51
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|
52
|
Volk HE, Ames JL, Chen A, Fallin MD, Hertz-Picciotto I, Halladay A, Hirtz D, Lavin A, Ritz B, Zoeller T, Swanson M. Considering Toxic Chemicals in the Etiology of Autism. Pediatrics 2022; 149:183720. [PMID: 34972219 DOI: 10.1542/peds.2021-053012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities Research, Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Aimin Chen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities Research, Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, California
| | - Alycia Halladay
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey.,Autism Science Foundation, New York, New York
| | - Deborah Hirtz
- Departments of Pediatrics and Neurological Sciences, School of Medicine, University of Vermont, Burlington, Vermont
| | - Arthur Lavin
- Department of Pediatrics, Akron Children's Hospital, Akron, Ohio
| | - Beate Ritz
- Departments of Epidemiology, Environmental Health, and Neurology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California
| | - Tom Zoeller
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Maureen Swanson
- The Arc of the United States, Washington, District of Columbia
| |
Collapse
|
53
|
Deng Z, Zhou X, Lu JH, Yue Z. Autophagy deficiency in neurodevelopmental disorders. Cell Biosci 2021; 11:214. [PMID: 34920755 PMCID: PMC8684077 DOI: 10.1186/s13578-021-00726-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a cell self-digestion pathway through lysosome and plays a critical role in maintaining cellular homeostasis and cytoprotection. Characterization of autophagy related genes in cell and animal models reveals diverse physiological functions of autophagy in various cell types and tissues. In central nervous system, by recycling injured organelles and misfolded protein complexes or aggregates, autophagy is integrated into synaptic functions of neurons and subjected to distinct regulation in presynaptic and postsynaptic neuronal compartments. A plethora of studies have shown the neuroprotective function of autophagy in major neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Recent human genetic and genomic evidence has demonstrated an emerging, significant role of autophagy in human brain development and prevention of spectrum of neurodevelopmental disorders. Here we will review the evidence demonstrating the causal link of autophagy deficiency to congenital brain diseases, the mechanism whereby autophagy functions in neurodevelopment, and therapeutic potential of autophagy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Xiaoting Zhou
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
54
|
Autism Spectrum Disorder and Prenatal or Early Life Exposure to Pesticides: A Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010991. [PMID: 34682738 PMCID: PMC8535369 DOI: 10.3390/ijerph182010991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Background: Autism spectrum disorder (ASD) diagnoses have rapidly increased globally. Both environmental and genetic factors appear to contribute to the development of ASD. Several studies have shown a potential association between prenatal or postnatal pesticide exposure and the risk of developing ASD. Methods: We reviewed the available literature concerning the relationship between early life exposure to pesticides used in agriculture, such as organochlorines, organophosphates and pyrethroids, and ASD onset in childhood. We searched on Medline and Scopus for cohort or case–control studies published in English from 1977 to 2020. Results: A total of seven articles were selected for the review. We found a remarkable association between the maternal exposure to pyrethroid, as well as the exposure to organophosphate during pregnancy or in the first years of childhood, and the risk of ASD onset. This association was found to be less evident with organochlorine pesticides. Pregnancy seems to be the time when pesticide exposure appears to have the greatest impact on the onset of ASD in children. Conclusions: Among the different environmental pollutants, pesticides should be considered as emerging risk factors for ASD. The potential association identified between the exposure to pesticides and ASD needs to be implemented and confirmed by further epidemiological studies based on individual assessment both in outdoor and indoor conditions, including multiple confounding factors, and using statistical models that take into account single and multiple pesticide residues.
Collapse
|
55
|
Blachier F, Andriamihaja M. Effects of the L-tyrosine-derived bacterial metabolite p-cresol on colonic and peripheral cells. Amino Acids 2021; 54:325-338. [PMID: 34468872 DOI: 10.1007/s00726-021-03064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Specific families of bacteria present within the intestinal luminal content produce p-cresol from L-tyrosine. Although the hosts do not synthesize p-cresol, they can metabolize this compound within their colonic mucosa and liver leading to the production of co-metabolites including p-cresyl sulfate (p-CS) and p-cresyl glucuronide (p-CG). p-Cresol and its co-metabolites are recovered in the circulation mainly conjugated to albumin, but also in their free forms that are excreted in the urine. An increased dietary protein intake raises the amount of p-cresol recovered in the feces and urine, while fecal excretion of p-cresol is diminished by a diet containing undigestible polysaccharides. p-Cresol in excess is genotoxic for colonocytes. In addition, in these cells, this bacterial metabolite decreases mitochondrial oxygen consumption, while increasing the anion superoxide production. In chronic kidney disease (CKD), marked accumulation of p-cresol and p-CS in plasma is measured, and in renal tubular cells, p-cresol and p-CS increase oxidative stress, affect mitochondrial function, and lead to cell death, strongly suggesting that these 2 compounds act as uremic toxins that aggravate CKD progression. p-Cresol and p-CS are also suspected to play a role in the CKD-associated adverse cardiovascular events, since they affect endothelial cell proliferation and migration, decrease the capacity of endothelial wound repair, and increase the senescence of endothelial cells. Finally, the fact that concentration of p-cresol is transiently increased in young autistic children biological fluids, and that intraperitoneal injection of p-cresol in animal models induces some behavioral characteristics observed in the autism spectrum disorders (ASD), raise the view that p-cresol may possibly represent one of the components involved in ASD etiology. Further pre-clinical and clinical studies are obviously needed to determine if the lowering of p-cresol and/or p-CS circulating concentrations, by dietary and/or pharmacological means, would allow, by itself or in combination with other interventions, to improve CKD progression and associated cardiovascular outcomes, as well as some neurological outcomes in children with an early diagnosis of autism.
Collapse
Affiliation(s)
- F Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| | - M Andriamihaja
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
56
|
Hoxha B, Hoxha M, Domi E, Gervasoni J, Persichilli S, Malaj V, Zappacosta B. Folic Acid and Autism: A Systematic Review of the Current State of Knowledge. Cells 2021; 10:cells10081976. [PMID: 34440744 PMCID: PMC8394938 DOI: 10.3390/cells10081976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Folic acid has been identified to be integral in rapid tissue growth and cell division during fetal development. Different studies indicate folic acid’s importance in improving childhood behavioral outcomes and underline its role as a modifiable risk factor for autism spectrum disorders. The aim of this systematic review is to both elucidate the potential role of folic acid in autism spectrum disorders and to investigate the mechanisms involved. Studies have pointed out a potential beneficial effect of prenatal folic acid maternal supplementation (600 µg) on the risk of autism spectrum disorder onset, but opposite results have been reported as well. Folic acid and/or folinic acid supplementation in autism spectrum disorder diagnosed children has led to improvements, both in some neurologic and behavioral symptoms and in the concentration of one-carbon metabolites. Several authors report an increased frequency of serum auto-antibodies against folate receptor alpha (FRAA) in autism spectrum disorder children. Furthermore, methylene tetrahydrofolate reductase (MTHFR) polymorphisms showed a significant influence on ASD risk. More clinical trials, with a clear study design, with larger sample sizes and longer observation periods are necessary to be carried out to better evaluate the potential protective role of folic acid in autism spectrum disorder risk.
Collapse
Affiliation(s)
- Bianka Hoxha
- Department of Chemical-Pharmaceutical and Biomolecular Technologies, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania;
| | - Malvina Hoxha
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (B.Z.)
- Correspondence: ; Tel.: +355-42-273-290
| | - Elisa Domi
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (B.Z.)
| | - Jacopo Gervasoni
- Area Diagnostica di Laboratorio UOC Chimica, Biochimica e Biologia Molecolare Clinica Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (J.G.); (S.P.)
| | - Silvia Persichilli
- Area Diagnostica di Laboratorio UOC Chimica, Biochimica e Biologia Molecolare Clinica Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (J.G.); (S.P.)
| | - Visar Malaj
- Department of Economics, Faculty of Economy, University of Tirana, 1000 Tirana, Albania;
| | - Bruno Zappacosta
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (B.Z.)
| |
Collapse
|
57
|
Matos MBD, Bara TS, Felden ÉPG, Cordeiro ML. Potential Risk Factors for Autism in Children Requiring Neonatal Intensive Care Unit. Neuropediatrics 2021; 52:284-293. [PMID: 33853162 DOI: 10.1055/s-0041-1726401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The etiology of autism spectrum disorder (ASD) is complex and involves the interplay of genetic and environmental factors. AIM We sought to identify potential prenatal, perinatal, and neonatal risk factors for ASD in a unique population of children who had perinatal complications and required care in a neonatal intensive care unit (NICU). METHODS This prospective cohort study included 73 patients discharged from a NICU who received long-term follow-up at the largest children's hospital in Brazil. Potential risk factors were compared between 44 children with a diagnosis of ASD and 29 children without using the Mann-Whitney U test. Proportions were analyzed using the chi-square test. Simple and multiple logistic regression tests were performed. RESULTS Of 38 factors analyzed, the following 7 were associated with ASD: family history of neuropsychiatric disorders (p = 0.049); maternal psychological distress during pregnancy (p = 0.007); ≥ 26 days in the NICU (p = 0.001); feeding tube for ≥ 15 days (p = 0.014); retinopathy of prematurity (p = 0.022); use of three or more antibiotics (p = 0.008); and co-sleeping until up to 2 years of age (p = 0.004). CONCLUSION This study found associations between specific risk factors during critical neurodevelopmental periods and a subsequent diagnosis of ASD. Knowledge of the etiologic factors that may influence the development for ASD is paramount for the development of intervention strategies and improvement of prognoses.
Collapse
Affiliation(s)
- Marília Barbosa de Matos
- Department of Neuropediatrics, Children's Hospital Pequeno Príncipe, Waldemar Monastier Hospital, Curitiba, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Tiago S Bara
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Érico P G Felden
- Department of Health Sciences, Santa Catarina State University UDESC, Florianópolis, Brazil
| | - Mara L Cordeiro
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
58
|
Volkova A, Ruggles K, Schulfer A, Gao Z, Ginsberg SD, Blaser MJ. Effects of early-life penicillin exposure on the gut microbiome and frontal cortex and amygdala gene expression. iScience 2021; 24:102797. [PMID: 34355145 PMCID: PMC8324854 DOI: 10.1016/j.isci.2021.102797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
We have established experimental systems to assess the effects of early-life exposures to antibiotics on the intestinal microbiota and gene expression in the brain. This model system is highly relevant to human exposure and may be developed into a preclinical model of neurodevelopmental disorders in which the gut-brain axis is perturbed, leading to organizational effects that permanently alter the structure and function of the brain. Exposing newborn mice to low-dose penicillin led to substantial changes in intestinal microbiota population structure and composition. Transcriptomic alterations implicate pathways perturbed in neurodevelopmental and neuropsychiatric disorders. There also were substantial effects on frontal cortex and amygdala gene expression by bioinformatic interrogation, affecting multiple pathways underlying neurodevelopment. Informatic analyses established linkages between specific intestinal microbial populations and the early-life expression of particular affected genes. These studies provide translational models to explore intestinal microbiome roles in the normal and abnormal maturation of the vulnerable central nervous system.
Collapse
Affiliation(s)
- Angelina Volkova
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anjelique Schulfer
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zhan Gao
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research. Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin J. Blaser
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
59
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P. Physiological mediators of prenatal environmental influences in autism spectrum disorder. Bioessays 2021; 43:e2000307. [PMID: 34260745 DOI: 10.1002/bies.202000307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
Recent research has pointed to the importance of the prenatal environment in the etiology of autism spectrum disorder (ASD) but the biological mechanisms which mitigate these environmental factors are not clear. Mitochondrial metabolism abnormalities, inflammation and oxidative stress as common physiological disturbances associated with ASD. Network analysis of the scientific literature identified several leading prenatal environmental factors associated with ASD, particularly air pollution, pesticides, the microbiome and epigenetics. These leading prenatal environmental factors were found to be most associated with inflammation, followed by oxidative stress and mitochondrial dysfunction. Other prenatal factors associated with ASD not identified by the network analysis were also found to be significantly associated with these common physiological disturbances. A better understanding of the biological mechanism which mediate the effect of prenatal environmental factors can lead to insights of how ASD develops and the development of targeted therapeutics to prevent ASD from occuring.
Collapse
Affiliation(s)
- Richard E Frye
- Section on Neurodevelopmental Disorders, Division of Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, Arizona, 85016, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, Arkansas, 72202, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| |
Collapse
|
60
|
Timing and Intertemporal Choice Behavior in the Valproic Acid Rat Model of Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:2414-2429. [DOI: 10.1007/s10803-021-05129-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
|
61
|
Rahbar MH, Samms-Vaughan M, Saroukhani S, Lee M, Zhang J, Bressler J, Hessabi M, Shakespeare-Pellington S, Grove ML, Loveland KA. Interaction of Blood Manganese Concentrations with GSTT1 in Relation to Autism Spectrum Disorder in Jamaican Children. J Autism Dev Disord 2021; 51:1953-1965. [PMID: 32892263 PMCID: PMC7936003 DOI: 10.1007/s10803-020-04677-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using data from 266 age- and sex-matched pairs of Jamaican children with autism spectrum disorder (ASD) and typically developing (TD) controls (2-8 years), we investigated whether glutathione S-transferase theta 1 (GSTT1) modifies the association between blood manganese concentrations (BMC) and ASD. After adjusting conditional logistic regression models for socioeconomic status and the interaction between GSTT1 and GSTP1 (glutathione S-transferase pi 1), using a recessive genetic model for GSTT1 and either a co-dominant or dominant model for GSTP1, the interaction between GSTT1 and BMC was significant (P = 0.02, P = 0.01, respectively). Compared to controls, ASD cases with GSTT1-DD genotype had 4.33 and 4.34 times higher odds of BMC > 12 vs. ≤ 8.3 μg/L, respectively. Replication in other populations is warranted.
Collapse
Affiliation(s)
- Mohammad H Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, 6410 Fannin Street, UT Professional Building, Suite 1100.05, Houston, 77030, TX, USA.
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Suite 1100.05, Houston, TX, 77030, USA.
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston, Jamaica
| | - Sepideh Saroukhani
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Suite 1100.05, Houston, TX, 77030, USA
| | - MinJae Lee
- Division of Biostatistics, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jing Zhang
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Suite 1100.05, Houston, TX, 77030, USA
- Department of Biostatistics & Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building, Suite 1100.05, Houston, TX, 77030, USA
| | | | - Megan L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Katherine A Loveland
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| |
Collapse
|
62
|
Davoli-Ferreira M, Thomson CA, McCoy KD. Microbiota and Microglia Interactions in ASD. Front Immunol 2021; 12:676255. [PMID: 34113350 PMCID: PMC8185464 DOI: 10.3389/fimmu.2021.676255] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are serious, highly variable neurodevelopmental disorders, commonly characterized by the manifestation of specific behavioral abnormalities, such as stereotypic behaviors and deficits in social skills, including communication. Although the neurobiological basis for ASD has attracted attention in recent decades, the role of microglial cells, which are the main resident myeloid cell population in the brain, is still controversial and underexplored. Microglia play several fundamental roles in orchestrating brain development and homeostasis. As such, alterations in the intrinsic functions of these cells could be one of the driving forces responsible for the development of various neurodevelopmental disorders, including ASD. Microglia are highly sensitive to environmental cues. Amongst the environmental factors known to influence their intrinsic functions, the gut microbiota has emerged as a central player, controlling both microglial maturation and activation. Strikingly, there is now compelling data suggesting that the intestinal microbiota can play a causative role in driving the behavioural changes associated with ASD. Not only is intestinal dysbiosis commonly reported in ASD patients, but therapies targeting the microbiome can markedly alleviate behavioral symptoms. Here we explore the emerging mechanisms by which altered microglial functions could contribute to several major etiological factors of ASD. We then demonstrate how pre- and postnatal environmental stimuli can modulate microglial cell phenotype and function, underpinning the notion that reciprocal interactions between microglia and intestinal microbes could play a crucial role in ASD aetiology.
Collapse
Affiliation(s)
- Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
63
|
Fung LK, Flores RE, Gu M, Sun KL, James D, Schuck RK, Jo B, Park JH, Lee BC, Jung JH, Kim SE, Saggar M, Sacchet MD, Warnock G, Khalighi MM, Spielman D, Chin FT, Hardan AY. Thalamic and prefrontal GABA concentrations but not GABA A receptor densities are altered in high-functioning adults with autism spectrum disorder. Mol Psychiatry 2021; 26:1634-1646. [PMID: 32376999 PMCID: PMC7644591 DOI: 10.1038/s41380-020-0756-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023]
Abstract
The gamma aminobutyric acid (GABA) neurotransmission system has been implicated in autism spectrum disorder (ASD). Molecular neuroimaging studies incorporating simultaneous acquisitions of GABA concentrations and GABAA receptor densities can identify objective molecular markers in ASD. We measured both total GABAA receptor densities by using [18F]flumazenil positron emission tomography ([18F]FMZ-PET) and GABA concentrations by using proton magnetic resonance spectroscopy (1H-MRS) in 28 adults with ASD and 29 age-matched typically developing (TD) individuals. Focusing on the bilateral thalami and the left dorsolateral prefrontal cortex (DLPFC) as our regions of interest, we found no differences in GABAA receptor densities between ASD and TD groups. However, 1H-MRS measurements revealed significantly higher GABA/Water (GABA normalized by water signal) in the left DLPFC of individuals with ASD than that of TD controls. Furthermore, a significant gender effect was observed in the thalami, with higher GABA/Water in males than in females. Hypothesizing that thalamic GABA correlates with ASD symptom severity in gender-specific ways, we stratified by diagnosis and investigated the interaction between gender and thalamic GABA/Water in predicting Autism-Spectrum Quotient (AQ) and Ritvo Autism Asperger's Diagnostic Scale-Revised (RAADS-R) total scores. We found that gender is a significant effect modifier of thalamic GABA/Water's relationship with AQ and RAADS-R scores for individuals with ASD, but not for TD controls. When we separated the ASD participants by gender, a negative correlation between thalamic GABA/Water and AQ was observed in male ASD participants. Remarkably, in female ASD participants, a positive correlation between thalamic GABA/Water and AQ was found.
Collapse
Affiliation(s)
- Lawrence K Fung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Ryan E Flores
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin L Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - David James
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Rachel K Schuck
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Seoul, South Korea
| | - Jae Ho Jung
- Bio Imaging Korea Seoul, Co., Ltd., Seoul, South Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Seoul, South Korea
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Matthew D Sacchet
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Daniel Spielman
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
64
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021; 11:218. [PMID: 33803789 PMCID: PMC8003154 DOI: 10.3390/jpm11030218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| |
Collapse
|
65
|
Zolkipli-Cunningham Z, Naviaux JC, Nakayama T, Hirsch CM, Monk JM, Li K, Wang L, Le TP, Meinardi S, Blake DR, Naviaux RK. Metabolic and behavioral features of acute hyperpurinergia and the maternal immune activation mouse model of autism spectrum disorder. PLoS One 2021; 16:e0248771. [PMID: 33735311 PMCID: PMC7971557 DOI: 10.1371/journal.pone.0248771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Since 2012, studies in mice, rats, and humans have suggested that abnormalities in purinergic signaling may be a final common pathway for many genetic and environmental causes of autism spectrum disorder (ASD). The current study in mice was conducted to characterize the bioenergetic, metabolomic, breathomic, and behavioral features of acute hyperpurinergia triggered by systemic injection of the purinergic agonist and danger signal, extracellular ATP (eATP). Responses were studied in C57BL/6J mice in the maternal immune activation (MIA) model and controls. Basal metabolic rates and locomotor activity were measured in CLAMS cages. Plasma metabolomics measured 401 metabolites. Breathomics measured 98 volatile organic compounds. Intraperitoneal eATP dropped basal metabolic rate measured by whole body oxygen consumption by 74% ± 6% (mean ± SEM) and rectal temperature by 6.2˚ ± 0.3˚C in 30 minutes. Over 200 metabolites from 37 different biochemical pathways where changed. Breathomics showed an increase in exhaled carbon monoxide, dimethylsulfide, and isoprene. Metabolomics revealed an acute increase in lactate, citrate, purines, urea, dopamine, eicosanoids, microbiome metabolites, oxidized glutathione, thiamine, niacinamide, and pyridoxic acid, and decreased folate-methylation-1-carbon intermediates, amino acids, short and medium chain acyl-carnitines, phospholipids, ceramides, sphingomyelins, cholesterol, bile acids, and vitamin D similar to some children with ASD. MIA animals were hypersensitive to postnatal exposure to eATP or poly(IC), which produced a rebound increase in body temperature that lasted several weeks before returning to baseline. Acute hyperpurinergia produced metabolic and behavioral changes in mice. The behaviors and metabolic changes produced by ATP injection were associated with mitochondrial functional changes that were profound but reversible.
Collapse
Affiliation(s)
- Zarazuela Zolkipli-Cunningham
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Tomohiro Nakayama
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Charlotte M. Hirsch
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Jonathan M. Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Thuy P. Le
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine (UCI), Irvine, CA, United States of America
| | - Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, United States of America
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, United States of America
| |
Collapse
|
66
|
Koshiba M, Watarai-Senoo A, Karino G, Ozawa S, Kamei Y, Honda Y, Tanaka I, Kodama T, Usui S, Tokuno H. A Susceptible Period of Photic Day-Night Rhythm Loss in Common Marmoset Social Behavior Development. Front Behav Neurosci 2021; 14:539411. [PMID: 33603653 PMCID: PMC7884770 DOI: 10.3389/fnbeh.2020.539411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
The prevalence of neurodevelopmental psychiatric disorders such as pervasive developmental disorders is rapidly increasing worldwide. Although these developmental disorders are known to be influenced by an individual’s genetic background, the potential biological responses to early life’s environmental exposure to both physical and psychological factors must also be considered. Many studies have acknowledged the influence of shorter time for rest at night and the simultaneous occurrence of various kinds of complications involving developmental disorders. In a prior study, we examined how a common marmoset’s (Callithrix jacchus) psychosocial development was affected when it was reared under constant daylight from birth and then reared individually by humans nursing them under constant light (LL) during their juvenile development stages. The behaviors of these marmosets were compared with those of normal day-night cycle (LD) marmosets using a multivariate analysis based on principal component analysis (PCA). That study found that LL marmosets relatively elicited egg-like calls (Ecall) and side-to-side shakes of the upper body with rapid head rotation through adulthood frequently. Based on the PCA, these behaviors were interpreted as “alert” or “hyperactive” states. However, we did not clarify susceptible periods of the photic rhythm loss experience and the psychological development output. In this study we summarize the following studies in our model animal colonies involving 30 animals (11 female, 19 males) to further explore critical age states of inquiry about each social behavior profiling. We compared social behaviors of three age stages, juvenile, adolescent and young adult equivalent to one another in four LL experience conditions, LL (postnatal day (P) 0 to around 150), Middle (P60–149, 90 days), Late (P150–239, 90 days), and LD (no experience). In the most representative 1st and 2nd principal component scores, the shifting to higher frequency of alert behaviors developed at the adult stage in LL, Middle, then Late in turn. The no LL experience group, LD, generally featured higher frequency of local preference of high position compared to LL experience present groups, in adulthood. This limited model primate study might inspire different developmental age sensitive mechanisms of neuronal network to control socio-emotional functions by utilizing the multivariate visualization method, BOUQUET. This study could potentially contribute to nurturing educational designs for social developmental disorders.
Collapse
Affiliation(s)
- Mamiko Koshiba
- Engineering Department, Yamaguchi University, Ube City, Japan.,Pediatrics, Saitama Medical University, Saitama, Japan.,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | | | - Genta Karino
- Pediatrics, Saitama Medical University, Saitama, Japan
| | - Shimpei Ozawa
- Pediatrics, Saitama Medical University, Saitama, Japan
| | - Yoshimasa Kamei
- Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Yoshiko Honda
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Ikuko Tanaka
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Tohru Kodama
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Setsuo Usui
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Hironobu Tokuno
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
67
|
Oh J, Bennett DH, Calafat AM, Tancredi D, Roa DL, Schmidt RJ, Hertz-Picciotto I, Shin HM. Prenatal exposure to per- and polyfluoroalkyl substances in association with autism spectrum disorder in the MARBLES study. ENVIRONMENT INTERNATIONAL 2021; 147:106328. [PMID: 33387879 PMCID: PMC7856021 DOI: 10.1016/j.envint.2020.106328] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/24/2020] [Accepted: 12/04/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has shown potential to adversely affect child brain development, but epidemiologic evidence remains inconsistent. We examined whether prenatal exposure to PFAS was associated with increased risk of autism spectrum disorder (ASD). METHODS Participants were 173 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a high-risk ASD cohort. At 3 years old, children were clinically confirmed for ASD and classified into ASD (n = 57) and typical development (TD, n = 116). We quantified nine PFAS in maternal serum collected during pregnancy. We examined associations of ASD with individual PFAS as well as the combined effect of PFAS on ASD using scores of the first principal component (PC-1) accounting for the largest variance. RESULTS Prenatal perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) showed positive associations (per 2 nanogram per milliliter increase: relative risk (RR) = 1.20, 95% CI: 0.90, 1.61 [PFOA]; RR = 1.24, 95% CI: 0.91, 1.69 [PFNA]), while perfluorohexane sulfonate (PFHxS) showed a negative association (RR = 0.88, 95% CI: 0.77, 1.01) with ASD risk. When examining associations of ASD with untransformed PFAS concentrations, PFOA, PFNA, and PC-1 were associated with increased ASD risk (per nanogram per milliliter increase: RR = 1.31, 95% CI: 1.04, 1.65; RR = 1.79, 95% CI: 1.13, 2.85; RR = 1.10, 95% CI: 0.97, 1.25, respectively), while the RR of PFHxS moved toward the null. CONCLUSIONS From this high-risk ASD cohort, we observed increased risk of ASD in children exposed to PFOA and PFNA. Further studies should be conducted in the general population because this population may have a larger fraction of cases resulting from genetic sources.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Daniel Tancredi
- Department of Pediatrics, University of California, Davis, CA, USA
| | - Dorcas L Roa
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| |
Collapse
|
68
|
Imbriani G, Panico A, Grassi T, Idolo A, Serio F, Bagordo F, De Filippis G, De Giorgi D, Antonucci G, Piscitelli P, Colangelo M, Peccarisi L, Tumolo MR, De Masi R, Miani A, De Donno A. Early-Life Exposure to Environmental Air Pollution and Autism Spectrum Disorder: A Review of Available Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031204. [PMID: 33572907 PMCID: PMC7908547 DOI: 10.3390/ijerph18031204] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
The number of children diagnosed with Autism Spectrum Disorder (ASD) has rapidly increased globally. Genetic and environmental factors both contribute to the development of ASD. Several studies showed linkage between prenatal, early postnatal air pollution exposure and the risk of developing ASD. We reviewed the available literature concerning the relationship between early-life exposure to air pollutants and ASD onset in childhood. We searched on Medline and Scopus for cohort or case-control studies published in English from 1977 to 2020. A total of 20 articles were selected for the review. We found a strong association between maternal exposure to particulate matter (PM) during pregnancy or in the first years of the children’s life and the risk of the ASD. This association was found to be stronger with PM2.5 and less evident with the other pollutants. Current evidence suggest that pregnancy is the period in which exposure to environmental pollutants seems to be most impactful concerning the onset of ASD in children. Air pollution should be considered among the emerging risk factors for ASD. Further epidemiological and toxicological studies should address molecular pathways involved in the development of ASD and determine specific cause–effect associations.
Collapse
Affiliation(s)
- Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
- Correspondence:
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Giovanni De Filippis
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Donato De Giorgi
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Gianfranco Antonucci
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Prisco Piscitelli
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Manuela Colangelo
- Italian Association of Health, Environment and Society (AISAS), via De Gasperi 22, Lizzanello, 73023 Lecce, Italy;
| | - Luigi Peccarisi
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Maria Rosaria Tumolo
- Research Unit of Brindisi, c/o ex Osp. Di Summa, Institute for Research on Population and Social Policies, National Research Council, Piazza Di Summa, 72100 Brindisi, Italy;
- c/o Campus Ecotekne via Monteroni, Branch of Lecce, Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy
| | - Roberto De Masi
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Multiple Sclerosis Centre, Laboratory of Neuroproteomics, “Francesco Ferrari” Hospital, 73042 Casarano, Italy
| | - Alessandro Miani
- Italian Society of Environmental Medicine, 02100 Milan, Italy;
- Department of Environmental Science and Policy, University of Milan, 02100 Milan, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| |
Collapse
|
69
|
Prevention in Autism Spectrum Disorder: A Lifelong Focused Approach. Brain Sci 2021; 11:brainsci11020151. [PMID: 33498888 PMCID: PMC7911370 DOI: 10.3390/brainsci11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex highly heritable disorder, in which multiple environmental factors interact with the genes to increase its risk and lead to variable clinical presentations and outcomes. Furthermore, the inherent fundamental deficits of ASD in social attention and interaction critically diverge children from the typical pathways of learning, "creating" what we perceive as autism syndrome during the first three years of life. Later in life, training and education, the presence and management of comorbidities, as well as social and vocational support throughout the lifespan, will define the quality of life and the adaptation of an individual with ASD. Given the overall burden of ASD, prevention strategies seem like a cost-effective endeavour that we have to explore. In this paper, we take a life course approach to prevention. We will review the possibilities of the management of risk factors from preconception until the perinatal period, that of early intervention in the first three years of life and that of effective training and support from childhood until adulthood.
Collapse
|
70
|
Iwabuchi T, Takahashi N, Nishimura T, Rahman MS, Harada T, Okumura A, Kuwabara H, Takagai S, Nomura Y, Matsuzaki H, Ozaki N, Tsuchiya KJ. Associations Among Maternal Metabolic Conditions, Cord Serum Leptin Levels, and Autistic Symptoms in Children. Front Psychiatry 2021; 12:816196. [PMID: 35185642 PMCID: PMC8851349 DOI: 10.3389/fpsyt.2021.816196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Accumulating evidence has shown that maternal metabolic conditions, such as pre-pregnancy overweight, diabetes mellitus, and hypertensive disorders of pregnancy (HDP) are potential risk factors of autism spectrum disorder (ASD). However, it remains unclear how these maternal conditions lead to neurodevelopmental outcomes in the offspring, including autistic symptoms. Leptin, an adipokine that has pro-inflammatory effects and affects fetal neurodevelopment, is a candidate mediator of the association between maternal metabolic factors and an increased risk of ASD. However, whether prenatal exposure to leptin mediates the association between maternal metabolic conditions and autistic symptoms in children has not been investigated yet. METHODS This study investigated the associations between mothers' metabolic conditions (pre-pregnancy overweight, diabetes mellitus during or before pregnancy, and HDP), leptin concentrations in umbilical cord serum, and autistic symptoms among 762 children from an ongoing cohort study, using generalized structural equation modeling. We used the Social Responsive Scale, Second Edition (SRS-2) at 8-9 years old to calculate total T-scores. Additionally, we used the T-scores for two subdomains: Social Communication and Interaction (SCI) and Restricted Interests and Repetitive Behavior (RRB). RESULTS Umbilical cord leptin levels were associated with pre-pregnancy overweight [coefficient = 1.297, 95% confidence interval (CI) 1.081-1.556, p = 0.005] and diabetes mellitus (coefficient = 1.574, 95% CI 1.206-2.055, p = 0.001). Furthermore, leptin levels were significantly associated with SRS-2 total T-scores (coefficient = 1.002, 95% CI 1.000-1.004, p = 0.023), SCI scores (coefficient = 1.002, 95% CI 1.000-1.004, p = 0.020), and RRB scores (coefficient = 1.001, 95% CI 1.000-1.003, p = 0.044) in children. Associations between maternal metabolic factors and autistic symptoms were not significant. DISCUSSION The present study uncovered an association between cord leptin levels and autistic symptoms in children, while maternal metabolic conditions did not have an evident direct influence on the outcome. These results imply that prenatal pro-inflammatory environments affected by maternal metabolic conditions may contribute to the development of autistic symptoms in children. The findings warrant further investigation into the role of leptin in the development of autistic symptoms.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nagahide Takahashi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Nishimura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Shafiur Rahman
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taeko Harada
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akemi Okumura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Psychiatry, Saitama Medical University, Saitama, Japan
| | - Shu Takagai
- United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoko Nomura
- Queens College and Graduate Center, City University of New York, New York City, NY, United States
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Norio Ozaki
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
71
|
McDonald TAM. The broader autism phenotype constellations-disability matrix paradigm: Theoretical model for autism and the broader autism phenotype. Med Hypotheses 2021; 146:110456. [PMID: 33412500 PMCID: PMC8216083 DOI: 10.1016/j.mehy.2020.110456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
The prevalence of autism has increased dramatically over the last 60 years, and the cause of this increase is unclear. In this paradigm-shift paper, I propose an explanatory paradigm for the cause of autism and its increased prevalence in the general population. I also discuss how social and historical contexts may have influenced the evolution and manifestation of specific traits in the autism population. These traits expand the characterization of the broader autism phenotype to include a constellation of socially valued traits, termed Broader Autism Phenotype Constellations (BAPCO). The frequency of these traits may have increased due to assortative mating opportunities that occurred alongside social changes in education and occupational opportunities over the last 100 years. I propose that assortative mating can lead to both positive and negative developmental consequences affecting social and language development. I also propose that BAPCO traits, which are not intrinsically disabilities, could interact with co-occurring conditions in a new model called the BAPCO-Disability Matrix Paradigm (BAPCO-DMAP). In this paradigm, autism is located at the intersection of BAPCO traits and at least one co-occurring condition. These proposed models support the need to create a more comprehensive definition of autism that includes constellations of BAPCO traits. The BAPCO-DMAP paves the way to testable predictions of autism prevalence and provides a framework to better understand the foundational traits of autism. Finally, this paradigm radically redefines the broader autism phenotype with characteristics that can inform therapy and child development.
Collapse
|
72
|
Zhang J, Ma X, Su Y, Wang L, Shang S, Yue W. Association Study of MTHFR C677T Polymorphism and Birth Body Mass With Risk of Autism in Chinese Han Population. Front Psychiatry 2021; 12:560948. [PMID: 33716803 PMCID: PMC7947295 DOI: 10.3389/fpsyt.2021.560948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with birth body mass and risk of autism in Chinese Han population. Methods: A total 1,505 Chinese Han autism patients were recruited, using the Diagnostic and Statistical Manual of Mental Disorders, 4th revised version (DSM-IV-R) diagnostic criteria for autism, and 1,308 sex-matched healthy controls were also enrolled for the study. All the participants' birth body masses were counted according to the medical records. The MTHFR C677T genotypes were detected using the polymerase chain reaction-restrict fragment length polymorphism (PCR-RFLP) method. The association between C677T polymorphism, birth body mass, and risk of autism were analyzed using the chi-square tests. Results: The present study found that the MTHFR 677T was significantly associated with risk of autism [P = 0.004, odds ratio (OR) = 1.18, 95% CI = 1.02-1.29). The autism children more frequently showed low birth body mass (<2.5 kg) than healthy control subjects (8.6 vs. 5.3%, P = 0.001, OR = 1.67, 95% CI = 1.24-2.26). The interactive effects between MTHFR 677T and low birth body mass (P = 0.0001, OR = 2.18, 95% CI = 1.44-3.32) were also significantly associated with risk of autism. Conclusions: The MTHFR C677T polymorphism and low birth body mass may be associated with risk of autism in Chinese Han population.
Collapse
Affiliation(s)
- Jishui Zhang
- Department of Mental Health, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Xueqian Ma
- School of Nursing & Sixth Hospital, Peking University, Beijing, China.,Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Su
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| | - Shaomei Shang
- School of Nursing, Peking University, Beijing, China
| | - Weihua Yue
- School of Nursing & Sixth Hospital, Peking University, Beijing, China.,Peking University Sixth Hospital, Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,National Health Commission (NHC) Key Laboratory of Mental Health, Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
73
|
Burkett JP, Miller GW. Using the exposome to understand environmental contributors to psychiatric disorders. Neuropsychopharmacology 2021; 46:263-264. [PMID: 32913344 PMCID: PMC7689472 DOI: 10.1038/s41386-020-00851-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Department of Molecular Pharmacology and Therapeutics and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
74
|
Sarovic D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front Psychiatry 2021; 12:767075. [PMID: 34867553 PMCID: PMC8637925 DOI: 10.3389/fpsyt.2021.767075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
This paper presents a unifying theory for autism by applying the framework of a pathogenetic triad to the scientific literature. It proposes a deconstruction of autism into three contributing features (an autistic personality dimension, cognitive compensation, and neuropathological risk factors), and delineates how they interact to cause a maladaptive behavioral phenotype that may require a clinical diagnosis. The autistic personality represents a common core condition, which induces a set of behavioral issues when pronounced. These issues are compensated for by cognitive mechanisms, allowing the individual to remain adaptive and functional. Risk factors, both exogenous and endogenous ones, show pathophysiological convergence through their negative effects on neurodevelopment. This secondarily affects cognitive compensation, which disinhibits a maladaptive behavioral phenotype. The triad is operationalized and methods for quantification are presented. With respect to the breadth of findings in the literature that it can incorporate, it is the most comprehensive model yet for autism. Its main implications are that (1) it presents the broader autism phenotype as a non-pathological core personality domain, which is shared across the population and uncoupled from associated features such as low cognitive ability and immune dysfunction, (2) it proposes that common genetic variants underly the personality domain, and that rare variants act as risk factors through negative effects on neurodevelopment, (3) it outlines a common pathophysiological mechanism, through inhibition of neurodevelopment and cognitive dysfunction, by which a wide range of endogenous and exogenous risk factors lead to autism, and (4) it suggests that contributing risk factors, and findings of immune and autonomic dysfunction are clinically ascertained rather than part of the core autism construct.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| |
Collapse
|
75
|
Berg EL, Ching TM, Bruun DA, Rivera JK, Careaga M, Ellegood J, Lerch JP, Wöhr M, Lein PJ, Silverman JL. Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. J Neurodev Disord 2020; 12:40. [PMID: 33327943 PMCID: PMC7745485 DOI: 10.1186/s11689-020-09342-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), including intellectual disability, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), are pervasive, lifelong disorders for which pharmacological interventions are not readily available. Substantial increases in the prevalence of NDDs over a relatively short period may not be attributed solely to genetic factors and/or improved diagnostic criteria. There is now a consensus that multiple genetic loci combined with environmental risk factors during critical periods of neurodevelopment influence NDD susceptibility and symptom severity. Organophosphorus (OP) pesticides have been identified as potential environmental risk factors. Epidemiological studies suggest that children exposed prenatally to the OP pesticide chlorpyrifos (CPF) have significant mental and motor delays and strong positive associations for the development of a clinical diagnosis of intellectual delay or disability, ADHD, or ASD. METHODS We tested the hypothesis that developmental CPF exposure impairs behavior relevant to NDD phenotypes (i.e., deficits in social communication and repetitive, restricted behavior). Male and female rat pups were exposed to CPF at 0.1, 0.3, or 1.0 mg/kg (s.c.) from postnatal days 1-4. RESULTS These CPF doses did not significantly inhibit acetylcholinesterase activity in the blood or brain but significantly impaired pup ultrasonic vocalizations (USV) in both sexes. Social communication in juveniles via positive affiliative 50-kHz USV playback was absent in females exposed to CPF at 0.3 mg/kg and 1.0 mg/kg. In contrast, this CPF exposure paradigm had no significant effect on gross locomotor abilities or contextual and cued fear memory. Ex vivo magnetic resonance imaging largely found no differences between the CPF-exposed rats and the corresponding vehicle controls using strict false discovery correction; however, there were interesting trends in females in the 0.3 mg/kg dose group. CONCLUSIONS This work generated and characterized a rat model of developmental CPF exposure that exhibits adverse behavioral phenotypes resulting from perinatal exposures at levels that did not significantly inhibit acetylcholinesterase activity in the brain or blood. These data suggest that current regulations regarding safe levels of CPF need to be reconsidered.
Collapse
Affiliation(s)
- Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Tianna M Ching
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Donald A Bruun
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Josef K Rivera
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Milo Careaga
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Pamela J Lein
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
76
|
Saroukhani S, Samms-Vaughan M, Lee M, Bach MA, Bressler J, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA, Rahbar MH. Perinatal Factors Associated with Autism Spectrum Disorder in Jamaican Children. J Autism Dev Disord 2020; 50:3341-3357. [PMID: 31538260 DOI: 10.1007/s10803-019-04229-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mode of delivery, preterm birth, and low birth weight (LBW) are hypothesized to be associated with autism spectrum disorder (ASD) in the offspring. Using data from 343 ASD cases (2-8 years) and their age- and sex-matched typically developing controls in Jamaica we investigated these hypotheses. Our statistical analyses revealed that the parish of residence could modify the association between cesarean delivery and ASD, with a difference found in this relationship in Kingston parish [matched odds ratio (MOR) (95% confidence interval (CI)) 2.30 (1.17-4.53)] and other parishes [MOR (95% CI) 0.87 (0.48-1.59)]. Although the associations of LBW and preterm birth with ASD were not significant, we observed a significant interaction between LBW and the household socioeconomic status. These findings require replication.
Collapse
Affiliation(s)
- Sepideh Saroukhani
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston, Jamaica
| | - MinJae Lee
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building Suite 1100.05, Houston, TX, 77030, USA
| | - MacKinsey A Bach
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Katherine A Loveland
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Mohammad H Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UT Professional Building Suite 1100.05, Houston, TX, 77030, USA.
| |
Collapse
|
77
|
Kara T, Alpgan Ö. Nursing personality and features in children with autism spectrum disorder aged 0-2: an exploratory case-control study. Nutr Neurosci 2020; 25:1200-1208. [PMID: 33170115 DOI: 10.1080/1028415x.2020.1843891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Although studies have investigated relationships between autism spectrum disorder (ASD) and breastfeeding duration, information concerning these children's nursing styles is limited. This study investigated nursing personality and features and ASD. METHOD One hundred forty-one children aged 24-72 months diagnosed with ASD and 128 healthy children were included. Information concerning the family's sociodemographic characteristics and the child's developmental stages was obtained through forms prepared by the authors and from hospital records. The Childhood Autism Rating Scale (CARS) was used to determine symptom severity in ASD. Development levels of children with ASD were determined using the Denver Developmental Screening Test 2nd Edition (DDST II). RESULTS Mothers of children with ASD reported higher rates of unintended pregnancies (p = 0.029) [2.380*(1.093-5.182)]. Children with ASD exhibited less nursing strike (NS) behavior (p = 0.042) [0.388(0.156-0.967)] and less eye contact during breastfeeding (ECDB) (p = 0.009) [2.300(1.236-4.282)]. NS reduced the risk of ASD 2.6-fold, while absence of ECDB increased the risk 2.3-fold, and unintended pregnancy increased the risk 2.4-fold. Higher CARS scores were determined in children with ASD with vaginal delivery histories (p = 0.041) and histories of incubation (p = 0.025). Lack of ECDB was associated with decreased social and gross motor scores at DDST-II (p = 0.005). CONCLUSION Babies with ASD began breastfeeding at least as early as typically developing peers and for similar lengths of time. However, babies with ASD exhibited less NS behavior and less eye contact during breastfeeding. Babies with ASD perceive no emotional cues even in the first months, and may therefore not exhibit NS behavior.
Collapse
Affiliation(s)
- Tayfun Kara
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ömer Alpgan
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
78
|
Mordaunt CE, Jianu JM, Laufer BI, Zhu Y, Hwang H, Dunaway KW, Bakulski KM, Feinberg JI, Volk HE, Lyall K, Croen LA, Newschaffer CJ, Ozonoff S, Hertz-Picciotto I, Fallin MD, Schmidt RJ, LaSalle JM. Cord blood DNA methylome in newborns later diagnosed with autism spectrum disorder reflects early dysregulation of neurodevelopmental and X-linked genes. Genome Med 2020; 12:88. [PMID: 33054850 PMCID: PMC7559201 DOI: 10.1186/s13073-020-00785-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex heritability and higher prevalence in males. The neonatal epigenome has the potential to reflect past interactions between genetic and environmental factors during early development and influence future health outcomes. METHODS We performed whole-genome bisulfite sequencing of 152 umbilical cord blood samples from the MARBLES and EARLI high-familial risk prospective cohorts to identify an epigenomic signature of ASD at birth. Samples were split into discovery and replication sets and stratified by sex, and their DNA methylation profiles were tested for differentially methylated regions (DMRs) between ASD and typically developing control cord blood samples. DMRs were mapped to genes and assessed for enrichment in gene function, tissue expression, chromosome location, and overlap with prior ASD studies. DMR coordinates were tested for enrichment in chromatin states and transcription factor binding motifs. Results were compared between discovery and replication sets and between males and females. RESULTS We identified DMRs stratified by sex that discriminated ASD from control cord blood samples in discovery and replication sets. At a region level, 7 DMRs in males and 31 DMRs in females replicated across two independent groups of subjects, while 537 DMR genes in males and 1762 DMR genes in females replicated by gene association. These DMR genes were significantly enriched for brain and embryonic expression, X chromosome location, and identification in prior epigenetic studies of ASD in post-mortem brain. In males and females, autosomal ASD DMRs were significantly enriched for promoter and bivalent chromatin states across most cell types, while sex differences were observed for X-linked ASD DMRs. Lastly, these DMRs identified in cord blood were significantly enriched for binding sites of methyl-sensitive transcription factors relevant to fetal brain development. CONCLUSIONS At birth, prior to the diagnosis of ASD, a distinct DNA methylation signature was detected in cord blood over regulatory regions and genes relevant to early fetal neurodevelopment. Differential cord methylation in ASD supports the developmental and sex-biased etiology of ASD and provides novel insights for early diagnosis and therapy.
Collapse
Affiliation(s)
- Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Julia M. Jianu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Keith W. Dunaway
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I. Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Heather E. Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Kristen Lyall
- A. J. Drexel Autism Institute, Drexel University, Philadelphia, PA USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | - Craig J. Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Sally Ozonoff
- Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M. Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| |
Collapse
|
79
|
Wilson HA, Creighton C, Scharfman H, Choleris E, MacLusky NJ. Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder. Neuroscientist 2020; 27:650-667. [PMID: 32912048 DOI: 10.1177/1073858420952046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
Collapse
Affiliation(s)
- Hayley A Wilson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Carolyn Creighton
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Helen Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
80
|
Taylor MJ, Rosenqvist MA, Larsson H, Gillberg C, D’Onofrio BM, Lichtenstein P, Lundström S. Etiology of Autism Spectrum Disorders and Autistic Traits Over Time. JAMA Psychiatry 2020; 77:936-943. [PMID: 32374377 PMCID: PMC7203675 DOI: 10.1001/jamapsychiatry.2020.0680] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The frequency with which autism spectrum disorders (ASDs) are diagnosed has shown a marked increase in recent years. One suggestion is that this is partly because of secular changes in the environment, yet to our knowledge this hypothesis lacks evidence. OBJECTIVE To assess whether the relative importance of genetic and environmental associations with ASD and autistic traits has changed over a 16-year and 26-year period. DESIGN, SETTING, AND PARTICIPANTS A twin design was used to assess whether the heritability of ASD and autistic traits has changed over time. Data from 2 nationwide Swedish twin cohorts was used: the Swedish Twin Registry (STR; participants born between January 1982 and December 2008) and the Child and Adolescent Twin Study in Sweden (CATSS; participants born between January 1992 and December 2008). Autism spectrum disorder diagnoses were identified for twins in the STR, with follow-up to 2013. Questionnaires assigned screening diagnoses of ASD to CATSS participants and assessed autistic traits. Analyses were performed from September 1, 2018, to March 31, 2019. EXPOSURES Each sample was divided into several birth cohorts covering 1982 to 1991 (for the STR only), 1992-1995, 1996-1999, 2000-2003, and 2004-2008. OUTCOMES We assessed whether the genetric and environment variance underlying autistic traits changed across birth cohorts and examined whether the relative contribution of genetics and environment to liability for autism changed across birth cohorts. RESULTS Data were available for 22 678 twin pairs (5922 female same-sex pairs [26.1%], 5563 male same-sex pairs [24.5%], and 11193 opposite-sex pairs [49.4%]) in the STR and 15 280 pairs (4880 female same-sex pairs [31.9%], 5092 male same-sex pairs [33.3%], and 5308 opposite-sex pairs [34.7%]) in CATSS. The heritability of ASD diagnoses in the STR ranged from 0.88 (95% CI, 0.74-0.96) to 0.97 (95% CI, 0.89-0.99). The heritability of screening diagnoses in CATSS varied from 0.75 (95% CI, 0.58-0.87) to 0.93 (95% CI, 0.84-0.98). Autistic traits showed a modest variance increase over time that was associated with increases in genetic and environmental variance, with the total variance increasing from 0.95 (95% CI, 0.92-0.98) to 1.17 (95% CI, 1.13-1.21) over time. CONCLUSIONS AND RELEVANCE Weak evidence was found for changes in the genetic and environmental factors underlying ASD and autistic traits over time. Genetic factors played a consistently larger role than environmental factors. Environmental factors are thus unlikely to explain the increase in the prevalence of ASD.
Collapse
Affiliation(s)
- Mark J. Taylor
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mina A. Rosenqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Brian M. D’Onofrio
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Psychological & Brain Science, Indiana University, Bloomington
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden,Centre for Ethics, Law, and Mental Health, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
81
|
Bach MA, Samms-Vaughan M, Hessabi M, Bressler J, Lee M, Zhang J, Shakespeare-Pellington S, Grove ML, Loveland KA, Rahbar MH. Association of Polychlorinated Biphenyls and Organochlorine Pesticides with Autism Spectrum Disorder in Jamaican Children. RESEARCH IN AUTISM SPECTRUM DISORDERS 2020; 76:101587. [PMID: 32661462 PMCID: PMC7357892 DOI: 10.1016/j.rasd.2020.101587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides are suspected to play a role in autism spectrum disorder (ASD). OBJECTIVES To investigate associations of PCBs and OC pesticides with ASD in Jamaican children and explore possible interaction between PCBs or OC pesticides with glutathione S-transferase (GST) genes (GSTT1, GSTM1, GSTP1) in relation to ASD. METHODS Participants included n=169 age- and sex-matched case-control pairs of Jamaican children 2-8 years old. Socioeconomic status and food frequency data were self-reported by the parents/guardians. Blood from each participant was analyzed for 100 PCB congeners and 17 OC pesticides and genotyped for three GST genes. PCBs and OC pesticides concentrations below the limit of detection (LoD) were replaced with (LoD/√2). We used conditional logistic regression (CLR) models to assess associations of PCBs and OC pesticides with ASD, individually or interactively with GST genes (GSTT1, GSTM1, GSTP1). RESULTS We found inverse associations of PCB-153 [adjusted MOR (95% CI) = 0.44 (0.23-0.86)] and PCB-180 [adjusted MOR (95% CI) = 0.52 (0.28-0.95)] with ASD. When adjusted for covariates in a CLR the interaction between GSTM1 and PCB-153 became significant (P < 0.01). DISCUSSION Differences in diet between ASD and typically developing control groups may play a role in the observed findings of lower concentrations of PCB-153 and PCB-180 in individuals with ASD than in controls. Considering the limited sample size and high proportion of concentrations below the LoD, these results should be interpreted with caution but warrant further investigation into associations of PCBs and OC pesticides with ASD.
Collapse
Affiliation(s)
- MacKinsey A. Bach
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston, Jamaica
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - MinJae Lee
- Division of Biostatistics, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jing Zhang
- Biostatistics/Epidemiology/Research Design (BERD) core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Department of Biostatistics & Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Megan L. Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Katherine A. Loveland
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77054, USA
| | - Mohammad H. Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Corresponding Author: Mohammad H. Rahbar, PhD, 6410 Fannin Street, Suite 1100.05, UT Professional Building, Houston, TX 77030, USA. Phone: (713)500-7901. Fax: (713)500-0766.
| |
Collapse
|
82
|
Gupta UC, Gupta SC. Optimizing Modifiable and Lifestyle-related Factors in the Prevention of Dementia Disorders with Special Reference to Alzheimer, Parkinson and Autism Diseases. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190801120306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dementia is a syndrome and an umbrella term that encompasses Alzheimer, Parkinson and
autism diseases. These diseases are by far the most common cause of dementia; therefore this investigation
will chiefly include these disorders, with a limited discussion of few other disorders related
to dementia. Alzheimer’s disease (AD) is characterized by the accumulation of cerebral β-amyloid
plaques, tau proteins and memory loss; Parkinson by the deterioration of brain cells which regulate
the movement of body parts and produce dopamine; and autism by abnormalities of social disorder
and difficulty in communicating and forming relationships. Alzheimer’s disease and cognitive impairment
in dementia are age-related and manageable only with early diagnosis and prevention. Data
based on several decades of research has shown that the major factors responsible for the induction
of inflammation in dementia and many chronic diseases are infections, obesity, alcohol, radiation,
environmental pollutants, improper nutrition, lack of physical activity, depression, anxiety, genetic
factors, and sleep deprivation. There are some studied preventive measures for dementia including
continued physical activity and consuming predominantly a plant-based Mediterranean diet comprising
olive oil and foods containing flavonoids and other phytochemicals having strong antioxidant and
anti-inflammatory properties and along with management of chronic conditions.
Collapse
Affiliation(s)
- Umesh C. Gupta
- Agriculture and Agri-Food Canada, Charlottetown Research and Development Centre, 440 University Avenue, Charlottetown, PE, Canada
| | - Subhas C. Gupta
- The Department of Plastic Surgery, Loma Linda University School of Medicine, Loma Linda, California 92354, United States
| |
Collapse
|
83
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
84
|
Patten KT, González EA, Valenzuela A, Berg E, Wallis C, Garbow JR, Silverman JL, Bein KJ, Wexler AS, Lein PJ. Effects of early life exposure to traffic-related air pollution on brain development in juvenile Sprague-Dawley rats. Transl Psychiatry 2020; 10:166. [PMID: 32483143 PMCID: PMC7264203 DOI: 10.1038/s41398-020-0845-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Epidemiological studies link traffic-related air pollution (TRAP) to increased risk for various neurodevelopmental disorders (NDDs); however, there are limited preclinical data demonstrating a causal relationship between TRAP and adverse neurodevelopmental outcomes. Moreover, much of the preclinical literature reports effects of concentrated ambient particles or diesel exhaust that do not recapitulate the complexity of real-world TRAP exposures. To assess the developmental neurotoxicity of more realistic TRAP exposures, we exposed male and female rats during gestation and early postnatal development to TRAP drawn directly from a traffic tunnel in Northern California and delivered to animals in real-time. We compared NDD-relevant neuropathological outcomes at postnatal days 51-55 in TRAP-exposed animals versus control subjects exposed to filtered air. As indicated by immunohistochemical analyses, TRAP significantly increased microglial infiltration in the CA1 hippocampus, but decreased astrogliosis in the dentate gyrus. TRAP exposure had no persistent effect on pro-inflammatory cytokine levels in the male or female brain, but did significantly elevate the anti-inflammatory cytokine IL-10 in females. In male rats, TRAP significantly increased hippocampal neurogenesis, while in females, TRAP increased granule cell layer width. TRAP had no effect on apoptosis in either sex. Magnetic resonance imaging revealed that TRAP-exposed females, but not males, also exhibited decreased lateral ventricular volume, which was correlated with increased granule cell layer width in the hippocampus in females. Collectively, these data indicate that exposure to real-world levels of TRAP during gestation and early postnatal development modulate neurodevelopment, corroborating epidemiological evidence of an association between TRAP exposure and increased risk of NDDs.
Collapse
Affiliation(s)
- Kelley T Patten
- Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Eduardo A González
- Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Anthony Valenzuela
- Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Elizabeth Berg
- Psychiatry, UC Davis School of Medicine, Sacramento, CA, USA
| | | | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jill L Silverman
- Psychiatry, UC Davis School of Medicine, Sacramento, CA, USA
- The MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Keith J Bein
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Center for Health and the Environment, UC Davis, Davis, CA, USA
| | - Anthony S Wexler
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, UC Davis, Davis, CA, USA
| | - Pamela J Lein
- Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, USA.
- The MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
85
|
Palanisamy A, Giri T, Jiang J, Bice A, Quirk JD, Conyers SB, Maloney SE, Raghuraman N, Bauer AQ, Garbow JR, Wozniak DF. In utero exposure to transient ischemia-hypoxemia promotes long-term neurodevelopmental abnormalities in male rat offspring. JCI Insight 2020; 5:133172. [PMID: 32434985 DOI: 10.1172/jci.insight.133172] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The impact of transient ischemic-hypoxemic insults on the developing fetal brain is poorly understood despite evidence suggesting an association with neurodevelopmental disorders such as schizophrenia and autism. To address this, we designed an aberrant uterine hypercontractility paradigm with oxytocin to better assess the consequences of acute, but transient, placental ischemia-hypoxemia in term pregnant rats. Using MRI, we confirmed that oxytocin-induced aberrant uterine hypercontractility substantially compromised uteroplacental perfusion. This was supported by the observation of oxidative stress and increased lactate concentration in the fetal brain. Genes related to oxidative stress pathways were significantly upregulated in male, but not female, offspring 1 hour after oxytocin-induced placental ischemia-hypoxemia. Persistent upregulation of select mitochondrial electron transport chain complex proteins in the anterior cingulate cortex of adolescent male offspring suggested that this sex-specific effect was enduring. Functionally, offspring exposed to oxytocin-induced uterine hypercontractility showed male-specific abnormalities in social behavior with associated region-specific changes in gene expression and functional cortical connectivity. Our findings, therefore, indicate that even transient but severe placental ischemia-hypoxemia could be detrimental to the developing brain and point to a possible mitochondrial link between intrauterine asphyxia and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arvind Palanisamy
- Department of Anesthesiology.,Department of Obstetrics and Gynecology
| | | | | | - Annie Bice
- Mallinckrodt Institute of Radiology, and
| | | | | | | | | | | | | | - David F Wozniak
- Department of Psychiatry, and.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
86
|
Zurita MF, Cárdenas PA, Sandoval ME, Peña MC, Fornasini M, Flores N, Monaco MH, Berding K, Donovan SM, Kuntz T, Gilbert JA, Baldeón ME. Analysis of gut microbiome, nutrition and immune status in autism spectrum disorder: a case-control study in Ecuador. Gut Microbes 2020; 11:453-464. [PMID: 31530087 PMCID: PMC7524316 DOI: 10.1080/19490976.2019.1662260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most studies on autism spectrum disorder (ASD) risk factors have been conducted in developed countries where ethnicity and environment are different than in developing countries. We compared nutritional status, immune response and microbiota composition in mestizo children with ASD with matched controls in Ecuador. Twenty-five cases and 35 controls were matched by age, sex and school location. The prevalence of under- and overweight was higher in children with ASD. Nutritional differences were accompanied by abnormal food habits and more frequent gastrointestinal symptoms in children with ASD. Also, greater serum concentrations of TGF-β1 were observed in children with ASD. Finally, there was greater alpha diversity and abundance of Bacteroides (2 OTUs), Akkermansia, Coprococcus and different species of Ruminococcus in ASD children.
Collapse
Affiliation(s)
- María Fernanda Zurita
- Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato, Ecuador,Centro de Investigación Traslacional, Universidad de las Américas, Quito, Ecuador
| | - Paúl A. Cárdenas
- Centro de Investigación Traslacional, Universidad de las Américas, Quito, Ecuador,Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
| | - María Elena Sandoval
- Centro de Investigación Traslacional, Universidad de las Américas, Quito, Ecuador,Area de la Salud, Universidad Andina Simón Bolivar, Quito, Ecuador
| | - María Caridad Peña
- Centro de Investigación Traslacional, Universidad de las Américas, Quito, Ecuador
| | - Marco Fornasini
- Centro de Investigación Traslacional, Universidad de las Américas, Quito, Ecuador,Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Nancy Flores
- Centro de Investigación Traslacional, Universidad de las Américas, Quito, Ecuador,Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Marcia H. Monaco
- Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois, Champaign-Urbana, Urbana, IL, USA
| | - Kirsten Berding
- Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois, Champaign-Urbana, Urbana, IL, USA
| | - Sharon M. Donovan
- Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois, Champaign-Urbana, Urbana, IL, USA
| | - Thomas Kuntz
- Department of Surgery, Microbiome Center, University of Chicago, Chicago, IL, USA
| | - Jack A Gilbert
- Department of Surgery, Microbiome Center, University of Chicago, Chicago, IL, USA
| | - Manuel E. Baldeón
- Centro de Investigación Traslacional, Universidad de las Américas, Quito, Ecuador,Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador,CONTACT Manuel E. Baldeón Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| |
Collapse
|
87
|
Pascucci T, Colamartino M, Fiori E, Sacco R, Coviello A, Ventura R, Puglisi-Allegra S, Turriziani L, Persico AM. P-cresol Alters Brain Dopamine Metabolism and Exacerbates Autism-Like Behaviors in the BTBR Mouse. Brain Sci 2020; 10:E233. [PMID: 32294927 PMCID: PMC7226382 DOI: 10.3390/brainsci10040233] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction/communication, stereotypic behaviors, restricted interests, and abnormal sensory-processing. Several studies have reported significantly elevated urinary and foecal levels of p-cresol in ASD children, an aromatic compound either of environmental origin or produced by specific gut bacterial strains. Methods: Since p-cresol is a known uremic toxin, able to negatively affect multiple brain functions, the present study was undertaken to assess the effects of a single acute injection of low- or high-dose (1 or 10 mg/kg i.v. respectively) of p-cresol in behavioral and neurochemical phenotypes of BTBR mice, a reliable animal model of human ASD. Results: P-cresol significantly increased anxiety-like behaviors and hyperactivity in the open field, in addition to producing stereotypic behaviors and loss of social preference in BTBR mice. Tissue levels of monoaminergic neurotransmitters and their metabolites unveiled significantly activated dopamine turnover in amygdala as well as in dorsal and ventral striatum after p-cresol administration; no effect was recorded in medial-prefrontal cortex and hippocampus. Conclusion: Our study supports a gene x environment interaction model, whereby p-cresol, acting upon a susceptible genetic background, can acutely induce autism-like behaviors and produce abnormal dopamine metabolism in the reward circuitry.
Collapse
Affiliation(s)
- Tiziana Pascucci
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
| | - Marco Colamartino
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
| | - Elena Fiori
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
- European Brain Research Institute EBRI, I-00161 Rome, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University “Campus Bio-Medico”, I-00128 Rome, Italy;
| | - Annalisa Coviello
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
| | - Rossella Ventura
- Department of Psychology and Centro "Daniel Bovet", Sapienza University of Rome, I-00185 Rome, Italy; (T.P.); (M.C.); (E.F.); (A.C.); (R.V.)
- IRCCS Fondazione Santa Lucia, I-00143 Rome, Italy
| | | | - Laura Turriziani
- Interdepartmental Program “Autism 0-90”, “Gaetano Martino” University Hospital, University of Messina, I-98125 Messina, Italy;
| | - Antonio M. Persico
- Interdepartmental Program “Autism 0-90”, “Gaetano Martino” University Hospital, University of Messina, I-98125 Messina, Italy;
| |
Collapse
|
88
|
Hui K, Katayama Y, Nakayama KI, Nomura J, Sakurai T. Characterizing vulnerable brain areas and circuits in mouse models of autism: Towards understanding pathogenesis and new therapeutic approaches. Neurosci Biobehav Rev 2020; 110:77-91. [DOI: 10.1016/j.neubiorev.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
|
89
|
Heavner WE, Smith SEP. Resolving the Synaptic versus Developmental Dichotomy of Autism Risk Genes. Trends Neurosci 2020; 43:227-241. [PMID: 32209454 DOI: 10.1016/j.tins.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/28/2022]
Abstract
Genes that are mutated in Autism Spectrum Disorders (ASD) can be classified broadly as either synaptic or developmental. But what if this is a false distinction? A recent spate of publications has provided evidence for developmental mechanisms that rely on neural activity for proper cortical development. Conversely, a growing body of evidence indicates a role for developmental mechanisms, particularly chromatin remodeling, during learning or in response to neural activity. Here, we review these recent publications and propose a model in which genes that confer ASD risk operate in signal transduction networks critical for both cortical development and synaptic homeostasis.
Collapse
Affiliation(s)
- Whitney E Heavner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
90
|
Maternal Prenatal Exposures in Pregnancy and Autism Spectrum Disorder: An Insight into the Epigenetics of Drugs and Diet as Key Environmental Influences. ADVANCES IN NEUROBIOLOGY 2020; 24:143-162. [PMID: 32006359 DOI: 10.1007/978-3-030-30402-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a rapidly growing global pandemic that affects an estimated 1 in 59-68 children. It is a complex disease with both genetic and environmental etiologies. Due to the rapid increase in the incidence of ASD, environmental causes for ASD are gaining attention. Efforts to probe several environmental exposures that could contribute to causing ASD are underway. In this regard, this chapter is directed towards understanding prenatal exposure to key environmental factors i.e., drugs and dietary nutrients that may act via the same molecular pathway - epigenetics as a potential etiological factor for ASD. Epigenetic regulation is a molecular mechanism known to be a significant contributor to neurodevelopmental disorders. It also offers a means to explain how environmental exposures can impact genetics. We discuss the impact of maternal exposures to certain drugs, and dietary intake, on the developing fetus during pregnancy. Maternal Exposure to some drugs during gestation are associated with a higher risk of ASD, while exposure to other dietary compounds may offer promise to rescue epigenetic regulatory insults related to ASD. However, more work in this important area is still required, nevertheless preliminary research already has important implications in the understanding, prevention and treatment of ASD.
Collapse
|
91
|
Pelsőczi P, Kelemen K, Csölle C, Nagy G, Lendvai B, Román V, Lévay G. Disrupted Social Hierarchy in Prenatally Valproate-Exposed Autistic-Like Rats. Front Behav Neurosci 2020; 13:295. [PMID: 32009915 PMCID: PMC6974458 DOI: 10.3389/fnbeh.2019.00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired socio-communicational function, repetitive and restricted behaviors. Valproic acid (VPA) was reported to increase the prevalence of ASD in humans as a consequence of its use during pregnancy. VPA treatment also induces autistic-like behaviors in the offspring of rats after prenatal exposure; hence it is a preclinical disease model with high translational value. In the present study, our aim was to characterize ASD relevant behaviors of socially housed, individually identified male rats in automated home cages. The natural behavior of rats was assessed by monitoring their visits to drinking bottles in an environment without human influence aiming at reducing interventional stress. Although rodents normally tend to explore their new environment, prenatally VPA-treated rats showed a drastic impairment in initial and long-term exploratory behavior throughout their stay in the automated cage. Furthermore, VPA rats displayed psychogenic polydipsia (PPD) as well as altered circadian activity. In the competitive situation of strict water deprivation controls switched to an uneven resource sharing and only a few dominant animals had access to water. In VPA animals similar hierarchy-related changes were completely absent. While the control rats secured their chance to drink with frequent reentering visits, thereby “guarding” the water resource, VPA animals did not switch to uneven sharing and displayed no evidence of guarding behavior.
Collapse
Affiliation(s)
- Péter Pelsőczi
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary.,Faculty of Pharmaceutical Sciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Kristóf Kelemen
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Cecília Csölle
- Laboratory of Neurodevelopmental Biology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Nagy
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - Viktor Román
- Laboratory of Neurodevelopmental Biology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary
| | - György Lévay
- Laboratory of Cognitive Pharmacology, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., Budapest, Hungary.,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
92
|
The Association Between Somatic Health, Autism Spectrum Disorder, and Autistic Traits. Behav Genet 2019; 50:233-246. [PMID: 31811521 PMCID: PMC7355269 DOI: 10.1007/s10519-019-09986-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
This study used a twin cohort to investigate the association of autism spectrum disorder (ASD) and autistic traits with somatic health. A total of 344 twins (172 pairs; mean age 15.56 ± 5.62 years) enriched for ASD and other neurodevelopmental conditions were examined. Medical history and current physical problems were collected with a validated questionnaire to determine twin’s somatic health. The Social Responsiveness Scale (SRS-2) was used to measure the participant’s severity of autistic traits. Identified somatic health issues with significant within-twin pair differences were tested in relation to both ASD diagnosis and autistic traits in a co-twin control model. Twins with ASD exhibited more neurological and immunological health problems compared to those without ASD (p = 0.005 and p = 0.004, respectively). The intra-pair differences of neurological conditions and SRS-2 score were significantly correlated in monozygotic twins differing for autism traits (r = 0.40, p = 0.001), while the correlation was not found for immunological problems. In addition, a conditional model for analysis of within-twin pair effects revealed an association between neurological problems and clinical ASD diagnosis (Odds ratio per neurological problem 3.15, p = 0.02), as well as autistic traits (β = 10.44, p = 0.006), after adjusting for possible effects of co-existing attention deficit hyperactivity disorder and general intellectual abilities. Our findings suggest that neurological problems are associated with autism, and that non-shared environmental factors contribute to the overlap for both clinical ASD and autistic traits. Further population-based twin studies are warranted to validate our results and examine in detailed the shared genetic and environmental contributions of neurological problems and ASD.
Collapse
|
93
|
Hart MP. Stress-Induced Neuron Remodeling Reveals Differential Interplay Between Neurexin and Environmental Factors in Caenorhabditis elegans. Genetics 2019; 213:1415-1430. [PMID: 31558583 PMCID: PMC6893388 DOI: 10.1534/genetics.119.302415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Neurexins are neuronal adhesion molecules important for synapse maturation, function, and plasticity. Neurexins have been genetically associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia, but can have variable penetrance and phenotypic severity. Heritability studies indicate that a significant percentage of risk for ASD and schizophrenia includes environmental factors, highlighting a poorly understood interplay between genetic and environmental factors. The singular Caenorhabditis elegans ortholog of human neurexins, nrx-1, controls experience-dependent morphologic remodeling of a GABAergic neuron in adult males. Here, I show remodeling of this neuron's morphology in response to each of three environmental stressors (nutritional, heat, or genotoxic stress) when applied specifically during sexual maturation. Increased outgrowth of axon-like neurites following adolescent stress is the result of an altered morphologic plasticity in adulthood. Despite remodeling being induced by each of the three stressors, only nutritional stress affects downstream behavior and is dependent on neurexin/nrx-1 Heat or genotoxic stress in adolescence does not alter behavior despite inducing GABAergic neuron remodeling, in a neurexin/nrx-1 independent fashion. Starvation-induced remodeling is also dependent on neuroligin/nlg-1, the canonical binding partner for neurexin/nrx-1, and the transcription factors FOXO/daf-16 and HSF1/hsf-1hsf-1 and daf-16, in addition, each have unique roles in remodeling induced by heat and UV stress. The differential molecular mechanisms underlying GABAergic neuron remodeling in response to different stressors, and the disparate effects of stressors on downstream behavior, are a paradigm for understanding how genetics, environmental exposures, and plasticity may contribute to brain dysfunction in ASDs and schizophrenia.
Collapse
Affiliation(s)
- Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
94
|
Łukasik J, Patro-Gołąb B, Horvath A, Baron R, Szajewska H. Early Life Exposure to Antibiotics and Autism Spectrum Disorders: A Systematic Review. J Autism Dev Disord 2019; 49:3866-3876. [PMID: 31175505 PMCID: PMC6667689 DOI: 10.1007/s10803-019-04093-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We systematically reviewed evidence from observational studies on the associations between autism spectrum disorders (ASD) and early-life antibiotic exposure. Eleven articles were included in the review. Prenatal antibiotic exposure was associated with a slightly increased risk of ASD in two cohort studies on overlapping populations and in one case–control study; in three other case–control studies, no significant association was found. One cohort study found a slightly reduced risk of ASD after postnatal antibiotic exposure, while two other cohort studies on overlapping populations and three case–control studies reported an increased risk. Meta-analysis of the eligible studies showed no significant associations. Current data are conflicting and do not conclusively support the hypothesis that early-life antibiotic exposure is associated with subsequent ASD development.
Collapse
Affiliation(s)
- Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland
| | - Bernadeta Patro-Gołąb
- Department of Paediatrics, The Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland
| | - Andrea Horvath
- Department of Paediatrics, The Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland
| | - Ruth Baron
- Sarphati Amsterdam, Amsterdam, The Netherlands
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland.
| |
Collapse
|
95
|
Rivell A, Mattson MP. Intergenerational Metabolic Syndrome and Neuronal Network Hyperexcitability in Autism. Trends Neurosci 2019; 42:709-726. [PMID: 31495451 PMCID: PMC6779523 DOI: 10.1016/j.tins.2019.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
We review evidence that suggests a role for excessive consumption of energy-dense foods, particularly fructose, and consequent obesity and insulin resistance (metabolic syndrome) in the recent increase in prevalence of autism spectrum disorders (ASD). Maternal insulin resistance, obesity, and diabetes may predispose offspring to ASD by mechanisms involving chronic activation of anabolic cellular pathways and a lack of metabolic switching to ketosis resulting in a deficit in GABAergic signaling and neuronal network hyperexcitability. Metabolic reprogramming by epigenetic DNA and chromatin modifications may contribute to alterations in gene expression that result in ASD. These mechanistic insights suggest that interventions that improve metabolic health such as intermittent fasting and exercise may ameliorate developmental neuronal network abnormalities and consequent behavioral manifestations in ASD.
Collapse
Affiliation(s)
- Aileen Rivell
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
96
|
Peripheral Blood Mononuclear Cell Oxytocin and Vasopressin Receptor Expression Positively Correlates with Social and Behavioral Function in Children with Autism. Sci Rep 2019; 9:13443. [PMID: 31530830 PMCID: PMC6748974 DOI: 10.1038/s41598-019-49617-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
The peptide hormone oxytocin is an established regulator of social function in mammals, and dysregulated oxytocin signaling is implicated in autism spectrum disorder (ASD). Several clinical trials examining the effects of intranasal oxytocin for improving social and behavioral function in ASD have had mixed or inclusive outcomes. The heterogeneity in clinical trials outcomes may reflect large inter-individual expression variations of the oxytocin and/or vasopressin receptor genes OXTR and AVPR1A, respectively. To explore this hypothesis we examined the expression of both genes in peripheral blood mononuclear cells (PBMC) from ASD children, their non-ASD siblings, and age-matched neurotypical children aged 3 to 16 years of age as well as datamined published ASD datasets. Both genes were found to have large inter-individual variations. Higher OXTR and AVPR1A expression was associated with lower Aberrant Behavior Checklist (ABC) scores. OXTR expression was associated with less severe behavior and higher adaptive behavior on additional standardized measures. Combining the sum expression levels OXTR, AVPR1A, and IGF1 yielded the strongest correlation with ABC scores. We propose that future clinical trials in ASD children with oxytocin, oxytocin mimetics and additional tentative therapeutics should assess the prognostic value of their PBMC mRNA expression of OXTR, AVPR1A, and IGF1.
Collapse
|
97
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
98
|
Tammimies K, Li D, Rabkina I, Stamouli S, Becker M, Nicolaou V, Berggren S, Coco C, Falkmer T, Jonsson U, Choque-Olsson N, Bölte S. Association between Copy Number Variation and Response to Social Skills Training in Autism Spectrum Disorder. Sci Rep 2019; 9:9810. [PMID: 31285490 PMCID: PMC6614458 DOI: 10.1038/s41598-019-46396-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Challenges in social communication and interaction are core features of autism spectrum disorder (ASD) for which social skills group training (SSGT) is a commonly used intervention. SSGT has shown modest and heterogeneous effects. One of the major genetic risk factors in ASD is rare copy number variation (CNV). However, limited information exists whether CNV profiles could be used to aid intervention decisions. Here, we analyzed the rare genic CNV carrier status for 207 children, of which 105 received SSGT and 102 standard care as part of a randomized clinical trial for SSGT. We found that being a carrier of rare genic CNV did not have an impact on the SSGT outcome measured by the parent-report Social Responsiveness Scale (SRS). However, when stratifying by pathogenicity and size of the CNVs, we identified that carriers of clinically significant and large genic CNVs (>500 kb) showed inferior SRS outcomes at post-intervention (P = 0.047 and P = 0.036, respectively) and follow-up (P = 0.008 and P = 0.072, respectively) when adjusting for standard care effects. Our study provides preliminary evidence that carriers of clinically significant and large genic CNVs might not benefit as much from SSGT as non-carriers. Our results indicate that genetic information might help guide the modifications of interventions in ASD.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ielyzaveta Rabkina
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Sofia Stamouli
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Veronika Nicolaou
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Steve Berggren
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden
| | - Christina Coco
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden
| | - Torbjörn Falkmer
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Bentley, Australia
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ulf Jonsson
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Nora Choque-Olsson
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden.
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Bentley, Australia.
| |
Collapse
|
99
|
Improving autism perinatal risk factors: A systematic review. Med Hypotheses 2019; 127:26-33. [DOI: 10.1016/j.mehy.2019.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
|
100
|
Pelch KE, Bolden AL, Kwiatkowski CF. Environmental Chemicals and Autism: A Scoping Review of the Human and Animal Research. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:46001. [PMID: 30942615 PMCID: PMC6785231 DOI: 10.1289/ehp4386] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Estimates of autism prevalence have increased dramatically over the past two decades. Evidence suggests environmental factors may contribute to the etiology of the disorder. OBJECTIVES This scoping review aimed to identify and categorize primary research and reviews on the association between prenatal and early postnatal exposure to environmental chemicals and the development of autism in epidemiological studies and rodent models of autism. METHODS PubMed was searched through 8 February 2018. Included studies assessed exposure to environmental chemicals prior to 2 months of age in humans or 14 d in rodents. Rodent studies were considered relevant if they included at least one measurement of reciprocal social communicative behavior or repetitive and stereotyped behavior. Study details are presented in interactive displays using Tableau Public. RESULTS The search returned 21,603 unique studies, of which 54 epidemiological studies, 46 experimental rodent studies, and 50 reviews were deemed relevant, covering 152 chemical exposures. The most frequently studied exposures in humans were particulate matter ([Formula: see text]), mercury ([Formula: see text]), nonspecific air pollution ([Formula: see text]), and lead ([Formula: see text]). In rodent studies, the most frequently studied exposures were chlorpyrifos ([Formula: see text]), mercury ([Formula: see text]), and lead ([Formula: see text]). DISCUSSION Although research is growing rapidly, wide variability exists in study design and conduct, exposures investigated, and outcomes assessed. Conclusions focus on recommendations to guide development of best practices in epidemiology and toxicology, including greater harmonization across these fields of research to more quickly and efficiently identify chemicals of concern. In particular, we recommend chlorpyrifos, lead, and polychlorinated biphenyls (PCBs) be systematically reviewed in order to assess their relationship with the development of autism. There is a pressing need to move forward quickly and efficiently to understand environmental influences on autism in order to answer current regulatory questions and inform treatment and prevention efforts. https://doi.org/10.1289/EHP4386.
Collapse
Affiliation(s)
| | | | - Carol F. Kwiatkowski
- The Endocrine Disruption Exchange, Eckert, Colorado, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|