51
|
Xu JK, Zhang HY, Cui LJ, Cui ZH. Dual structural fluxionality in the copper borozene complex Cu3B8-: A two-layered molecular rotor. J Chem Phys 2024; 161:174306. [PMID: 39504254 DOI: 10.1063/5.0232564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Doubly aromatic B82-, a borozene analog of benzene (C6H6) due to their similar π bonding, can be considered an ideal base for multi-layered molecular rotors. Here, we theoretically constructed the copper borozene complex Cu3B8- to investigate its stability and structural fluxionality. The lowest energy isomers consist of two-layered configurations: a B8 molecular wheel and a triangular Cu3 motif that either stands upright or lies flat above the B8 wheel. Both configurations exhibit structural fluxionality, as indicated by the free rotation of Cu3 with respect to the B8 molecular wheel, confirmed by Born-Oppenheimer molecular dynamics simulations even at low temperatures. This fluxional behavior is associated with an ultra-soft vibrational mode of Cu3 (less than 10.0 cm-1) and a negligible rotational barrier of 0.01 kcal/mol. Notably, high simulated temperatures cause irregular interconversion between the standing and lying orientations of Cu3 without regularity. Chemical bonding analysis confirmed that charge transfer from Cu3 to the B8 wheel renders Cu3B8- a typical copper borozene complex, [Cu3+][B82-], where B82- has six delocalized π and σ electrons. This electron delocalization contributes to a dilute and continuous electron cloud that underpins the dynamic behavior of the Cu3 trimer.
Collapse
Affiliation(s)
- Jing-Kai Xu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Hui-Yu Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Li-Juan Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130023, China
| |
Collapse
|
52
|
Scheiner S. Participation of transition metal atoms in noncovalent bonds. Phys Chem Chem Phys 2024; 26:27382-27394. [PMID: 39441097 DOI: 10.1039/d4cp03716b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The existence of halogen, chalcogen, pnicogen, and tetrel bonds as variants of noncovalent σ and π-hole bonds is now widely accepted, and many of their properties have been elucidated. The ability of the d-block transition metals to potentially act as Lewis acids in a similar capacity is examined systematically by DFT calculations. Metals examined span the entire range of the d-block from Group 3 to 12, and are selected from several rows of the periodic table. These atoms are placed in a variety of neutral MXn molecules, with X = Cl and O, and paired with a NH3 nucleophile. The resulting M⋯N bonds tend to be stronger than their p-block analogues, many of them with a substantial degree of covalency. The way in which the properties of these bonds is affected by the row and column of the periodic table from which the M atom is drawn, and the number and nature of ligands, is elucidated.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
53
|
Šenk J, Graves V, Gorfinkiel JD, Kolorenč P, Sisourat N. Interatomic Coulombic electron capture beyond the virtual photon approximation. J Chem Phys 2024; 161:174113. [PMID: 39498883 DOI: 10.1063/5.0227540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Via the interatomic Coulombic electron capture (ICEC) process, an electron can be captured by an atom or a molecule, while the binding and excess energy is transferred, via a long-range Coulomb interaction, to a neighboring atom or molecule. The transferred energy can be used to ionize or electronically excite the neighboring species. When the two species are asymptotically far apart, an analytical formula for the ICEC cross sections can be derived. The latter can then be estimated using only the energies and the photoionization cross sections of each species. In this work, we develop an analytical model that allows us to predict the ICEC cross sections when the size of the involved species is comparable to the distance between the two entities. Using ab initio R-matrix results for various systems, we show that the new model reduces the error of the asymptotic formula by two orders of magnitude on average while only using parameters that can be taken from the properties of each species.
Collapse
Affiliation(s)
- Jan Šenk
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, F-75005 Paris, France
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Vincent Graves
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Jimena D Gorfinkiel
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Přemysl Kolorenč
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Nicolas Sisourat
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, F-75005 Paris, France
| |
Collapse
|
54
|
Chlebík R, Fekete C, Jambor R, Růžička A, Benkő Z, Dostál L. Antimony centre in three different roles: does donor strength or acceptor ability determine the bonding pattern? Dalton Trans 2024; 53:17721-17726. [PMID: 39420754 DOI: 10.1039/d4dt02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A set of antimony(III) compounds containing a ligand (Ar) with a pendant guanidine function (where Ar = 2-[(Me2N)2CN]C6H4) was prepared and characterized. This includes triorgano-Ar3Sb, diorgano-Ar2SbCl and monoorgano-ArSbCl2 compounds and they were characterized by 1H and 13C NMR spectroscopy and by single-crystal X-ray diffraction analysis (sc-XRD). The coordination capability of Ar3Sb and Ar2SbCl was examined in the reactions with either cis-[PdCl2(CH3CN)2] or PtCl2 and complexes cis-[(κ2-Sb,N-Ar3Sb)MCl2] (M = Pd 1, Pt 2) and [(κ3-N,Sb,N-Ar2SbCl)MCl2] (M = Pd 3, Pt 4) were isolated, while their structures were determined by sc-XRD. Notably, the ligands Ar3Sb and Ar2SbCl exhibit different coordination modes - bidentate and tridentate, respectively - and the antimony exhibits three distinct bonding modes in complexes 1-4, which were also subjected to theoretical studies.
Collapse
Affiliation(s)
- Richard Chlebík
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic.
| | - Csilla Fekete
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp 3, H-1111 Budapest, Hungary.
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic.
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp 3, H-1111 Budapest, Hungary.
- HUN-REN-BME Computation Driven Chemistry Research Group, Műegyetem rkp 3, H-1111 Budapest, Hungary
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic.
| |
Collapse
|
55
|
Doleschal ME, Kostenko A, Liu JY, Inoue S. Silicon-aryl cooperative activation of ammonia. Chem Commun (Camb) 2024; 60:13020-13023. [PMID: 39431367 PMCID: PMC11492217 DOI: 10.1039/d4cc04617j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Herein, we report the reactivity of N-heterocyclic carbene stabilized silylene-phosphinidene IDippPSi(TMS)2SiTol3 (IDipp = 1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene) with ammonia, which results in an intermolecular 1,5-hydroamination and dearomatization of the NHC wingtip. DFT calculations reveal an unprecedented mechanism involving ammonia coordination to the silicon center, Meisenheimer-type complex formation, and a proton abstraction by the dearomatized aryl moiety.
Collapse
Affiliation(s)
- Martin Ernst Doleschal
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| | - Jin Yu Liu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| |
Collapse
|
56
|
Hung NT, Okabe R, Chotrattanapituk A, Li M. Universal Ensemble-Embedding Graph Neural Network for Direct Prediction of Optical Spectra from Crystal Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409175. [PMID: 39263754 DOI: 10.1002/adma.202409175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Optical properties in solids, such as refractive index and absorption, hold vast applications ranging from solar panels to sensors, photodetectors, and transparent displays. However, first-principles computation of optical properties from crystal structures is a complex task due to the high convergence criteria and computational cost. Recent progress in machine learning shows promise in predicting material properties, yet predicting optical properties from crystal structures remains challenging due to the lack of efficient atomic embeddings. Here, Graph Neural Network for Optical spectra prediction (GNNOpt) is introduced, an equivariant graph-neural-network architecture featuring universal embedding with automatic optimization. This enables high-quality optical predictions with a dataset of only 944 materials. GNNOpt predicts all optical properties based on the Kramers-Krönig relations, including absorption coefficient, complex dielectric function, complex refractive index, and reflectance. The trained model is applied to screen photovoltaic materials based on spectroscopic limited maximum efficiency and search for quantum materials based on quantum weight. First-principles calculations validate the efficacy of the GNNOpt model, demonstrating excellent agreement in predicting the optical spectra of unseen materials. The discovery of new quantum materials with high predicted quantum weight, such as SiOs, which host exotic quasiparticles with multifold nontrivial topology, demonstrates the potential of GNNOpt in predicting optical properties across a broad range of materials and applications.
Collapse
Affiliation(s)
- Nguyen Tuan Hung
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
- Quantum Measurement Group, MIT, Cambridge, MA 02139-4307, USA
| | - Ryotaro Okabe
- Quantum Measurement Group, MIT, Cambridge, MA 02139-4307, USA
- Department of Chemistry, MIT, Cambridge, MA 02139-4307, USA
| | - Abhijatmedhi Chotrattanapituk
- Quantum Measurement Group, MIT, Cambridge, MA 02139-4307, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139-4307, USA
| | - Mingda Li
- Quantum Measurement Group, MIT, Cambridge, MA 02139-4307, USA
- Department of Nuclear Science and Engineering, MIT, Cambridge, MA 02139-4307, USA
| |
Collapse
|
57
|
Hu C, Rees NH, Pink M, Goicoechea JM. Isolation and characterization of a two-coordinate phosphinidene oxide. Nat Chem 2024; 16:1855-1860. [PMID: 39009793 DOI: 10.1038/s41557-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Nitroso compounds, R-N=O, are common intermediates in organic synthesis, and are typically amenable to storage and manipulation at ambient temperature under aerobic conditions. By contrast, phosphorus-containing analogues, such as R-P=O (R = OH, CH3, OCH3, Ph), are extremely reactive and need to be studied in inert gas matrices at ultralow temperatures (3-15 K). These species are believed to be key intermediates in the degradation/combustion of organic phosphorus compounds, a class of chemicals that includes chemical warfare agents and flame retardants. Here we describe the isolation of a two-coordinate phosphorus(III) oxide under ambient conditions, enabled by the use of an extremely bulky amine ligand. Reactivity studies reveal that the phosphorus centre can be readily oxidized, and that in doing so, the P-O bond remains intact, an observation that is of interest to the proposed reactivity of transient phosphorus(III) oxides.
Collapse
Affiliation(s)
- Chenyang Hu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Nicolas H Rees
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
58
|
Hauer S, Balázs G, Gliese F, Meurer F, Horsley Downie TM, Hennig C, Weigand JJ, Wolf R. Functionalization of Tetraphosphido Ligands by Heterocumulenes. Inorg Chem 2024; 63:20141-20152. [PMID: 38819111 PMCID: PMC11523228 DOI: 10.1021/acs.inorgchem.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Although numerous polyphosphido complexes have been accessed through the transition-metal-mediated activation and functionalization of white phosphorus (P4), the selective functionalization of the resulting polyphosphorus ligands in these compounds remains underdeveloped. In this study, we explore the reactions between cyclotetraphosphido cobalt complexes and heterocumulenes, leading to functionalized P4 ligands. Specifically, the reaction of carbon disulfide (CS2) with [K(18c-6)][(Ar*BIAN)Co(η4-P4)] ([K(18c-6)]1, 18c-6 = [18]crown-6) affords the adduct [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4CS2)] ([K(18c-6)]3), in which CS2 is attached to a single phosphorus atom (Ar* = 2,6-dibenzhydryl-4-isopropylphenyl, BIAN = 1,2-bis(arylimino)acenaphthene diimine). In contrast, the insertion of bis(trimethylsilyl)sulfur diimide S(NSiMe3)2 into a P-P bond of [K(18c-6)]1 yields [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)2)] (K(18c-6)]4). This salt further reacts with Me3SiCl to form [(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)3] (5), featuring a rare azatetraphosphole ligand. Moreover, treatment of the previously reported complex [(Ar*BIAN)Co(η3:η1-P4C(O)tBu)] (2) with isothiocyanates results in P-C bond insertion, yielding [(Ar*BIAN)Co(η3:η1-P4C(S)N(R)C(O)tBu)] (6a,b; R = Cy, Ph).
Collapse
Affiliation(s)
- Sebastian Hauer
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Fabian Gliese
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Florian Meurer
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | | | - Christoph Hennig
- European
Synchrotron Radiation Facility, Rossendorf Beamline (BM20-CRG), 38043 Grenoble, France
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | - Jan J. Weigand
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, 01062 Dresden, Germany
| | - Robert Wolf
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
59
|
Wang Y, Li Y, Sang R, Xu L. [Bi 10{RuPPh 3} 3] -: Paramagnetic 13-Vertex Polybismuthide Heteroanion. Inorg Chem 2024; 63:20088-20092. [PMID: 39012053 DOI: 10.1021/acs.inorgchem.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ru(PPh3)3Cl2 reacts with Binn- from an ethylenediamine (en) solution of K5Bi4 to yield a new architype of 13-vertex [Bi10{RuPPh3}3]- (1) composed of unprecedented incomplete cuboidal Bi73- and triangular Bi33- held together by {RuPPh3}2+.
Collapse
Affiliation(s)
- Yueyue Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yankai Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ruili Sang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Li Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
60
|
Sarmah K, Yashmin F, Kalita AJ, Haloi K, Devi S, Barman P, Mazumder LJ, Guha AK. C(P) 42+: a viable planar tetracoordinate carbon species. Phys Chem Chem Phys 2024; 26:26337-26341. [PMID: 39382596 DOI: 10.1039/d4cp02205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Tetrahedral carbon is a well-accepted structural motif. Theory has paved the way for many rule-breaking planar tetracoordinate carbon structures. Herein, we have explored the possibility of phosphorous supported carbon cluster C(P4)2+ to locate a planar tetracoordinate carbon centre (ptC). Our calculations revealed a penta-atomic planar tetracoordinate carbon (ptC) atom as a local minimum with a significant barrier for interconversion into the lowest energy isomer. The proposed species is kinetically stable and is a probable candidate for experimental detection. The stabilization of the planar structure arises due to delocalization of the p-electrons of the central carbon atom to the surrounding P4 skeleton and significant electrostatic attraction.
Collapse
Affiliation(s)
- Kangkan Sarmah
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| | - Farnaz Yashmin
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| | - Amlan J Kalita
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| | - Kriti Haloi
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| | - Surjata Devi
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| | - Priyakshi Barman
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| | - Lakhya J Mazumder
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| | - Ankur K Guha
- Advanced Computational Chemistry, Centre Cotton University, Guwahati, Assam, 781001, India.
| |
Collapse
|
61
|
Obey TJ, Singh MK, Canaj AB, Nichol GS, Brechin EK, Love JB. A Delocalized Mixed-Valence Dinuclear Ytterbium Complex That Displays Intervalence Charge Transfer. J Am Chem Soc 2024; 146:28658-28662. [PMID: 39401076 PMCID: PMC11503763 DOI: 10.1021/jacs.4c12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
The analysis of intervalence charge transfer (IVCT) in mixed-valence compounds can help understand electron transfer processes that are important in diverse applications such as molecular electronics and artificial photosynthesis. While mixed-valence complexes of the lanthanides are more difficult to access than their transition metal analogues, they have shown IVCT phenomena derived from Robin-Day Class II localized valency or even electronic transitions due to d-d metal-metal bonding. In contrast, we report here the synthesis, characterization, and computational analysis of a rare, Robin-Day Class III, singly reduced dinuclear Yb complex, which is best viewed as having delocalized oxidation states. In this case, no metal-metal bonding occurs and, for the first time, IVCT in a Robin-Day Class III complex resulting from f-f transitions is observed.
Collapse
Affiliation(s)
- Tom J.
N. Obey
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Mukesh K. Singh
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Angelos B. Canaj
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Gary S. Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Euan K. Brechin
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Jason B. Love
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| |
Collapse
|
62
|
Amonov A, Scheiner S. Spodium Bonding to Dicoordinated Group 12 Atoms. J Phys Chem A 2024; 128:8751-8761. [PMID: 39340458 DOI: 10.1021/acs.jpca.4c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
DFT calculations consider the interactions between linear MR2 and a series of N-bases, where M is Hg or Zn and its R substituents are CCH, CN, or NO2. NCH, NH3, and NMe3 were considered as three different N-bases. Zn forms stronger bonds with the N bases than does Hg, and they strengthen along with the electron-withdrawing power of the R substituent, varying over a wide range from 3.4 to 43.9 kcal/mol. Another factor contributing to the bond strength is the nucleophilicity of the base: NCH < NH3 < NMe3. All MR2 Lewis acids can bind at least two bases, which are situated along the R-M-R bisecting plane, fairly close to one another, with θ(N-M-N) angles between 67° and 117°. The presence of a more electron-withdrawing substituent R and more powerful nucleophile allows up to 4 bases to bind to M. The properties of these bonds place them along a continuum, some clearly noncovalent, while other contain a good deal of covalent character.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy, Institute of Engineering Physics Samarkand State University, Univer sity blv. 15, Samarkand 140104, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
63
|
Shentseva IA, Usoltsev AN, Korobeynikov NA, Sokolov MN, Adonin SA. Discrete Hexa- and Binuclear Heterometallic Iodobismuthate(III) Complexes with Cu(I) and Ag(I). Inorg Chem 2024; 63:18774-18780. [PMID: 39319510 DOI: 10.1021/acs.inorgchem.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The rare examples of discrete anionic halobismuthates(III) with group 11 elements were obtained. Those are (3-MePyH)6[Bi4Cu2I20] (1) and (3,5-MePyC6)3[BiAgI7]2 (2) (3-MePyH = 3-methylpyridinium cation, 3,5-MePyC6=1,6-bis(3,5-dimethylpyridinium)hexane dication). Both complexes were isolated as pure phases; the optical band gaps for 1 and 2 are 1.75 and 2.23 eV, respectively.
Collapse
Affiliation(s)
- Irina A Shentseva
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Andrey N Usoltsev
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | | | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Sergey A Adonin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Favorsky Irkutsk Institute of Chemistry SB RAS, Irkutsk 630090, Russia
| |
Collapse
|
64
|
Wheaton AM, Chipman JA, Walde RK, Hofstetter H, Berry JF. Chemically Separable Co(II) Spin-State Isomers. J Am Chem Soc 2024; 146:26926-26935. [PMID: 39297881 DOI: 10.1021/jacs.4c08097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The phenomenon of spin crossover involves coordination complexes with switchable spin states. This spin state change is accompanied by significant geometric changes such that low and high spin forms of a complex are distinct isomers that exist in equilibrium with one another. Typically, spin-state isomers interconvert rapidly and are similar enough in polarity to prevent their independent separation and isolation. We report here the first example, to our knowledge, of cobalt(II) spin-state isomers that can be physically separated. The reaction of Mo2(dpa)4 (dpa = 2,2'-dipyridylamide) with CoBr2 produces a mixture of two heterometallic compounds with a linear, metal-metal-bonded Mo[Formula: see text]Mo-Co chain. The complexes, SC-[BrMo2(dpa)4Co]Br (SC-2) and HS-[BrMo2(dpa)4CoBr] (HS-2), have identical compositions (Mo2Co(dpa)4Br2) but different ground spin states and coordination geometries of the Co(II) ion. In the solid state, SC-2 undergoes incomplete spin crossover from an S = 1/2 state to an S = 3/2 state, and HS-2 has a high spin, S = 3/2, ground state, as confirmed by SQUID magnetometry and EPR spectroscopy. Crystallographic analyses of SC-2 and HS-2 show that SC-2 has an elongated Co-Br distance relative to HS-2 and is best described as the salt [BrMo2(dpa)4Co]Br. This limits SC-2's solubility in nonpolar solvents and allows for the physical separation of the two isomers. Solution studies of SC-2 and HS-2 indicate that SC-2 and HS-2 interconvert slowly relative to the NMR time scale. Additional solution-state EPR and UV-vis absorption measurements demonstrate that the choice of solvent polarity determines the predominant isomer present in solution.
Collapse
Affiliation(s)
- Amelia M Wheaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jill A Chipman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Rebecca K Walde
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
65
|
Burkhardt J, Li WL. Theoretical Investigation on One-Electron ϕ···ϕ Bonding in Diuranium Inverse Sandwich U 2B 6 Complex Enabled by a B 6 Ring. Inorg Chem 2024; 63:18313-18322. [PMID: 39285662 PMCID: PMC11445727 DOI: 10.1021/acs.inorgchem.4c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Traditional σ, π, and δ types of covalent chemical bonding have been extensively studied for nearly a century. In contrast, ϕ-type bonding involving nf (n = 4, 5) orbitals has received less attention due to their high contraction and minimal orbital overlap. Herein, we theoretically predict a singly occupied ϕ···ϕ bonding between two 5f orbitals, facilitated by B6 group orbitals in the hexa-boron diuranium inverse sandwich structure of U2B6. From ab initio quantum chemical calculations, the global minimum structure has a septuplet state with D6h symmetry. Chemical bonding analyses reveal that the 5f and 6d atomic orbitals of the two uranium atoms interact with the ligand orbitals of the central B6 ring, exhibiting favorable energy matching and symmetry compatibility to form delocalized σ-, π-, δ-, and ϕ-type bonding orbitals. Notably, even though the ϕ···ϕ bonding orbital is singly occupied, it still has a significant role in stability and cannot be overlooked. Furthermore, the U2B6 cluster model can be viewed as a building block of UB2 solid materials from both geometric and electronic perspectives. This work predicts the first example of ϕ···ϕ bonding, highlighting the complexity and diversity of chemical bonds formed in actinide boride clusters.
Collapse
Affiliation(s)
- Jordan Burkhardt
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Wan-Lu Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
66
|
Bakry AA, Fanelli MG, Zeldin M, Donald KJ, Parish CA. Dative Bonding in Quasimetallatranes Containing Group 15 Donors (Y = N, P, and As) and Group 14 Acceptors (M = Si, Ge, Sn, and Pb). Inorg Chem 2024; 63:18005-18015. [PMID: 39301982 PMCID: PMC11445729 DOI: 10.1021/acs.inorgchem.4c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Metallatranes and their analogous fused ring [3.3.0] bicyclic compounds, quasimetallatranes, have emerged as fascinating molecular systems with intriguing structural, bonding, and conformational properties. We present a comprehensive investigation aimed at unraveling the nature of dative bonding and exploring the conformational flexibility of these compounds. We extensively characterize the dative bond between the metal center and the electron pair donor, using a range of modeling techniques. Our analyses involve structural optimizations, molecular orbital examinations, and covalency ratio calculations, which provide a thorough understanding of the bonding interactions responsible for the stability of these systems. The results confirmed the presence of dative bonds, supported by the close proximity between the metal and the electron-donating group, and the observation of overlapping electron density. Our studies reveal a correlation between the size of the electron-donor and the coordinating metal atom, and the strength of the dative interaction, as indicated by the bond length and the Wiberg bond indices. This bond strength, in turn, influences the conformational preferences adopted by these compounds. This investigation sheds light on the fundamental aspects of the fused ring [3.3.0] bicyclic quasimetallatrane compounds and offers valuable insights into their unique properties.
Collapse
Affiliation(s)
- Aamy A. Bakry
- Department of Chemistry,
Gottwald Center for the Sciences, University
of Richmond, Richmond, Virginia 23173, United States
| | - Matthew G. Fanelli
- Department of Chemistry,
Gottwald Center for the Sciences, University
of Richmond, Richmond, Virginia 23173, United States
| | - Martel Zeldin
- Department of Chemistry,
Gottwald Center for the Sciences, University
of Richmond, Richmond, Virginia 23173, United States
| | - Kelling J. Donald
- Department of Chemistry,
Gottwald Center for the Sciences, University
of Richmond, Richmond, Virginia 23173, United States
| | - Carol A. Parish
- Department of Chemistry,
Gottwald Center for the Sciences, University
of Richmond, Richmond, Virginia 23173, United States
| |
Collapse
|
67
|
Mena MR, Bhunia M, Gau MR, Mindiola DJ. Molecular Bis(chalcogenido) Titanates of Te, Se, and S. Inorg Chem 2024; 63:18495-18501. [PMID: 39271477 DOI: 10.1021/acs.inorgchem.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A series of titanate cisoid bis(chalcogenidos) (Ch = Te, Se, and S) complexes supported by the β-diketiminate ligand BDI- = [ArNC(CH3)]2CH (Ar = 2,6-iPr2C6H3) are readily assembled via treatment of the TiIII precursor (BDI)Ti(CH2SiMe3)2 with 2.5 equiv of elemental "Ch" source and 1 equiv of reductant in the presence of crown-ether. In the absence of the electride, Te or S addition to (BDI)Ti(CH2SiMe3)2 results instead in the isolation of a mononuclear tellurido-tellurolate [(BDI)Ti(=Te)(TeCH2SiMe3)] and the bridging sulfido-thiolate complex [(BDI)Ti(SCH2SiMe3)(μ-S)]2, respectively. In the case of Se, the rare selenido-perselenoate complex [(BDI)Ti(=Se)(η2-SeSeCH2SiMe3)] was isolated. In addition to crystallographically and spectroscopically characterizing all of the complexes, we demonstrate the latter species to be likely intermediates in the formation of [(BDI)Ti(Ch)2]- via the addition of electride.
Collapse
Affiliation(s)
- Matthew R Mena
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania, 19104 United States
| | - Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania, 19104 United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania, 19104 United States
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania, 19104 United States
| |
Collapse
|
68
|
Wang MH, Wang Z, Wang G, Song H, Fu Y, Li L, Cui ZH. High Transition Temperature Driven by Type-II Dirac Fermions in Topological Superconductor B 7Be 2B 7 Nanosheet. NANO LETTERS 2024; 24:11831-11838. [PMID: 39283029 DOI: 10.1021/acs.nanolett.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Topological superconductors (TSCs) offer a promising avenue for delving into exotic states of matter and fundamental physics. We propose a strategy for realizing high transition temperatures (high-Tc) in TSCs by leveraging nontrivial topology alongside a high carrier density near the Fermi level in metal-doped borophenes. We identified 39 candidates with exceptional thermodynamic stability from thousands of Be-intercalated borophenes (Be1-xBx) via extensive structural searches. Seven candidates exhibit high carrier densities, with B7Be2B7 emerging as a particularly promising candidate. This nanosheet displays both type-I and type-II Dirac fermions, indicative of Z 2 topological metals, thereby positioning it as an ideal platform for high-Tc TSCs. The high-density π electrons of B7Be2B7 originating from type-II Dirac fermions, coupled with the out-of-plane vibrations of B and Be atoms, significantly enhance the electron-phonon coupling (λ = 1.42), resulting in a substantially high-Tc of 31.5 K. These findings underscore the potential of metal-doped borophenes as a cutting-edge material platform for achieving high-Tc TSCs.
Collapse
Affiliation(s)
- Meng-Hui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Zhengxuan Wang
- College of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guangtao Wang
- College of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haolin Song
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130023, China
| | - Lu Li
- College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130023, China
| |
Collapse
|
69
|
Sørensen LK, Gerasimov VS, Karpov SV, Ågren H. Development of discrete interaction models for ultra-fine nanoparticle plasmonics. Phys Chem Chem Phys 2024; 26:24209-24245. [PMID: 39257371 DOI: 10.1039/d4cp00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plasmonics serves as a most outstanding feature of nanoparticle technology and is nowadays used in numerous applications within imaging, sensing and energy harvesting, like plasmonically enhanced solar cells, nanoparticle bioimaging, plasmon-controlled fluorescence for molecular tracking in living cells, plasmon-controlled electronic molecular devices and surface enhanced Raman spectroscopy for single molecular detection. Although plasmonics has been utilized since ancient times, the understanding of its basic interactions has not been fully achieved even under the emergence of modern nanoscience. In particular, it has been difficult to address the "ultra-fine" 1-10 nm regime, important for applications especially in bioimaging and biomedical areas, where neither classical nor quantum based theoretical methods apply. Recently, new approaches have been put forward to bridge this size gap based on semi-empirical discrete interaction models where each atom makes a difference. A primary aim of this perspective article is to review some of the most salient features of these models, and in particular focus on a recent extension - the extended discrete interaction model (Ex-DIM), where the geometric and environmental features are extended - and highlight a set of benchmark studies using this model concerning size, shape, material, temperature dependence and other characteristics of ultra-fine plasmonic nanoparticles. We also analyze new possibilities offered by the model for designing ultra-fine plasmonic particles for applications in the areas of bioimaging, biosensing, photothermal therapy, infrared light harvesting and photodetection. We foresee that future modelling activities will be closely connected to collaborative experimental work including synthesis, device fabrication and measurements with feedback and validation in a systematic fashion. With this strategy we can expect that modelling of ultra-fine plasmonics particles can be integrated in the development of novel plasmonic systems with unprecedented performance and applicability.
Collapse
Affiliation(s)
- Lasse K Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark.
- University Library, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Valeriy S Gerasimov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
- Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
| | - Sergey V Karpov
- L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia.
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
70
|
Okumura A, Ghana P, Spaniol TP, Okuda J. Bridging Titanium Nitrido Complexes Containing A Linear Ti-N-Ti Core with A Two-Coordinate Nitrido Ligand. Chemistry 2024; 30:e202402390. [PMID: 39045887 DOI: 10.1002/chem.202402390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
A series of titanium μ2-nitrido complexes supported by the triamidoamine ligand Xy-N3N (Xy-N3N={(3,5-Me2C6H3)NCH2CH2}3N3-) is reported. The titanium azido complex [(Xy-N3N)TiN3] (1-N3), prepared by salt metathesis of the chloride complex [(Xy-N3N)TiCl] (1-Cl) with NaN3, reacted with lithium metal or with alkali metal naphthalenides (alkali metal M=Na, K, and Rb) in THF to give the corresponding dinuclear μ2-nitrido complexes M[(Xy-N3N)Ti=N-Ti(Xy-N3N)] (2-M; M=Li, Na, K, Rb). Single crystal X-ray diffraction studies of 2-Li, 2-Na, and 2-K revealed alkali metal dependent structures in the solid state. While 2-Li and 2-K contain a μ2-nitrido ligand with a linear Ti-N-Ti core, 2-Na includes a μ3-nitrido ligand as part of a T-shape Ti2NaN fragment with the sodium cation weekly coordinated to the nitrido nitrogen atom. When the synthesis of the nitrido complexes was carried out in the presence of excess alkali metals, decomposition of the nitrido complexes was observed affording some intractable titanium species along with the trialkali metal salts [M3(Xy-N3N)] (3-M) (M=Li, Na, K, and Rb). These salts were also prepared by deprotonation of (Xy-N3N)H3 with the corresponding alkali metal hexamethyldisilazide and characterized by multinuclear NMR spectroscopy as well as single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Akira Okumura
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Priyabrata Ghana
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- Department of Chemistry, Indian Institute of Technology Gandhinagar, 382355, Gujarat, Gandhinagar, India
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
71
|
Bekiş DF, Thomas-Hargreaves LR, Ivlev SI, Buchner MR. Multinuclear beryllium amide and imide complexes: structure, properties and bonding. Dalton Trans 2024; 53:15551-15564. [PMID: 39229744 DOI: 10.1039/d4dt02269f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The beryllium amide and imide complexes [Be(HNMes)2]3, [(py)2Be(HNMes)2], [Be(HNDipp)2]2, [Be(NPh2)(μ2-HNDipp)]2 and [Be(NCPh2)2]3 have been prepared and characterised with NMR and IR spectroscopy as well as single crystal X-ray diffraction. Analysis of the localised molecular orbitals (LMOs) and intrinsic atomic orbital (IAO) atomic charges in the framework of the intrinsic bond orbital (IBO) localization method revealed a covalent bonding network consisting of 2-electron-2-centre and 2-electron-3-centre σ bonds, in which one electron pair of the anionic N-donor ligands is involved. The electron deficiency at the beryllium atoms is partially compensated through additional electron donation from the lone pair at the nitrogen atoms.
Collapse
Affiliation(s)
- Deniz F Bekiş
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Lewis R Thomas-Hargreaves
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Sergei I Ivlev
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Magnus R Buchner
- Anorganische Chemie, Nachwuchsgruppe Hauptgruppenmetallchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
72
|
Calder EDE, Male L, Jupp AR. Accessing five- and seven-membered phosphorus-based heterocycles via cycloaddition reactions of azophosphines. Dalton Trans 2024; 53:15032-15039. [PMID: 39143836 DOI: 10.1039/d4dt02248c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Heterocycles containing both phosphorus and nitrogen have seen increasing use in recent years in luminescent materials, coordination chemistry and as building blocks for inorganic polymers, yet their chemistry is currently dominated by five- and six-membered derivatives. Seven-membered P/N heterocycles are comparatively scarce and lack general, high yielding syntheses. Here, we explore the synthesis and characterisation of 1,2,5-diazaphosphepines from azophosphines. The mechanism has been probed in detail with both computational and experimental studies supporting a stepwise mechanism to form a five-membered ring, and subsequent ring expansion to the diazaphosphepine. Regioselective synthesis of five- and seven-membered rings is possible using asymmetric alkynes. The Lewis acidic borane B(C6F5)3 could either catalyse the formation of the seven-membered ring (iPr derivative) or trap out a key intermediate via a frustrated Lewis pair (FLP) mechanism (tBu derivative).
Collapse
Affiliation(s)
- Ethan D E Calder
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Andrew R Jupp
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
73
|
Hauer S, Reitz J, Koike T, Hansmann MM, Wolf R. Cycloadditions of Diazoalkenes with P 4 and tBuCP: Access to Diazaphospholes. Angew Chem Int Ed Engl 2024; 63:e202410107. [PMID: 38949951 DOI: 10.1002/anie.202410107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Diazoalkenes readily react with tert-butylphosphaalkyne (tBuCP) and white phosphorus (P4) to afford novel phosphorus heterocycles, 3H-1,2,4-diazamonophospholes and 1,2,3,4-diazadiphospholes. Both species represent rare examples of neutral heterophospholes. The mechanism of formation and the electronic structures of these formal (3+2) cycloaddition products were analyzed computationally. The new phospholes form structurally diverse coordination compounds with transition metal and main group elements. Given the growing number of stable diazoalkenes, this work offers a straightforward route to neutral aza(di-)phospholes as a new ligand class.
Collapse
Affiliation(s)
- Sebastian Hauer
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Justus Reitz
- TU Dortmund, Faculty of Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Taichi Koike
- TU Dortmund, Faculty of Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Max M Hansmann
- TU Dortmund, Faculty of Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| |
Collapse
|
74
|
Cao L, Ma R, Ran M, Cui H. First-Principles Investigation on Ru-Doped Janus WSSe Monolayer for Adsorption of Dissolved Gases in Transformer Oil: A Novel Sensing Candidate Exploration. SENSORS (BASEL, SWITZERLAND) 2024; 24:5967. [PMID: 39338712 PMCID: PMC11436005 DOI: 10.3390/s24185967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Using first-principles theory, this work purposes Ru-doped Janus WSSe (Ru-WSSe) monolayer as a potential gas sensor for detection of three typical gas species (CO, C2H2, and C2H4), in order to evaluate the operation status of the oil-immersed transformers. The Ru-doping behavior on the WSSe surface is analyzed, giving rise to the preferred doping site by the replacement of a Se atom with the formation energy of 0.01 eV. The gas adsorption of three gas species onto the Ru-WSSe monolayer is conducted, and chemisorption is identified for all three gas systems with the adsorption energy following the order: CO (-2.22 eV) > C2H2 (-2.01 eV) > C2H4 (-1.70 eV). Also, the modulated electronic properties and the frontier molecular orbital are investigated to uncover the sensing mechanism of Ru-WSSe monolayer upon three typical gases. Results reveal that the sensing responses of the Ru-WSSe monolayer, based on the variation of energy gap, to CO, C2H2, and C2H4 molecules are calculated to be 1.67 × 106, 2.10 × 105, and 9.61 × 103, respectively. Finally, the impact of the existence of O2 molecule for gas adsorption and sensing is also analyzed to uncover the potential of Ru-WSSe monolayer for practical application in the air atmosphere. The obtained high electrical responses manifest strong potential as a resistive sensor for detection of three gases. The findings hold practical implications for the development of novel gas sensing materials based on Janus WSSe monolayer. We anticipate that our results will inspire further research in this domain, particularly for applications in electrical engineering where the reliable detection of fault gases is paramount for maintaining the integrity and safety of power systems.
Collapse
Affiliation(s)
- Liang Cao
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Ruilong Ma
- College of Artificial Intelligence, Southwest University, Chongqing 400715, China
| | - Mingxin Ran
- College of Artificial Intelligence, Southwest University, Chongqing 400715, China
| | - Hao Cui
- College of Artificial Intelligence, Southwest University, Chongqing 400715, China
| |
Collapse
|
75
|
Zhang C, Wang ZH, Wang H, Liang JX, Zhu C, Li J. Ru 3@Mo 2CO 2 MXene single-cluster catalyst for highly efficient N 2-to-NH 3 conversion. Natl Sci Rev 2024; 11:nwae251. [PMID: 39257434 PMCID: PMC11385201 DOI: 10.1093/nsr/nwae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024] Open
Abstract
Single-cluster catalysts (SCCs) representing structurally well-defined metal clusters anchored on support tend to exhibit tunable catalytic performance for complex redox reactions in heterogeneous catalysis. Here we report a theoretical study on an SCC of Ru3@Mo2CO2 MXene for N2-to-NH3 thermal conversion. Our results show that Ru3@Mo2CO2 can effectively activate N2 and promotes its conversion to NH3 through an association mechanism, in which the rate-determining step of NH2* + H* → NH3* has a low energy barrier of 1.29 eV. Notably, with the assistance of Mo2CO2 support, the positively charged Ru3 cluster active site can effectively adsorb and activate N2, leading to 0.74 |e| charge transfer from Ru3@Mo2CO2 to the adsorbed N2. The supported Ru3 also acts as an electron reservoir to regulate the charge transfer for various intermediate steps of ammonia synthesis. Microkinetic analysis shows that the turnover frequency of the N2-to-NH3 conversion on Ru3@Mo2CO2 is as high as 1.45 × 10-2 s-1 site-1 at a selected thermodynamic condition of 48 bar and 700 K, the performance of which even surpasses that of the Ru B5 site and Fe3/θ-Al2O3(010) reported before. Our work provides a theoretical understanding of the high stability and catalytic mechanism of Ru3@Mo2CO2 and guidance for further designing and fabricating MXene-based metal SCCs for ammonia synthesis under mild conditions.
Collapse
Affiliation(s)
- Cong Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Ze-Hui Wang
- Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiyan Wang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jin-Xia Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
76
|
Berthold C, Maurer J, Klerner L, Harder S, Buchner MR. Formation, Structure and Reactivity of a Beryllium(0) Complex with Mg δ+-Be δ- Bond Polarization. Angew Chem Int Ed Engl 2024; 63:e202408422. [PMID: 38818668 DOI: 10.1002/anie.202408422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Attempts to create a novel Mg-Be bond by reaction of [(DIPePBDI*)MgNa]2 with Be[N(SiMe3)2]2 failed; DIPePBDI*=HC[(tBu)C=N(DIPeP)]2, DIPeP=2,6-Et2C-phenyl. Even at elevated temperatures, no conversion was observed. This is likely caused by strong steric shielding of the Be center. A similar reaction with the more open Cp*BeCl gave in quantitative yield (DIPePBDI*)MgBeCp* (1). The crystal structure shows a Mg-Be bond of 2.469(4) Å. Homolytic cleavage of the Mg-Be bond requires ΔH=69.6 kcal mol-1 (cf. CpBe-BeCp 69.0 kcal mol-1 and (DIPPBDI)Mg-Mg(DIPPBDI) 55.8 kcal mol-1). Natural-Population-Analysis (NPA) shows fragment charges: (DIPePBDI*)Mg +0.27/BeCp* -0.27. The very low NPA charge on Be (+0.62) compared to Mg (+1.21) and the strongly upfield 9Be NMR signal at -23.7 ppm are in line with considerable electron density on Be and the formal oxidation state assignment of MgII-Be0. Despite this Mgδ+-Beδ- polarity, 1 is extremely thermally stable and unreactive towards H2, CO, N2, cyclohexene and carbodiimide. It reacted with benzophenone, azobenzene, phenyl acetylene, CO2 and CS2. Reaction with 1-adamantyl azide led to reductive coupling and formation of an N6-chain. The azide reagent also inserted in the Cp*-Be bond. The inertness of 1 is likely due to bulky ligands protecting the Mg-Be unit.
Collapse
Affiliation(s)
| | - Johannes Maurer
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Lukas Klerner
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Magnus R Buchner
- Fachbereich Chemie, Philipps-Universität Marburg, 35043, Marburg, Germany
| |
Collapse
|
77
|
Liu Z, Zhao J, Yang Y, Yan Y, Yao X, Jiao J, Zhang F, Jia J, Li Y. Heterodinuclear AuNi(CO) n- ( n = 2-3) Complexes Featuring an Anionic Au - as a Donor Ligand for Ni(CO) n. J Phys Chem A 2024; 128:6917-6926. [PMID: 39133664 DOI: 10.1021/acs.jpca.4c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The gas-phase heterodinuclear gold-nickel carbonyl AuNi(CO)n- (n = 2-3) anion complexes were mass-selected and studied by using photoelectron velocity-map imaging spectroscopy in combination with quantum-chemical calculations, which can establish both the geometries and electronic structures of these anions. These complexes are all confirmed to be singlet ground states with one gold atom bonded at the central nickel atom of the Ni(CO)n moieties. Further bonding analyses indicate that unlike the alkali-metals as covalently bonded ligands to form the electron-sharing alkali-metal-nickel bonding in the alkali-metal-nickel carbonyl anionic complexes, the Au atom in the AuNi(CO)n- complexes serves as a datively bound ligand for Ni(CO)n to form gold-to-nickel dative bonding.
Collapse
Affiliation(s)
- Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Jikang Zhao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Yufeng Yang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Yonghong Yan
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Xiaoyue Yao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Jingmei Jiao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Fuqiang Zhang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Jianfeng Jia
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Ya Li
- School of Geographical Sciences, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| |
Collapse
|
78
|
Keller E, Morgenstein J, Reuter K, Margraf JT. Small basis set density functional theory method for cost-efficient, large-scale condensed matter simulations. J Chem Phys 2024; 161:074104. [PMID: 39145548 DOI: 10.1063/5.0222649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
We present an efficient first-principles based method geared toward reliably predicting the structures of solid materials across the Periodic Table. To this end, we use a density functional theory baseline with a compact, near-minimal min+s basis set, yielding low computational costs and memory demands. Since the use of such a small basis set leads to systematic errors in chemical bond lengths, we develop a linear pairwise correction, available for elements Z = 1-86 (excluding the lanthanide series), parameterized for use with the Perdew-Burke-Ernzerhof exchange-correlation functional. We demonstrate the reliability of this corrected approach for equilibrium volumes across the Periodic Table and the transferability to differently coordinated environments and multi-elemental crystals. We examine relative energies, forces, and stresses in geometry optimizations and molecular dynamics simulations.
Collapse
Affiliation(s)
- Elisabeth Keller
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
- Bavarian Center for Battery Technology (BayBatt) and Chair of Physical Chemistry V, University of Bayreuth, Bayreuth, Germany
| | | | - Karsten Reuter
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Johannes T Margraf
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
- Bavarian Center for Battery Technology (BayBatt) and Chair of Physical Chemistry V, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
79
|
Feld J, Yang ES, Urwin SJ, Goicoechea JM. A Phosphanyl Phosphagermene and its Reactivity. Chemistry 2024; 30:e202401736. [PMID: 38845448 DOI: 10.1002/chem.202401736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/27/2024]
Abstract
Reaction of a nucleophilic germylene Ge[CH(SiMe3)2]2 with the phosphanyl phosphaketene [{(H2C)(NDipp)}2P]PCO induces decarbonylation to form a phosphanyl phosphagermene [{(H2C)(NDipp)}2P]P=Ge[CH(SiMe3)2]2 (1; Dipp=2,6-diisopropyl-phenyl). Addition of CO2 or MeCN to 1 results in [3+2]-cycloaddition reactions to afford five-membered heterocycles. This mode of reactivity is reminiscent of that observed for frustrated Lewis pairs, with the pendant phosphanyl group acting as a base and the germanium center as a Lewis acid. Contrastingly, 1,2-addition across the P=Ge bond was observed when using ammonia, small primary amines (NH2 nP), or metal complexes (e. g. Au(PPh3)Cl and ZnEt2). These latter reactions allow for the one-step synthesis of metal phosphide complexes.
Collapse
Affiliation(s)
- Joey Feld
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Eric S Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Stephanie J Urwin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, U.S.A
| |
Collapse
|
80
|
Wittmann L, Gordiy I, Friede M, Helmich-Paris B, Grimme S, Hansen A, Bursch M. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys Chem Chem Phys 2024; 26:21379-21394. [PMID: 39092890 DOI: 10.1039/d4cp01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Efficient dispersion corrections are an indispensable component of modern density functional theory, semi-empirical quantum mechanical, and even force field methods. In this work, we extend the well established D3 and D4 London dispersion corrections to the full actinides series, francium, and radium. To keep consistency with the existing versions, the original parameterization strategy of the D4 model was only slightly modified. This includes improved reference Hirshfeld atomic partial charges at the ωB97M-V/ma-def-TZVP level to fit the required electronegativity equilibration charge (EEQ) model. In this context, we developed a new actinide data set called AcQM, which covers the most common molecular actinide compound space. Furthermore, the efficient calculation of dynamic polarizabilities that are needed to construct CAB6 dispersion coefficients was implemented into the ORCA program package. The extended models are assessed for the computation of dissociation curves of actinide atoms and ions, geometry optimizations of crystal structure cutouts, gas-phase structures of small uranium compounds, and an example extracted from a small actinide complex protein assembly. We found that the novel parameterizations perform on par with the computationally more demanding density-dependent VV10 dispersion correction. With the presented extension, the excellent cost-accuracy ratio of the D3 and D4 models can now be utilized in various fields of computational actinide chemistry and, e.g., in efficient composite DFT methods such as r2SCAN-3c. They are implemented in our freely available standalone codes (dftd4, s-dftd3) and the D4 version will be also available in the upcoming ORCA 6.0 program package.
Collapse
Affiliation(s)
- Lukas Wittmann
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Igor Gordiy
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Marvin Friede
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Köln, Germany
| |
Collapse
|
81
|
Culvyhouse J, Unruh DK, Lischka H, Aquino AJA, Krempner C. Facile Access to Organostibines via Selective Organic Superbase Catalyzed Antimony-Carbon Protonolysis. Angew Chem Int Ed Engl 2024; 63:e202407822. [PMID: 38763897 DOI: 10.1002/anie.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The selective formation of antimony-carbon bonds via organic superbase catalysis under metal- and salt-free conditions is reported. This novel approach utilizes electron-deficient stibine, Sb(C6F5)3, to give upon base-catalyzed reactions with weakly acidic aromatic and heteroaromatic hydrocarbons access to a range of new aromatic and heteroaromatic stibines, respectively, with loss of C6HF5. Also, the significantly less electron-deficient stibines, Ph2SbC6F5 and PhSb(C6F5)2 smoothly underwent base-catalyzed exchange reactions with a range of terminal alkynes to generate the stibines of formulae PhSb(C≡CPh)2, and Ph2SbC≡CR [R=C6H5, C6H4-NO2, COOEt, CH2Cl, CH2NEt2, CH2OSiMe3, Sb(C6H5)2], respectively. These formal substitution reactions proceed with high selectivity as only the C6F5 groups serve as a leaving group to be liberated as C6HF5 upon formal proton transfer from the alkyne. Kinetic studies of the base-catalyzed reaction of Ph2SbC6F5 with phenyl acetylene to form Ph2SbC≡CPh and C6HF5 suggested the empirical rate law to exhibit a first-order dependence with respect to the base catalyst, alkyne and stibine. DFT calculations support a pathway proceeding via a concerted σ-bond metathesis transition state, where the base catalyst activates the Sb-C6F5 bond sequence through secondary bond interactions.
Collapse
Affiliation(s)
- Jacob Culvyhouse
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Daniel K Unruh
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Hans Lischka
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, 79409-1021, United States
| | - Clemens Krempner
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| |
Collapse
|
82
|
Schwitalla K, Yusufzadeh Z, Schmidtmann M, Beckhaus R. From Coordination to Noncoordination: Syntheses and Substitution Lability Studies of Titanium Triflato Complexes. Inorg Chem 2024; 63:14392-14401. [PMID: 39058272 PMCID: PMC11304387 DOI: 10.1021/acs.inorgchem.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
A new concept for obtaining cationic complexes with triflate counteranions from coordinating triflato ligands was developed. Various routes are leading to titanium(IV) and titanium(III) triflato complexes efficiently. The reactions of pentafulvene titanium complexes with either triflic acid or silver triflate give the corresponding titanium(IV) triflato complexes in excellent yields. Hydrolysis of the titanium(IV) bistriflato complexes leads to cationic aqua complexes via displacement of the triflato ligand, which consequently acts as a noncoordinating anion. A functionalized titanium(IV) monotriflato complex was synthesized by insertion of a nitrile into the Ti-C bond and the triflato ligand was displaced by an NHC. While the titanium(IV) complexes are mostly inert toward substrates, the donor-free titanium(III) triflato complex is a strong Lewis acid and forms various adducts with monodentate Lewis bases. The titanium(III) complex was oxidized by reaction with TEMPO, resulting in a diamagnetic titanium(IV) complex. The reaction with bidentate ligands results in cationic titanium(III) complexes due to displacement of the triflato ligand by the bidentate ligands. Treatment with acetone leads to an aldol reaction of two acetone molecules and the formation of a cationic diacetone alcohol complex.
Collapse
Affiliation(s)
- Kevin Schwitalla
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Oldenburg D-26111, Federal Republic of Germany
| | - Zainab Yusufzadeh
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Oldenburg D-26111, Federal Republic of Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Oldenburg D-26111, Federal Republic of Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Oldenburg D-26111, Federal Republic of Germany
| |
Collapse
|
83
|
Wang X, Niu Z, Li Q, Scheiner S. Strong Triel Bonds with Be as Electron Donor. Inorg Chem 2024; 63:14656-14664. [PMID: 39034471 DOI: 10.1021/acs.inorgchem.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A systematic theoretical study was conducted on the triel bonds (TrBs) within the TrX3···Be(CO)3 complexes (Tr = B, Al, Ga, In, Tl; X = H, F, Cl, Br, I). The interaction energies of these systems range between 4 and 38 kcal/mol. The TrB weakens as X becomes more electronegative in the B and Al systems, while the opposite pattern of stronger bonds is observed in the In and Tl analogues. The dominant component of the TrB is polarization energy, which arises from charge transfer from Be(CO)3 to TrX3. The source of the density is a confluence of CO π-bonding orbitals at the Be center that resembles a Be lone pair, and which makes the molecular electrostatic potential above the Be somewhat negative. This π-lump is paired with the highly positive π-hole above the Tr, and a large amount of charge is transferred to the empty pz orbital of Tr. These factors, when considered in conjunction with large AIM measures, confer on this TrB a certain degree of covalency.
Collapse
Affiliation(s)
- Xin Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Zhihao Niu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
84
|
Fang W, Li Y, Zhang T, Rajeshkumar T, Del Rosal I, Zhao Y, Wang T, Wang S, Maron L, Zhu C. Oxidative Addition of E-H (E=C, N) Bonds to Transient Uranium(II) Centers. Angew Chem Int Ed Engl 2024; 63:e202407339. [PMID: 38714494 DOI: 10.1002/anie.202407339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/10/2024]
Abstract
Two-electron oxidative addition is one of the most important elementary reactions for d-block transition metals but it is uncommon for f-block elements. Here, we report the first examples of intermolecular oxidative addition of E-H (E=C, N) bonds to uranium(II) centers. The transient U(II) species was formed in-situ by reducing a heterometallic cluster featuring U(IV)-Pd(0) bonds with potassium-graphite (KC8). Oxidative addition of C-H or N-H bonds to the U(II) centers was observed when this transient U(II) species was treated with benzene, carbazole or 1-adamantylamine, respectively. The U(II) centers could also react with tetracene, biphenylene or N2O, leading to the formation of arene reduced U(IV) products and uranyl(VI) species via two- or four-electron processes. This study demonstrates that the intermolecular two-electron oxidative addition reactions are viable for actinide elements.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yafei Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianze Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Iker Del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianwei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
85
|
Nguyen DT, Helling C, Jones C. Synthesis and Characterization of Bulky 1,3-Diamidopropane Complexes of Group 2 Metals (Be-Sr). Chem Asian J 2024; 19:e202400498. [PMID: 38760323 DOI: 10.1002/asia.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Reaction of lithium 1,3-diamidopropane Li2(TripNCN) (TripNCN=[{(Trip)NCH2}2CH2]2-, Trip=2,4,6-triisopropylphenyl) with BeBr2(OEt2)2 gave the diamido beryllium complex, [(TripNCN)Be(OEt2)]. Deprotonation reactions between the bulkier 1,3-diaminopropane (TCHPNCN)H2 (TCHPNCN=[{(TCHP)NCH2}2CH2]2-, TCHP=2,4,6-tricyclohexylphenyl) and magnesium alkyls afforded the adduct complexes [(TCHPNCN)Mg(OEt2)] and [(TCHPNCN)Mg(THF)2], depending on the reaction conditions employed. Treating [(TCHPNCN)Mg(THF)2] with the N-heterocyclic carbene :C{(MeNCMe)2} (TMC) gave [(TCHPNCN)Mg(TMC)2] via substitution of the THF ligands. Reactions of (ArNCN)H2 (Ar=Trip or TCHP) with Mg{CH2(SiMe3)}2, in the absence of Lewis bases, yielded the N-bridged dimers [{(ArNCN)Mg}2]. Salt metathesis reactions between alkali metal salts M2(TCHPNCN) (M=Li or K) and CaI2 or SrI2 led to the THF adduct compounds [(TCHPNCN)Ca(THF)3] and [(TCHPNCN)Sr(THF)4], the differing number of THF ligands in which is a result of the different sizes of the metals involved. The described complexes hold potential as precursors to kinetically protected, low oxidation state group 2 metal species.
Collapse
Affiliation(s)
- Dat T Nguyen
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Christoph Helling
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| |
Collapse
|
86
|
Krieft J, Trapp PC, Vishnevskiy YV, Neumann B, Stammler HG, Lamm JH, Mitzel NW. A geminal antimony(iii)/phosphorus(iii) frustrated Lewis pair. Chem Sci 2024; 15:12118-12125. [PMID: 39092119 PMCID: PMC11290451 DOI: 10.1039/d4sc02785j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
The geminal Lewis pair (F5C2)2SbCH2P(tBu)2 (1) was prepared by reacting (F5C2)2SbCl with LiCH2P(tBu)2. Despite its extremely electronegative pentafluoroethyl substituents, the neutral 1 exhibits a relatively soft acidic antimony function according to the HSAB concept (hard-soft acid-base). These properties lead to a reversibility in the binding of CS2 to 1, as observed by VT-NMR spectroscopy, while no reaction with CO2 is observed. The reaction behaviour towards heterocumulenes and the specific interaction situation in the CS2 adduct were analysed by quantum chemical calculations. The FLP-type reactivity of 1 has also been demonstrated by reaction with a variety of small molecules (SO2, PhNCO, PhNCS, (MePh2P)AuCl). The reactions of 1 with PhNCO and PhNCS led to different types of cyclic addition products: PhNCO adds with its N[double bond, length as m-dash]C bond and PhNCS adds preferentially with its C[double bond, length as m-dash]S bond. The reaction of 1 with (MePh2P)AuCl gave an adduct {[(F5C2)2SbCH2(tBu)2P]2Au}+ with a clamp-like structure binding a chloride anion by its two antimony atoms in chelate mode. Compound 1 and its adducts have been characterised by X-ray diffraction experiments, multinuclear NMR spectroscopy, elemental analyses and computational calculations (DFT, QTAIM, IQA).
Collapse
Affiliation(s)
- Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25 Bielefeld 33615 Germany
| | - Pia C Trapp
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25 Bielefeld 33615 Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25 Bielefeld 33615 Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25 Bielefeld 33615 Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25 Bielefeld 33615 Germany
| | - Jan-Hendrik Lamm
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25 Bielefeld 33615 Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25 Bielefeld 33615 Germany
| |
Collapse
|
87
|
Krieft J, Neumann B, Stammler HG, Mitzel NW. Oxidation-dependent Lewis acidity in chalcogen adducts of Sb/P frustrated Lewis pairs. Dalton Trans 2024; 53:11762-11768. [PMID: 38938114 DOI: 10.1039/d4dt01591f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The reactions of the frustrated Lewis pair (F5C2)2SbCH2P(tBu)2 with oxygen, sulphur, selenium and tellurium led to the mono-oxidation products (F5C2)2SbCH2P(E)(tBu)2 (E = O, S, Se, Te). Further oxidation of these chalcogen adducts with tetrachloro-ortho-benzoquinone (o-chloranil) gave (F5C2)2Sb(CH2)(μ-E)P(tBu)2·CatCl (CatCl = o-O2C6Cl4) with a central four-membered ring heterocycle for E = O, S, and Se. For E = Te the elimination of elemental tellurium led to an oxidation product with two equivalents of o-chloranil, (F5C2)2SbCH2P(tBu)2·2CatCl, which is also accessible by reaction of (F5C2)2SbCH2P(tBu)2 with o-chloranil. The synthesised compounds were characterised by NMR spectroscopy and X-ray structure analyses, and the structural properties were analysed in the light of the altered Lewis acidity due to the oxidation of the antimony atoms.
Collapse
Affiliation(s)
- Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| |
Collapse
|
88
|
Franzen JH, Wilm LFB, Rotering P, Wurst K, Seidl M, Dielmann F. Electron-rich pyridines with para-N-heterocyclic imine substituents: ligand properties and coordination to CO 2, SO 2, BCl 3 and Pd II complexes. Dalton Trans 2024; 53:11876-11883. [PMID: 38953467 DOI: 10.1039/d4dt01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Electron-rich pyridines with π donor groups at the para position play an important role as nucleophiles in organocatalysis, but their ligand properties and utilization in coordination chemistry have received little attention. Herein, we report the synthesis of two electron-rich pyridines 1 and 2 bearing N-heterocyclic imine groups at the para position and explore their coordination chemistry. Experimental and computational methods were used to assess the donor ability of the new pyridines showing that they are stronger donors than aminopyridines and guanidinyl pyridines, and that the nature of the N-heterocyclic backbone has a strong influence on the pyridine donor strength. Coordination compounds with Lewis acids including the CO2, SO2, BCl3 and PdII ions were synthesized and characterized. Despite the ambident character of the new pyridines, coordination preferentially occurs at the pyridine-N atom. Methyl transfer experiments reveal that 1 and 2 can act as demethylation reagents.
Collapse
Affiliation(s)
- Jonas H Franzen
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Lukas F B Wilm
- Institut für Anorganische und Analytische Chemie, Universität Münster Corrensstrasse 30, 48149 Münster, Germany
| | - Philipp Rotering
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Michael Seidl
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Fabian Dielmann
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
89
|
Dong X, Miao LH, Liu YQ, Cui LJ, Feng W, Cui ZH. MB 16 - (M=Sc, Y, La): Perfect Bowl-Like Boron Clusters. Chemphyschem 2024; 25:e202300816. [PMID: 38563655 DOI: 10.1002/cphc.202300816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
The introduction of transition-metal doping has engendered a remarkable array of unprecedented boron motifs characterized by distinctive geometries and bonding, particularly those heretofore unobserved in pure boron clusters. In this study, we present a perfect (no defects) boron framework manifesting an inherently high-symmetry, bowl-like architecture, denoted as MB16 - (M=Sc, Y, La). In MB16 -, the B16 is coordinated to M atoms along the C5v-symmetry axis. The bowl-shaped MB16 - structure is predicted to be the lowest-energy structure with superior stability, owing to its concentric (2 π+10 π) dual π aromaticity. Notably, the C5v-symmetry bowl-like B16 - is profoundly stabilized through the doping of an M atom, facilitated by strong d-pπ interactions between M and boron motifs, in conjunction with additional electrostatic stabilization by an electron transfer from M to the boron motifs. This concerted interplay of covalent and electrostatic interactions between M and bowl-like B16 renders MB16 - a species of exceptional thermodynamic stability, thus making it a viable candidate for gas-phase experimental detection.
Collapse
Affiliation(s)
- Xue Dong
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130023, China
| | - Lin-Hong Miao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130023, China
| | - Yu-Qian Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130023, China
| | - Li-Juan Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130023, China
| | - Wei Feng
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130023, China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130023, China
| |
Collapse
|
90
|
Schwitalla K, Klimek J, Greven T, Schmidtmann M, Beckhaus R. Syntheses, Characterization, and Redox Activity of Ferrocene-Containing Titanium Complexes. ACS OMEGA 2024; 9:29017-29024. [PMID: 38973898 PMCID: PMC11223194 DOI: 10.1021/acsomega.4c04332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
The chemistry of bis(π-η5:σ-η1-pentafulvene)titanium complexes is characterized by a broad range of E-H activation and Ti-C functionalization reactions, whereas ferrocene derivatives are easily accessible and redox-active compounds. The reaction of ferrocenealdehyde and -ketones with bis(π-η5:σ-η1-pentafulvene)titanium complexes result in the formation of bimetallic complexes via insertion of the C=O double bond of the aldehyde/ketone into the Ti-Cexo bond of the pentafulvene moiety. The reaction of bis(π-η5:σ-η1-pentafulvene)titanium complexes with ferrocenyl alcohols leads to alcoholate complexes via deprotonation of the OH group by the pentafulvene ligand. Because of the one remaining pentafulvene unit, further functionalization of the complexes is possible. In this work, we proceeded with 1,1'-bifunctionalized ferrocene derivatives for intramolecular follow-up reactions. 1,1'-Ferrocenedimethanol reacts with bis(π-η5:σ-η1-pentafulvene)titanium complexes in a double O-H deprotonation reaction to yield the dialcoholate complex. 1,1'-bis(phenylphosphine)ferrocene reacts differently as the double P-H deprotonation reaction results in the formation of a P-P linked phosphine. Therefore, we studied the reactivity of 1,1'-bis(phenylphosphine)ferrocene toward Rosenthal's reagent. As Rosenthal's reagent is regarded as a masked titanocene(II) species, it undergoes redox reactions toward H-acidic substrates, forming a paramagnetic Ti(III) complex.
Collapse
Affiliation(s)
- Kevin Schwitalla
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Justin Klimek
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Tobias Greven
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| |
Collapse
|
91
|
Jacob HL, Weyer N, Leibold M, Bruhn C, Siemeling U. Ferrocene-Based N-Heterocyclic Silylenes: Monomeric Silanechalcogenones, Silanimines, Silirenes, and Insertion Products with P 4. Chemistry 2024; 30:e202400850. [PMID: 38656583 DOI: 10.1002/chem.202400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
The stable ferrocene-based N-heterocyclic silylenes fc[(N{B})2Si] (A; fc=1,1'-ferrocenylene, {B}=(HCNDipp)2B, Dipp=2,6-diisopropylphenyl) and fc[(NDipp)2Si] (B) are compared in a study focussing on their reactivity towards a range of small to moderately sized molecular substrates, viz. P4, S8, Se8, MesN3 (Mes=mesityl), RC≡CH, and RC≡CR (R=Ph, SiMe3). The Dipp-substituted congener B exhibits a more pronounced ambiphilicity and is sterically less congested than its 1,3,2-diazaborolyl-substituted relative A, in line with the higher reactivity of the former. The difference in reactivity is obviously due more to electronic than to steric reasons, as is illustrated by the fact that both A and B react with the comparatively bulky substrate MesN3 under mild conditions to afford the corresponding silanimine fc[(N{B})2Si=NMes] and fc[(NDipp)2Si=NMes], respectively. The heavier ketone analogues fc[(N{B})2Si=E] (E=S, Se, Te) are readily available from A and the corresponding chalcogen. In contrast, the reaction of the more reactive silylene B with elemental sulfur or selenium is unspecific, affording product mixtures. However, fc[(NDipp)2Si=Se] is selectively prepared from B and (Et2N)3PSe; the Te analogue is also accessible, but crystallises as head-to-tail dimer.
Collapse
Affiliation(s)
- Hannes L Jacob
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Nadine Weyer
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Michael Leibold
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| |
Collapse
|
92
|
Jordan EJ, Calder EDE, Adcock HV, Male L, Nieger M, Slootweg JC, Jupp AR. Azophosphines: Synthesis, Structure and Coordination Chemistry. Chemistry 2024; 30:e202401358. [PMID: 38624247 DOI: 10.1002/chem.202401358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
The conceptual replacement of nitrogen with phosphorus in common organic functional groups unlocks new properties and reactivity. The phosphorus-containing analogues of triazenes are underexplored but offer great potential as flexible and small bite-angle ligands. This manuscript explores the synthesis and characterisation of a family of air-stable azophosphine-borane complexes, and their subsequent deprotection to the free azophosphines. These compounds are structurally characterised, both experimentally and computationally, and highlight the availability of the phosphorus lone pair for coordination. This is confirmed by demonstrating that neutral azophosphines can act as ligands in Ru complexes, and can coordinate as monodentate or bidentate ligands in a controlled manner, in contrast to their nitrogen analogues.
Collapse
Affiliation(s)
- Emma J Jordan
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ethan D E Calder
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Holly V Adcock
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Andrew R Jupp
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
93
|
Wang B, Li WL. Revisiting the quasi-aromaticity in polynuclear metal chalcogenide clusters and their derivative "cluster-assembly" crystalline structures. Phys Chem Chem Phys 2024; 26:17370-17382. [PMID: 38860760 DOI: 10.1039/d4cp01022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The concept of aromaticity is primarily invented to account for the high stability of conjugated organic compounds that possess a specific structural and chemical stability with (4n + 2) π electrons. In 1988, quasi-aromaticity was theoretically proposed for the Mo3S44+ core in the Mo3(μ3-S)(μ-S)3(χ-dtp)3(μ-dtp) L compound (χ: chelating ligand; dtp: (EtO)2PS2-) illustrated by canonical molecular orbitals. However, the origin of the quasi-aromaticity and chemical bonding remains ambiguous, lacking a thorough analysis in terms of stability and quantitative measurement of the aromatic character. Thus, in this work, we systematically reported the electronic structure and aromaticity of a series of polynuclear metal chalcogenide clusters [M3X4(H2O)9]4+ (M = Cr, Mo, W, and Sg; X = O, S, Se, and Te) to explore an efficient tool of NICS index values at specific points to measure the quasi-aromaticity and to figure out the (d-p-d) π three-center bonding as the predominant origin from the arrangement of three Mo atoms and three bridged X atoms. Interestingly, derived from the Mo3⋯S3 quasi-plane, the extended sandwich cluster model of a S3⋯Mo3⋯S3 (Mo3S6) structure can be seen as the seed unit of the popular MoS2 nanomaterials, with the resemblance between both molecular and periodic systems regarding geometries, electronic structures, and chemical bonding. Additionally, the highly symmetric Mo3S4 core in [Mo3X4(H2O)9]4+ can be arranged in a staggered and stacked manner to create the Mo6S82- building block, corresponding to the crystalline structures in BaMo6S8 Chevrel phases, albeit with slight deformations. But the neutral Mo6S8 cluster can be seen as the seed structure for the Mo3S4 periodic materials for the high resemblance in terms of geometry, electronic structures and chemical bonding. Drawing upon the observed similarities between cluster models and materials, we propose a new concept termed "cluster-assembly" materials. This concept involves the expansion from a high-symmetry and/or aromatic stable cluster seed unit to form the corresponding derivative materials, presenting an alternative paradigm for investigating crystals and enriching our comprehension of the stabilities exhibited by both gas-phase clusters and solid-state materials. The concept of "cluster-assembly" materials not only contributes to the formulation of design strategies for novel materials or stable clusters but also provides valuable insights into the extension of periodic aromaticity.
Collapse
Affiliation(s)
- Bochu Wang
- Department of NanoEngineering, University of California San Diego, CA 92093, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, CA 92093, USA
| | - Wan-Lu Li
- Department of NanoEngineering, University of California San Diego, CA 92093, USA.
- Program of Materials Science and Engineering, University of California San Diego, CA 92093, USA
| |
Collapse
|
94
|
Zimmermann L, Riesinger C, Scheer M. Potential of Mixed Dipnictogen Molybdenum Complexes in the Self-Assembly of Thallium Coordination Compounds. Inorg Chem 2024; 63:11168-11175. [PMID: 38842464 PMCID: PMC11186011 DOI: 10.1021/acs.inorgchem.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The coordination chemistry of the homo- and heterodipnictogen tetrahedrane complexes [{CpMo(CO)2}2(μ,η2:2-EE')] (E, E' = P, As, Sb) (A-F) toward Tl[BArF24] ([BArF24]- = [B(3,5-C6H3(CF3)2)4]-) was studied. Controlled by the used tetrahedranes A-F, and thus depending on the respective pnictogen atoms, the monomers [Tl(η2-A)][BArF24] ([A]Tl) and [Tl(η2-B)][BArF24] ([B]Tl), the double substituted [Tl(η1-C)2][BArF24] ([C]2Tl) or the even higher aggregated compounds [Tl2(η2-D)3(μ,η2:1-D)(μ,η1:1-D)][BArF24]2 ([D]5Tl2), [Tl2(η2-E)2(μ,η2:1-E)3] [BArF24]2 ([E]5Tl2) and [Tl2(η2-F)3(μ,η2:1-F)3][BArF24]2 ([F]6Tl2) were obtained. Utilization of [BArF24]- promises additional stabilization of TlI via η6-coordination of two of its aryl rings as found in compounds [A]Tl, [B]Tl and [C]2Tl. Within the series of reactivity of A-F, the heavier congeners D, E and F tend to form larger aggregates in which σ(E-E') bond contributions to the coordination behavior were observed. Interatomic distances suggest the presence of Tl···Tl interactions in [E]5Tl2 and [F]6Tl2. The features of the respective coordination compounds were studied in the solid-state as well as in solution. For the latter at least a partial dissociation of the assemblies in solution was indicated. The isolated solid-state aggregates are the first examples of heterodipnictogen units as ligands in self-assembled TlI-based coordination compounds.
Collapse
Affiliation(s)
- Lisa Zimmermann
- Institute of Inorganic Chemistry University
of Regensburg 93040 Regensburg, Germany
| | - Christoph Riesinger
- Institute of Inorganic Chemistry University
of Regensburg 93040 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry University
of Regensburg 93040 Regensburg, Germany
| |
Collapse
|
95
|
Dinauer SB, Szlosek R, Piesch M, Balázs G, Reichl S, Prock L, Riesinger C, Walter MD, Scheer M. Homo- and heterobimetallic transition metal cluster derived from [Cp*Fe(η 5-E 5)] (E = P, As) - unprecedented structural motifs of the resulting polypnictogen ligands. Dalton Trans 2024; 53:10201-10207. [PMID: 38819391 DOI: 10.1039/d4dt01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A general synthetic procedure to neutral homo- and heterobimetallic cage compounds exhibiting various structural motifs of the polypnictogen ligands starting from [Cp*Fe(η5-E5)] (E = P (1), As (2); Cp* = C5Me5) is reported. The impact of the implemented transition metal precursors {Cp'''M} (M = Cr, Mn, Fe, Ni; Cp''' = 1,2,4-tBu3C5H2) emphasises the variability of the isolated complexes exhibiting a broad variety of structural motifs of the pnictogen ligands. Spectroscopic, crystallographic, and theoretical investigations provide insight into the structure of the partially unprecedented polypnictogen ligands.
Collapse
Affiliation(s)
- Sabrina B Dinauer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Robert Szlosek
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Martin Piesch
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Stephan Reichl
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Lukas Prock
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Marc D Walter
- Institute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
96
|
Neumann T, Thompson BC, Hebron D, Graycon DM, Collauto A, Roessler MM, Wilson DWN, Musgrave RA. Heterobimetallic 3d-4f complexes supported by a Schiff-base tripodal ligand. Dalton Trans 2024; 53:9921-9932. [PMID: 38808633 DOI: 10.1039/d3dt03760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Complexes featuring multiple metal centres are of growing interest regarding metal-metal cooperation and its tuneability. Here the synthesis and characterisation of heterobimetallic complexes of a 3d metal (4: Mn, 5: Co) and lanthanum supported by a (1,1,1-tris[(3-methoxysalicylideneamino)methyl]ethane) ligand is reported, as well as discussion of their electronic structure via electron paramagnetic resonance (EPR) spectroscopy, electrochemical experiments and computational studies. Competitive binding experiments of the ligand and various metal salts unequivocally demonstrate that in these heterobimetallic complexes the 3d metal (Mn, Co) selectively occupies the κ6-N3O3 binding site of the ligand, whilst La occupies the κ6-O6 metal binding site in line with their relative oxophilicities. EPR spectroscopy supported by density functional theory analysis indicates that the 3d metal is high spin in both cases (S = 5/2 (Mn), 3/2 (Co)). Cyclic voltammetry studies on the Mn/La and Co/La bimetallic complexes revealed a quasi-reversible Mn2+/3+ redox process and poorly-defined irreversible oxidation events respectively.
Collapse
Affiliation(s)
- Till Neumann
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Benedict C Thompson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Denny Hebron
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Daniel M Graycon
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Alberto Collauto
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Maxie M Roessler
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Daniel W N Wilson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
97
|
Liu XB, Tiznado W, Cui LJ, Barroso J, Leyva-Parra L, Miao LH, Zhang HY, Pan S, Merino G, Cui ZH. Exploring the Use of "Honorary Transition Metals" To Push the Boundaries of Planar Hypercoordinate Alkaline-Earth Metals. J Am Chem Soc 2024; 146:16689-16697. [PMID: 38843775 PMCID: PMC11191695 DOI: 10.1021/jacs.4c03977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The quest for planar hypercoordinate atoms (phA) beyond six has predominantly focused on transition metals, with dodecacoordination being the highest reported thus far. Extending this bonding scenario to main-group elements, which typically lack d orbitals despite their larger atomic radius, has posed significant challenges. Intrigued by the potentiality of covalent bonding formation using the d orbitals of the heavier alkaline-earth metals (Ae = Ca, Sr, Ba), the so-called "honorary transition metals", we aim to push the boundaries of planar hypercoordination. By including rings formed by 12-15 atoms of boron-carbon and Ae centers, we propose a design scheme of 180 candidates with a phA. Further systematic screening, structural examination, and stability assessments identified 10 potential clusters with a planar hypercoordinate alkaline-earth metal (phAe) as the lowest-energy form. These unconventional structures embody planar dodeca-, trideca-, tetradeca-, and pentadecacoordinate atoms. Chemical bonding analyses reveal the important role of Ae d orbitals in facilitating covalent interactions between the central Ae atom and the surrounding boron-carbon rings, thereby establishing a new record for coordination numbers in the two-dimensional realm.
Collapse
Affiliation(s)
- Xin-bo Liu
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - William Tiznado
- Centro
de Química Teórica & Computacional (CQT&C),
Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, 8370146 Santiago de Chile, Chile
| | - Li-Juan Cui
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Jorge Barroso
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Luis Leyva-Parra
- Centro
de Química Teórica & Computacional (CQT&C),
Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, 8370146 Santiago de Chile, Chile
| | - Lin-hong Miao
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Hui-yu Zhang
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Sudip Pan
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Gabriel Merino
- Departamento
de Física Aplicada, Centro de Investigación
y de Estudios Avanzados Unidad Mérida, Km 6 Antigua Carretera a Progreso.
Apdo. Postal 73, Cordemex, 97310 Mérida, México
| | - Zhong-hua Cui
- Institute
of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
- Key
Laboratory of Physics and Technology for Advanced Batteries (Ministry
of Education), Jilin University, Changchun 130023, China
| |
Collapse
|
98
|
Alnasr H, Mroß D, Platzek A, Nayyar B, Řičica T, Schollmeyer D, Jambor R, Hoffmann A, Jurkschat K. Intramolecularly O,N,O-Coordinated Tin(II) Salts: Syntheses, Structures, Cyclization, and Transition Metal Complexation. Chemistry 2024:e202400580. [PMID: 38838081 DOI: 10.1002/chem.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
We report the syntheses of tin(II) salts of the types [L1SnX]SnX3 [L1=2,6-{(i-PrO)2(O)P}2C5H3N: 1, X=Cl; 2, X=Br], [L2SnCl]SnCl3 [L2=2-{(i-PrO)Ph(O)P}-6-{(i-PrO)2(O)P}C5H3N: 3], [L3SnX]SnX3 [L3=2,6-{MeO(O)C}2C5H3N: 4, X=Cl; 5, X=Br], [L4SnX]SnX3 [L4=2,6-{Et2N(O)C}2C5H3N: 6, X=Cl; 7, X=Br]. These compounds were obtained by addition of SnX2 to the corresponding ligand inducing autoionization of the respective tin(II) halide. The thermal stability of 1, 3, and 4 was elucidated, giving, under ester cleavage and cyclisation, the tin(II) derivatives 8-12. The reaction of [L1SnCl]SnCl3 (1) with W(CO)4(thf)2 afforded the tungsten tetracarbonyl complex [{L1SnCl}{SnCl3}W(CO)4] (13), representing the first example in which a tin(II) stannate anion and a tin(II) stannylium cation simultaneously coordinate to a transition metal centre. The compounds were characterized by single crystal X-ray diffraction analyses and in part by elemental analyses, IR and NMR spectroscopy, electrospray ionization mass spectrometry. DFT calculations accompany the experimental work.
Collapse
Affiliation(s)
- Hazem Alnasr
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - David Mroß
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - André Platzek
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - Bastian Nayyar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| | - Tomáš Řičica
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Dieter Schollmeyer
- Johannes Gutenberg-Universität Mainz, Department Chemie, Zentrale Analytik, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Alexander Hoffmann
- RWTH Aachen University, Institut für Anorganische Chemie, Landoltweg 1a, 52074, Aachen, Germany
| | - Klaus Jurkschat
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, 44221, Dortmund, Germany
| |
Collapse
|
99
|
Lee VY, Wang J, Sasamori T, Gapurenko OA, Minyaev RM, Minkin VI, Takeuchi K, Fukaya N, Gornitzka H. Electrophilic Behavior of the "Nucleophilic" Pyramidane: Reactivity of Ge-Pyramidane towards Organolithium Reagents. Chemistry 2024:e202401806. [PMID: 38789386 DOI: 10.1002/chem.202401806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
The particular reactivity of the recently discovered class of the main group element polyhedral clusters, pyramidanes, remains largely unexplored. In this communication, we report the reaction of the germapyramidane with tert-butyllithium leading to the rather unusual organogermanium compound [Li+(thf)2]⋅2-, as the product of the formal insertion of a Ge-apex into the C-Li bond. This reactivity mode exemplifies unusual electrophilic behaviour of a pyramidane, which is a priori considered as a nucleophilic reagent. Being highly reactive, [Li+(thf)2]⋅2- readily undergoes reactions with electrophiles (MeI, EtBr), initially forming intermediate germahousenes, which isomerize to the thermodynamically more favourable germoles.
Collapse
Affiliation(s)
- Vladimir Ya Lee
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
| | - Junkang Wang
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
| | - Takahiro Sasamori
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 305-8571, Tsukuba, Ibaraki, Japan
| | - Olga A Gapurenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 344006, Rostov-on-Don, Russian Federation
| | - Ruslan M Minyaev
- Institute of Physical and Organic Chemistry, Southern Federal University, 344006, Rostov-on-Don, Russian Federation
| | - Vladimir I Minkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344006, Rostov-on-Don, Russian Federation
| | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), 305-8565, Tsukuba, Ibaraki, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), 305-8565, Tsukuba, Ibaraki, Japan
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077, Toulouse, France
| |
Collapse
|
100
|
Li J, Wang XF, Hu C, Liu LL. Carbene-Stabilized Phosphagermylenylidene: A Heavier Analog of Isonitrile. J Am Chem Soc 2024; 146:14341-14348. [PMID: 38726476 DOI: 10.1021/jacs.4c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Phosphagermylenylidenes (R-P═Ge), as heavier analogs of isonitriles, whether in their free state or as complexes with a Lewis base, have not been previously identified as isolable entities. In this study, we report the synthesis of a stable monomeric phosphagermylenylidene within the coordination sphere of a Lewis base under ambient conditions. This species was synthesized by Lewis base-induced dedimerization of a cyclic phosphagermylenylidene dimer or via Me3SiCl elimination from a phosphinochlorogermylene framework. The deliberate integration of a bulky, electropositive N-heterocyclic boryl group at the phosphorus site, combined with coordination stabilization by a cyclic (alkyl)(amino)carbene at the low-valent germanium site, effectively mitigated its natural tendency toward oligomerization. Structural analyses and theoretical calculations have demonstrated that this unprecedented species features a P═Ge double bond, characterized by conventional electron-sharing π and σ bonds, complemented by lone pairs at both the phosphorus and germanium atoms. Preliminary reactivity studies show that this base-stabilized phosphagermylenylidene demonstrates facile release of ligands at the Ge atom, coordination to silver through the lone pair on P, and versatile reactivity including both (cyclo)addition and cleavage of the P═Ge double bond.
Collapse
Affiliation(s)
- Jiancheng Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Feng Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|