51
|
Wang J, Wang C, Ge Y, Sun Y, Wang D, Xu H. Self‐assembly
of hairpin peptides mediated by Cu(
II
) ion: Effect of amino acid sequence. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Chengdong Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao China
| | - Yanqing Ge
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| |
Collapse
|
52
|
Marshall LR, Jayachandran M, Lengyel-Zhand Z, Rufo CM, Kriews A, Kim MC, Korendovych IV. Synergistic Interactions Are Prevalent in Catalytic Amyloids. Chembiochem 2020; 21:2611-2614. [PMID: 32329215 PMCID: PMC7605102 DOI: 10.1002/cbic.202000205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Indexed: 11/05/2022]
Abstract
Interactions between multiple functional groups are key to catalysis. Previously, we reported synergistic interactions in catalytic amyloids formed by mixtures of heptameric peptides that lead to significant improvements in esterase activity. Herein, we describe the in-depth investigation of synergistic interactions within a family of amyloid fibrils, exploring the results of functional group interactions, the effects of chirality and the use of mixed enantiomers within fibrils. Remarkably, we find that synergistic interactions (either positive or negative) are found in the vast majority of binary mixtures of catalytic amyloid-forming peptides. The productive arrangements of functionalities rapidly identified by mixing different peptides will undoubtedly lead to the development of more active catalysts for a variety of different transformations.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Megha Jayachandran
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Caroline M. Rufo
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Austin Kriews
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Min-Chul Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
53
|
Li J, Zhu M, Wang M, Qi W, Su R, He Z. Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity. SOFT MATTER 2020; 16:7033-7039. [PMID: 32667008 DOI: 10.1039/d0sm00635a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We herein report the construction of peroxidase (POD)-mimicking catalysts based on the strategy of peptide assembly and molecular imprinting. Upon co-assembly of Fmoc-FFH and Hemin, we firstly fabricated CA-H/Hemin which displayed POD-like catalytic activity and showed a 21-fold rate acceleration in the oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) compared to the uncatalyzed reaction. Then, upon combining CA-H/Hemin with the ABTS-imprinted polymer, the obtained imprinted catalyst (MIP-H/Hemin) showed 52-fold acceleration due to the enhanced re-binding toward ABTS. Moreover, by introducing cationic monomers, a 137-fold rate enhancement was further achieved for the positively charged imprinted catalyst (MIP+-H/Hemin), from the synergistic effect of molecular imprinting and electrostatic attraction. Remarkably, by comparing the catalytic activity of these POD mimics towards ABTS and 3,3',5,5'-tetramethylbenzidine (TMB), we also highlighted the substrate specificity of MIP-H/Hemin and MIP+-H/Hemin toward ABTS. This study provides a promising approach to improve the catalytic activity and specificity of peptide-based enzyme mimics.
Collapse
Affiliation(s)
- Jingyi Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Mingjie Zhu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China and The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300350, P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China and The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300350, P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
54
|
Singh P, Misra S, Sepay N, Mondal S, Ray D, Aswal VK, Nanda J. Self-assembling behaviour of a modified aromatic amino acid in competitive medium. SOFT MATTER 2020; 16:6599-6607. [PMID: 32608458 DOI: 10.1039/d0sm00584c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aromatic amino acid, specifically phenylalanine (Phe), is one of the most studied building blocks in peptide synthesis due to its importance in biology. It is reported in the literature that Phe-containing peptides have a high tendency to form different self-assembled materials due to efficient aromatic-aromatic interactions. In this article, we have tuned the supramolecular interactions of phenylalanine by making it electron-deficient upon introduction of the nitro group in the ring. The presence of the nitro group has a profound influence on the self-assembly process. It has been observed that 4-nitrophenylalanine (4NP) is a highly efficient gelator compared with the native phenylalanine in DMSO solvent in terms of minimum gelation concentration and it forms hydrogen bonding mediated crystals in water. The change of self-assembling patterns of 4NP in these solvents was studied using X-ray diffraction, UV-Vis spectroscopy, FE-SEM and other techniques. With the help of different experimental data and density functional theory (DFT), we have simulated the theoretical structure of 4NP in DMSO. The theoretical structure of 4NP in DMSO is different compared with that of crystals in water. We then studied the self-assembly process of 4NP in the mixed solvent of DMSO (polar aprotic) and water (polar protic). Different competitive non-covalent interactions of solvents as well as the ratio of the solvent mixture guide the final self-assembly state of 4NP.
Collapse
Affiliation(s)
- Pijush Singh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah-711103, West Bengal, India.
| | - Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah-711103, West Bengal, India.
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700032, India
| | - Sanjoy Mondal
- Polymer Science Unit, Indian association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Jayanta Nanda
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah-711103, West Bengal, India.
| |
Collapse
|
55
|
Carlomagno T, Cringoli MC, Kralj S, Kurbasic M, Fornasiero P, Pengo P, Marchesan S. Biocatalysis of D,L-Peptide Nanofibrillar Hydrogel. Molecules 2020; 25:E2995. [PMID: 32630001 PMCID: PMC7411710 DOI: 10.3390/molecules25132995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/30/2023] Open
Abstract
Self-assembling peptides are attracting wide interest as biodegradable building blocks to achieve functional nanomaterials that do not persist in the environment. Amongst the many applications, biocatalysis is gaining momentum, although a clear structure-to-activity relationship is still lacking. This work applied emerging design rules to the heterochiral octapeptide sequence His-Leu-DLeu-Ile-His-Leu-DLeu-Ile for self-assembly into nanofibrils that, at higher concentration, give rise to a supramolecular hydrogel for the mimicry of esterase-like activity. The peptide was synthesized by solid-phase and purified by HPLC, while its identity was confirmed by 1H-NMR and electrospray ionization (ESI)-MS. The hydrogel formed by this peptide was studied with oscillatory rheometry, and the supramolecular behavior of the peptide was investigated with transmission electron microscopy (TEM) analysis, circular dichroism (CD) spectroscopy, thioflavin T amyloid fluorescence assay, and attenuated total reflectance (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The biocatalytic activity was studied by monitoring the hydrolysis of p-nitrophenyl acetate (pNPA) at neutral pH, and the reaction kinetics followed an apparent Michaelis-Menten model, for which a Lineweaver-Burk plot was produced to determine its enzymatic parameters for a comparison with the literature. Finally, LC-MS analysis was conducted on a series of experiments to evaluate the extent of, if any, undesired peptide acetylation at the N-terminus. In conclusion, we provide new insights that allow gaining a clearer picture of self-assembling peptide design rules for biocatalysis.
Collapse
Affiliation(s)
- Tiziano Carlomagno
- Chemical & Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (T.C.); (M.C.C.); (M.K.); (P.F.)
| | - Maria C. Cringoli
- Chemical & Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (T.C.); (M.C.C.); (M.K.); (P.F.)
- INSTM Trieste Research Unit, 34127 Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Marina Kurbasic
- Chemical & Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (T.C.); (M.C.C.); (M.K.); (P.F.)
| | - Paolo Fornasiero
- Chemical & Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (T.C.); (M.C.C.); (M.K.); (P.F.)
- INSTM Trieste Research Unit, 34127 Trieste, Italy
- ICCOM-CNR Trieste Research Unit, 34127 Trieste, Italy
| | - Paolo Pengo
- Chemical & Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (T.C.); (M.C.C.); (M.K.); (P.F.)
| | - Silvia Marchesan
- Chemical & Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (T.C.); (M.C.C.); (M.K.); (P.F.)
- INSTM Trieste Research Unit, 34127 Trieste, Italy
| |
Collapse
|
56
|
Ottelé J, Hussain AS, Mayer C, Otto S. Chance emergence of catalytic activity and promiscuity in a self-replicator. Nat Catal 2020. [DOI: 10.1038/s41929-020-0463-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
57
|
Langenberg T, Gallardo R, van der Kant R, Louros N, Michiels E, Duran-Romaña R, Houben B, Cassio R, Wilkinson H, Garcia T, Ulens C, Van Durme J, Rousseau F, Schymkowitz J. Thermodynamic and Evolutionary Coupling between the Native and Amyloid State of Globular Proteins. Cell Rep 2020; 31:107512. [PMID: 32294448 PMCID: PMC7175379 DOI: 10.1016/j.celrep.2020.03.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/12/2020] [Accepted: 03/23/2020] [Indexed: 11/19/2022] Open
Abstract
The amyloid-like aggregation propensity present in most globular proteins is generally considered to be a secondary side effect resulting from the requirements of protein stability. Here, we demonstrate, however, that mutations in the globular and amyloid state are thermodynamically correlated rather than simply associated. In addition, we show that the standard genetic code couples this structural correlation into a tight evolutionary relationship. We illustrate the extent of this evolutionary entanglement of amyloid propensity and globular protein stability. Suppressing a 600-Ma-conserved amyloidogenic segment in the p53 core domain fold is structurally feasible but requires 7-bp substitutions to concomitantly introduce two aggregation-suppressing and three stabilizing amino acid mutations. We speculate that, rather than being a corollary of protein evolution, it is equally plausible that positive selection for amyloid structure could have been a driver for the emergence of globular protein structure.
Collapse
Affiliation(s)
- Tobias Langenberg
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ramon Duran-Romaña
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Rafaela Cassio
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hannah Wilkinson
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Joost Van Durme
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
58
|
Reja A, Afrose SP, Das D. Aldolase Cascade Facilitated by Self‐Assembled Nanotubes from Short Peptide Amphiphiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|
59
|
Huang KY, Yu CC, Horng JC. Conjugating Catalytic Polyproline Fragments with a Self-Assembling Peptide Produces Efficient Artificial Hydrolases. Biomacromolecules 2020; 21:1195-1201. [PMID: 31951389 DOI: 10.1021/acs.biomac.9b01620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A polyproline fragment containing a catalytic dyad of His-His or Ser-His was coupled with a self-assembling peptide MAX1 to design new hydrolases (H2H5 and H2S5) for catalyzing ester hydrolysis. Circular dichroism measurements indicated that the peptides change their conformation from random coils to β-sheets when pH increases from 5 to 10. IR spectra also displayed the vibration modes corresponding to their β-structures at pH 9.0. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements showed that in solution, the designed peptides self-assemble into network fibrils having a significantly increased catalytic efficiency on ester hydrolysis. On p-nitrophenyl acetate (p-NPA) substrate, the designed peptides exhibit high catalytic efficiency at pH 9.0 (kcat/KM = 12.1 M-1 s-1 for H2H5, 13.3 M-1 s-1 for H2S5), and their efficiency is even better at pH 10.0 (kcat/KM = 24.3 M-1 s-1 for H2H5, 99.4 M-1 s-1 for H2S5). Additionally, H2H5 and H2S5 also display good activity on catalyzing the hydrolysis of p-nitrophenyl-(2-phenyl)-propanoate (p-NPP) and p-nitrophenyl methoxyacetate (p-NPMA). Combining the polyproline-based catalytic scaffold with a self-assembling peptide generates an efficient hydrolase, providing a new design for effective artificial enzymes.
Collapse
Affiliation(s)
- Kuei-Yen Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Chi-Ching Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
60
|
Hawkins K, Patterson AK, Clarke PA, Smith DK. Catalytic Gels for a Prebiotically Relevant Asymmetric Aldol Reaction in Water: From Organocatalyst Design to Hydrogel Discovery and Back Again. J Am Chem Soc 2020; 142:4379-4389. [PMID: 32023044 PMCID: PMC7146862 DOI: 10.1021/jacs.9b13156] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 12/14/2022]
Abstract
This paper reports an investigation into organocatalytic hydrogels as prebiotically relevant systems. Gels are interesting prebiotic reaction media, combining heterogeneous and homogeneous characteristics with a structurally organized active "solid-like" catalyst separated from the surrounding environment, yet in intimate contact with the solution phase and readily accessible via "liquid-like" diffusion. A simple self-assembling glutamine amide derivative 1 was initially found to catalyze a model aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, but it did not maintain its gel structure during reaction. In this study, it was observed that compound 1 could react directly with the benzaldehyde to form a hydrogel in situ based on Schiff base 2 as a low-molecular-weight gelator (LMWG). This new dynamic gel is a rare example of a two-component self-assembled LMWG hydrogel and was fully characterized. It was demonstrated that glutamine amide 1 could select an optimal aldehyde component and preferentially assemble from mixtures. In the hunt for an organocatalyst, reductive conditions were applied to the Schiff base to yield secondary amine 3, which is also a highly effective hydrogelator at very low loadings with a high degree of nanoscale order. Most importantly, the hydrogel based on 3 catalyzed the prebiotically relevant aldol dimerization of glycolaldehyde to give threose and erythrose. In buffered conditions, this reaction gave excellent conversions, good diastereoselectivity, and some enantioselectivity. Catalysis using the hydrogel of 3 was much better than that using non-assembled 3-demonstrating a clear benefit of self-assembly. The results suggest that hydrogels offer a potential strategy by which prebiotic reactions can be promoted using simple, prebiotically plausible LMWGs that can selectively self-organize from complex mixtures. Such processes may have been of prebiotic importance.
Collapse
Affiliation(s)
- Kirsten Hawkins
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, U.K.
| | - Anna K. Patterson
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, U.K.
| | - Paul A. Clarke
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, U.K.
| | - David K. Smith
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
61
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
62
|
Sarkhel B, Chatterjee A, Das D. Covalent Catalysis by Cross β Amyloid Nanotubes. J Am Chem Soc 2020; 142:4098-4103. [PMID: 32083482 DOI: 10.1021/jacs.9b13517] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The binding pockets of extant enzymes feature precise positioning of amino acid residues that facilitate multiple complex transformations exploiting covalent and non-covalent interactions. Reversible covalent anchoring is extensively used as an efficient tool by Nature for activating modern enzymes such as esterases and dehydratases and also for proteins like opsins for the complex process of visual phototransduction. Here we construct paracrystalline amyloid surfaces through the self-propagation of short peptides which offer binding pockets exposed with arrays of imidazoles and lysines. As covalent catalysis is utilized by modern-day enzymes, these homogeneous amyloid nanotubes exploit Schiff imine formation via the exposed lysines to efficiently hydrolyze both activated and inactivated esters. Controls where lysines were mutated with charged residues accessed similar morphologies but did not augment the rate. The designed amyloid microphases thus foreshadow the generation of binding pockets of advanced proteins and have the potential to contribute to the development of functional materials.
Collapse
Affiliation(s)
- Baishakhi Sarkhel
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Ayan Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
63
|
Chetia M, Debnath S, Chowdhury S, Chatterjee S. Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials. RSC Adv 2020; 10:5220-5233. [PMID: 35498311 PMCID: PMC9049182 DOI: 10.1039/c9ra10395c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/19/2020] [Indexed: 02/03/2023] Open
Abstract
The self-assembly of a series of low molecular weight gelator dipeptides containing para amino benzoic acid has been studied in mechanistic detail. All four dipeptides form phase selective, thermoreversible, rigid gels in a large range of organic solvents and fuels such as petrol, diesel, and kerosene. The mechanism of self-assembly has been dissected in detail using several experimental techniques. Self-assembly is driven mainly by aromatic and hydrophobic interactions. Hydrogen bonding groups, though present, seem to make a trivial contribution towards the self-assembly process. Phase selective gelation abilities in fuels in the presence of acidic, basic and saline conditions, together with the easy recovery of fuels from the organogels, render the peptides potential candidates for addressing oil-spill recovery. Being electron rich systems, these organogelators can absorb cationic dyes with >90% efficiency from wastewater. Finally, conducting biomaterials have been synthesized by the insertion of reduced graphene oxide into the organogels. Such small peptide based gelator molecules, being economically viable and easy to prepare, in addition to being multifunctional, are a hot area of research in the field of materials chemistry.
Collapse
Affiliation(s)
- Monikha Chetia
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Sumit Chowdhury
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| |
Collapse
|
64
|
Reja A, Afrose SP, Das D. Aldolase Cascade Facilitated by Self-Assembled Nanotubes from Short Peptide Amphiphiles. Angew Chem Int Ed Engl 2020; 59:4329-4334. [PMID: 31920004 DOI: 10.1002/anie.201914633] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Early evolution benefited from a complex network of reactions involving multiple C-C bond forming and breaking events that were critical for primitive metabolism. Nature gradually chose highly evolved and complex enzymes such as lyases to efficiently facilitate C-C bond formation and cleavage with remarkable substrate selectivity. Reported here is a lipidated short peptide which accesses a homogenous nanotubular morphology to efficiently catalyze C-C bond cleavage and formation. This system shows morphology-dependent catalytic rates, suggesting the formation of a binding pocket and registered enhancements in the presence of the hydrogen-bond donor tyrosine, which is exploited by extant aldolases. These assemblies showed excellent substrate selectivity and templated the formation of a specific adduct from a pool of possible adducts. The ability to catalyze metabolically relevant cascade transformations suggests the importance of such systems in early evolution.
Collapse
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
65
|
Garcia AM, Lavendomme R, Kralj S, Kurbasic M, Bellotto O, Cringoli MC, Semeraro S, Bandiera A, De Zorzi R, Marchesan S. Self-Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial. Chemistry 2020; 26:1880-1886. [PMID: 31868256 DOI: 10.1002/chem.201905681] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 02/06/2023]
Abstract
N-(4-Nitrobenzoyl)-Phe self-assembled into a transparent supramolecular hydrogel, which displayed high fibroblast and keratinocyte cell viability. The compound showed a mild antimicrobial activity against E. coli both as a hydrogel and in solution. Single-crystal XRD data revealed packing details, including protonation of the C-terminus due to an apparent pKa shift, as confirmed by pH titrations. MicroRaman analysis revealed almost identical features between the gel and crystal states, although more disorder in the former. The hydrogel is thermoreversible and disassembles within a range of temperatures that can be fine-tuned by experimental conditions, such as gelator concentration. At the minimum gelling concentration of 0.63 wt %, the hydrogel disassembles in a physiological temperature range of 39-42 °C, thus opening the way to its potential use as a biomaterial.
Collapse
Affiliation(s)
- Ana M Garcia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Roy Lavendomme
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Marina Kurbasic
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Ottavia Bellotto
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Maria C Cringoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Sabrina Semeraro
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Antonella Bandiera
- Dipartimento di Scienze della Vita, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Rita De Zorzi
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
66
|
Adsorption of Rose Bengal on a self-assembled fibrillar network affords a thermally switchable oxygenation photocatalyst and a thermochromic soft material. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
67
|
Biswas S, Kumar M, Levine AM, Jimenez I, Ulijn RV, Braunschweig AB. Visible-light photooxidation in water by 1O2-generating supramolecular hydrogels. Chem Sci 2020. [DOI: 10.1039/c9sc06481h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
An aqueous photocatalytic system exploits photophysical properties arising from the formation of supramolecular hydrogels, with properties and assembly modulated by the amino acids appended to an organic chromophore.
Collapse
Affiliation(s)
- Sankarsan Biswas
- Advanced Science Research Center
- Graduate Center
- City University of New York
- New York
- USA
| | - Mohit Kumar
- Advanced Science Research Center
- Graduate Center
- City University of New York
- New York
- USA
| | - Andrew M. Levine
- Advanced Science Research Center
- Graduate Center
- City University of New York
- New York
- USA
| | - Ian Jimenez
- Advanced Science Research Center
- Graduate Center
- City University of New York
- New York
- USA
| | - Rein V. Ulijn
- Advanced Science Research Center
- Graduate Center
- City University of New York
- New York
- USA
| | - Adam B. Braunschweig
- Advanced Science Research Center
- Graduate Center
- City University of New York
- New York
- USA
| |
Collapse
|
68
|
Singh P, Misra S, Das A, Roy S, Datta P, Bhattacharjee G, Satpati B, Nanda J. Supramolecular Hydrogel from an Oxidized Byproduct of Tyrosine. ACS APPLIED BIO MATERIALS 2019; 2:4881-4891. [PMID: 35021488 DOI: 10.1021/acsabm.9b00637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pijush Singh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Subhasish Roy
- Department of Chemistry, BITS Pilani Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Gourab Bhattacharjee
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064, India
| | - Jayanta Nanda
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| |
Collapse
|
69
|
Sahoo JK, VandenBerg MA, Ruiz Bello EE, Nazareth CD, Webber MJ. Electrostatic-driven self-sorting and nanostructure speciation in self-assembling tetrapeptides. NANOSCALE 2019; 11:16534-16543. [PMID: 31455952 DOI: 10.1039/c9nr03440d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant efforts in the field of supramolecular materials have strived to co-assemble small molecules in order to realize individual nanostructures with multiple, tunable activities. The design of self-assembling motifs bearing opposite charges is one commonly used method, with favorable electrostatic interactions used to promote mixing in a resulting co-assembly. This approach, at the same time, contrasts with a typical thermodynamic preference for self-sorting. Moreover, rigorous experimental techniques which can clearly elucidate co-assembly from self-sorting are limited. Here we describe the self-assembly of two oppositely charged tetrapeptides yielding highly disparate nanostructures of fibrillar and spherical assemblies. Upon mixing at different ratios, the disparate nanostructure of the parent peptides remain. Interestingly, while the assemblies appear self-sorted, surface-mediated interactions between spherical and fibrous assemblies translate to increased mechanical properties through enhanced fiber bundling. Moreover, the observed self-sorting is a thermodynamic product and not a result of kinetically trapped pre-existing structures. Taken together, and with the benefit of disparate nanostructures in the parent peptides, we have shown in our system experimental evidence for electrostatic-driven self-sorting in oligopeptide self-assembly.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Michael A VandenBerg
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Edgar E Ruiz Bello
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Calvin D Nazareth
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
70
|
|
71
|
Dawn A. Supramolecular Gel as the Template for Catalysis, Inorganic Superstructure, and Pharmaceutical Crystallization. Int J Mol Sci 2019; 20:E781. [PMID: 30759781 PMCID: PMC6387271 DOI: 10.3390/ijms20030781] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
A supramolecular gel is a fascinating combination of flexibility and orderliness. While the supramolecular nature of crosslinking contributes towards the adaptivity and the reversibility of the system, orderliness at the molecular level amplifies the functional output and induces extraordinary selectivity into the system. Therefore, use of supramolecular gels as the soft template is an emerging area of research, which includes but not limited to catalysis of a chemical or a photochemical process, transcription of gel property to a substrate, or even controlling the nucleation of drug molecules. This review aims to highlight the template effect of supramolecular gels in the above-mentioned areas relevant to novel fundamental chemistry, technology, and healthcare.
Collapse
Affiliation(s)
- Arnab Dawn
- James Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
72
|
Murali DM, Shanmugam G. The aromaticity of the phenyl ring imparts thermal stability to a supramolecular hydrogel obtained from low molecular mass compound. NEW J CHEM 2019. [DOI: 10.1039/c9nj01781j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using Fmoc-phenylalanine and Fmoc-cyclohexylalanine, we show that the aromaticity of the phenyl ring imparts significant thermal stability to a supramolecular hydrogel system and its significance depends on the method of inducing hydrogelation.
Collapse
Affiliation(s)
- Dhanya Mahalakshmi Murali
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
73
|
Zhu M, Wang M, Qi W, Su R, He Z. Constructing peptide-based artificial hydrolases with customized selectivity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00408d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate selectivity of peptide-based artificial enzymes can be customized by combining molecularly imprinted polymers as binding sites with peptide nanofibers as catalytic moieties.
Collapse
Affiliation(s)
- Mingjie Zhu
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| |
Collapse
|
74
|
Baruch Leshem A, Isaacs S, Srivastava SK, Abdulhalim I, Kushmaro A, Rapaport H. Quantitative assessment of paraoxon adsorption to amphiphilic β-sheet peptides presenting the catalytic triad of esterases. J Colloid Interface Sci 2018; 530:328-337. [DOI: 10.1016/j.jcis.2018.06.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/31/2023]
|
75
|
Maeda T, Kuwajima Y, Akita T, Iwai Y, Komiya N, Uchida Y, Naota T. Helicity Control of Supramolecular Gel Fibers Consisting of an Achiral NiIIComplex in a Chiral Nematic Solvent. Chemistry 2018; 24:12546-12554. [DOI: 10.1002/chem.201801992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Takatoshi Maeda
- Department of Chemistry Graduate School of Engineering Science; Osaka University; Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Yuuki Kuwajima
- Department of Chemistry Graduate School of Engineering Science; Osaka University; Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Takuya Akita
- Department of Chemistry Graduate School of Engineering Science; Osaka University; Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Yosuke Iwai
- Department of Chemistry Graduate School of Engineering Science; Osaka University; Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Naruyoshi Komiya
- Department of Chemistry Graduate School of Engineering Science; Osaka University; Machikaneyama Toyonaka Osaka 560-8531 Japan
- Present address: Chemistry Laboratory; The Jikei University School of Medicine; Kokuryo Chofu Tokyo 182-8570 Japan
| | - Yoshiaki Uchida
- Department of Chemistry Graduate School of Engineering Science; Osaka University; Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Takeshi Naota
- Department of Chemistry Graduate School of Engineering Science; Osaka University; Machikaneyama Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
76
|
Bai Y, Chotera A, Taran O, Liang C, Ashkenasy G, Lynn DG. Achieving biopolymer synergy in systems chemistry. Chem Soc Rev 2018; 47:5444-5456. [PMID: 29850753 DOI: 10.1039/c8cs00174j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.
Collapse
Affiliation(s)
- Yushi Bai
- Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Designed peptides that assemble into cross-α amyloid-like structures. Nat Chem Biol 2018; 14:870-875. [PMID: 30061717 DOI: 10.1038/s41589-018-0105-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022]
Abstract
Amyloids adopt 'cross-β' structures composed of long, twisted fibrils with β-strands running perpendicular to the fibril axis. Recently, a toxic peptide was proposed to form amyloid-like cross-α structures in solution, with a planar bilayer-like assembly observed in the crystal structure. Here we crystallographically characterize designed peptides that assemble into spiraling cross-α amyloid-like structures, which resemble twisted β-amyloid fibrils. The peptides form helical dimers, stabilized by packing of small and apolar residues, and the dimers further assemble into cross-α amyloid-like fibrils with superhelical pitches ranging from 170 Å to 200 Å. When a small residue that appeared critical for packing was converted to leucine, it resulted in structural rearrangement to a helical polymer. Fluorescently tagged versions of the designed peptides form puncta in mammalian cells, which recover from photobleaching with markedly different kinetics. These structural folds could be potentially useful for directing in vivo protein assemblies with predetermined spacing and stabilities.
Collapse
|
78
|
Chotera A, Sadihov H, Cohen-Luria R, Monnard PA, Ashkenasy G. Functional Assemblies Emerging in Complex Mixtures of Peptides and Nucleic Acid-Peptide Chimeras. Chemistry 2018; 24:10128-10135. [PMID: 29732630 DOI: 10.1002/chem.201800500] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Indexed: 01/24/2023]
Abstract
Striking synergy between nucleic acids and proteins is exhibited in living cells. Whether such mutual activity can be performed using simple supramolecular nucleic acid-peptide (NA-pep) architectures remains a mystery. To shed light on this question, we studied the emergence of a primitive synergy in assemblies of short DNA-peptide chimeras. Specifically, we characterized multiple structures forming along gradual mixing trajectory, in which a peptide solution was seeded with increasing amounts of NA-pep chimeras. We report on the systematic change from β-sheet-peptide-based fibrillar architectures into the spherical structures formed by the conjugates. Remarkably, we find that through forming onion-like structures, the conjugates exhibit increased DNA hybridization stability and bind small molecules more efficiently than the peptides or DNA alone. A brief discussion highlights the implications of our findings for the production of new materials and for research on the origin of life.
Collapse
Affiliation(s)
- Agata Chotera
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Hava Sadihov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Pierre-Alain Monnard
- Institute for Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230, Odense M, Denmark
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
79
|
Greenwald J, Kwiatkowski W, Riek R. Peptide Amyloids in the Origin of Life. J Mol Biol 2018; 430:3735-3750. [PMID: 29890117 DOI: 10.1016/j.jmb.2018.05.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
How life can emerge from non-living matter is one of the fundamental mysteries of the universe. A bottom-up approach to this problem focuses on the potential chemical precursors of life, in particular the nature of the first replicative molecules. Such thinking has led to the currently most popular idea: that an RNA-like molecule played a central role as the first replicative and catalytic molecule. Here, we review an alternative hypothesis that has recently gained experimental support, focusing on the role of amyloidogenic peptides rather than nucleic acids, in what has been by some termed "the amyloid-world" hypothesis. Amyloids are well-ordered peptide aggregates that have a fibrillar morphology due to their underlying structure of a one-dimensional crystal-like array of peptides in a β-strand conformation. While they are notorious for their implication in several neurodegenerative diseases including Alzheimer's disease, amyloids also have many biological functions. In this review, we will elaborate on the following properties of amyloids in relation to their fitness as a prebiotic entity: they can be formed by very short peptides with simple amino acids sequences; as aggregates they are more chemically stable than their isolated component peptides; they can possess diverse catalytic activities; they can form spontaneously during the prebiotic condensation of amino acids; they can act as templates in their own chemical replication; they have a structurally repetitive nature that enables them to interact with other structurally repetitive biopolymers like RNA/DNA and polysaccharides, as well as with structurally repetitive surfaces like amphiphilic membranes and minerals.
Collapse
Affiliation(s)
- Jason Greenwald
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Witek Kwiatkowski
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| |
Collapse
|
80
|
Abstract
Self-assembly of molecules often results in new emerging properties. Even very short peptides can self-assemble into structures with a variety of physical and structural characteristics. Remarkably, many peptide assemblies show high catalytic activity in model reactions reaching efficiencies comparable to those found in natural enzymes by weight. In this review, we discuss different strategies used to rationally develop self-assembled peptide catalysts with natural and unnatural backbones as well as with metal-containing cofactors.
Collapse
Affiliation(s)
- O Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
81
|
|
82
|
Maury CPJ. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cell Mol Life Sci 2018; 75:1499-1507. [PMID: 29550973 PMCID: PMC5897472 DOI: 10.1007/s00018-018-2797-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 01/29/2023]
Abstract
A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.
Collapse
|
83
|
Soares BM, Aguilar AM, Silva ER, Coutinho-Neto MD, Hamley IW, Reza M, Ruokolainen J, Alves WA. Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Phys Chem Chem Phys 2018; 19:1181-1189. [PMID: 27942644 DOI: 10.1039/c6cp08135e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive study of the self-assembly in water of a lipopeptide consisting of a sequence of l-proline, l-arginine and l-tryptophan with a hydrocarbon chain has been performed. Fluorescence assays were used to determine the critical aggregation concentration. In situ small-angle X-ray scattering (SAXS) and molecular dynamics simulations showed the presence of spherical micelles with diameters around 6 nm. In agreement with these results, cryo-TEM images showed globular aggregates with diameters ranging from ≈4 nm up to ≈9 nm. Furthermore, the lipopeptide catalytic activity has been tested for the direct aldol reaction between cyclohexanone and p-nitrobenzaldehyde, and we have observed that the self-association of the organocatalyst played a critical role in the enhanced activity. Water affects the selectivity, and poor results are obtained under neat reaction conditions. The location of the catalytic groups at the lipopetide/water solvent interface also endowed unusual selectivity in the catalyzed aldol reactions. Under optimized reaction conditions, high yields (up to >99%), good enantioselectivity (ee up to 85%) and high diastereoselectivity (ds up to 92 : 8) were obtained.
Collapse
Affiliation(s)
- B M Soares
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil.
| | - A M Aguilar
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972270, Brazil
| | - E R Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - M D Coutinho-Neto
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil.
| | - I W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - M Reza
- Department of Applied Physics, Aalto University School of Science, P. O. Box 15100, FI-00076, Finland
| | - J Ruokolainen
- Department of Applied Physics, Aalto University School of Science, P. O. Box 15100, FI-00076, Finland
| | - W A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil.
| |
Collapse
|
84
|
Zhao Y, Lei B, Wang M, Wu S, Qi W, Su R, He Z. A supramolecular approach to construct a hydrolase mimic with photo-switchable catalytic activity. J Mater Chem B 2018; 6:2444-2449. [DOI: 10.1039/c8tb00448j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular artificial hydrolase with photo-switchable catalytic activity was developed by the introduction of a photo-responsive group in peptide, which leads to the assembly/disassembly of the peptide nanofibers.
Collapse
Affiliation(s)
- Yanan Zhao
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Bingqian Lei
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Shengtang Wu
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| |
Collapse
|
85
|
Taran O, Chen C, Omosun TO, Hsieh MC, Rha A, Goodwin JT, Mehta AK, Grover MA, Lynn DG. Expanding the informational chemistries of life: peptide/RNA networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0356. [PMID: 29133453 DOI: 10.1098/rsta.2016.0356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Olga Taran
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Chenrui Chen
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Tolulope O Omosun
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ming-Chien Hsieh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Allisandra Rha
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jay T Goodwin
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Anil K Mehta
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Martha A Grover
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David G Lynn
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
86
|
Affiliation(s)
- I. W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
87
|
Basu K, Nandi N, Mondal B, Dehsorkhi A, Hamley IW, Banerjee A. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management. Interface Focus 2017; 7:20160128. [PMID: 29147552 DOI: 10.1098/rsfs.2016.0128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n-hexane, n-octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o-xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.
Collapse
Affiliation(s)
- Kingshuk Basu
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Nibedita Nandi
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biplab Mondal
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ashkan Dehsorkhi
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Arindam Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
88
|
Zhang C, Shafi R, Lampel A, MacPherson D, Pappas CG, Narang V, Wang T, Maldarelli C, Ulijn RV. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self‐Assembling Peptide. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunqiu Zhang
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Chemical Engineering Department The City University of New York 160 Convent Avenue New York NY 10031 USA
| | - Ramim Shafi
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
| | - Ayala Lampel
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
| | - Douglas MacPherson
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
| | - Charalampos G. Pappas
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
| | - Vishal Narang
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
| | - Tong Wang
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
| | - Charles Maldarelli
- Chemical Engineering Department The City University of New York 160 Convent Avenue New York NY 10031 USA
| | - Rein V. Ulijn
- Advanced Research Science Center, ASRC, at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry & Biochemistry Hunter College 695 Park Ave. New York NY 10065 USA
- Ph.D. programs in Chemistry and Biochemistry The Graduate Center of CUNY 365 Fifth Avenue New York NY 10016 USA
| |
Collapse
|
89
|
Zhang C, Shafi R, Lampel A, MacPherson D, Pappas CG, Narang V, Wang T, Maldarelli C, Ulijn RV. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide. Angew Chem Int Ed Engl 2017; 56:14511-14515. [PMID: 28941038 DOI: 10.1002/anie.201708036] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/20/2017] [Indexed: 11/10/2022]
Abstract
The reversible regulation of catalytic activity is a feature found in natural enzymes which is not commonly observed in artificial catalytic systems. Here, we fabricate an artificial hydrolase with pH-switchable activity, achieved by introducing a catalytic histidine residue at the terminus of a pH-responsive peptide. The peptide exhibits a conformational transition from random coil to β-sheet by changing the pH from acidic to alkaline. The β-sheet self-assembles to form long fibrils with the hydrophobic edge and histidine residues extending in an ordered array as the catalytic microenvironment, which shows significant esterase activity. Catalytic activity can be reversible switched by pH-induced assembly/disassembly of the fibrils into random coils. At higher concentrations, the peptide forms a hydrogel which is also catalytically active and maintains its reversible (de-)activation.
Collapse
Affiliation(s)
- Chunqiu Zhang
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Chemical Engineering Department, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Ramim Shafi
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Ayala Lampel
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Douglas MacPherson
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Charalampos G Pappas
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Vishal Narang
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Tong Wang
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Charles Maldarelli
- Chemical Engineering Department, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Rein V Ulijn
- Advanced Research Science Center, ASRC, at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry & Biochemistry, Hunter College, 695 Park Ave., New York, NY, 10065, USA.,Ph.D. programs in Chemistry and Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY, 10016, USA
| |
Collapse
|
90
|
Altay Y, Tezcan M, Otto S. Emergence of a New Self-Replicator from a Dynamic Combinatorial Library Requires a Specific Pre-Existing Replicator. J Am Chem Soc 2017; 139:13612-13615. [PMID: 28910535 PMCID: PMC5632813 DOI: 10.1021/jacs.7b07346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Our
knowledge regarding the early steps in the formation of evolvable
life and what constitutes the minimal molecular basis of life remains
far from complete. The recent emergence of systems chemistry reinvigorated
the investigation of systems of self-replicating molecules to address
these questions. Most of these studies focus on single replicators
and the effects of replicators on the emergence of other replicators
remains under-investigated. Here we show the cross-catalyzed emergence
of a novel self-replicator from a dynamic combinatorial library made
from a threonine containing peptide building block, which, by itself,
only forms trimers and tetramers that do not replicate. Upon seeding
of this library with different replicators of different macrocycle
size (hexamers and octamers), we observed the emergence of hexamer
replicator consisting of six units of the threonine peptide only when
it is seeded with an octamer replicator containing eight units of
a serine building block. These results reveal for the first time how
a new replicator can emerge in a process that relies critically on
the assistance by another replicator through cross-catalysis and that
replicator composition is history dependent.
Collapse
Affiliation(s)
- Yigit Altay
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Meniz Tezcan
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
91
|
Emergence of native peptide sequences in prebiotic replication networks. Nat Commun 2017; 8:434. [PMID: 28874657 PMCID: PMC5585222 DOI: 10.1038/s41467-017-00463-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Biopolymer syntheses in living cells are perfected by an elaborate error correction machinery, which was not applicable during polymerization on early Earth. Scientists are consequently striving to identify mechanisms by which functional polymers were selected and further amplified from complex prebiotic mixtures. Here we show the instrumental role of non-enzymatic replication in the enrichment of certain product(s). To this end, we analyzed a complex web of reactions in β-sheet peptide networks, focusing on the formation of specific intermediate compounds and template-assisted replication. Remarkably, we find that the formation of several products in a mixture is not critically harmful, since efficient and selective template-assisted reactions serve as a backbone correction mechanism, namely, for keeping the concentration of the peptide containing the native backbone equal to, or even higher than, the concentrations of the other products. We suggest that these findings may shed light on molecular evolution processes that led to current biology.The synthesis of biopolymers in living cells is perfected by complex machinery, however this was not the case on early Earth. Here the authors show the role of non-enzymatic replication in the enrichment of certain products within prebiotically relevant mixtures.
Collapse
|
92
|
Rajkamal, Pathak NP, Halder T, Dhara S, Yadav S. Partially Acetylated or Benzoylated Arabinose Derivatives as Structurally Simple Organogelators: Effect of the Ester Protecting Group on Gel Properties. Chemistry 2017. [PMID: 28639337 DOI: 10.1002/chem.201701669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sugar-based low-molecular-weight gelators (LMWGs) have been used for various applications for a long time. Herein, structurally simple, ester-protected arabinosides are reported as low-molecular-weight organogelators (LMOGs) that are able to gel aromatic solvents, as well as petrol and diesel. Studies on the mechanical strength of the gels, through detailed rheological experiments, indicate that gels from the 1,2-dibenzoylated arabinose gelator possess better mechanical properties than those from the 1,2-diacetylated gelator. These results are interpreted in terms of the tendency of the former to form fibers with comparatively lower diameter than those of the latter, based on detailed field-emission SEM and AFM studies. Investigations of the interactions responsible for the self-assembly of gelators through IR spectroscopy and wide-angle X-ray scattering reveal that the primary interactions responsible are hydrogen bonds between the hydroxyl groups and ester C=O, which is absent in the solid state of the gelators. In addition, π interactions present in the 1,2-dibenzoylated derivative result in a more regular arrangement, which, in turn, leads to better mechanical properties of the gels compared with those of the 1,2-diacetylated gelator.
Collapse
Affiliation(s)
- Rajkamal
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Navendu P Pathak
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Tanmoy Halder
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Shubhajit Dhara
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
93
|
He X, Zhang F, Zhang L, Zhang Q, Fang G, Liu J, Wang S, Zhang S. Probing the structure-activity relationship of a novel artificial cellobiose hydrolase. J Mater Chem B 2017; 5:5225-5233. [PMID: 32264107 DOI: 10.1039/c7tb01426k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The remarkable catalytic properties of enzymes contribute to their unique 3D structures and arrangement of amino acid residues, which provide a blueprint for the design of artificial enzymes. Here, a series of peptide catalysts (PCs) that mimic the unique orientation and function of β-glycosyl hydrolases were designed. Transmission electron microscopy (TEM), fluorescence analysis, circular dichroism spectroscopy, X-ray diffraction and computational modeling were used to investigate and compare the relationship of the fibrinous structure of PCs with its glycoside hydrolysis activity. These results indicated that the catalytic activity of PCs was not only related to their amyloid-like structures, but it can also be influenced by the site, species, molecular arrangement and steric hindrance of the amino acid sequence. What's more, this is the first report on peptide-inspired catalysts that mimic the natural cellobiose hydrolases. All this provided insights into the potential use of peptide nanoenzymes in the generation of efficient artificial enzymes.
Collapse
Affiliation(s)
- Xingxing He
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Wieczorek R, Adamala K, Gasperi T, Polticelli F, Stano P. Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life (Basel) 2017; 7:E19. [PMID: 28397774 PMCID: PMC5492141 DOI: 10.3390/life7020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Catalysis is an essential feature of living systems biochemistry, and probably, it played a key role in primordial times, helping to produce more complex molecules from simple ones. However, enzymes, the biocatalysts par excellence, were not available in such an ancient context, and so, instead, small molecule catalysis (organocatalysis) may have occurred. The best candidates for the role of primitive organocatalysts are amino acids and short random peptides, which are believed to have been available in an early period on Earth. In this review, we discuss the occurrence of primordial organocatalysts in the form of peptides, in particular commenting on reports about seryl-histidine dipeptide, which have recently been investigated. Starting from this specific case, we also mention a peptide fragment condensation scenario, as well as other potential roles of peptides in primordial times. The review actually aims to stimulate further investigation on an unexplored field of research, namely one that specifically looks at the catalytic activity of small random peptides with respect to reactions relevant to prebiotic chemistry and early chemical evolution.
Collapse
Affiliation(s)
- Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Katarzyna Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Fabio Polticelli
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146 Rome, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Campus Ecotekne (S.P. 6 Lecce-Monteroni), 73100 Lecce, Italy.
| |
Collapse
|
95
|
Tatikonda R, Bertula K, Nonappa, Hietala S, Rissanen K, Haukka M. Bipyridine based metallogels: an unprecedented difference in photochemical and chemical reduction in the in situ nanoparticle formation. Dalton Trans 2017; 46:2793-2802. [PMID: 28174774 PMCID: PMC5777448 DOI: 10.1039/c6dt04253h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
Metal co-ordination induced supramolecular gelation of low molecular weight organic ligands is a rapidly expanding area of research due to the potential in creating hierarchically self-assembled multi-stimuli responsive materials. In this context, structurally simple O-methylpyridine derivatives of 4,4'-dihydroxy-2,2'-bipyridine ligands are reported. Upon complexation with Ag(i) ions in aqueous dimethyl sulfoxide (DMSO) solutions the ligands spontaneously form metallosupramolecular gels at concentrations as low as 0.6 w/v%. The metal ions induce the self-assembly of three dimensional (3D) fibrillar networks followed by the spontaneous in situ reduction of the Ag-centers to silver nanoparticles (AgNPs) when exposed to daylight. Significant size and morphological differences of the AgNP's was observed between the standard chemical and photochemical reduction of the metallogels. The gelation ability, the nanoparticle formation and rheological properties were found to be depend on the ligand structure, while the strength of the gels is affected by the water content of the gels.
Collapse
Affiliation(s)
- Rajendhraprasad Tatikonda
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Kia Bertula
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Nonappa
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P. O. Box 55, FI-00014, Helsinki, Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Matti Haukka
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014, Jyväskylä, Finland.
| |
Collapse
|
96
|
Basak S, Nandi N, Paul S, Hamley IW, Banerjee A. A tripeptide-based self-shrinking hydrogel for waste-water treatment: removal of toxic organic dyes and lead (Pb2+) ions. Chem Commun (Camb) 2017; 53:5910-5913. [DOI: 10.1039/c7cc01774j] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A tripeptide-based supramolecular automatically self-shrinking superhydrogel has been discovered for the efficient removal of toxic organic dyes and Pb2+ ions from waste-water.
Collapse
Affiliation(s)
- Shibaji Basak
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Nibedita Nandi
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Subir Paul
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Ian W. Hamley
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - Arindam Banerjee
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
97
|
Steer AM, Bia N, Smith DK, Clarke PA. Prebiotic synthesis of 2-deoxy-d-ribose from interstellar building blocks promoted by amino esters or amino nitriles. Chem Commun (Camb) 2017; 53:10362-10365. [DOI: 10.1039/c7cc06083a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino esters and amino nitriles can promote the selective formation of 2-deoxy-d-ribose from materials present in interstellar ices. The use of amino nitriles suggests the possibility that carbohydrates may have existed before amino acids on the prebiotic Earth.
Collapse
Affiliation(s)
| | - Nicolas Bia
- Department of Chemistry
- University of York
- Heslington
- York
- UK
| | - David K. Smith
- Department of Chemistry
- University of York
- Heslington
- York
- UK
| | - Paul A. Clarke
- Department of Chemistry
- University of York
- Heslington
- York
- UK
| |
Collapse
|
98
|
Fujita T, Takahashi I, Hayashi M, Wang J, Fuchibe K, Ichikawa J. Facile Synthesis of Polycyclic Aromatic Hydrocarbons: Brønsted Acid Catalyzed Dehydrative Cycloaromatization of Carbonyl Compounds in 1,1,1,3,3,3-Hexafluoropropan-2-ol. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601406] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Takeshi Fujita
- Division of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 Tsukuba, Ibaraki Japan
| | - Ikko Takahashi
- Division of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 Tsukuba, Ibaraki Japan
| | - Masaki Hayashi
- Division of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 Tsukuba, Ibaraki Japan
| | - Jingchen Wang
- Division of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 Tsukuba, Ibaraki Japan
| | - Kohei Fuchibe
- Division of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 Tsukuba, Ibaraki Japan
| | - Junji Ichikawa
- Division of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 305-8571 Tsukuba, Ibaraki Japan
| |
Collapse
|
99
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1314] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
100
|
Kumar A, Singh RS, Kumar A, Ali A, Biswas A, Pandey DS. Fine-Tuning of Saponification-Triggered Gelation by Strategic Modification of Peripheral Substituents: Gelation Regulators. Chemistry 2016; 22:13799-13804. [PMID: 27434702 DOI: 10.1002/chem.201602561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 12/13/2022]
Abstract
A pioneering approach towards controlling the efficiency of saponification assisted gelation in ethyl ester based ZnII -complexes have been described. Using four new ester containing bis-salen ZnII complexes (C1-C4) involving different para-azo phenyl substituted ligands it has been clearly shown that gelation efficiency is greatly influenced by the electronic effects of the substituents (-H (C1), -CH3 (C2), -NO2 (C3), and -OCH3 (C4)). Morphological, photophysical, and rheological investigations corroborated the experimental observations well and established that gelation efficiency was enhanced with electron-withdrawing characteristics of substituents (C4<C2<C1<C3). This conclusion was also supported by DFT studies.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Roop Shikha Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Amit Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Afsar Ali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Arnab Biswas
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Daya Shankar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India.
| |
Collapse
|