51
|
Choi YJ, Oh SG, Singh TD, Ha JH, Kim DW, Lee SW, Jeong SY, Ahn BC, Lee J, Jeon YH. Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging. Neoplasia 2016; 18:133-41. [PMID: 26992914 PMCID: PMC4796806 DOI: 10.1016/j.neo.2016.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
Abstract
We sought to visualize the migration of tumor-associated macrophages (TAMs) to tumor lesions and to evaluate the effects of anti-inflammatory drugs on TAM-modulated tumor progression in mice with colon cancer using a multimodal optical reporter gene system. Murine macrophage Raw264.7 cells expressing an enhanced firefly luciferase (Raw/effluc) and murine colon cancer CT26 cells coexpressing Rluc and mCherry (CT26/Rluc-mCherry, CT26/RM) were established. CT26/RM tumor-bearing mice received Raw/effluc via their tail veins, and combination of bioluminescence imaging (BLI) and fluorescence imaging (FLI) was conducted for in vivo imaging of TAMs migration and tumor progression. Dexamethasone (DEX), a potent anti-inflammatory drug, was administered intraperitoneally to tumor-bearing mice following the intravenous transfer of Raw/effluc cells. The migration of TAMs and tumor growth was monitored by serial FLI and BLI. The migration of Raw/effluc cells to tumor lesions was observed at day 1, and BLI signals were still distinct at tumor lesions on day 4. Localization of BLI signals from migrated Raw/effluc cells corresponded to that of FLI signals from CT26/RM tumors. In vivo FLI of tumors demonstrated enhanced tumor growth associated with macrophage migration to tumor lesions. Treatment with DEX inhibited the influx of Raw/effluc cells to tumor lesions and abolished the enhanced tumor growth associated with macrophage migration. These findings suggest that molecular imaging approach for TAM tracking is a valuable tool for evaluating the role of TAMs in the tumor microenvironment as well as for the development of new drugs to control TAM involvement in the modulation of tumor progression.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Seul-Gi Oh
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | | | - Jeoung-Hee Ha
- Department of Pharmacology, Kyungpook National University, Daegu, Korea
| | - Dong Wook Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Sang Woo Lee
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea; Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea.
| | - Young Hyun Jeon
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea; Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
52
|
Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance. J Immunol Res 2016; 2016:8239258. [PMID: 26885535 PMCID: PMC4738713 DOI: 10.1155/2016/8239258] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases.
Collapse
|
53
|
Pathways involved in the resolution of inflammatory joint disease. Semin Immunol 2015; 27:194-9. [DOI: 10.1016/j.smim.2015.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/28/2022]
|
54
|
Doucette T, Rao G, Rao A, Shen L, Aldape K, Wei J, Dziurzynski K, Gilbert M, Heimberger AB. Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol Res 2015; 1:112-22. [PMID: 24409449 DOI: 10.1158/2326-6066.cir-13-0028] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The molecular heterogeneity of glioblastoma has been well recognized and has resulted in the generation of molecularly defined subtypes. These subtypes (classical, neural, mesenchymal, and proneural) are associated with particular signaling pathways and differential patient survival. Less understood is the correlation between these glioblastoma subtypes with immune system effector responses, immune suppression and tumor-associated and tumor-specific antigens. The role of the immune system is becoming increasingly relevant to treatment as new agents are being developed to target mediators of tumor-induced immune suppression which is well documented in glioblastoma. EXPERIMENTAL DESIGN To ascertain the association of antigen expression, immune suppression, and effector response genes within glioblastoma subtypes, we analyzed the Cancer Genome Atlas (TCGA) glioblastoma database. RESULTS We found an enrichment of genes within the mesenchymal subtype that are reflective of anti-tumor proinflammatory responses, including both adaptive and innate immunity and immune suppression. CONCLUSIONS These results indicate that distinct glioma antigens and immune genes demonstrate differential expression between glioblastoma subtypes and this may influence responses to immune therapeutic strategies in patients depending on the subtype of glioblastoma they harbor.
Collapse
Affiliation(s)
- Tiffany Doucette
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Kenneth Aldape
- Department of Neuropathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jun Wei
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Kristine Dziurzynski
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Mark Gilbert
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| |
Collapse
|
55
|
Vanessa KHQ, Julia MG, Wenwei L, Michelle ALT, Zarina ZRS, Lina LHK, Sylvie A. Absence of Annexin A1 impairs host adaptive immunity against Mycobacterium tuberculosis in vivo. Immunobiology 2014; 220:614-23. [PMID: 25533809 DOI: 10.1016/j.imbio.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
The role of Annexin A1 (ANXA1) in counter-regulating the activities of innate immune cells, such as the migration of neutrophils and monocytes, and the generation of pro-inflammatory mediators in various models of inflammatory and autoimmune diseases is well documented. However, while ANXA1 has been proposed as an important mediator of the adaptive immune response, its involvement in this respect has been less studied. Furthermore, while there have been numerous studies on the role of ANXA1 in inflammatory diseases, less has been reported on its influence in immunity against infection. A recent study reported a link between ANXA1 and tuberculosis, and proposed a model in which Mycobacterium tuberculosis exerts its virulence by manipulating the ANXA1-mediated host apoptotic response. This has prompted us to further investigate the role of ANXA1 in the pathogenesis of tuberculosis in vivo. Here, we show that ANXA1(-/-) mice are more susceptible to M. tuberculosis infection, as evidenced by a transient increase in the pulmonary bacterial burden, and exacerbated and disorganized granulomatous inflammation. These pathological manifestations correlated with an impaired ability of ANXA1(-/-) dendritic cells to activate naïve T cells, thereby supporting a role for ANXA1 in shaping the adaptive immunity against M. tuberculosis.
Collapse
Affiliation(s)
- Koh Hui Qi Vanessa
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Martínez Gómez Julia
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Lin Wenwei
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Ang Lay Teng Michelle
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Zainul Rahim Siti Zarina
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Lim Hsiu Kim Lina
- Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Alonso Sylvie
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
56
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
57
|
Kao W, Gu R, Jia Y, Wei X, Fan H, Harris J, Zhang Z, Quinn J, Morand EF, Yang YH. A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis. Br J Pharmacol 2014; 171:4087-96. [PMID: 24824742 PMCID: PMC4243981 DOI: 10.1111/bph.12768] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Annexin A1 (AnxA1) is an endogenous anti-inflammatory protein and agonist of the formyl peptide receptor 2 (FPR2). However, the potential for therapeutic FPR ligands to modify immune-mediated disease has been little explored. We investigated the effects of a synthetic FPR agonist on joint disease in the K/BxN model of rheumatoid arthritis (RA) and RA fibroblast-like synoviocytes (FLS). EXPERIMENTAL APPROACH Arthritis was induced by injection of K/BxN serum at day 0 and 2 in wild-type (WT) or AnxA1(-/-) mice and clinical and histopathological manifestations measured 8-11 days later. WT mice were given the FPR agonist compound 43 (Cpd43) (6 or 30 mg·kg(-1) i.p.) for 4 days. Effects of AnxA1 and Cpd43 on RANKL-induced osteoclastogenesis were assessed in RAW 264.7 cells and human RA FLS and macrophages. KEY RESULTS Treatment with Cpd43 before or after the onset of arthritis reduced clinical disease severity and attenuated synovial TNF-α and osteoclast-associated gene expression. Deletion of AnxA1 in mice exacerbated arthritis severity in the K/BxN model. In vitro, Cpd43 suppressed osteoclastogenesis and NFAT activity elicited by RANKL, and inhibited IL-6 secretion by mouse macrophages. In human RA joint-derived FLS and monocyte-derived macrophages, Cpd43 treatment inhibited IL-6 release, while blocking FPR2 or silencing AnxA1 increased this release. CONCLUSIONS AND IMPLICATIONS The FPR agonist Cpd43 reduced osteoclastogenesis and inflammation in a mouse model of RA and exhibited anti-inflammatory effects in relevant human cells. These data suggest that FPR ligands may represent novel therapeutic agents capable of ameliorating inflammation and bone damage in RA.
Collapse
MESH Headings
- Animals
- Annexin A1/deficiency
- Annexin A1/metabolism
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cells, Cultured
- Disease Models, Animal
- Inflammation/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenylurea Compounds/administration & dosage
- Phenylurea Compounds/chemistry
- Phenylurea Compounds/pharmacology
- Pyrazoles/administration & dosage
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Receptors, Formyl Peptide/agonists
- Receptors, Formyl Peptide/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- W Kao
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
- Department of Microbiology, Harbin Medical UniversityHarbin, China
| | - R Gu
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - Y Jia
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
- Department of Rheumatology and Immunology, Peking University People's HospitalBeijing, China
| | - Xuemin Wei
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - H Fan
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - J Harris
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - J Quinn
- Prince Henry's Institute, Monash Medical CentreClayton, Vic., Australia
- Department of Biochemistry and Molecular Biology, Monash UniversityClayton, Vic., Australia
| | - E F Morand
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| | - Y H Yang
- Centre for Inflammatory Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash UniversityClayton, Vic., Australia
| |
Collapse
|
58
|
Niimori-Kita K, Ogino K, Mikami S, Kudoh S, Koizumi D, Kudoh N, Nakamura F, Misumi M, Shimomura T, Hasegawa K, Usui F, Nagahara N, Ito T. Identification of nuclear phosphoproteins as novel tobacco markers in mouse lung tissue following short-term exposure to tobacco smoke. FEBS Open Bio 2014; 4:746-54. [PMID: 25349779 PMCID: PMC4208089 DOI: 10.1016/j.fob.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023] Open
Abstract
We analyzed nuclear phosphoprotein expression activated by tobacco smoke exposure. 253 phosphoproteins were identified in 1-day and 7-day exposure groups. Of these, 33 were significantly differentially expressed in control and exposed groups. Identified proteins were related to inflammation, response to stress and nicotine. OSF3 and spectrin β chain were identified as candidate tobacco smoke markers.
Smoking is a risk factor for lung diseases, including chronic obstructive pulmonary disease and lung cancer. However, the molecular mechanisms mediating the progression of these diseases remain unclear. Therefore, we sought to identify signaling pathways activated by tobacco-smoke exposure, by analyzing nuclear phosphoprotein expression using phosphoproteomic analysis of lung tissue from mice exposed to tobacco smoke. Sixteen mice were exposed to tobacco smoke for 1 or 7 days, and the expression of phosphorylated peptides was analyzed by mass spectrometry. A total of 253 phosphoproteins were identified, including FACT complex subunit SPT16 in the 1-day exposure group, keratin type 1 cytoskeletal 18 (K18), and adipocyte fatty acid-binding protein, in the 7-day exposure group, and peroxiredoxin-1 (OSF3) and spectrin β chain brain 1 (SPTBN1), in both groups. Semi-quantitative analysis of the identified phosphoproteins revealed that 33 proteins were significantly differentially expressed between the control and exposed groups. The identified phosphoproteins were classified according to their biological functions. We found that the identified proteins were related to inflammation, regeneration, repair, proliferation, differentiation, morphogenesis, and response to stress and nicotine. In conclusion, we identified proteins, including OSF3 and SPTBN1, as candidate tobacco smoke-exposure markers; our results provide insights into the mechanisms of tobacco smoke-induced diseases.
Collapse
Key Words
- 60s-RP, 60s ribosomal protein L10E
- AFABP, adipocyte fatty acid-binding protein
- ALDH2, aldehyde dehydrogenase, mitochondrial
- COPD, chronic obstructive pulmonary disorder
- CRP1, cysteine and glycine-rich protein 1
- ERK(1/2), extracellular signal regulated kinase 1/2
- FACTp140, FACT complex subunit SPT16
- HIP1, Huntingtin-interacting protein 1
- IL, interleukin
- JNK, c-Jun NH2-terminal kinase
- Jak2, tyrosine-protein kinase JAK2
- K18, keratin type 1 cytoskeletal 18
- K8, keratin type 2 cytoskeletal 8
- LIM, LIM/homeobox protein
- MAPK3, mitogen-activated protein kinase 3
- NF-κB, nuclear factor-kappa B
- Nuclear phosphoprotein
- OSF3, peroxiredoxin-1
- PKC-α, protein kinase C-α
- PRP19, pre-mRNA-processing factor 19
- Phosphoproteomic analysis
- ROS, reactive oxygen species
- SPTBN1, spectrin β chain brain 1
- STAT, signal transducer and activator of transcription
- Signaling pathways
- TGF-β, Transforming growth factor-β
- TIM, mitochondrial import inner membrane translocase subunit Tim9
- TNF, tumor necrosis factor
- TNFR2, tumor necrosis factor receptor 2
- TRAP1, heat shock protein 75 kDa
- Tobacco smoke exposure
- p100, serine protease P100
- pSTAT3-Tyr705, phosphorylated STAT3
Collapse
Affiliation(s)
- Kanako Niimori-Kita
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Kiyoshi Ogino
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Sayaka Mikami
- AMR Incorporated, 2-13-18, Nakane, Meguro-ku, Tokyo 152-0031, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Daikai Koizumi
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Noritaka Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Fumiko Nakamura
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Masahiro Misumi
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Tadasuke Shimomura
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Koki Hasegawa
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Fumihiko Usui
- AMR Incorporated, 2-13-18, Nakane, Meguro-ku, Tokyo 152-0031, Japan
| | - Noriyuki Nagahara
- Isotope Research Center, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| |
Collapse
|
59
|
Cheng Q, Morand E, Yang YH. Development of novel treatment strategies for inflammatory diseases-similarities and divergence between glucocorticoids and GILZ. Front Pharmacol 2014; 5:169. [PMID: 25100999 PMCID: PMC4102084 DOI: 10.3389/fphar.2014.00169] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GC) are the most commonly prescribed medications for patients with inflammatory diseases, despite their well-known adverse metabolic effects. Previously, it was understood that the anti-inflammatory effects of the GC/GC receptor (GR) complex were mediated via transrepression, whilst the adverse metabolic effects were mediated via transactivation. It has recently become clear that this “divergent actions” paradigm of GC actions is likely insufficient. It has been reported that the GC/GR-mediated transactivation also contributes to the anti-inflammatory actions of GC, via up-regulation of key anti-inflammatory proteins. One of these is glucocorticoid-induced leucine zipper (GILZ), which inhibits inflammatory responses in a number of important immune cell lineages in vitro, as well as in animal models of inflammatory diseases in vivo. This review aims to compare the GILZ and GC effects on specific cell lineages and animal models of inflammatory diseases. The fact that the actions of GILZ permit a GILZ-based gene therapy to lack GC-like adverse effects presents the potential for development of new strategies to treat patients with inflammatory diseases.
Collapse
Affiliation(s)
- Qiang Cheng
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre Clayton, VIC, Australia
| | - Eric Morand
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre Clayton, VIC, Australia
| | - Yuan Hang Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre Clayton, VIC, Australia
| |
Collapse
|
60
|
Shigemura H, Ishiguro N, Inoshima Y. Up-regulation of MUC2 mucin expression by serum amyloid A3 protein in mouse colonic epithelial cells. J Vet Med Sci 2014; 76:985-91. [PMID: 24694941 PMCID: PMC4143660 DOI: 10.1292/jvms.14-0007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Serum amyloid A (SAA) proteins
are acute-phase proteins and are classified into multiple isoforms; however, the
biological functions of each SAA isoform are not fully understood. In this study, to
clarify the roles of SAA3 in the intestine, we characterized mRNA expression in mouse
colonic epithelial CMT-93 cells treated with rotavirus, Toxoplasma,
Staphylococcus aureus, and Escherichia coli, as well
as lipopolysaccharide (LPS) and recombinant murine SAAs (rSAAs). E. coli
together with LPS, but not the other pathogens, enhanced SAA3 mRNA expression. The mRNA
expression of SAA3 by dead E. coli was higher than that by living
E. coli, and the mRNA expression by E. coli and LPS
increased in a dose-dependent manner. In contrast, mRNA expressions of SAA1 and/or SAA2
were not stimulated by any of the treatments. In comparisons of cell treatments with rSAA1
or rSAA3, rSAA3 significantly up-regulated the mRNA expression of mucin 2 (MUC2), a major
component of the mucus layer of the intestines that acts as an epithelial cell barrier
against pathogens, while MUC2 mRNA expression was not significantly increased by
E. coli and LPS. Furthermore, treatment with rSAAs intensively induced
tumor necrosis factor-α mRNA expression. These results suggest that SAA3 plays a role in
host innate immunity in the colon by up-regulating MUC2 mucin production, which builds a
physiological barrier of colonic epithelia against bacterial invasion.
Collapse
Affiliation(s)
- Hiroaki Shigemura
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | |
Collapse
|
61
|
Qin C, Buxton KD, Pepe S, Cao AH, Venardos K, Love JE, Kaye DM, Yang YH, Morand EF, Ritchie RH. Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1(2-26). Br J Pharmacol 2014; 168:238-52. [PMID: 22924634 DOI: 10.1111/j.1476-5381.2012.02176.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/19/2012] [Accepted: 07/26/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Annexin-A1 (ANX-A1) is an endogenous, glucocorticoid-regulated anti-inflammatory protein. The N-terminal-derived peptide Ac-ANX-A1(2-26) preserves cardiomyocyte viability, but the impact of ANX-A1-peptides on cardiac contractility is unknown. We now test the hypothesis that ANX-A1 preserves post-ischaemic recovery of left ventricular (LV) function. EXPERIMENTAL APPROACH Ac-ANX-A1(2-26) was administered on reperfusion, to adult rat cardiomyocytes as well as hearts isolated from rats, wild-type mice and mice deficient in endogenous ANX-A1 (ANX-A1(-/-)). Myocardial viability and recovery of LV function were determined. KEY RESULTS Ischaemia-reperfusion markedly impaired both cardiomyocyte viability and recovery of LV function by 60%. Treatment with exogenous Ac-ANX-A1(2-26) at the onset of reperfusion prevented cardiomyocyte injury and significantly improved recovery of LV function, in both intact rat and wild-type mouse hearts. Ac-ANX-A1(2-26) cardioprotection was abolished by either formyl peptide receptor (FPR)-nonselective or FPR1-selective antagonists, Boc2 and cyclosporin H, but was relatively insensitive to the FPR2-selective antagonist QuinC7. ANX-A1-induced cardioprotection was associated with increased phosphorylation of the cell survival kinase Akt. ANX-A1(-/-) exaggerated impairment of post-ischaemic recovery of LV function, in addition to selective LV FPR1 down-regulation. CONCLUSIONS AND IMPLICATIONS These data represent the first evidence that ANX-A1 affects myocardial function. Our findings suggest ANX-A1 is an endogenous regulator of post-ischaemic recovery of LV function. Furthermore, the ANX-A1-derived peptide Ac-ANX-A1(2-26) on reperfusion rescues LV function, probably via activation of FPR1. ANX-A1-based therapies may thus represent a novel clinical approach for the prevention and treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Spies CM, Wiebe E, Tu J, Li A, Gaber T, Huscher D, Seibel MJ, Zhou H, Buttgereit F. Acute murine antigen-induced arthritis is not affected by disruption of osteoblastic glucocorticoid signalling. BMC Musculoskelet Disord 2014; 15:31. [PMID: 24491163 PMCID: PMC3922092 DOI: 10.1186/1471-2474-15-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/29/2014] [Indexed: 01/04/2023] Open
Abstract
Background The role of endogenous glucocorticoids (GC) in the initiation and maintenance of rheumatoid arthritis (RA) remains unclear. We demonstrated previously that disruption of GC signalling in osteoblasts results in a profound attenuation of K/BxN serum-induced arthritis, a mouse model of RA. To determine whether or not the modulation of the inflammatory response by osteoblasts involves T cells, we studied the effects of disrupted osteoblastic GC-signalling in the T cell-dependent model of antigen-induced arthritis (AIA). Methods Acute arthritis was induced in pre-immunised 11-week-old male 11β-hydroxysteroid dehydrogenase type 2 transgenic (tg) mice and their wild-type (WT) littermates by intra-articular injection of methylated bovine serum albumine (mBSA) into one knee joint. Knee diameter was measured every 1–2 days until euthanasia on day 14 post injection. In a separate experiment, arthritis was maintained for 28 days by weekly reinjections of mBSA. Tissues were analysed by histology, histomorphometry and microfocal-computed tomography. Serum cytokines levels were determined by multiplex suspension array. Results In both short and long term experiments, arthritis developed in tg and WT mice with no significant difference between both groups. Histological indices of inflammation, cartilage damage and bone erosion were similar in tg and WT mice. Bone volume and turnover at the contralateral tibia and systemic cytokine levels were not different. Conclusions Acute murine AIA is not affected by a disruption in osteoblastic GC signalling. These data indicate that osteoblasts do not modulate the T cell-mediated inflammatory response via a GC-dependent pathway.
Collapse
Affiliation(s)
- Cornelia M Spies
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Baschant U, Culemann S, Tuckermann J. Molecular determinants of glucocorticoid actions in inflammatory joint diseases. Mol Cell Endocrinol 2013; 380:108-18. [PMID: 23769823 DOI: 10.1016/j.mce.2013.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 12/31/2022]
Abstract
Since their discovery in 1948, glucocorticoids have been widely used clinically to treat inflammatory disorders like rheumatoid arthritis. However, their usefulness, especially in rheumatoid arthritis therapy, is hampered by severe side effects on bone leading to glucocorticoid-induced osteoporosis. The molecular and cellular mechanisms mediating the beneficial and adverse effects remain poorly understood. Nevertheless, advanced molecular biological analyses and in vivo approaches using conditional mutant mice have helped to unravel in part the underlying mechanisms of immunosuppression and side effects of glucocorticoid therapy in arthritis, thereby contributing to an improved understanding of these therapeutically important hormones.
Collapse
Affiliation(s)
- Ulrike Baschant
- Institute of General Zoology and Endocrinology, University of Ulm, Zentrum für Biomedizinische Forschung, Helmholtzstraße 8/1, D-89081 Ulm, Germany
| | | | | |
Collapse
|
64
|
Sun Y, Wang Y, Li JH, Zhu SH, Tang HT, Xia ZF. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages. Immunology 2013; 140:250-8. [PMID: 23777345 DOI: 10.1111/imm.12135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 02/04/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC.
Collapse
Affiliation(s)
- Yu Sun
- Burns Institute of Chinese PLA and Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
65
|
Sena A, Grishina I, Thai A, Goulart L, Macal M, Fenton A, Li J, Prindiville T, Oliani SM, Dandekar S, Goulart L, Sankaran-Walters S. Dysregulation of anti-inflammatory annexin A1 expression in progressive Crohns Disease. PLoS One 2013; 8:e76969. [PMID: 24130820 PMCID: PMC3794972 DOI: 10.1371/journal.pone.0076969] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Background Development of inflammatory bowel disease (IBD) involves the interplay of environmental and genetic factors with the host immune system. Mechanisms contributing to immune dysregulation in IBD are not fully defined. Development of novel therapeutic strategies is focused on controlling aberrant immune response in IBD. Current IBD therapy utilizes a combination of immunomodulators and biologics to suppress pro-inflammatory effectors of IBD. However, the role of immunomodulatory factors such as annexin A1 (ANXA1) is not well understood. The goal of this study was to examine the association between ANXA1 and IBD, and the effects of anti-TNF-α, Infliximab (IFX), therapy on ANXA1 expression. Methods ANXA1 and TNF-α transcript levels in PBMC were measured by RT PCR. Clinical follow up included the administration of serial ibdQs. ANXA1 expression in the gut mucosa was measured by IHC. Plasma ANXA1 levels were measured by ELISA. Results We found that the reduction in ANXA1 protein levels in plasma coincided with a decrease in the ANXA1 mRNA expression in peripheral blood of IBD patients. ANXA1 expression is upregulated during IFX therapy in patients with a successful intervention but not in clinical non-responders. The IFX therapy also modified the cellular immune activation in the peripheral blood of IBD patients. Decreased expression of ANXA1 was detected in the colonic mucosa of IBD patients with incomplete resolution of inflammation during continuous therapy, which correlated with increased levels of TNF-α transcripts. Gut mucosal epithelial barrier disruption was evident by increased plasma bacterial 16S levels. Conclusion Loss of ANXA1 expression may support inflammation during IBD and can serve as a biomarker of disease progression. Changes in ANXA1 levels may be predictive of therapeutic efficacy.
Collapse
Affiliation(s)
- Angela Sena
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Nanobiotechnology Laboratory, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Irina Grishina
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Anne Thai
- UCDHS: Division of Hepatology and Gastroenterology, University of California Davis, Davis, California, United States of America
| | - Larissa Goulart
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Monica Macal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Anne Fenton
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Jay Li
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Thomas Prindiville
- UCDHS: Division of Hepatology and Gastroenterology, University of California Davis, Davis, California, United States of America
| | - Sonia Maria Oliani
- Department of Biology, Sao Paulo State University, UNESP, Sao José do Rio Preto, SP, Brazil
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Luiz Goulart
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Nanobiotechnology Laboratory, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
66
|
Bist P, Shu S, Lee H, Arora S, Nair S, Lim JY, Dayalan J, Gasser S, Biswas SK, Fairhurst AM, Lim LHK. Annexin-A1 regulates TLR-mediated IFN-β production through an interaction with TANK-binding kinase 1. THE JOURNAL OF IMMUNOLOGY 2013; 191:4375-82. [PMID: 24048896 DOI: 10.4049/jimmunol.1301504] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TLRs play a pivotal role in the recognition of bacteria and viruses. Members of the family recognize specific pathogen sequences to trigger both MyD88 and TRIF-dependent pathways to stimulate a plethora of cells. Aberrant activation of these pathways is known to play a critical role in the development of autoimmunity and cancer. However, how these pathways are entirely regulated is not fully understood. In these studies, we have identified Annexin-A1 (ANXA1) as a novel regulator of TLR-induced IFN-β and CXCL10 production. We demonstrate that in the absence of ANXA1, mice produce significantly less IFN-β and CXCL10, and macrophages and plasmacytoid dendritic cells have a deficiency in activation following polyinosinic:polycytidylic acid administration in vivo. Furthermore, a deficiency in activation is observed in macrophages after LPS and polyinosinic:polycytidylic acid in vitro. In keeping with these findings, overexpression of ANXA1 resulted in enhanced IFN-β and IFN-stimulated responsive element promoter activity, whereas silencing of ANXA1 impaired TLR3- and TLR4-induced IFN-β and IFN-stimulated responsive element activation. In addition, we show that the C terminus of ANXA1 directly associates with TANK-binding kinase 1 to regulate IFN regulatory factor 3 translocation and phosphorylation. Our findings demonstrate that ANXA1 plays an important role in TLR activation, leading to an augmentation in the type 1 IFN antiviral cytokine response.
Collapse
Affiliation(s)
- Pradeep Bist
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Yang YH, Morand E, Leech M. Annexin A1: potential for glucocorticoid sparing in RA. Nat Rev Rheumatol 2013; 9:595-603. [PMID: 23958797 DOI: 10.1038/nrrheum.2013.126] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids have broad-ranging and powerful anti-inflammatory and immunomodulatory effects. Unsurprisingly, therefore, glucocorticoids are widely and persistently used to treat a large number of inflammatory diseases, including rheumatoid arthritis (RA), despite the well-described adverse effects of these drugs. Annexin A1 is a glucocorticoid-induced molecule that is known to replicate many of the described anti-inflammatory effects of glucocorticoids. In addition to the well-documented roles of this protein in neutrophil function, emerging evidence suggests that annexin A1 is involved in the modulation of T-cell function and the adaptive immune responses relevant to RA. Interest in annexin A1 was renewed after the delineation of the receptors for this protein. This breakthrough also led to advances in our understanding of anti-inflammatory annexin A1 mimetic peptides and agonistic compounds targeting these receptors, particularly those specific for the receptor N-formyl peptide receptor 2 (FPR2). Herein, we review the current knowledge of the biological activities of annexin A1 and their relevance to RA pathogenesis. We also discuss the potential of annexin A1 mimics and strategies aimed at potentiating annexin A1 signalling to become viable approaches to minimizing glucocorticoid use in RA and other inflammatory disorders.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Clayton, VIC 3168, Australia
| | | | | |
Collapse
|
68
|
Targeting neutrophil apoptosis for enhancing the resolution of inflammation. Cells 2013; 2:330-48. [PMID: 24709704 PMCID: PMC3972676 DOI: 10.3390/cells2020330] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/25/2013] [Accepted: 05/14/2013] [Indexed: 12/25/2022] Open
Abstract
Resolution of acute inflammation is an active process that requires inhibition of further leukocyte recruitment and removal of leukocytes from inflamed sites. Emigrated neutrophils undergo apoptosis before being removed by scavenger macrophages. Recent studies using a variety of gene knockout, transgenic and pharmacological strategies in diverse models of inflammation established neutrophil apoptosis as a critical control point in resolving inflammation. Analysis of death mechanisms revealed distinct features in executing the death program in neutrophils, which can be exploited as targets for controlling the lifespan of neutrophils. Indeed, anti-inflammatory and pro-resolution lipid mediators derived from essential fatty acids, such as lipoxin A4 and resolvin E1, autacoids and proteins, such as annexin A1 and TRAIL, and cyclin-dependent kinase inhibitors, can enhance the resolution of inflammation through induction of neutrophil apoptosis and promoting their removal by efferocytosis. In this review, we discuss recent advances in understanding the molecular basis of these actions, highlighting the potential of therapeutic induction of neutrophil apoptosis for dampening neutrophil-mediated tissue injury and inflammation underlying a variety of diseases.
Collapse
|
69
|
Ngo D, Beaulieu E, Gu R, Leaney A, Santos L, Fan H, Yang Y, Kao W, Xu J, Escriou V, Loiler S, Vervoordeldonk MJ, Morand EF. Divergent Effects of Endogenous and Exogenous Glucocorticoid-Induced Leucine Zipper in Animal Models of Inflammation and Arthritis. ACTA ACUST UNITED AC 2013; 65:1203-12. [DOI: 10.1002/art.37858] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 01/03/2013] [Indexed: 12/26/2022]
|
70
|
Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 2013; 139:189-212. [PMID: 23583354 DOI: 10.1016/j.pharmthera.2013.04.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is a beneficial host reaction to tissue damage and has the essential primary purpose of restoring tissue homeostasis. Inflammation plays a major role in containing and resolving infection and may also occur under sterile conditions. The cardinal signs of inflammation dolor, calor, tumor and rubor are intrinsically associated with events including vasodilatation, edema and leukocyte trafficking into the site of inflammation. If uncontrolled or unresolved, inflammation itself can lead to further tissue damage and give rise to chronic inflammatory diseases and autoimmunity with eventual loss of organ function. It is now evident that the resolution of inflammation is an active continuous process that occurs during an acute inflammatory episode. Successful resolution requires activation of endogenous programs with switch from production of pro-inflammatory towards pro-resolving molecules, such as specific lipid mediators and annexin A1, and the non-phlogistic elimination of granulocytes by apoptosis with subsequent removal by surrounding macrophages. These processes ensure rapid restoration of tissue homeostasis. Here, we review recent advances in the understanding of resolution of inflammation, highlighting the pharmacological strategies that may interfere with the molecular pathways which control leukocyte survival and clearance. Such strategies have proved beneficial in several pre-clinical models of inflammatory diseases, suggesting that pharmacological modulation of the resolution process may be useful for the treatment of chronic inflammatory diseases in humans.
Collapse
|
71
|
Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 2013; 154:993-1007. [PMID: 23384835 DOI: 10.1210/en.2012-2045] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.
Collapse
Affiliation(s)
- Sofie Vandevyver
- VIB-Department for Molecular Biomedical Research /Ugent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | | | | | | |
Collapse
|
72
|
Jia Y, Morand EF, Song W, Cheng Q, Stewart A, Yang YH. Regulation of lung fibroblast activation by annexin A1. J Cell Physiol 2013; 228:476-84. [PMID: 22777765 DOI: 10.1002/jcp.24156] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Annexin-A1 (AnxA1) is a glucocorticoid-induced protein with multiple actions in the regulation of inflammatory cell activation. The contribution of AnxA1 to human cell biology is not well understood. We investigated the contribution of AnxA1 and its receptor, formyl-peptide receptor 2 (FPR2), to the regulation of inflammatory responses in human normal lung fibroblasts (NLF). Silencing constitutive AnxA1 expression in NLF using small interfering RNA (siRNA) was associated with moderate but significant increases in tumor necrosis factor (TNF)-induced proliferation and interleukin (IL)-6 production, accompanied by reduction of ERK and NF-κB activity. AnxA1 regulation of ERK and NF-κB activation was associated with effects on proliferation. Blocking FPR2 using the specific antagonist WRW4 mimicked the effects of AnxA1 silencing on TNF-induced proliferation, IL-6, ERK, and NF-κB activation. AnxA1 silencing also impaired inhibitory effects of glucocorticoid on IL-6 production and on the expression of glucocorticoid-induced leucine zipper (GILZ), but blocking FPR2 failed to mimic these effects of AnxA1 silencing. These data suggest that AnxA1 regulates TNF-induced proliferation and inflammatory responses in lung fibroblasts, via effects on the ERK and NF-κB pathways, which depend on FPR2. AnxA1 also mediates effects of glucocorticoids and GILZ expression, but these effects appear independent of FPR2. These findings suggest that mimicking AnxA1 actions might have therapeutic potential in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Yuan Jia
- Centre for Inflammatory Diseases, Southern Clinical School, Monash University Faculty of Medicine Nursing and Health Sciences, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
73
|
Aquino-Vega MY, Rodríguez-Páez L, Arce-Paredes P, Hernández-Chávez VG, Becerril-Villanueva E, Rojas-Espinosa O. The effect of alpha asarone, olive oil, and dexamethasone on collagen-induced arthritis (CIA) in the mouse. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/mri.2013.21002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Yang YH, Song W, Deane JA, Kao W, Ooi JD, Ngo D, Kitching AR, Morand EF, Hickey MJ. Deficiency of annexin A1 in CD4+ T cells exacerbates T cell-dependent inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 190:997-1007. [PMID: 23267026 DOI: 10.4049/jimmunol.1202236] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Annexin A1 (AnxA1) is recognized as an endogenous anti-inflammatory molecule. However, its effects on the adaptive immune response and, in particular, on T cells remain unclear. In this study, we investigated the actions of AnxA1 in three distinct models of T cell-mediated inflammation. In contact hypersensitivity, collagen-induced arthritis, and inflammation induced by OT-II TCR transgenic T cells responding to OVA, AnxA1 deficiency significantly increased Ag-induced T cell proliferation and the resultant level of inflammation. In the contact hypersensitivity model, this was associated with increased adhesion of CD4(+) T cells, CD8(+) T cells, and neutrophils in the dermal microvasculature, as well as increased T cell expression of RORγt and IL-17A. In collagen-induced arthritis, deficiency of endogenous AnxA1 increased susceptibility to arthritis and Ag-specific T cell activation. Deficiency of AnxA1 also increased OVA-induced cutaneous delayed-type hypersensitivity and IFN-γ and IL-17 release. Transfer experiments using CD4(+) T cells from AnxA1(-/-) mice demonstrated that the absence of AnxA1 solely in T cells resulted in increased inflammatory responses in wild-type recipients. Similarly, experiments using AnxA1(-/-) OT-II CD4(+) T cells demonstrated that the absence of AnxA1 in T cells was sufficient to induce increased Ag-specific CD4(+) T cell proliferation in vivo, augment T cell production of IFN-γ, IL-17, TNF, and IL-6, and increase Akt, ERK, and p38 activation. Together, these findings indicate that T cell-expressed AnxA1 functions to attenuate T cell-driven inflammatory responses via T cell-intrinsic effects on intracellular signaling, proliferation, and Th1/Th17 cytokine release.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Neish AS, Nusrat A. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2012; 123:443-54. [PMID: 23241962 DOI: 10.1172/jci65831] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 01/05/2023] Open
Abstract
N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.
Collapse
Affiliation(s)
- Giovanna Leoni
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Gavins FNE, Hickey MJ. Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol 2012; 3:354. [PMID: 23230437 PMCID: PMC3515881 DOI: 10.3389/fimmu.2012.00354] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022] Open
Abstract
Inflammation is the body’s way of defending itself against noxious stimuli and pathogens. Under normal circumstances, the body is able to eliminate the insult and subsequently promote the resolution of inflammation and the repair of damaged tissues. The concept of homeostasis is one that not only requires a fine balance between both pro-inflammatory mediators and pro-resolving/anti-inflammatory mediators, but also that this balance occurs in a time and space-specific manner. This review examines annexin A1, an anti-inflammatory protein that, when used as an exogenous therapeutic, has been shown to be very effective in limiting inflammation in a diverse range of experimental models, including myocardial ischemia/reperfusion injury, arthritis, stroke, multiple sclerosis, and sepsis. Notably, this glucocorticoid-inducible protein, along with another anti-inflammatory mediator, lipoxin A4, is starting to help explain and shape our understanding of the resolution phase of inflammation. In so doing, these molecules are carving the way for innovative drug discovery, based on the stimulation of endogenous pro-resolving pathways.
Collapse
Affiliation(s)
- Felicity N E Gavins
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London London, UK
| | | |
Collapse
|
77
|
Patel HB, Kornerup KN, Sampaio ALF, D'Acquisto F, Seed MP, Girol AP, Gray M, Pitzalis C, Oliani SM, Perretti M. The impact of endogenous annexin A1 on glucocorticoid control of inflammatory arthritis. Ann Rheum Dis 2012; 71:1872-80. [PMID: 22562975 PMCID: PMC3440300 DOI: 10.1136/annrheumdis-2011-201180] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To establish the role and effect of glucocorticoids and the endogenous annexin A1 (AnxA1) pathway in inflammatory arthritis. METHODS Ankle joint mRNA and protein expression of AnxA1 and its receptors were analysed in naive and arthritic mice by real-time PCR and immunohistochemistry. Inflammatory arthritis was induced with the K/BxN arthritogenic serum in AnxA1(+/+) and AnxA1(-/-) mice; in some experiments, animals were treated with dexamethasone (Dex) or with human recombinant AnxA1 or a protease-resistant mutant (termed SuperAnxA1). Readouts were arthritic score, disease incidence, paw oedema and histopathology, together with pro-inflammatory gene expression. RESULTS All elements of the AnxA1 pathway could be detected in naive joints, with augmentation during ongoing disease, due to the infiltration of immune cells. No difference in arthritis intensity of profile could be observed between AnxA1(+/+) and AnxA1(-/-) mice. Treatment of mice with Dex (10 µg intraperitoneally daily from day 2) afforded potent antiarthritic effects highly attenuated in the knockouts: macroscopic changes were mirrored by histopathological findings and pro-inflammatory gene (eg, Nos2) expression. Presence of proteinase 3 mRNA in the arthritic joints led the authors to test AnxA1 and the mutant SuperAnxA1 (1 µg intraperitoneally daily in both cases from day 2), with the latter one being able to accelerate the resolving phase of the disease. CONCLUSION AnxA1 is an endogenous determinant for the therapeutic efficacy of Dex in inflammatory arthritis. Such an effect can be partially mimicked by application of SuperAnxA1 which may represent the starting point for novel antiarthritic therapeutic strategies.
Collapse
Affiliation(s)
- Hetal B Patel
- William Harvey Research Institute, Barts and The London School of Medicine, London UK
| | - Kristin N Kornerup
- William Harvey Research Institute, Barts and The London School of Medicine, London UK
| | - Andre' LF Sampaio
- William Harvey Research Institute, Barts and The London School of Medicine, London UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine, London UK
| | - Michael P Seed
- William Harvey Research Institute, Barts and The London School of Medicine, London UK
| | - Ana Paula Girol
- Department of Biology; Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University, São José do Rio Preto, Brazil
| | - Mohini Gray
- Medical Research Council Centre for Inflammation, University of Edinburgh, Edinburgh, UK Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine, London UK
| | - Sonia M Oliani
- Department of Biology; Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University, São José do Rio Preto, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, London UK
| |
Collapse
|
78
|
Abstract
Glucocorticoids have potent anti-inflammatory effects and have been used to treat patients with rheumatoid arthritis for more than 60 years. However, severe adverse effects of glucocorticoid treatment, including loss of bone mass and increased risk of fractures, are common. Data from studies of glucocorticoid-mediated gene regulation, which utilized conditional knockout mice in animal models of arthritis or glucocorticoid-induced osteoporosis, have substantially increased our understanding of the mechanisms by which glucocorticoids act via the glucocorticoid receptor. Following glucocorticoid binding, the receptor regulates gene expression either by interacting with DNA-bound transcription factors as a monomer or by binding directly to DNA as a dimer. In contrast to the old hypothesis that transrepression mechanisms involving monomeric glucocorticoid receptor actions were responsible for the anti-inflammatory effects of glucocorticoids, whereas dimeric glucocorticoid receptor binding resulted in adverse effects, data from animal models have shown that the anti-inflammatory and adverse effects of glucocorticoids are mediated by both monomeric and dimeric glucocorticoid receptor binding. This improved knowledge of the molecular mechanisms that underlie the beneficial and adverse effects of glucocorticoid therapy might lead to the development of rationales for novel glucocorticoid receptor ligands that could potentially have anti-inflammatory efficacy without adverse effects on bone.
Collapse
|
79
|
Tsai WH, Chien HY, Shih CH, Lai SL, Li IT, Hsu SC, Kou YR, Hsu HC. Annexin A1 mediates the anti-inflammatory effects during the granulocytic differentiation process in all-trans retinoic acid-treated acute promyelocytic leukemic cells. J Cell Physiol 2012; 227:3661-9. [DOI: 10.1002/jcp.24073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
80
|
Effect of Cardiopulmonary Bypass on Annexin A1 Expression in Peripheral Blood Mononuclear Cells of Children with Congenital Heart Disease. J Med Biochem 2012. [DOI: 10.2478/v10011-011-0054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effect of Cardiopulmonary Bypass on Annexin A1 Expression in Peripheral Blood Mononuclear Cells of Children with Congenital Heart DiseaseThis study aimed to investigate the effect of cardiopulmonary bypass (CPB) on Annexin A1 expression in the peripheral blood mononuclear cells (PBMCs) of children with congenital heart disease (CHD). A total of 30 children receiving CPB for interventricular septal defect were included. Peripheral blood was collected before and after CPB. PBMCs were collected by density gradient centrifugation. Protein extraction was performed by lysis and subjected to 2D-QUANT for protein quantitation. Isoelectric focusing electrophoresis (IEF) was carried out followed by gel image analysis. Protein spots with a difference in expression of >1.5 fold were collected as candidate proteins which were subjected to mass spectrometry for the identification of differentially expressed proteins. Western blot assay was employed to confirm the expressions of target proteins. Peripheral blood collected at two time points was subjected to two-dimensional electrophoresis, and a total of 12 differentially expressed proteins were identified. Of them, 5 proteins had decreased expression before CPB (T0) but their expressions increased after CPB (T1); the remaining 7 proteins had increased expressions before CPB but their expressions reduced after CPB. One of these differentially expressed proteins was Annexin A1. Western blot assay confirmed that Annexin A1 expression began to increase at 0.5 h after CPB, and the increase of Annexin A1 was more obvious after CPB. Our findings primarily indicate the potential mechanism underlying the role of PBMC in inflammatory response following CPB, and provide a target for the prevention and control of post-CPB systemic inflammatory response syndrome (SIRS).
Collapse
|
81
|
Kwon JH, Lee JH, Kim KS, Chung YW, Kim IY. Regulation of cytosolic phospholipase A2 phosphorylation by proteolytic cleavage of annexin A1 in activated mast cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5665-73. [PMID: 22539796 DOI: 10.4049/jimmunol.1102306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Annexin A1 (ANXA1) is cleaved at the N terminal in some activated cells, such as macrophages, neutrophils, and epithelial cells. We previously observed that ANXA1 was proteolytically cleaved in lung extracts prepared from a murine OVA-induced asthma model. However, the cleavage and regulatory mechanisms of ANXA1 in the allergic response remain unclear. In this study, we found that ANXA1 was cleaved in both Ag-induced activated rat basophilic leukemia 2H3 (RBL-2H3) cells and bone marrow-derived mast cells. This cleavage event was inhibited when intracellular Ca(2+) signaling was blocked. ANXA1-knockdown RBL-2H3 cells produced a greater amount of eicosanoids with simultaneous upregulation of cytosolic phospholipase A(2) (cPLA(2)) activity. However, there were no changes in degranulation activity or cytokine production in the knockdown cells. We also found that cPLA(2) interacted with either full-length or cleaved ANXA1 in activated mast cells. cPLA(2) mainly interacted with full-length ANXA1 in the cytosol and cleaved ANXA1 in the membrane fraction. In addition, introduction of a cleavage-resistant ANXA1 mutant had inhibitory effects on both the phosphorylation of cPLA(2) and release of eicosanoids during the activation of RBL-2H3 cells and bone marrow-derived mast cells. These data suggest that cleavage of ANXA1 causes proinflammatory reactions by increasing the phosphorylation of cPLA(2) and production of eicosanoids during mast-cell activation.
Collapse
Affiliation(s)
- Joon Hyun Kwon
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
82
|
Vago JP, Nogueira CRC, Tavares LP, Soriani FM, Lopes F, Russo RC, Pinho V, Teixeira MM, Sousa LP. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J Leukoc Biol 2012; 92:249-58. [PMID: 22493082 DOI: 10.1189/jlb.0112008] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed at assessing whether AnxA1, a downstream mediator for the anti-inflammatory effects of GCs, could affect the fate of immune cells in tissue exudates, using LPS-induced pleurisy in BALB/c mice. AnxA1 protein expression in exudates was increased during natural resolution, as seen at 48-72 h post-LPS, an effect augmented by treatment with GC and associated with marked presence of apoptotic neutrophils in the pleural exudates. The functional relevance of AnxA1 was determined using a neutralizing antibody or a nonspecific antagonist at FPR/ALXRs: either treatment inhibited both spontaneous and GC-induced resolution of inflammation. Injection of Ac2-26 (100 μg, given 4 h into the LPS response), an AnxA1-active N-terminal peptide, promoted active resolution and augmented the extent of neutrophil apoptosis. Such an effect was prevented by the pan-caspase inhibitor zVAD-fmk. Mechanistically, resolution of neutrophilic inflammation was linked to cell apoptosis with activation of Bax and caspase-3 and inhibition of survival pathways Mcl-1, ERK1/2, and NF-κB. These novel in vivo data, using a dynamic model of acute inflammation, provide evidence that AnxA1 is a mediator of natural and GC-induced resolution of inflammation with profound effects on neutrophil apoptosis.
Collapse
Affiliation(s)
- Juliana P Vago
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Dalli J, Montero-Melendez T, McArthur S, Perretti M. Annexin A1 N-terminal derived Peptide ac2-26 exerts chemokinetic effects on human neutrophils. Front Pharmacol 2012; 3:28. [PMID: 22403546 PMCID: PMC3288723 DOI: 10.3389/fphar.2012.00028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/13/2012] [Indexed: 01/19/2023] Open
Abstract
It is postulated that peptides derived from the N-terminal region of Annexin A1, a glucocorticoid-regulated 37-kDa protein, could act as biomimetics of the parent protein. However, recent evidence, amongst which the ability to interact with distinct receptors other then that described for Annexin A1, suggest that these peptides might fulfill other functions at variance to those reported for the parent protein. Here we tested the ability of peptide Ac2-26 to induce chemotaxis of human neutrophils, showing that this peptide can elicit responses comparable to those produced by the canonical activator formyl-Met-Leu-Phe (or FMLP). However, whilst disruption of the chemical gradient abolished the FMLP response, addition of peptide Ac2-26 in the top well of the chemotaxis chamber did not affect (10 μM) or augmented (at 30 μM) the neutrophil locomotion to the bottom well, as elicited by 10 μM peptide Ac2-26. Intriguingly, the sole addition of peptide Ac2-26 in the top wells produced a marked migration of neutrophils. A similar behavior was observed when human primary monocytes were used. Thus, peptide Ac2-26 is a genuine chemokinetic agent toward human blood leukocytes. Neutralization strategies indicated that engagement of either the GPCR termed FPR1 or its cognate receptor FPR2/ALX was sufficient to sustain peptide Ac2-26 induced neutrophil migration. Similarly, application of pharmacological inhibitors showed that cell locomotion to peptide Ac2-26 was mediated primarily by the ERK, but not the JNK and p38 pathways. In conclusion, we report here novel in vitro properties for peptide Ac2-26, promoting neutrophil and monocyte chemokinesis; a process that may contribute to accelerate the resolution phase of inflammation. We postulate that the generation of Annexin A1 N-terminal peptides at the site of inflammation may expedite the egress of migrated leukocytes thus promoting the return to homeostasis.
Collapse
Affiliation(s)
- Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London London, UK
| | | | | | | |
Collapse
|
84
|
Tang J, Chen X, Tu W, Guo Y, Zhao Z, Xue Q, Lin C, Xiao J, Sun X, Tao T, Gu M, Liu Y. Propofol inhibits the activation of p38 through up-regulating the expression of annexin A1 to exert its anti-inflammation effect. PLoS One 2011; 6:e27890. [PMID: 22164217 PMCID: PMC3229486 DOI: 10.1371/journal.pone.0027890] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/27/2011] [Indexed: 11/30/2022] Open
Abstract
Inflammatory response is a kind of nonspecific immune response, with the central link of vascular response, which is mainly manifested by changes in neutrophils and vascular endothelial cells. In recent years, the in vivo and in vitro role of intravenous anesthetic propofol in inhibiting inflammatory response has been attracting more and more attention, but the anti-inflammatory mechanisms of propofol for mononuclear cells still remain undefined. In this study, proteomics analysis was applied to investigate protein expression profile changes in serum mononuclear cells following intervention of rats with endotoxemia using propofol. After two-dimensional electrophoresis and mass spectrometric identification, it has been found that the protein Annexin A1 was up-regulated in the propofol intervention group. Annexin A1 is a glucocorticoid-dependent anti-inflammatory protein. After detection using ELISA and Western blot assays, it has also been found that propofol can not only promote the expression of Annexin A1, but also inhibit the phosphorylation level of p38 and release of inflammatory factors (IL-1β, IL-6 and TNF-α) in rats with endotoxemia. In order to further determine the role of up-regulated expression of Annexin A1 in anti-inflammation of propofol, this gene was silenced in vitro in human THP-1 cells, to detect the phosphorylation status of p38 and release of inflammatory factors. The results show that Annexin A1 can negatively regulate phosphorylation of p38 and release of IL-1β, IL-6 and TNF-α in THP-1 cells following propofol intervention and lipopolysaccharide (LPS) stimulation. Our results clearly indicate that propofol can up-regulate Annexin A1 to inhibit the phosphorylation level of p38 and release of IL-1β, IL-6 and TNF-α, so as to inhibit inflammatory response. Therefore, it can be speculated that Annexin A1 might be the key signaling protein in the in vivo and in vitro anti-inflammatory mechanisms of propofol.
Collapse
Affiliation(s)
- Jing Tang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xi Chen
- Department of Anesthesia, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, People's Republic of China
| | - Weifeng Tu
- Department of Anesthesia, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, People's Republic of China
| | - Yuanbo Guo
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhenlong Zhao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiong Xue
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunshui Lin
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jinfang Xiao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Tao Tao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- * E-mail: (MG); (TT); (YL)
| | - Miaoning Gu
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- * E-mail: (MG); (TT); (YL)
| | - Youtan Liu
- Department of Anesthesia, Shenzhen Hospital, The University of Hong Kong, Shenzhen, People's Republic of China
- * E-mail: (MG); (TT); (YL)
| |
Collapse
|
85
|
Landi C, Bargagli E, Magi B, Prasse A, Muller-Quernheim J, Bini L, Rottoli P. Proteome analysis of bronchoalveolar lavage in pulmonary langerhans cell histiocytosis. J Clin Bioinforma 2011; 1:31. [PMID: 22074767 PMCID: PMC3240815 DOI: 10.1186/2043-9113-1-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/10/2011] [Indexed: 12/30/2022] Open
Abstract
Background Pulmonary Langerhans-cell histiocytosis (PLCH) is a rare interstitial lung disease characterized by clusters of Langerhans cells, organized in granulomas, in the walls of distal bronchioles. It is a diffuse lung disease related to tobacco smoking but otherwise of unknown etiopathogenesis. Methods In this study we used a proteomic approach to analyze BAL protein composition of patients with PLCH and of healthy smoker and non-smoker controls to obtain insights into the pathogenetic mechanisms of the disease, to study the effect of cigarette smoking on susceptibility to PLCH and to identify potential new biomarkers. Results Two-dimensional electrophoresis and image analysis revealed proteins that were differently expressed (quantitatively and qualitatively) in the three groups of subjects. The proteins were identified by mass spectrometry and have various functions (antioxidant, proinflammatory, antiprotease) and origins (plasma, locally produced, etc.). Many, such as protease inhibitors (human serpin B3) and antioxidant proteins (glutathione peroxidase and thioredoxin) are already linked to PLCH pathogenesis, whereas other proteins have never been associated with the disease. Interestingly, numerous proteolytic fragments of plasma proteins (including kininogen-1 N fragments and haptoglobin) were also identified and suggest increased proteolytic activity in this inflammatory lung disease. Differences in protein expression were found between the three groups and confirmed by Principal Component Analysis (PCA). Conclusion Analysis of BAL proteomes of PLCH patients and of smoker and non-smoker controls also proved to be useful for researching the pathogenetic mechanisms and for identifying biomarkers of this rare diffuse lung disease.
Collapse
Affiliation(s)
- Claudia Landi
- Respiratory Diseases Section, Department of Clinical Medicine and Immunological Sciences, University of Siena, Siena (Italy.
| | | | | | | | | | | | | |
Collapse
|
86
|
Wang ZM, Zhu SG, Wu ZW, Lu Y, Fu HZ, Qian RQ. Kirenol upregulates nuclear annexin-1 which interacts with NF-κB to attenuate synovial inflammation of collagen-induced arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:774-782. [PMID: 21745559 DOI: 10.1016/j.jep.2011.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/17/2011] [Accepted: 06/25/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kirenol is a diterpenoid compound purified from the Chinese Herba Siegesbeckiae. Siegesbeckiae has been employed for the treatment of arthritis for centuries, its safety and efficacy are documented through a long history of human use. AIM OF THE STUDY To investigate the effects on collagen-induced arthritis (CIA) and anti-inflammatory mechanism of kirenol. MATERIALS AND METHODS Kirenol was administrated intragastrically in rats after the onset of CIA. Pathological changes were evaluated by paw swelling and histopathology. Concentration of IL-1β in synovial fluid and adrenal corticotropin (ACTH) in plasma were determined by Elisa. Western blot was performed to detect the expression of annexin-1 and glucocorticoid receptor alpha (GRα) in synovium. NF-κB DNA binding activity was assessed by electrophoretic mobility shift assays (EMSA). RESULTS Kirenol (1, 2, and 4 mg/kg) and prednisolone depressed paw swelling and reduced IL-1β of synovial fluid in the CIA rats (p<0.05 or p<0.01). Kirenol and prednisolone upregulated nuclear annexin-1 and inhibited NF-κB activity in synovium of CIA. The inhibitory effect of kirenol and prednisolone on NF-κB activity was enhanced by anti-annexin-1 Ab. Prednisolone, but not kirenol, downregulated plasma ACTH and GRα expression significantly (p<0.01). CONCLUSION Kirenol and prednisolone can upregulate nuclear annexin-1 which interacts with NF-κB to inhibit NF-κB activity, reduce cytokines expression and thereby attenuate inflammation of CIA joints. Kirenol does not lead to ACTH or GR downregulation, which is in contrast to classic glucocorticoid prednisolone. Kirenol shares with GCs similar anti-inflammatory mechanism but bypass the considerable limitation of GCs treatment.
Collapse
Affiliation(s)
- Zhe-Ming Wang
- Department of Integrated Chinese Traditional with Western Medicine, Peking University Health Science Center, Beijing 100191, PR China.
| | | | | | | | | | | |
Collapse
|
87
|
Santos LL, Fan H, Hall P, Ngo D, Mackay CR, Fingerle-Rowson G, Bucala R, Hickey MJ, Morand EF. Macrophage migration inhibitory factor regulates neutrophil chemotactic responses in inflammatory arthritis in mice. ARTHRITIS AND RHEUMATISM 2011; 63:960-70. [PMID: 21452319 PMCID: PMC3069137 DOI: 10.1002/art.30203] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) facilitates multiple aspects of inflammatory arthritis, the pathogenesis of which has been significantly linked to the activity of neutrophils. The effects of MIF on neutrophil recruitment are unknown. This study was undertaken to investigate the contribution of MIF to the regulation of neutrophil chemotactic responses. METHODS K/BxN serum-transfer arthritis was induced in wild-type (WT), MIF(-/-) , and monocyte chemotactic protein 1 (MCP-1; CCL2)-deficient mice as well as in WT mice treated with monoclonal antibodies to cytokine-induced neutrophil chemoattractant (anti-KC). Leukocyte trafficking in vivo was examined using intravital microscopy, and neutrophil function in vitro was examined using migration chambers and assessment of MAP kinase activation. RESULTS K/BxN serum-transfer arthritis was markedly attenuated in MIF(-/-) mice, with reductions in the clinical and histologic severity of arthritis and the synovial expression of KC and interleukin-1. Arthritis was also reduced by anti-KC antibody treatment, but not in MCP-1-deficient mice. In vivo, neutrophil recruitment responses to KC were reduced in MIF(-/-) mice. Similarly, MIF(-/-) mouse neutrophils exhibited reduced chemotactic responses to KC in vitro, despite displaying unaltered chemokine receptor expression. Reduced chemotactic responses of MIF(-/-) mouse neutrophils were associated with reduced phosphorylation of p38 and ERK MAP kinases. CONCLUSION These findings suggest that MIF promotes neutrophil trafficking in inflammatory arthritis via facilitation of chemokine-induced migratory responses and MAP kinase activation. Therapeutic MIF inhibition could limit synovial neutrophil recruitment.
Collapse
|
88
|
Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice. PLoS One 2011; 6:e18518. [PMID: 21483764 PMCID: PMC3069963 DOI: 10.1371/journal.pone.0018518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background Human T-cell leukemia virus type I (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. Principal Findings By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4+ T cells, whereas the proportion of splenic CD8+ T cells was increased. Regulatory T cells (CD4+CD25+Foxp3+) were significantly decreased and CD8+ T cells that expressed the chemokine receptor CCR4 (CD8+CCR4+) were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. Conclusions Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble those in HAM/TSP patients rather than those in rheumatoid arthritis patients.
Collapse
|
89
|
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335:2-13. [PMID: 20398732 PMCID: PMC3047790 DOI: 10.1016/j.mce.2010.04.005] [Citation(s) in RCA: 1192] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 02/08/2023]
Abstract
Since the discovery of glucocorticoids in the 1940s and the recognition of their anti-inflammatory effects, they have been amongst the most widely used and effective treatments to control inflammatory and autoimmune diseases. However, their clinical efficacy is compromised by the metabolic effects of long-term treatment, which include osteoporosis, hypertension, dyslipidaemia and insulin resistance/type 2 diabetes mellitus. In recent years, a great deal of effort has been invested in identifying compounds that separate the beneficial anti-inflammatory effects from the adverse metabolic effects of glucocorticoids, with limited effect. It is clear that for these efforts to be effective, a greater understanding is required of the mechanisms by which glucocorticoids exert their anti-inflammatory and immunosuppressive actions. Recent research is shedding new light on some of these mechanisms and has produced some surprising new findings. Some of these recent developments are reviewed here.
Collapse
Affiliation(s)
| | - Karen E. Chapman
- Endocrinology Unit, Centre for Cardiovascular Sciences, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
90
|
Pupjalis D, Goetsch J, Kottas DJ, Gerke V, Rescher U. Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling. EMBO Mol Med 2011; 3:102-14. [PMID: 21254404 PMCID: PMC3377061 DOI: 10.1002/emmm.201000113] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 01/10/2023] Open
Abstract
The immunosuppressive effects of apoptotic cells involve inhibition of pro-inflammatory cytokine release and establishment of an anti-inflammatory cytokine profile, thus limiting the degree of inflammation and promoting resolution. We report here that this is in part mediated by the release of the anti-inflammatory mediator annexin A1 from apoptotic cells and the functional activation of annexin A1 receptors of the formyl peptide receptor (FPR) family on target cells. Supernatants from apoptotic neutrophils or the annexin A1 peptidomimetic Ac2-26 significantly reduced IL-6 signalling and the release of TNF-α from endotoxin-challenged monocytes. Ac2-26 activated STAT3 in a JAK-dependent manner, resulting in upregulated SOCS3 levels, and depletion of SOCS3 reversed the Ac2-26-mediated inhibition of IL-6 signalling. This identifies annexin A1 as part of the anti-inflammatory pattern of apoptotic cells and links the activation of FPRs to established signalling pathways triggering anti-inflammatory responses.
Collapse
Affiliation(s)
- Danute Pupjalis
- Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
91
|
Renshaw D, Montero-Melendez T, Dalli J, Kamal A, Brancaleone V, D'Acquisto F, Cirino G, Perretti M. Downstream gene activation of the receptor ALX by the agonist annexin A1. PLoS One 2010; 5. [PMID: 20862244 PMCID: PMC2941452 DOI: 10.1371/journal.pone.0012771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 08/18/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Our understanding of pro-resolution factors in determining the outcome of inflammation has recently gained ground, yet not many studies have investigated whether specific genes or patterns of genes, are modified by these mediators. Here, we have focussed on the glucocorticoid modulated pro-resolution factor annexin A1 (AnxA1), studying if its interaction with the ALX receptor would affect downstream genomic targets. METHODOLOGY/PRINCIPAL FINDINGS Using microarray technology in ALX transfected HEK293 cells, we discovered an over-lapping, yet distinct gene activation profile for AnxA1 compared to its N-terminal mimetic peptide Ac2-26, which may be suggestive of unique downstream inflammatory outcomes for each substance. When the up-regulated genes were explored, consistently induced was the sphingosine phosphate phosphatase-2 gene (SGPP2), involved in regulation of the sphingosine 1 phosphate chemotactic system. Up-regulation of this gene, as well as JAG1 (and down-regulation of JAM3), was confirmed using real time PCR both with transfected HEK293 cells and human peripheral blood leukocytes. Furthermore, lymph nodes taken from AnxA1(null) mice displayed lower SGPP2 gene activity. Finally, connectivity map analysis for AnxA1 and peptide Ac2-26 indicated striking similarities with known anti-inflammatory therapeutics, glucocorticoids and aspirin-like compounds, as well as with histone deacetylase inhibitors. CONCLUSION/SIGNIFICANCE We believe these new data raise the profile of AnxA1 from being solely a short-term anti-inflammatory factor, to being a 'trigger' of the endogenous pro-resolution arsenal.
Collapse
Affiliation(s)
- Derek Renshaw
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Ahmad Kamal
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Vincenzo Brancaleone
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
- Department of Experimental Pharmacology, School of Pharmacy, University of Naples, Naples, Italy
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giuseppe Cirino
- Department of Experimental Pharmacology, School of Pharmacy, University of Naples, Naples, Italy
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
92
|
Pickles KJ, Brooks AC, Rickards KJ, Cunningham FM. Expression of annexin-1 in equine leucocytes and the effects of the N-terminal annexin-1 peptide, Ac2-26, on equine neutrophil superoxide production. Vet Immunol Immunopathol 2010; 135:226-33. [DOI: 10.1016/j.vetimm.2009.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/01/2009] [Accepted: 12/07/2009] [Indexed: 11/24/2022]
|
93
|
Beaulieu E, Ngo D, Santos L, Yang YH, Smith M, Jorgensen C, Escriou V, Scherman D, Courties G, Apparailly F, Morand EF. Glucocorticoid-induced leucine zipper is an endogenous antiinflammatory mediator in arthritis. ACTA ACUST UNITED AC 2010; 62:2651-61. [DOI: 10.1002/art.27566] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
94
|
Blume KE, Soeroes S, Waibel M, Keppeler H, Wesselborg S, Herrmann M, Schulze-Osthoff K, Lauber K. Cell surface externalization of annexin A1 as a failsafe mechanism preventing inflammatory responses during secondary necrosis. THE JOURNAL OF IMMUNOLOGY 2010; 183:8138-47. [PMID: 20007579 DOI: 10.4049/jimmunol.0902250] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The engulfment of apoptotic cells is of crucial importance for tissue homeostasis in multicellular organisms. A failure of this process results in secondary necrosis triggering proinflammatory cytokine production and autoimmune disease. In the present study, we investigated the role of annexin A1, an intracellular protein that has been implicated in the efficient removal of apoptotic cells. Consistent with its function as bridging protein in the phagocyte synapse, opsonization of apoptotic cells with purified annexin A1 strongly enhanced their phagocytic uptake. A detailed analysis, however, surprisingly revealed that annexin A1 was hardly exposed to the cell surface of primary apoptotic cells, but was strongly externalized only on secondary necrotic cells. Interestingly, while the exposure of annexin A1 failed to promote the uptake of these late secondary necrotic cells, it efficiently prevented induction of cytokine production in macrophages during engulfment of secondary necrotic cells. Our results therefore suggest that annexin A1 exposure during secondary necrosis provides an important failsafe mechanism counteracting inflammatory responses, even when the timely clearance of apoptotic cells has failed.
Collapse
Affiliation(s)
- Karin E Blume
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Ahn KH, Kim SK, Lee JM, Jeon HJ, Lee DH, Kim DK. Proteomic Analysis of Bronchoalveolar Lavage Fluid Obtained from Rats Exposed to Formaldehyde. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kyong Hoon Ahn
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University
| | - Seok Kyun Kim
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University
| | - Jung Min Lee
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University
| | - Hyung Jun Jeon
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University
| | - Dong Hoon Lee
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University
| | - Dae Kyong Kim
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University
| |
Collapse
|
96
|
Perretti M, Dalli J. Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br J Pharmacol 2009; 158:936-46. [PMID: 19845684 PMCID: PMC2785517 DOI: 10.1111/j.1476-5381.2009.00483.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/05/2009] [Accepted: 08/11/2009] [Indexed: 12/13/2022] Open
Abstract
The appreciation that the inflammatory reaction does not 'spontaneously' finish, but rather that inflammatory resolution is an active phenomenon brought about by endogenous anti-inflammatory agonists opens multiple opportunities for a reassessment of the complexity of inflammation and its main mediators. This review dwells on one of these pathways, the one centred around the glucocorticoid-regulated protein Annexin A1 and its G protein-coupled receptor. In recent years, much of the knowledge detailing the processes by which Annexin A1 expresses its anti-inflammatory role on innate immunity has been produced. Moreover, the generation of the Annexin A1 null mouse colony has provided important proof-of-concept experiments demonstrating the inhibitory properties of this mediator in the context of inflammatory and/or tissue-injury models. Therefore, Annexin A1 acts as a pivotal homeostatic mediator, where if absent, inflammation would overshoot and be prolonged. This new understanding scientific information could guide us onto the exploitation of the biological properties of Annexin A1 and its receptor to instigate novel drug discovery programmes for anti-inflammatory therapeutics. This line of research relies on the assumption that anti-inflammatory drugs designed upon endogenous anti-inflammatory mediators would be burdened by a lower degree of secondary effects as these agonists would be mimicking specific pathways activated in our body for safe disposal of inflammation. We believe that the next few years will produce examples of such new drugs and the validity of this speculation could then be assessed.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK.
| | | |
Collapse
|
97
|
Yang YH, Aeberli D, Dacumos A, Xue JR, Morand EF. Annexin-1 regulates macrophage IL-6 and TNF via glucocorticoid-induced leucine zipper. THE JOURNAL OF IMMUNOLOGY 2009; 183:1435-45. [PMID: 19553536 DOI: 10.4049/jimmunol.0804000] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Annexin-1 (ANXA1) is a mediator of the anti-inflammatory actions of endogenous and exogenous glucocorticoids (GC). The mechanism of ANXA1 effects on cytokine production in macrophages is unknown and is here investigated in vivo and in vitro. In response to LPS administration, ANXA1(-/-) mice exhibited significantly increased serum IL-6 and TNF compared with wild-type (WT) controls. Similarly, LPS-induced IL-6 and TNF were significantly greater in ANXA1(-/-) than in WT peritoneal macrophages in vitro. In addition, deficiency of ANXA1 was associated with impairment of the inhibitory effects of dexamethasone (DEX) on LPS-induced IL-6 and TNF in macrophages. Increased LPS-induced cytokine expression in the absence of ANXA1 was accompanied by significantly increased LPS-induced activation of ERK and JNK MAPK and was abrogated by inhibition of either of these pathways. No differences in GC effects on MAPK or MAPK phosphatase 1 were observed in ANXA1(-/-) cells. In contrast, GC-induced expression of the regulatory protein GILZ was significantly reduced in ANXA1(-/-) cells by silencing of ANXA1 in WT cells and in macrophages of ANXA1(-/-) mice in vivo. GC-induced GILZ expression and GC inhibition of NF-kappaB activation were restored by expression of ANXA1 in ANXA1(-/-) cells, and GILZ overexpression in ANXA1(-/-) macrophages reduced ERK MAPK phosphorylation and restored sensitivity of cytokine expression and NF-kappaB activation to GC. These data confirm ANXA1 as a key inhibitor of macrophage cytokine expression and identify GILZ as a previously unrecognized mechanism of the anti-inflammatory effects of ANXA1.
Collapse
Affiliation(s)
- Yuan H Yang
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
98
|
Koziczak-Holbro M, Littlewood-Evans A, Pöllinger B, Kovarik J, Dawson J, Zenke G, Burkhart C, Müller M, Gram H. The critical role of kinase activity of interleukin-1 receptor-associated kinase 4 in animal models of joint inflammation. ACTA ACUST UNITED AC 2009; 60:1661-71. [DOI: 10.1002/art.24552] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
99
|
Tassi I, Cella M, Castro I, Gilfillan S, Khan WN, Colonna M. Requirement of phospholipase C-γ2 (PLCγ2) for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarization. Eur J Immunol 2009; 39:1369-78. [DOI: 10.1002/eji.200839313] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
100
|
Yazid S, Solito E, Christian H, McArthur S, Goulding N, Flower R. Cromoglycate drugs suppress eicosanoid generation in U937 cells by promoting the release of Anx-A1. Biochem Pharmacol 2009; 77:1814-26. [PMID: 19428336 PMCID: PMC2888050 DOI: 10.1016/j.bcp.2009.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 12/15/2022]
Abstract
Using biochemical, epifluorescence and electron microscopic techniques in a U937 model system, we investigated the effect of anti-allergic drugs di-sodium cromoglycate and sodium nedocromil on the trafficking and release of the anti-inflammatory protein Annexin-A1 (Anx-A1) when this was triggered by glucocorticoid (GC) treatment. GCs alone produced a rapid (within 5 min) concentration-dependent activation of PKCα/β (Protein Kinase C; EC 2.7.11.13) and phosphorylation of Anx-A1 on Ser27. Both phosphoproteins accumulated at the plasma membrane and Anx-A1 was subsequently externalised thereby inhibiting thromboxane (Tx) B2 generation. When administered alone, cromoglycate or nedocromil had little effect on this pathway however, in the presence of a fixed sub-maximal concentration of GCs, increasing amounts of the cromoglycate-like drugs caused a striking concentration-dependent enhancement of Anx-A1 and PKCα/β phosphorylation, membrane recruitment and Anx-A1 release from cells resulting in greatly enhanced inhibition of TxB2 generation. GCs also stimulated phosphatase accumulation at the plasma membrane of U937 cells. Both cromoglycate and nedocromil inhibited this enzymatic activity as well as that of a highly purified PP2A phosphatase preparation. We conclude that stimulation by the cromoglycate-like drugs of intracellular Anx-A1 trafficking and release (hence inhibition of eicosanoid release) is secondary to inhibition of a phosphatase PP2A (phosphoprotein phosphatase; EC 3.1.3.16), which probably forms part of a control loop to limit Anx-A1 release. These experiments provide a basis for a novel mechanism of action for the cromolyns, a group of drugs that have long puzzled investigators.
Collapse
Affiliation(s)
- Samia Yazid
- Biochemical Pharmacology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|