51
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
52
|
A novel transgenic mouse model expressing primate-specific nuclear choline acetyltransferase: insights into potential cholinergic vulnerability. Sci Rep 2023; 13:3037. [PMID: 36810877 PMCID: PMC9944276 DOI: 10.1038/s41598-023-30155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT) is an important cholinergic neuronal marker whose levels and/or activity are reduced in physiological and pathological aging. One isoform of ChAT, 82-kDa ChAT, is expressed only in primates and found primarily in nuclei of cholinergic neurons in younger individuals, but this protein becomes mostly cytoplasmic with increasing age and in Alzheimer's disease (AD). Previous studies suggest that 82-kDa ChAT may be involved in regulating gene expression during cellular stress. Since it is not expressed in rodents, we developed a transgenic mouse model that expresses human 82-kDa ChAT under the control of an Nkx2.1 driver. Behavioral and biochemical assays were used to phenotype this novel transgenic model and elucidate the impact of 82-kDa ChAT expression. The 82-kDa ChAT transcript and protein were expressed predominantly in basal forebrain neurons and subcellular distribution of the protein recapitulated the age-related pattern found previously in human necropsy brains. Older 82-kDa ChAT-expressing mice presented with better age-related memory and inflammatory profiles. In summary, we established a novel transgenic mouse expressing 82-kDa ChAT that is valuable for studying the role of this primate-specific cholinergic enzyme in pathologies associated with cholinergic neuron vulnerability and dysfunction.
Collapse
|
53
|
Bando H, Brinkmeier ML, Castinetti F, Fang Q, Lee MS, Saveanu A, Albarel F, Dupuis C, Brue T, Camper SA. Heterozygous variants in SIX3 and POU1F1 cause pituitary hormone deficiency in mouse and man. Hum Mol Genet 2023; 32:367-385. [PMID: 35951005 PMCID: PMC9851746 DOI: 10.1093/hmg/ddac192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss-of-function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked the development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for the activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Frederic Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mi-Sun Lee
- Michigan Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Frédérique Albarel
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Clémentine Dupuis
- Department of Pediatrics, Centre Hospitalier Universitaire de Grenoble-Alpes, site Nord, Hôpital Couple Enfants, Grenoble, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
54
|
Saito M, Subbanna S, Zhang X, Canals-Baker S, Smiley JF, Wilson DA, Das BC. Effects of retinoic acid receptor α modulators on developmental ethanol-induced neurodegeneration and neuroinflammation. Front Neurosci 2023; 17:1170259. [PMID: 37205047 PMCID: PMC10187544 DOI: 10.3389/fnins.2023.1170259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Ethanol exposure in neonatal mice induces acute neurodegeneration followed by long-lasting glial activation and GABAergic cell deficits along with behavioral abnormalities, providing a third trimester model of fetal alcohol spectrum disorders (FASD). Retinoic acid (RA), the active form of vitamin A, regulates transcription of RA-responsive genes and plays essential roles in the development of embryos and their CNS. Ethanol has been shown to disturb RA metabolism and signaling in the developing brain, which may be a cause of ethanol toxicity leading to FASD. Using an agonist and an antagonist specific to RA receptor α (RARα), we studied how RA/RARα signaling affects acute and long-lasting neurodegeneration and activation of phagocytic cells and astrocytes caused by ethanol administered to neonatal mice. We found that an RARα antagonist (BT382) administered 30 min before ethanol injection into postnatal day 7 (P7) mice partially blocked acute neurodegeneration as well as elevation of CD68-positive phagocytic cells in the same brain area. While an RARα agonist (BT75) did not affect acute neurodegeneration, BT75 given either before or after ethanol administration ameliorated long-lasting astrocyte activation and GABAergic cell deficits in certain brain regions. Our studies using Nkx2.1-Cre;Ai9 mice, in which major GABAergic neurons and their progenitors in the cortex and the hippocampus are labeled with constitutively expressed tdTomato fluorescent protein, indicate that the long-lasting GABAergic cell deficits are mainly caused by P7 ethanol-induced initial neurodegeneration. However, the partial reduction of prolonged GABAergic cell deficits and glial activation by post-ethanol BT75 treatment suggests that, in addition to the initial cell death, there may be delayed cell death or disturbed development of GABAergic cells, which is partially rescued by BT75. Since RARα agonists including BT75 have been shown to exert anti-inflammatory effects, BT75 may rescue GABAergic cell deficits by reducing glial activation/neuroinflammation.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
- *Correspondence: Mariko Saito,
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - John F. Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, United States
| | - Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Bhaskar C. Das,
| |
Collapse
|
55
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
56
|
Brady MV, Mariani J, Koca Y, Szekely A, King RA, Bloch MH, Landeros-Weisenberger A, Leckman JF, Vaccarino FM. Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids. Mol Psychiatry 2022; 27:5007-5019. [PMID: 36447010 PMCID: PMC9949887 DOI: 10.1038/s41380-022-01880-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Tourette Syndrome (TS) is a neuropsychiatric disorder thought to involve a reduction of basal ganglia (BG) interneurons and malfunctioning of the BG circuitry. However, whether interneurons fail to develop or are lost postnatally remains unknown. To investigate the pathophysiology of early development in TS, induced pluripotent stem cell (iPSC)-derived BG organoids from TS patients and healthy controls were compared on multiple levels of measurement and analysis. BG organoids from TS individuals manifested an impaired medial ganglionic eminence fate and a decreased differentiation of cholinergic and GABAergic interneurons. Transcriptome analyses revealed organoid mispatterning in TS, with a preference for dorsolateral at the expense of ventromedial fates. Our results point to altered expression of GLI transcription factors downstream of the Sonic Hedgehog signaling pathway with cilia disruption at the earliest stages of BG organoid differentiation as a potential mechanism for the BG mispatterning in TS. This study uncovers early neurodevelopmental underpinnings of TS neuropathological deficits using organoids as a model system.
Collapse
Affiliation(s)
- Melanie V Brady
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Yildiz Koca
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Anna Szekely
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | - Robert A King
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Michael H Bloch
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | | | - James F Leckman
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, 06520, USA.
- Kavli Institute for Neuroscience at Yale, New Haven, CT, 06520, USA.
| |
Collapse
|
57
|
Cai J, Choi K, Li H, Pulgar Prieto KD, Zheng Y, Pan D. YAP-VGLL4 antagonism defines the major physiological function of the Hippo signaling effector YAP. Genes Dev 2022; 36:1119-1128. [PMID: 36522128 PMCID: PMC9851404 DOI: 10.1101/gad.350127.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The Hippo-YAP signaling pathway plays a critical role in development, homeostasis, regeneration, and tumorigenesis by converging on YAP, a coactivator for the TEAD family DNA-binding transcription factors, to regulate downstream transcription programs. Given its pivotal role as the nuclear effector of the Hippo pathway, YAP is indispensable in multiple developmental and tissue contexts. Here we report that the essentiality of YAP in liver and lung development can be genetically bypassed by simultaneous inactivation of the TEAD corepressor VGLL4. This striking antagonistic epistasis suggests that the major physiological function of YAP is to antagonize VGLL4. We further show that the YAP-VGLL4 antagonism plays a widespread role in regulating Hippo pathway output beyond normal development, as inactivation of Vgll4 dramatically enhanced intrahepatic cholangiocarcinoma formation in Nf2-deficient livers and ameliorated CCl4-induced damage in normal livers. Interestingly, Vgll4 expression is temporally regulated in development and regeneration and, in certain contexts, provides a better indication of overall Hippo pathway output than YAP phosphorylation. Together, these findings highlight the central importance of VGLL4-mediated transcriptional repression in Hippo pathway regulation and inform potential strategies to modulate Hippo signaling in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Jing Cai
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kyungsuk Choi
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hongde Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katiuska Daniela Pulgar Prieto
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
58
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
59
|
Krapacher FA, Fernández‐Suárez D, Andersson A, Carrier‐Ruiz A, Ibáñez CF. Convergent dopamine and ALK4 signaling to PCBP1 controls FosB alternative splicing and cocaine behavioral sensitization. EMBO J 2022; 41:e110721. [PMID: 35730718 PMCID: PMC10545536 DOI: 10.15252/embj.2022110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
ΔfosB is an alternatively spliced product of the FosB gene that is essential for dopamine-induced reward pathways and that acts as a master switch for addiction. However, the molecular mechanisms of its generation and regulation by dopamine signaling are unknown. Here, we report that dopamine D1 receptor signaling synergizes with the activin/ALK4/Smad3 pathway to potentiate the generation of ΔFosB mRNA in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) via activation of the RNA-binding protein PCBP1, a regulator of mRNA splicing. Concurrent activation of PCBP1 and Smad3 by D1 and ALK4 signaling induced their interaction, nuclear translocation, and binding to sequences in exon-4 and intron-4 of FosB mRNA. Ablation of either ALK4 or PCBP1 in MSNs impaired ΔFosB mRNA induction and nuclear translocation of ΔFosB protein in response to repeated co-stimulation of D1 and ALK4 receptors. Finally, ALK4 is required in NAc MSNs of adult mice for behavioral sensitization to cocaine. These findings uncover an unexpected mechanism for ΔFosB generation and drug-induced sensitization through convergent dopamine and ALK4 signaling.
Collapse
Affiliation(s)
| | | | | | | | - Carlos F Ibáñez
- Department of NeuroscienceKarolinska InstituteStockholmSweden
- Peking‐Tsinghua Center for Life Sciences, PKU‐IDG/McGovern Institute for Brain ResearchPeking University School of Life SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
60
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
61
|
Giffin-Rao Y, Sheng J, Strand B, Xu K, Huang L, Medo M, Risgaard KA, Dantinne S, Mohan S, Keshan A, Daley RA, Levesque B, Amundson L, Reese R, Sousa AMM, Tao Y, Wang D, Zhang SC, Bhattacharyya A. Altered patterning of trisomy 21 interneuron progenitors. Stem Cell Reports 2022; 17:1366-1379. [PMID: 35623352 PMCID: PMC9214050 DOI: 10.1016/j.stemcr.2022.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with Down syndrome (DS; Ts21), the most common genetic cause of intellectual disability, have smaller brains that reflect fewer neurons at pre- and post-natal stages, implicating impaired neurogenesis during development. Our stereological analysis of adult DS cortex indicates a reduction of calretinin-expressing interneurons. Using Ts21 human induced pluripotent stem cells (iPSCs) and isogenic controls, we find that Ts21 progenitors generate fewer COUP-TFII+ progenitors with reduced proliferation. Single-cell RNA sequencing of Ts21 progenitors confirms the altered specification of progenitor subpopulations and identifies reduced WNT signaling. Activation of WNT signaling partially restores the COUP-TFII+ progenitor population in Ts21, suggesting that altered WNT signaling contributes to the defective development of cortical interneurons in DS.
Collapse
Affiliation(s)
| | - Jie Sheng
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bennett Strand
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ke Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Leslie Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Margaret Medo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Samuel Dantinne
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sruti Mohan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aratrika Keshan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Roger A Daley
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bradley Levesque
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lindsey Amundson
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca Reese
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
62
|
Price JD, Lindtner S, Ypsilanti A, Binyameen F, Johnson JR, Newton BW, Krogan NJ, Rubenstein JLR. DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression. Development 2022; 149:dev199508. [PMID: 35695185 PMCID: PMC9245191 DOI: 10.1242/dev.199508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/17/2022] [Indexed: 09/27/2023]
Abstract
In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.
Collapse
Affiliation(s)
- James D. Price
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Athena Ypsilanti
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Fadya Binyameen
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Billy W. Newton
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
63
|
Pross A, Metwalli AH, Desfilis E, Medina L. Developmental-Based Classification of Enkephalin and Somatostatin Containing Neurons of the Chicken Central Extended Amygdala. Front Physiol 2022; 13:904520. [PMID: 35694397 PMCID: PMC9174674 DOI: 10.3389/fphys.2022.904520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The central extended amygdala, including the lateral bed nucleus of the stria terminalis and the central amygdala, plays a key role in stress response. To understand how the central extended amygdala regulates stress it is essential to dissect this structure at molecular, cellular and circuit levels. In mammals, the central amygdala contains two distinct cell populations that become active (on cells) or inactive (off cells) during the conditioned fear response. These two cell types inhibit each other and project mainly unidirectionally to output cells, thus providing a sophisticated regulation of stress. These two cell types express either protein kinase C-delta/enkephalin or somatostatin, and were suggested to originate in different embryonic domains of the subpallium that respectively express the transcription factors Pax6 or Nkx2.1 during development. The regulation of the stress response by the central extended amygdala is poorly studied in non-mammals. Using an evolutionary developmental neurobiology approach, we previously identified several subdivisions in the central extended amygdala of chicken. These contain Pax6, Islet1 and Nkx2.1 cells that originate in dorsal striatal, ventral striatal or pallidopreoptic embryonic divisions, and also contain neurons expressing enkephalin and somatostatin. To know the origin of these cells, in this study we carried out multiple fluorescent labeling to analyze coexpression of different transcription factors with enkephalin or somatostatin. We found that many enkephalin cells coexpress Pax6 and likely derive from the dorsal striatal division, resembling the off cells of the mouse central amygdala. In contrast, most somatostatin cells coexpress Nkx2.1 and derive from the pallidal division, resembling the on cells. We also found coexpression of enkephalin and somatostatin with other transcription factors. Our results show the existence of multiple cell types in the central extended amygdala of chicken, perhaps including on/off cell systems, and set the basis for studying the role of these cells in stress regulation.
Collapse
Affiliation(s)
- Alessandra Pross
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alek H. Metwalli
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- *Correspondence: Loreta Medina,
| |
Collapse
|
64
|
Metwalli AH, Abellán A, Freixes J, Pross A, Desfilis E, Medina L. Distinct Subdivisions in the Transition Between Telencephalon and Hypothalamus Produce Otp and Sim1 Cells for the Extended Amygdala in Sauropsids. Front Neuroanat 2022; 16:883537. [PMID: 35645737 PMCID: PMC9133795 DOI: 10.3389/fnana.2022.883537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Based on the coexpression of the transcription factors Foxg1 and Otp, we recently identified in the mouse a new radial embryonic division named the telencephalon-opto-hypothalamic (TOH) domain that produces the vast majority of glutamatergic neurons found in the medial extended amygdala. To know whether a similar division exists in other amniotes, we carried out double labeling of Foxg1 and Otp in embryonic brain sections of two species of sauropsids, the domestic chicken (Gallus gallus domesticus), and the long-tailed lacertid lizard (Psammodromus algirus). Since in mice Otp overlaps with the transcription factor Sim1, we also analyzed the coexpression of Foxg1 and Sim1 and compared it to the glutamatergic cell marker VGLUT2. Our results showed that the TOH domain is also present in sauropsids and produces subpopulations of Otp/Foxg1 and Sim1/Foxg1 cells for the medial extended amygdala. In addition, we found Sim1/Foxg1 cells that invade the central extended amygdala, and other Otp and Sim1 cells not coexpressing Foxg1 that invade the extended and the pallial amygdala. These different Otp and Sim1 cell subpopulations, with or without Foxg1, are likely glutamatergic. Our results highlight the complex divisional organization of telencephalon-hypothalamic transition, which contributes to the heterogeneity of amygdalar cells. In addition, our results open new venues to study further the amygdalar cells derived from different divisions around this transition zone and their relationship to other cells derived from the pallium or the subpallium.
Collapse
Affiliation(s)
- Alek H. Metwalli
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Júlia Freixes
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, University of Lleida, Lleida, Spain
- Lleida Biomedical Research Institute’s Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- *Correspondence: Loreta Medina,
| |
Collapse
|
65
|
Boda E, Lorenzati M, Parolisi R, Harding B, Pallavicini G, Bonfanti L, Moccia A, Bielas S, Di Cunto F, Buffo A. Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nat Commun 2022; 13:2331. [PMID: 35484145 PMCID: PMC9051058 DOI: 10.1038/s41467-022-30010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
In the developing mouse forebrain, temporally distinct waves of oligodendrocyte progenitor cells (OPCs) arise from different germinal zones and eventually populate either dorsal or ventral regions, where they present as transcriptionally and functionally equivalent cells. Despite that, developmental heterogeneity influences adult OPC responses upon demyelination. Here we show that accumulation of DNA damage due to ablation of citron-kinase or cisplatin treatment cell-autonomously disrupts OPC fate, resulting in cell death and senescence in the dorsal and ventral subsets, respectively. Such alternative fates are associated with distinct developmental origins of OPCs, and with a different activation of NRF2-mediated anti-oxidant responses. These data indicate that, upon injury, dorsal and ventral OPC subsets show functional and molecular diversity that can make them differentially vulnerable to pathological conditions associated with DNA damage.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy.
| | - Martina Lorenzati
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Brian Harding
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gianmarco Pallavicini
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Amanda Moccia
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ferdinando Di Cunto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| |
Collapse
|
66
|
Chen YC, Konstantinides N. Integration of Spatial and Temporal Patterning in the Invertebrate and Vertebrate Nervous System. Front Neurosci 2022; 16:854422. [PMID: 35392413 PMCID: PMC8981590 DOI: 10.3389/fnins.2022.854422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
The nervous system is one of the most sophisticated animal tissues, consisting of thousands of interconnected cell types. How the nervous system develops its diversity from a few neural stem cells remains a challenging question. Spatial and temporal patterning mechanisms provide an efficient model through which diversity can be generated. The molecular mechanism of spatiotemporal patterning has been studied extensively in Drosophila melanogaster, where distinct sets of transcription factors define the spatial domains and temporal windows that give rise to different cell types. Similarly, in vertebrates, spatial domains defined by transcription factors produce different types of neurons in the brain and neural tube. At the same time, different cortical neuronal types are generated within the same cell lineage with a specific birth order. However, we still do not understand how the orthogonal information of spatial and temporal patterning is integrated into the progenitor and post-mitotic cells to combinatorially give rise to different neurons. In this review, after introducing spatial and temporal patterning in Drosophila and mice, we discuss possible mechanisms that neural progenitors may use to integrate spatial and temporal information. We finally review the functional implications of spatial and temporal patterning and conclude envisaging how small alterations of these mechanisms can lead to the evolution of new neuronal cell types.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Nikolaos Konstantinides
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
67
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
68
|
Yin W, Liontos A, Koepke J, Ghoul M, Mazzocchi L, Liu X, Lu C, Wu H, Fysikopoulos A, Sountoulidis A, Seeger W, Ruppert C, Günther A, Stainier DYR, Samakovlis C. An essential function for autocrine hedgehog signaling in epithelial proliferation and differentiation in the trachea. Development 2022; 149:274222. [PMID: 35112129 PMCID: PMC8918789 DOI: 10.1242/dev.199804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development. Summary: A conserved autocrine role for HH signaling in tracheal epithelial cell proliferation and differentiation is revealed, suggesting potential new interventions for airway epithelial proliferation and differentiation defects.
Collapse
Affiliation(s)
- Wenguang Yin
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Andreas Liontos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Janine Koepke
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Maroua Ghoul
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Luciana Mazzocchi
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Haoyu Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Athanasios Fysikopoulos
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Alexandros Sountoulidis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Werner Seeger
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Andreas Günther
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Christos Samakovlis
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
69
|
Distinct effects of volatile and intravenous anaesthetics on presynaptic calcium dynamics in mouse hippocampal GABAergic neurones. Br J Anaesth 2022; 128:1019-1028. [DOI: 10.1016/j.bja.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
|
70
|
Lee GS, Graham DL, Noble BL, Trammell TS, McCarthy DM, Anderson LR, Rubinstein M, Bhide PG, Stanwood GD. Behavioral and Neuroanatomical Consequences of Cell-Type Specific Loss of Dopamine D2 Receptors in the Mouse Cerebral Cortex. Front Behav Neurosci 2022; 15:815713. [PMID: 35095443 PMCID: PMC8793809 DOI: 10.3389/fnbeh.2021.815713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2fl/fl, Nkx2.1-Cre+ (referred to as GABA-D2R-cKO mice) or Drd2fl/fl, Emx1-Cre+ (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.
Collapse
Affiliation(s)
- Gloria S. Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Devon L. Graham
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Brenda L. Noble
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Taylor S. Trammell
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Lisa R. Anderson
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Gregg D. Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- *Correspondence: Gregg D. Stanwood
| |
Collapse
|
71
|
Fang Y, Shao H, Wu Q, Wong NC, Tsong N, Sime PJ, Que J. Epithelial Wntless regulates postnatal alveologenesis. Development 2022; 149:273807. [PMID: 34931663 PMCID: PMC8881739 DOI: 10.1242/dev.199505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/09/2021] [Indexed: 01/12/2023]
Abstract
Alveologenesis requires the coordinated modulation of the epithelial and mesenchymal compartments to generate mature alveolar saccules for efficient gas exchange. However, the molecular mechanisms underlying the epithelial-mesenchymal interaction during alveologenesis are poorly understood. Here, we report that Wnts produced by epithelial cells are crucial for neonatal alveologenesis. Deletion of the Wnt chaperone protein Wntless homolog (Wls) disrupts alveolar formation, resulting in enlarged saccules in Sftpc-Cre/Nkx2.1-Cre; Wlsloxp/loxp mutants. Although commitment of the alveolar epithelium is unaffected, α-SMA+ mesenchymal cells persist in the alveoli, accompanied by increased collagen deposition, and mutants exhibit exacerbated fibrosis following bleomycin challenge. Notably, α-SMA+ cells include a significant number of endothelial cells resembling endothelial to mesenchymal transition (EndMT), which is also present in Ager-CreER; Wlsloxp/loxp mutants following early postnatal Wls deletion. These findings provide initial evidence that epithelial-derived Wnts are crucial for the differentiation of the surrounding mesenchyme during early postnatal alveologenesis.
Collapse
Affiliation(s)
- Yinshan Fang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hongxia Shao
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Tianjin Haihe Hospital, Tianjin, Tianjin 300350, China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin, Tianjin 300350, China
| | - Neng Chun Wong
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Natalie Tsong
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Patricia J. Sime
- Department of Internal Medicine, Virginia Commonwealth University in Richmond, Richmond, VA 23298, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Author for correspondence ()
| |
Collapse
|
72
|
Huang WH. Performing Single-Cell Clonal Analysis in the Mouse Brain Using Mosaic Analysis with Double Markers (MADM). Methods Mol Biol 2022; 2515:59-74. [PMID: 35776345 DOI: 10.1007/978-1-0716-2409-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A central question in neuroscience is how 100 billion neurons come together to build the human brain. The wiring, morphology, survival, and death of each neuron are controlled by genes that encode intrinsic and extrinsic factors. Determining the function of these genes at a high spatiotemporal resolution is a critical step toward understanding brain development and function. Moreover, an increasing number of somatic mutations are being discovered in many brain disorders. However, neurons are embedded in complex networks, making it difficult to distinguish cell-autonomous from non-cell-autonomous function of any given gene in the brain. Here, I describe MADM (mosaic analysis with double markers), a genetic method that allows for labeling and manipulating gene function at the single-cell level within the mouse brain. I present mouse breeding schemes to employ MADM analysis and important considerations for experimental design. This powerful system can be adapted to make fundamental neuroscience discoveries by targeting genetically defined cell types in the mouse brain with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, QC, Canada.
| |
Collapse
|
73
|
Lee SM, Yeh PWL, Yeh HH. L-Type Calcium Channels Contribute to Ethanol-Induced Aberrant Tangential Migration of Primordial Cortical GABAergic Interneurons in the Embryonic Medial Prefrontal Cortex. eNeuro 2022; 9:ENEURO.0359-21.2021. [PMID: 34930830 PMCID: PMC8805770 DOI: 10.1523/eneuro.0359-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure of the fetus to alcohol (ethanol) via maternal consumption during pregnancy can result in fetal alcohol spectrum disorders (FASD), hallmarked by long-term physical, behavioral, and intellectual abnormalities. In our preclinical mouse model of FASD, prenatal ethanol exposure disrupts tangential migration of corticopetal GABAergic interneurons (GINs) in the embryonic medial prefrontal cortex (mPFC). We postulated that ethanol perturbed the normal pattern of tangential migration via enhancing GABAA receptor-mediated membrane depolarization that prevails during embryonic development in GABAergic cortical interneurons. However, beyond this, our understanding of the underlying mechanisms is incomplete. Here, we tested the hypothesis that the ethanol-enhanced depolarization triggers downstream an increase in high-voltage-activated nifedipine-sensitive L-type calcium channel (LTCC) activity and provide evidence implicating calcium dynamics in the signaling scheme underlying the migration of embryonic GINs and its aberrance. Tangentially migrating Nkx2.1+ GINs expressed immunoreactivity to Cav1.2, the canonical neuronal isoform of the L-type calcium channel. Prenatal ethanol exposure did not alter its protein expression profile in the embryonic mPFC. However, exposing ethanol concomitantly with the LTCC blocker nifedipine prevented the ethanol-induced aberrant migration both in vitro and in vivo In addition, whole-cell patch clamp recording of LTCCs in GINs migrating in embryonic mPFC slices revealed that acutely applied ethanol potentiated LTCC activity in migrating GINs. Based on evidence reported in the present study, we conclude that calcium is an important intracellular intermediary downstream of GABAA receptor-mediated depolarization in the mechanistic scheme of an ethanol-induced aberrant tangential migration of embryonic GABAergic cortical interneurons.
Collapse
Affiliation(s)
- Stephanie M Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
74
|
Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature 2022; 601:397-403. [PMID: 34912114 PMCID: PMC8994470 DOI: 10.1038/s41586-021-04230-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/10/2021] [Indexed: 01/19/2023]
Abstract
The cerebral cortex is a cellularly complex structure comprising a rich diversity of neuronal and glial cell types. Cortical neurons can be broadly categorized into two classes-excitatory neurons that use the neurotransmitter glutamate, and inhibitory interneurons that use γ-aminobutyric acid (GABA). Previous developmental studies in rodents have led to a prevailing model in which excitatory neurons are born from progenitors located in the cortex, whereas cortical interneurons are born from a separate population of progenitors located outside the developing cortex in the ganglionic eminences1-5. However, the developmental potential of human cortical progenitors has not been thoroughly explored. Here we show that, in addition to excitatory neurons and glia, human cortical progenitors are also capable of producing GABAergic neurons with the transcriptional characteristics and morphologies of cortical interneurons. By developing a cellular barcoding tool called 'single-cell-RNA-sequencing-compatible tracer for identifying clonal relationships' (STICR), we were able to carry out clonal lineage tracing of 1,912 primary human cortical progenitors from six specimens, and to capture both the transcriptional identities and the clonal relationships of their progeny. A subpopulation of cortically born GABAergic neurons was transcriptionally similar to cortical interneurons born from the caudal ganglionic eminence, and these cells were frequently related to excitatory neurons and glia. Our results show that individual human cortical progenitors can generate both excitatory neurons and cortical interneurons, providing a new framework for understanding the origins of neuronal diversity in the human cortex.
Collapse
|
75
|
Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. Front Neuroanat 2021; 15:786679. [PMID: 34955766 PMCID: PMC8696165 DOI: 10.3389/fnana.2021.786679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is a hyperspecialized brain region composed of strongly inter- and intraconnected nuclei involved in emotional learning and behavior. The cellular heterogeneity of the amygdalar nuclei has complicated straightforward conclusions on their developmental origin, and even resulted in contradictory data. Recently, the concentric ring theory of the pallium and the radial histogenetic model of the pallial amygdala have cleared up several uncertainties that plagued previous models of amygdalar development. Here, we provide an extensive overview on the developmental origin of the nuclei of the amygdaloid complex. Starting from older gene expression data, transplantation and lineage tracing studies, we systematically summarize and reinterpret previous findings in light of the novel perspectives on amygdalar development. In addition, migratory routes that these cells take on their way to the amygdala are explored, and known transcription factors and guidance cues that seemingly drive these cells toward the amygdala are emphasized. We propose some future directions for research on amygdalar development and highlight that a better understanding of its development could prove critical for the treatment of several neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
76
|
Identification of TGFβ signaling as a regulator of interneuron neurogenesis in a human pluripotent stem cell model. Neuronal Signal 2021; 5:NS20210020. [PMID: 34956651 PMCID: PMC8661503 DOI: 10.1042/ns20210020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Cortical interneurons are GABAergic inhibitory cells that connect locally in the neocortex and play a pivotal role in shaping cortical network activities. Dysfunction of these cells is believed to lead to runaway excitation underlying seizure-based diseases, such as epilepsy, autism and schizophrenia. There is a growing interest in using cortical interneurons derived from human pluripotent stem cells for understanding their complex development and for modeling neuropsychiatric diseases. Here, we report the identification of a novel role of transforming growth factor β (TGFβ) signaling in modulating interneuron progenitor maintenance and neuronal differentiation. TGFβ signaling inhibition suppresses terminal differentiation of interneuron progenitors, while exogenous TGFβ3 accelerates the transition of progenitors into postmitotic neurons. We provide evidence that TGFb signaling exerts this function via regulating cell cycle length of the NKX2.1+ neural progenitors. Together, the present study represents a useful platform for studying human interneuron development and interneuron-associated neurological diseases with human pluripotent stem cells.
Collapse
|
77
|
Yu Y, Zeng Z, Xie D, Chen R, Sha Y, Huang S, Cai W, Chen W, Li W, Ke R, Sun T. Interneuron origin and molecular diversity in the human fetal brain. Nat Neurosci 2021; 24:1745-1756. [PMID: 34737447 DOI: 10.1038/s41593-021-00940-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
Precise generation of excitatory neurons and inhibitory interneurons is crucial for proper formation and function of neural circuits in the mammalian brain. Because of the size and complexity of the human brain, it is a challenge to reveal the rich diversity of interneurons. To decipher origin and diversity of interneurons in the human fetal subpallium, here we show molecular features of diverse subtypes of interneuron progenitors and precursors by conducting single-cell RNA sequencing and in situ sequencing. Interneuron precursors in the medial and lateral ganglionic eminence simultaneously procure temporal and spatial identity through expressing a combination of specific sets of RNA transcripts. Acquisition of various interneuron subtypes in adult human brains occurs even at fetal stages. Our study uncovers complex molecular signatures of interneuron progenitors and precursors in the human fetal subpallium and highlights the logic and programs in the origin and lineage specification of various interneurons.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Zhiwei Zeng
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Danlin Xie
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Renliang Chen
- Taokang Institute of Neuro Medicine, Xiamen, Fujian, China
| | - Yongqiang Sha
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, China.,School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Shiying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wenjun Li
- Fujian University of Traditional Chinese Medicine Jinjiang Affliated Hospital, Quanzhou, Fujian, China
| | - Rongqin Ke
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, China.,School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, China. .,School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China.
| |
Collapse
|
78
|
Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021; 14:712609. [PMID: 34630033 PMCID: PMC8500094 DOI: 10.3389/fnmol.2021.712609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ramesh Chittajallu
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
79
|
Shenoy AT, Lyon De Ana C, Arafa EI, Salwig I, Barker KA, Korkmaz FT, Ramanujan A, Etesami NS, Soucy AM, Martin IMC, Tilton BR, Hinds A, Goltry WN, Kathuria H, Braun T, Jones MR, Quinton LJ, Belkina AC, Mizgerd JP. Antigen presentation by lung epithelial cells directs CD4 + T RM cell function and regulates barrier immunity. Nat Commun 2021; 12:5834. [PMID: 34611166 PMCID: PMC8492657 DOI: 10.1038/s41467-021-26045-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Barrier tissues are populated by functionally plastic CD4+ resident memory T (TRM) cells. Whether the barrier epithelium regulates CD4+ TRM cell locations, plasticity and activities remains unclear. Here we report that lung epithelial cells, including distinct surfactant protein C (SPC)lowMHChigh epithelial cells, function as anatomically-segregated and temporally-dynamic antigen presenting cells. In vivo ablation of lung epithelial MHC-II results in altered localization of CD4+ TRM cells. Recurrent encounters with cognate antigen in the absence of epithelial MHC-II leads CD4+ TRM cells to co-express several classically antagonistic lineage-defining transcription factors, changes their cytokine profiles, and results in dysregulated barrier immunity. In addition, lung epithelial MHC-II is needed for surface expression of PD-L1, which engages its ligand PD-1 to constrain lung CD4+ TRM cell phenotypes. Thus, we establish epithelial antigen presentation as a critical regulator of CD4+ TRM cell function and identify epithelial-CD4+ TRM cell immune interactions as core elements of barrier immunity.
Collapse
Affiliation(s)
- Anukul T Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Emad I Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Isabelle Salwig
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Kimberly A Barker
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Aditya Ramanujan
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Neelou S Etesami
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alicia M Soucy
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ian M C Martin
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Brian R Tilton
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Anne Hinds
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Wesley N Goltry
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hasmeena Kathuria
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Anna C Belkina
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
80
|
Siddiqi F, Trakimas AL, Joseph DJ, Lippincott ML, Marsh ED, Wolfe JH. Islet1 Precursors Contribute to Mature Interneuron Subtypes in Mouse Neocortex. Cereb Cortex 2021; 31:5206-5224. [PMID: 34228108 PMCID: PMC8491676 DOI: 10.1093/cercor/bhab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022] Open
Abstract
Cortical interneurons (GABAergic cells) arise during embryogenesis primarily from the medial and caudal ganglionic eminences (MGE and CGE, respectively) with a small population generated from the preoptic area (POA). Progenitors from the lateral ganglionic eminence (LGE) are thought to only generate GABAergic medium spiny neurons that populate the striatum and project to the globus pallidus. Here, we report evidence that neuronal precursors that express the LGE-specific transcription factor Islet1 (Isl1) can give rise to a small population of cortical interneurons. Lineage tracing and homozygous deletion of Nkx2.1 in Isl1 fate-mapped mice showed that neighboring MGE/POA-specific Nkx2.1 cells and LGE-specific Isl1 cells make both common and distinct lineal contributions towards cortical interneuron fate. Although the majority of cells had overlapping transcriptional domains between Nkx2.1 and Isl1, a population of Isl1-only derived cells also contributed to the adult cerebral cortex. The data indicate that Isl1-derived cells may originate from both the LGE and the adjacent LGE/MGE boundary regions to generate diverse neuronal progeny. Thus, a small population of neocortical interneurons appear to originate from Isl-1-positive precursors.
Collapse
Affiliation(s)
- Faez Siddiqi
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Alexandria L Trakimas
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald J Joseph
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Eric D Marsh
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John H Wolfe
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
81
|
Maes B, Smole U, Vanderkerken M, Deswarte K, Van Moorleghem J, Vergote K, Vanheerswynghels M, De Wolf C, De Prijck S, Debeuf N, Pavie B, Toussaint W, Janssens S, Savvides S, Lambrecht BN, Hammad H. The STE20 kinase TAOK3 controls the development house dust mite-induced asthma in mice. J Allergy Clin Immunol 2021; 149:1413-1427.e2. [PMID: 34506849 DOI: 10.1016/j.jaci.2021.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific TH2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed. OBJECTIVE We examined if and how loss of Taok3 affects the development of house dust mite (HDM)-driven allergic asthma in an in vivo mouse model. METHODS Wild-type Taok3+/+ and gene-deficient Taok3-/- mice were sensitized and challenged with HDM, and bronchoalveolar lavage fluid composition, mediastinal lymph node cytokine production, lung histology, and bronchial hyperreactivity measured. Conditional Taok3fl/fl mice were crossed to tissue- and cell-specific specific deletor Cre mice to understand how Taok3 acted on asthma susceptibility. Kinase-dead (KD) Taok3KD mice were generated to probe for the druggability of this pathway. Activation of HDM-specific T cells was measured in adoptively transferred HDM-specific T-cell receptor-transgenic CD4+ T cells. ILC2 biology was assessed by in vivo and in vitro IL-33 stimulation assays in Taok3-/- and Taok3+/+, Taok3KD, and Red5-Cre Taok3fl/fl mice. RESULTS Taok3-/- mice failed to mount salient features of asthma, including airway eosinophilia, TH2 cytokine production, IgE secretion, airway goblet cell metaplasia, and bronchial hyperreactivity compared to controls. This was due to intrinsic loss of Taok3 in hematopoietic and not epithelial cells. Loss of Taok3 resulted in hampered HDM-induced lung DC migration to the draining lymph nodes and defective priming of HDM-specific TH2 cells. Strikingly, HDM and IL-33-induced ILC2 proliferation and function were also severely affected in Taok3-deficient and Taok3KD mice. CONCLUSIONS Absence of Taok3 or loss of its kinase activity protects from HDM-driven allergic asthma as a result of defects in both adaptive DC-mediated TH2 activation and innate ILC2 function. This identifies Taok3 as an interesting drug target, justifying further testing as a new treatment for type 2-high asthma.
Collapse
Affiliation(s)
- Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ursula Smole
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Savvas Savvides
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
82
|
Ma L, Du Y, Xu X, Feng H, Hui Y, Li N, Jiang G, Zhang X, Li X, Liu L. β-Catenin Deletion in Regional Neural Progenitors Leads to Congenital Hydrocephalus in Mice. Neurosci Bull 2021; 38:81-94. [PMID: 34460072 PMCID: PMC8782971 DOI: 10.1007/s12264-021-00763-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Congenital hydrocephalus is a major neurological disorder with high rates of morbidity and mortality; however, the underlying cellular and molecular mechanisms remain largely unknown. Reproducible animal models mirroring both embryonic and postnatal hydrocephalus are also limited. Here, we describe a new mouse model of congenital hydrocephalus through knockout of β-catenin in Nkx2.1-expressing regional neural progenitors. Progressive ventriculomegaly and an enlarged brain were consistently observed in knockout mice from embryonic day 12.5 through to adulthood. Transcriptome profiling revealed severe dysfunctions in progenitor maintenance in the ventricular zone and therefore in cilium biogenesis after β-catenin knockout. Histological analyses also revealed an aberrant neuronal layout in both the ventral and dorsal telencephalon in hydrocephalic mice at both embryonic and postnatal stages. Thus, knockout of β-catenin in regional neural progenitors leads to congenital hydrocephalus and provides a reproducible animal model for studying pathological changes and developing therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Hexi Feng
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Guanyu Jiang
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, 200065 China ,Brain and Spinal Cord Innovative Research Center, School of Medicine, Tongji University, Shanghai, 200092 China ,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Xiaocui Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
83
|
Mayerl S, Chen J, Salveridou E, Boelen A, Darras VM, Heuer H. Thyroid Hormone Transporter Deficiency in Mice Impacts Multiple Stages of GABAergic Interneuron Development. Cereb Cortex 2021; 32:329-341. [PMID: 34339499 PMCID: PMC8754375 DOI: 10.1093/cercor/bhab211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cortical interneuron neurogenesis is strictly regulated and depends on the presence of thyroid hormone (TH). In particular, inhibitory interneurons expressing the calcium binding protein Parvalbumin are highly sensitive toward developmental hypothyroidism. Reduced numbers of Parvalbumin-positive interneurons are observed in mice due to the combined absence of the TH transporters Mct8 and Oatp1c1. To unravel if cortical Parvalbumin-positive interneurons depend on cell-autonomous action of Mct8/Oatp1c1, we compared Mct8/Oatp1c1 double knockout (dko) mice to conditional knockouts with abolished TH transporter expression in progenitors of Parvalbumin-positive interneurons. These conditional knockouts exhibited a transient delay in the appearance of Parvalbumin-positive interneurons in the early postnatal somatosensory cortex while cell numbers remained permanently reduced in Mct8/Oatp1c1 dko mice. Using fluorescence in situ hybridization on E12.5 embryonic brains, we detected reduced expression of sonic hedgehog signaling components in Mct8/Oatp1c1 dko embryos only. Moreover, we revealed spatially distinct expression patterns of both TH transporters at brain barriers at E12.5 by immunofluorescence. At later developmental stages, we uncovered a sequential expression of first Oatp1c1 in individual interneurons and then Mct8 in Parvalbumin-positive subtypes. Together, our results point to multiple cell-autonomous and noncell-autonomous mechanisms that depend on proper TH transport during cortical interneuron development.
Collapse
Affiliation(s)
- Steffen Mayerl
- Leibniz Institute on Aging/Fritz Lipmann Institute, 07745 Jena, Germany.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,Department of Endocrinology, Diabetes and Metabolism; University Duisburg-Essen, 45147 Essen, Germany
| | - Jiesi Chen
- Leibniz Institute on Aging/Fritz Lipmann Institute, 07745 Jena, Germany.,Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Eva Salveridou
- Department of Endocrinology, Diabetes and Metabolism; University Duisburg-Essen, 45147 Essen, Germany.,Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anita Boelen
- Endocrinology Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Animal Physiology and Neurobiology Section, Biology Department, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Heike Heuer
- Leibniz Institute on Aging/Fritz Lipmann Institute, 07745 Jena, Germany.,Department of Endocrinology, Diabetes and Metabolism; University Duisburg-Essen, 45147 Essen, Germany.,Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
84
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
85
|
Qi H, Liu H, Pullamsetti SS, Günther S, Kuenne C, Atzberger A, Sommer N, Hadzic S, Günther A, Weissmann N, Zhou Y, Yuan X, Braun T. Epigenetic Regulation by Suv4-20h1 in Cardiopulmonary Progenitor Cells is Required to Prevent Pulmonary Hypertension and COPD. Circulation 2021; 144:1042-1058. [PMID: 34247492 DOI: 10.1161/circulationaha.120.051680] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The etiology of life-threatening cardiopulmonary diseases such as Pulmonary Hypertension (PH) and Chronic Obstructive Pulmonary Disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions, which is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. Methods: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human PH and COPD patients for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells (CPPs) and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. Results: We discovered a strong reduction of the histone modifications H4K20me2/3 in human COPD but not PH patients, which depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in CPPs caused a COPD-like/PH phenotype in mice including formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyper-proliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide (H2O2) concentrations, causing vascular defects and impairing alveolarization. Conclusions: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary co-development and uncover developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD, and aid the development of epigenetic drugs for treatment of cardiopulmonary diseases.
Collapse
Affiliation(s)
- Hui Qi
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hang Liu
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Ann Atzberger
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Stefan Hadzic
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Andreas Günther
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Yonggang Zhou
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Xuejun Yuan
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
86
|
Ellingford RA, Panasiuk MJ, de Meritens ER, Shaunak R, Naybour L, Browne L, Basson MA, Andreae LC. Cell-type-specific synaptic imbalance and disrupted homeostatic plasticity in cortical circuits of ASD-associated Chd8 haploinsufficient mice. Mol Psychiatry 2021; 26:3614-3624. [PMID: 33837267 PMCID: PMC8505247 DOI: 10.1038/s41380-021-01070-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Heterozygous mutation of chromodomain helicase DNA binding protein 8 (CHD8) is strongly associated with autism spectrum disorder (ASD) and results in dysregulated expression of neurodevelopmental and synaptic genes during brain development. To reveal how these changes affect ASD-associated cortical circuits, we studied synaptic transmission in the prefrontal cortex of a haploinsufficient Chd8 mouse model. We report profound alterations to both excitatory and inhibitory synaptic transmission onto deep layer projection neurons, resulting in a reduced excitatory:inhibitory balance, which were found to vary dynamically across neurodevelopment and result from distinct effects of reduced Chd8 expression within individual neuronal subtypes. These changes were associated with disrupted regulation of homeostatic plasticity mechanisms operating via spontaneous neurotransmission. These findings therefore directly implicate CHD8 mutation in the disruption of ASD-relevant circuits in the cortex.
Collapse
Affiliation(s)
- Robert A Ellingford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Martyna J Panasiuk
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Emilie Rabesahala de Meritens
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Raghav Shaunak
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Liam Naybour
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Lorcan Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - M Albert Basson
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Laura C Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
87
|
Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun 2021; 12:3653. [PMID: 34135323 PMCID: PMC8209106 DOI: 10.1038/s41467-021-23939-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/20/2021] [Indexed: 11/08/2022] Open
Abstract
The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway controls several aspects of neuronal development. Mutations in regulators of mTORC1, such as Tsc1 and Tsc2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of parvalbumin (PV)-positive GABAergic interneurons change in the postnatal brain. How and whether mTORC1 signaling affects PV cell development is unknown. Here, we show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. PV cell-restricted Tsc1 haploinsufficient and knockout mice show deficits in social behavior. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. Our findings reveal a role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.
Collapse
|
88
|
Magno L, Asgarian Z, Pendolino V, Velona T, Mackintosh A, Lee F, Stryjewska A, Zimmer C, Guillemot F, Farrant M, Clark B, Kessaris N. Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Rep 2021; 35:109249. [PMID: 34133916 PMCID: PMC8220254 DOI: 10.1016/j.celrep.2021.109249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/02/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cortical GABAergic interneurons are generated in large numbers in the ganglionic eminences and migrate into the cerebral cortex during embryogenesis. At early postnatal stages, during neuronal circuit maturation, autonomous and activity-dependent mechanisms operate within the cortex to adjust cell numbers by eliminating naturally occurring neuron excess. Here, we show that when cortical interneurons are generated in aberrantly high numbers-due to a defect in precursor cell proliferation during embryogenesis-extra parvalbumin interneurons persist in the postnatal mouse cortex during critical periods of cortical network maturation. Even though cell numbers are subsequently normalized, behavioral abnormalities remain in adulthood. This suggests that timely clearance of excess cortical interneurons is critical for correct functional maturation of circuits that drive adult behavior.
Collapse
Affiliation(s)
- Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Zeinab Asgarian
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valentina Pendolino
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Theodora Velona
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Albert Mackintosh
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Flora Lee
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Agata Stryjewska
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Celine Zimmer
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Beverley Clark
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
89
|
Borrett MJ, Innes BT, Jeong D, Tahmasian N, Storer MA, Bader GD, Kaplan DR, Miller FD. Single-Cell Profiling Shows Murine Forebrain Neural Stem Cells Reacquire a Developmental State when Activated for Adult Neurogenesis. Cell Rep 2021; 32:108022. [PMID: 32783944 DOI: 10.1016/j.celrep.2020.108022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
The transitions from developing to adult quiescent and activated neural stem cells (NSCs) are not well understood. Here, we use single-cell transcriptional profiling and lineage tracing to characterize these transitions in the murine forebrain. We show that the two forebrain NSC parental populations, embryonic cortex and ganglionic eminence radial precursors (RPs), are highly similar even though they make glutamatergic versus gabaergic neurons. Both RP populations progress linearly to transition from a highly active embryonic to a dormant adult stem cell state that still shares many similarities with embryonic RPs. When adult NSCs of either embryonic origin become reactivated to make gabaergic neurons, they acquire a developing ganglionic eminence RP-like identity. Thus, transitions from embryonic RPs to adult NSCs and back to neuronal progenitors do not involve fundamental changes in cell identity, but rather reflect conversions between activated and dormant NSC states that may be determined by the niche environment.
Collapse
Affiliation(s)
- Michael J Borrett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Brendan T Innes
- The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Danielle Jeong
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Nareh Tahmasian
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Mekayla A Storer
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - David R Kaplan
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
90
|
Implications of Extended Inhibitory Neuron Development. Int J Mol Sci 2021; 22:ijms22105113. [PMID: 34066025 PMCID: PMC8150951 DOI: 10.3390/ijms22105113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.
Collapse
|
91
|
Nasu M, Esumi S, Hatakeyama J, Tamamaki N, Shimamura K. Two-Phase Lineage Specification of Telencephalon Progenitors Generated From Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:632381. [PMID: 33937233 PMCID: PMC8086603 DOI: 10.3389/fcell.2021.632381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Proper brain development requires precisely controlled phases of stem cell proliferation, lineage specification, differentiation, and migration. Lineage specification depends partly on concentration gradients of chemical cues called morphogens. However, the rostral brain (telencephalon) expands prominently during embryonic development, dynamically altering local morphogen concentrations, and telencephalic subregional properties develop with a time lag. Here, we investigated how progenitor specification occurs under these spatiotemporally changing conditions using a three-dimensional in vitro differentiation model. We verified the critical contributions of three signaling factors for the lineage specification of subregional tissues in the telencephalon, ventralizing sonic hedgehog (Shh) and dorsalizing bone morphogenetic proteins (BMPs) and WNT proteins (WNTs). We observed that a short-lasting signal is sufficient to induce subregional progenitors and that the timing of signal exposure for efficient induction is specific to each lineage. Furthermore, early and late progenitors possess different Shh signal response capacities. This study reveals a novel developmental mechanism for telencephalon patterning that relies on the interplay of dose- and time-dependent signaling, including a time lag for specification and a temporal shift in cellular Shh sensitivity. This delayed fate choice through two-phase specification allows tissues with marked size expansion, such as the telencephalon, to compensate for the changing dynamics of morphogen signals.
Collapse
Affiliation(s)
- Makoto Nasu
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
92
|
Yang J, Yang X, Tang K. Interneuron development and dysfunction. FEBS J 2021; 289:2318-2336. [PMID: 33844440 DOI: 10.1111/febs.15872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Understanding excitation and inhibition balance in the brain begins with the tale of two basic types of neurons, glutamatergic projection neurons and GABAergic interneurons. The diversity of cortical interneurons is contributed by multiple origins in the ventral forebrain, various tangential migration routes, and complicated regulations of intrinsic factors, extrinsic signals, and activities. Abnormalities of interneuron development lead to dysfunction of interneurons and inhibitory circuits, which are highly associated with neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and intellectual disability. In this review, we mainly discuss recent findings on the development of cortical interneuron and on neurodevelopmental disorders related to interneuron dysfunction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| |
Collapse
|
93
|
4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A 2021; 118:2025522118. [PMID: 33876772 DOI: 10.1073/pnas.2025522118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3ca H1047R-Pvalb ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.
Collapse
|
94
|
The microcephaly gene Donson is essential for progenitors of cortical glutamatergic and GABAergic neurons. PLoS Genet 2021; 17:e1009441. [PMID: 33739968 PMCID: PMC8011756 DOI: 10.1371/journal.pgen.1009441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/31/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research. The cerebral cortex constitutes the largest part of the mammalian brain and is generated prenatally by highly proliferative progenitors. Genes encoding proteins that are essential for chromosomal segregation, mitotic division, DNA repair, and DNA damage response are frequently mutated in individuals diagnosed with microcephaly, a clinical condition characterized by cerebrocortical hypotrophy. Recent findings suggest that biallelic mutations in DONSON, a replication fork stabilization factor, cause microcephaly and skeletal defects, but this has not been formally tested. Here, we find that Cre-mediated Donson deletion in progenitors of cortical glutamatergic and cortical GABAergic neurons causes extensive programmed cell death at early stages of cortical development in mice. Cell death is induced in the proliferation zones and the postmitotic differentiation zones of the targeted progenitors. Mice undergoing Donson ablation in glutamatergic progenitors do not develop the hippocampus and dorsolateral neocortex, which leads to a dorsal shift of the early-generated piriform cortex. Donson deletion in GABAergic progenitors eliminates the vast majority of GABAergic neurons and oligodendrocyte precursors arising in the targeted lineage. We thus establish that Donson is essential for diverse early telencephalic progenitors. Targeting Donson might be used to kill off highly proliferating cells in experimental and probably therapeutic settings.
Collapse
|
95
|
Ikonomou L. The Coming-of-Age of Lung Generation by Blastocyst Complementation. Am J Respir Crit Care Med 2021; 203:408-410. [PMID: 33105082 PMCID: PMC7885831 DOI: 10.1164/rccm.202009-3548ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology University at Buffalo Buffalo, New York
| |
Collapse
|
96
|
Zhang Z, Park JW, Ahn IS, Diamante G, Sivakumar N, Arneson D, Yang X, van Veen JE, Correa SM. Estrogen receptor alpha in the brain mediates tamoxifen-induced changes in physiology in mice. eLife 2021; 10:63333. [PMID: 33647234 PMCID: PMC7924955 DOI: 10.7554/elife.63333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Adjuvant tamoxifen therapy improves survival in breast cancer patients. Unfortunately, long-term treatment comes with side effects that impact health and quality of life, including hot flashes, changes in bone density, and fatigue. Partly due to a lack of proven animal models, the tissues and cells that mediate these negative side effects are unclear. Here, we show that mice undergoing tamoxifen treatment experience changes in temperature, bone, and movement. Single-cell RNA sequencing reveals that tamoxifen treatment induces widespread gene expression changes in the hypothalamus and preoptic area (hypothalamus-POA). These expression changes are dependent on estrogen receptor alpha (ERα), as conditional knockout of ERα in the hypothalamus-POA ablates or reverses tamoxifen-induced gene expression. Accordingly, ERα-deficient mice do not exhibit tamoxifen-induced changes in temperature, bone, or movement. These findings provide mechanistic insight into the effects of tamoxifen on the hypothalamus-POA and indicate that ERα mediates several physiological effects of tamoxifen treatment in mice.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Jae Whan Park
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Nilla Sivakumar
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| |
Collapse
|
97
|
Ma T, Wong SZH, Lee B, Ming GL, Song H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 2021; 109:1150-1167.e6. [PMID: 33600763 DOI: 10.1016/j.neuron.2021.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/10/2020] [Accepted: 01/26/2021] [Indexed: 01/30/2023]
Abstract
The hypothalamus plays crucial roles in regulating endocrine, autonomic, and behavioral functions via its diverse nuclei and neuronal subtypes. The developmental mechanisms underlying ontogenetic establishment of different hypothalamic nuclei and generation of neuronal diversity remain largely unknown. Here, we show that combinatorial T-box 3 (TBX3), orthopedia homeobox (OTP), and distal-less homeobox (DLX) expression delineates all arcuate nucleus (Arc) neurons and defines four distinct subpopulations, whereas combinatorial NKX2.1/SF1 and OTP/DLX expression identifies ventromedial hypothalamus (VMH) and tuberal nucleus (TuN) neuronal subpopulations, respectively. Developmental analysis indicates that all four Arc subpopulations are mosaically and simultaneously generated from embryonic Arc progenitors, whereas glutamatergic VMH neurons and GABAergic TuN neurons are sequentially generated from common embryonic VMH progenitors. Moreover, clonal lineage-tracing analysis reveals that diverse lineages from multipotent radial glia progenitors orchestrate Arc and VMH-TuN establishment. Together, our study reveals cellular mechanisms underlying generation and organization of diverse neuronal subtypes and ontogenetic establishment of individual nuclei in the mammalian hypothalamus.
Collapse
Affiliation(s)
- Tong Ma
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bora Lee
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetic Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
98
|
Pauler FM, Hudson QJ, Laukoter S, Hippenmeyer S. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochem Int 2021; 145:104986. [PMID: 33600873 DOI: 10.1016/j.neuint.2021.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
Collapse
Affiliation(s)
- Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
99
|
Holter MC, Hewitt LT, Nishimura KJ, Knowles SJ, Bjorklund GR, Shah S, Fry NR, Rees KP, Gupta TA, Daniels CW, Li G, Marsh S, Treiman DM, Olive MF, Anderson TR, Sanabria F, Snider WD, Newbern JM. Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. Cereb Cortex 2021; 31:3064-3081. [PMID: 33570093 DOI: 10.1093/cercor/bhaa413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.
Collapse
Affiliation(s)
- Michael C Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lauren T Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Kenji J Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,Interdepartmental Neuroscience Graduate Program, University of Texas, Austin, TX 78712, USA
| | - Sara J Knowles
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Shiv Shah
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Noah R Fry
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tanya A Gupta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Carter W Daniels
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA.,Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Guohui Li
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Steven Marsh
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | - Trent R Anderson
- College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Federico Sanabria
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
100
|
Amina S, Falcone C, Hong T, Wolf-Ochoa MW, Vakilzadeh G, Allen E, Perez-Castro R, Kargar M, Noctor S, Martínez-Cerdeño V. Chandelier Cartridge Density Is Reduced in the Prefrontal Cortex in Autism. Cereb Cortex 2021; 31:2944-2951. [PMID: 33527113 DOI: 10.1093/cercor/bhaa402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
An alteration in the balance of excitation-inhibition has been proposed as a common characteristic of the cerebral cortex in autism, which may be due to an alteration in the number and/or function of the excitatory and/or inhibitory cells that form the cortical circuitry. We previously found a decreased number of the parvalbumin (PV)+ interneuron known as Chandelier (Ch) cell in the prefrontal cortex in autism. This decrease could result from a decreased number of Ch cells, but also from decreased PV protein expression by Ch cells. To further determine if Ch cell number is altered in autism, we quantified the number of Ch cells following a different approach and different patient cohort than in our previous studies. We quantified the number of Ch cell cartridges-rather than Ch cell somata-that expressed GAT1-rather than PV. Specifically, we quantified GAT1+ cartridges in prefrontal areas BA9, BA46, and BA47 of 11 cases with autism and 11 control cases. We found that the density of GAT1+ cartridges was decreased in autism in all areas and layers. Whether this alteration is cause or effect remains unclear but could result from alterations that take place during cortical prenatal and/or postnatal development.
Collapse
Affiliation(s)
- Sarwat Amina
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Marisol Wendy Wolf-Ochoa
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Erik Allen
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Rosalia Perez-Castro
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Maryam Kargar
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Stephen Noctor
- MIND Institute, UC Davis Medical Center, UC Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA.,MIND Institute, UC Davis Medical Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|