical Luminescence Imaging. ACS OMEGA 2021; 6:14420-14429. [PMID: 34124464 PMCID: PMC8190901 DOI: 10.1021/acsomega.1c01313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
Upconverting nanoparticles are attracting extensive interest as a multimodal imaging tool. In this work, we report on the synthesis and characterization of gadolinium-enriched upconverting nanoparticles for bimodal magnetic resonance and optical luminescence imaging. NaYF4:Gd3+,Yb3+,Tm3+ core upconverting nanoparticles were obtained by a thermal coprecipitation of lanthanide oleate precursors in the presence of oleic acid as a stabilizer. With the aim of improving the upconversion emission and increasing the amount of Gd3+ ions on the nanoparticle surface, a 2.5 nm NaGdF4 shell was grown by the epitaxial layer-by-layer strategy, resulting in the 26 nm core-shell nanoparticles. Both core and core-shell nanoparticles were coated with poly(ethylene glycol) (PEG)-neridronate (PEG-Ner) to have stable and well-dispersed upconverting nanoparticles in a biological medium. FTIR spectroscopy and thermogravimetric analysis indicated the presence of ∼20 wt % of PEG-Ner on the nanoparticle surface. The addition of inert NaGdF4 shell resulted in a total 26-fold enhancement of the emission under 980 nm excitation and also affected the T 1 and T 2 relaxation times. Both r 1 and r 2 relaxivities of PEG-Ner-modified nanoparticles were much higher compared to those of non-PEGylated particles, thus manifesting their potential as a diagnostic tool for magnetic resonance imaging. Together with the enhanced luminescence efficiency, upconverting nanoparticles might represent an efficient probe for bimodal in vitro and in vivo imaging of cells in regenerative medicine, drug delivery, and/or photodynamic therapy.
Collapse
Affiliation(s)
- Uliana Kostiv
- Department
of Polymer Particles, Institute of Macromolecular
Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, Prague 162 06, Czech Republic
| | - Marta Maria Natile
- Institute
of Condensed Matter Chemistry and Technologies for Energy, National
Research Council (CNR) and Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Daniel Jirák
- Radiodiagnostic
and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Denisa Půlpánová
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Klára Jiráková
- Department
of Histology and Embryology, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10, Prague 100 00, Czech Republic
| | - Magda Vosmanská
- University
of Chemistry and Technology Prague, Technická 5, Prague 6, Prague 166 28, Czech Republic
| | - Daniel Horák
- Department
of Polymer Particles, Institute of Macromolecular
Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, Prague 162 06, Czech Republic
| |
Collapse
|
74
|
Lin YT, Vermaas R, Yan J, de Jong AM, Prins MW. Click-Coupling to Electrostatically Grafted Polymers Greatly Improves the Stability of a Continuous Monitoring Sensor with Single-Molecule Resolution. ACS Sens 2021; 6:1980-1986. [PMID: 33985333 PMCID: PMC8165697 DOI: 10.1021/acssensors.1c00564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Sensing technologies
for the real-time monitoring of biomolecules
will allow studies of dynamic changes in biological systems and the
development of control strategies based on measured responses. Here,
we describe a molecular architecture and coupling process that allow
continuous measurements of low-concentration biomolecules over long
durations in a sensing technology with single-molecule resolution.
The sensor is based on measuring temporal changes of the motion of
particles upon binding and unbinding of analyte molecules. The biofunctionalization
involves covalent coupling by click chemistry to PLL-g-PEG bottlebrush polymers. The polymer is grafted to a surface by
multivalent electrostatic interactions, while the poly(ethylene glycol)
suppresses nonspecific binding of biomolecules. With this biofunctionalization
strategy, we demonstrate the continuous monitoring of single-stranded
DNA and a medically relevant small-molecule analyte (creatinine),
in sandwich and competitive assays, in buffer and in filtered blood
plasma, with picomolar, nanomolar, and micromolar analyte concentrations,
and with continuous sensor operation over 10 h.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rosan Vermaas
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Junhong Yan
- Helia BioMonitoring, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Arthur M. de Jong
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Menno W.J. Prins
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Helia BioMonitoring, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
75
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
76
|
Pořízka P, Vytisková K, Obořilová R, Pastucha M, Gábriš I, Brandmeier JC, Modlitbová P, Gorris HH, Novotný K, Skládal P, Kaiser J, Farka Z. Laser-induced breakdown spectroscopy as a readout method for immunocytochemistry with upconversion nanoparticles. Mikrochim Acta 2021; 188:147. [PMID: 33797618 DOI: 10.1007/s00604-021-04816-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/27/2021] [Indexed: 12/16/2022]
Abstract
Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.
Collapse
Affiliation(s)
- Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Karolína Vytisková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivo Gábriš
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Julian C Brandmeier
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Pavlína Modlitbová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Hans H Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Karel Novotný
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
77
|
Tong C, Shi F, Tong X, Shi S, Ali I, Guo Y. Shining natural flavonols in sensing and bioimaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
78
|
Gao PF, Lei G, Huang CZ. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal Chem 2021; 93:4707-4726. [DOI: 10.1021/acs.analchem.0c04390] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Gang Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
79
|
Liu Y, Ye H, Huynh H, Kang P, Xie C, Kahn JS, Qin Z. Single-Particle Counting Based on Digital Plasmonic Nanobubble Detection for Rapid and Ultrasensitive Diagnostics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33655274 DOI: 10.1101/2021.02.18.21252027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rapid and sensitive diagnostics of infectious diseases is an urgent and unmet need as evidenced by the COVID-19 pandemic. Here we report a novel strategy, based on DIgitAl plasMONic nanobubble Detection (DIAMOND), to address these gaps. Plasmonic nanobubbles are transient vapor bubbles generated by laser heating of plasmonic nanoparticles and allow single-particle detection. Using gold nanoparticles labels and an optofluidic setup, we demonstrate that DIAMOND achieves a compartment-free digital counting and works on homogeneous assays without separation and amplification steps. When applied to the respiratory syncytial virus diagnostics, DIAMOND is 150 times more sensitive than commercial lateral flow assays and completes measurements within 2 minutes. Our method opens new possibilities to develop single-particle digital detection methods and facilitate rapid and ultrasensitive diagnostics. One Sentence Summary Single-particle digital plasmonic nanobubble detection allows rapid and ultrasensitive detection of viruses in a one-step homogeneous assay.
Collapse
|
80
|
Liu X, Sun Y, Lin X, Pan X, Wu Z, Gai H. Digital Duplex Homogeneous Immunoassay by Counting Immunocomplex Labeled with Quantum Dots. Anal Chem 2021; 93:3089-3095. [DOI: 10.1021/acs.analchem.0c04020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Yuanyuan Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
81
|
Abstract
The ultimate goal of single-cell analyses is to obtain the biomolecular content for each cell in unicellular and multicellular organisms at different points of their life cycle under variable environmental conditions. These require an assessment of: a) the total number of cells, b) the total number of cell types, and c) the complete and quantitative single molecular detection and identification for all classes of biopolymers, and organic and inorganic compounds, in each individual cell. For proteins, glycans, lipids, and metabolites, whose sequences cannot be amplified by copying as in the case of nucleic acids, the detection limit by mass spectrometry is about 105 molecules. Therefore, proteomic, glycomic, lipidomic, and metabolomic analyses do not yet permit the assembly of the complete single-cell omes. The construction of novel nanoelectrophoretic arrays and nano in microarrays on a single 1-cm-diameter chip has shown proof of concept for a high throughput platform for parallel processing of thousands of individual cells. Combined with dynamic secondary ion mass spectrometry, with 3D scanning capability and lateral resolution of 50 nm, the sensitivity of single molecular quantification and identification for all classes of biomolecules could be reached. Further development and routine application of such technological and instrumentation solution would allow assembly of complete omes with a quantitative assessment of structural and functional cellular diversity at the molecular level.
Collapse
|
82
|
Akama K, Noji H. Multiparameter single-particle motion analysis for homogeneous digital immunoassay. Analyst 2021; 146:1303-1310. [DOI: 10.1039/d0an02056g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Digital homogeneous non-enzymatic immunosorbent assay (digital Ho-Non ELISA) is a new class of digital immunoassay. In this paper, we developed a multiparameter single-particle motion analysis method for a highly sensitive digital Ho-Non ELISA.
Collapse
Affiliation(s)
- Kenji Akama
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry
- Graduate School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
83
|
Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens Bioelectron 2020; 170:112683. [DOI: 10.1016/j.bios.2020.112683] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
|
84
|
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
85
|
Kathrada AI, Wei SC, Xu Y, Cheow, LF, Chen CH. Microfluidic compartmentalization to identify gene biomarkers of infection. BIOMICROFLUIDICS 2020; 14:061502. [PMID: 33312326 PMCID: PMC7717927 DOI: 10.1063/5.0032849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 05/20/2023]
Abstract
Infectious diseases caused by pathogens, such as SARS-COV, H7N9, severe fever with thrombocytopenia syndrome virus, and human immunodeficiency virus, have fatal outcomes with common features of severe fever and subsequent bacterial invasion progressing to multiorgan failure. Gene biomarkers are promising to distinguish specific infections from others with similar presenting symptoms for the prescription of correct therapeutics, preventing pandemics. While routine laboratory methods based on polymerase chain reaction (PCR) to measure gene biomarkers have provided highly sensitive and specific viral detection techniques over the years, they are still hampered by their precision and resource intensity precluding their point-of-care use. Recently, there has been growing interest in employing microfluidic technologies to advance current methods for infectious disease determination via gene biomarker measurements. Here, based on the requirement of infection detection, we will review three microfluidic approaches to compartmentalize gene biomarkers: (1) microwell-based PCR platforms; (2) droplet-based PCR; and (3) point-of-care devices including centrifugal chip, SlipChip, and self-powered integrated microfluidic point-of-care low-cost enabling chip. By capturing target genes in microwells with a small sample volume (∼μl), sensitivity can be enhanced. Additionally, with the advance of significant sample volume minimization (∼pl) using droplet technology, gene quantification is possible. These improvements in cost, automation, usability, and portability have thereby allowed point-of-care applications to decentralize testing platforms from laboratory-based settings to field use against infections.
Collapse
Affiliation(s)
- Ahmad Ismat Kathrada
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block 4, #04-08, Singapore 117583
| | | | - Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
| | | | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
86
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew Chem Int Ed Engl 2020; 59:10746-10773. [PMID: 31869502 PMCID: PMC7318240 DOI: 10.1002/anie.201913924] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.
Collapse
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| |
Collapse
|
87
|
Kostiv U, Farka Z, Mickert MJ, Gorris HH, Velychkivska N, Pop-Georgievski O, Pastucha M, Odstrčilíková E, Skládal P, Horák D. Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules 2020; 21:4502-4513. [PMID: 32392042 DOI: 10.1021/acs.biomac.0c00459] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) display highly beneficial photophysical features for background-free bioimaging and bioanalysis; however, they are instable in high ionic strength buffers, have no functional groups, and are nonspecifically interacting. Here, we have prepared NIR-excitable UCNPs that are long-term colloidally stable in buffered media and possess functional groups. Heterobifunctional poly(ethylene glycol) (PEG) linkers bearing neridronate and alkyne or maleimide were attached to UCNPs via a ligand exchange. Streptavidin (SA)-conjugates were prepared by click reaction of UCNP@PEG-alkyne and SA-azide. Antihuman serum albumin pAbF antibody was modified with azide groups and conjugated to UCNP@PEG-alkyne via click reaction; alternatively, the antibody, after mild reduction of its disulfide bonds, was conjugated to UCNP@PEG-maleimide. We employed these nanoconjugates as labels for an upconversion-linked immunosorbent assay. SA-based labels achieved the lowest LOD of 0.17 ng/mL for the target albumin, which was superior compared to a fluorescence immunoassay (LOD 0.59 ng/mL) or an enzyme-linked immunoassay (LOD 0.56 ng/mL).
Collapse
Affiliation(s)
- Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Matthias J Mickert
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Hans H Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Nadiia Velychkivska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eliška Odstrčilíková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|