51
|
Bhutani K, Stansifer K, Ticau S, Bojic L, Villani AC, Slisz J, Cremers CM, Roy C, Donovan J, Fiske B, Friedman RC. Widespread haploid-biased gene expression enables sperm-level natural selection. Science 2021; 371:science.abb1723. [PMID: 33446482 DOI: 10.1126/science.abb1723] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Sperm are haploid but must be functionally equivalent to distribute alleles equally among progeny. Accordingly, gene products are shared through spermatid cytoplasmic bridges that erase phenotypic differences between individual haploid sperm. Here, we show that a large class of mammalian genes are not completely shared across these bridges. We call these genes "genoinformative markers" (GIMs) and show that a subset can act as selfish genetic elements that spread alleles unevenly through murine, bovine, and human populations. We identify evolutionary pressure to avoid conflict between sperm and somatic function as GIMs are enriched for testis-specific gene expression, paralogs, and isoforms. Therefore, GIMs and sperm-level natural selection may help to explain why testis gene expression patterns are an outlier relative to all other tissues.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Center for Cancer Research, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Yeh YH, Hu M, Nakagawa T, Sakashita A, Yoshida S, Maezawa S, Namekawa SH. Isolation of Murine Spermatogenic Cells using a Violet-Excited Cell-Permeable DNA Binding Dye. J Vis Exp 2021:10.3791/61666. [PMID: 33522502 PMCID: PMC8260464 DOI: 10.3791/61666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Isolation of meiotic spermatocytes is essential to investigate molecular mechanisms underlying meiosis and spermatogenesis. Although there are established cell isolation protocols using Hoechst 33342 staining in combination with fluorescence-activated cell sorting, it requires cell sorters equipped with an ultraviolet laser. Here we describe a cell isolation protocol using the DyeCycle Violet (DCV) stain, a low cytotoxicity DNA binding dye structurally similar to Hoechst 33342. DCV can be excited by both ultraviolet and violet lasers, which improves the flexibility of equipment choice, including a cell sorter not equipped with an ultraviolet laser. Using this protocol, one can isolate three live-cell subpopulations in meiotic prophase I, including leptotene/zygotene, pachytene, and diplotene spermatocytes, as well as post-meiotic round spermatids. We also describe a protocol to prepare single-cell suspension from mouse testes. Overall, the procedure requires a short time to complete (4-5 hours depending on the number of needed cells), which facilitates many downstream applications.
Collapse
Affiliation(s)
- Yu-Han Yeh
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine
| | - Mengwen Hu
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai)
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai)
| | - So Maezawa
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University; Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
53
|
Fang K, Li Q, Wei Y, Zhou C, Guo W, Shen J, Wu R, Ying W, Yu L, Zi J, Zhang Y, Yang H, Liu S, Chen CD. Prediction and Validation of Mouse Meiosis-Essential Genes Based on Spermatogenesis Proteome Dynamics. Mol Cell Proteomics 2021; 20:100014. [PMID: 33257503 PMCID: PMC7950215 DOI: 10.1074/mcp.ra120.002081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
The molecular mechanism associated with mammalian meiosis has yet to be fully explored, and one of the main reasons for this lack of exploration is that some meiosis-essential genes are still unknown. The profiling of gene expression during spermatogenesis has been performed in previous studies, yet few studies have aimed to find new functional genes. Since there is a huge gap between the number of genes that are able to be quantified and the number of genes that can be characterized by phenotype screening in one assay, an efficient method to rank quantified genes according to phenotypic relevance is of great importance. We proposed to rank genes by the probability of their function in mammalian meiosis based on global protein abundance using machine learning. Here, nine types of germ cells focusing on continual substages of meiosis prophase I were isolated, and the corresponding proteomes were quantified by high-resolution MS. By combining meiotic labels annotated from the mouse genomics informatics mouse knockout database and the spermatogenesis proteomics dataset, a supervised machine learning package, FuncProFinder (https://github.com/sjq111/FuncProFinder), was developed to rank meiosis-essential candidates. Of the candidates whose functions were unannotated, four of 10 genes with the top prediction scores, Zcwpw1, Tesmin, 1700102P08Rik, and Kctd19, were validated as meiosis-essential genes by knockout mouse models. Therefore, mammalian meiosis-essential genes could be efficiently predicted based on the protein abundance dataset, which provides a paradigm for other functional gene mining from a related abundance dataset.
Collapse
Affiliation(s)
- Kailun Fang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qidan Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenhui Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, China; Science Department, Malvern College Qingdao, Shandong, China
| | - Jiaqi Shen
- Mathematics Department, United World College Changshu China, Jiangsu, China
| | - Ruoxi Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lu Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zi
- BGI Genomics, BGI-Shenzhen, Shenzhen, China; Guangdong Proteomics Engineering Laboratories, Shenzhen Proteomics Engineering Laboratories, Shenzhen, China
| | | | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Siqi Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
54
|
Zhang ZH, Jiang TX, Chen LB, Zhou W, Liu Y, Gao F, Qiu XB. Proteasome subunit α4s is essential for formation of spermatoproteasomes and histone degradation during meiotic DNA repair in spermatocytes. J Biol Chem 2021; 296:100130. [PMID: 33262216 PMCID: PMC7949063 DOI: 10.1074/jbc.ra120.016485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Meiosis, which produces haploid progeny, is critical to ensuring both faithful genome transmission and genetic diversity. Proteasomes play critical roles at various stages of spermatogenesis, including meiosis, but the underlying mechanisms remain unclear. The atypical proteasomes, which contain the activator PA200, catalyze the acetylation-dependent degradation of the core histones in elongated spermatids and DNA repair in somatic cells. We show here that the testis-specific proteasome subunit α4s/PSMA8 is essential for male fertility by promoting proper formation of spermatoproteasomes, which harbor both PA200 and constitutive catalytic subunits. Immunostaining of a spermatocyte marker, SYCP3, indicated that meiosis was halted at the stage of spermatocytes in the α4s-deficient testes. α4s stimulated the in vitro degradation of the acetylated core histones, instead of nonacetylated histones, by the PA200-proteasome. Deletion of α4s blocked degradation of the core histones at DNA damage loci in spermatocytes, leading to meiotic arrest at metaphase I. Thus, α4s is required for histone degradation at meiotic DNA damage loci, proper progression of meiosis, and fertility in males by promoting proper formation of spermatoproteasomes. These results are important for understanding male infertility and might provide potential targets for male contraception or treatment of male infertility.
Collapse
Affiliation(s)
- Zi-Hui Zhang
- Key Laboratory of Cell Proliferation & Regulation Biology, Ministry of Education and College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tian-Xia Jiang
- Key Laboratory of Cell Proliferation & Regulation Biology, Ministry of Education and College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Lian-Bin Chen
- Key Laboratory of Cell Proliferation & Regulation Biology, Ministry of Education and College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wenhui Zhou
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yixun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Bo Qiu
- Key Laboratory of Cell Proliferation & Regulation Biology, Ministry of Education and College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
55
|
Gamble J, Chick J, Seltzer K, Graber JH, Gygi S, Braun RE, Snyder EM. An expanded mouse testis transcriptome and mass spectrometry defines novel proteins. Reproduction 2020; 159:15-26. [PMID: 31677600 DOI: 10.1530/rep-19-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
The testis transcriptome is exceptionally complex. Despite its complexity, previous testis transcriptome analyses relied on a reductive method for transcript identification, thus underestimating transcriptome complexity. We describe here a more complete testis transcriptome generated by combining Tuxedo, a reductive method, and spliced-RUM, a combinatorial transcript-building approach. Forty-two percent of the expanded testis transcriptome is composed of unannotated RNAs with novel isoforms of known genes and novel genes constituting 78 and 9.8% of the newly discovered transcripts, respectively. Across tissues, novel transcripts were predominantly expressed in the testis with the exception of novel isoforms which were also highly expressed in the adult ovary. Within the testis, novel isoform expression was distributed equally across all cell types while novel genes were predominantly expressed in meiotic and post-meiotic germ cells. The majority of novel isoforms retained their protein-coding potential while most novel genes had low protein-coding potential. However, a subset of novel genes had protein-coding potentials equivalent to known protein-coding genes. Shotgun mass spectrometry of round spermatid total protein identified unique peptides from four novel genes along with seven annotated non-coding RNAs. These analyses demonstrate the testis expresses a wide range of novel transcripts that give rise to novel proteins.
Collapse
Affiliation(s)
- Jaya Gamble
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Joel Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kelly Seltzer
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | | | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
56
|
Zhang LF, Tan-Tai WJ, Li XH, Liu MF, Shi HJ, Martin-DeLeon PA, O WS, Chen H. PHB regulates meiotic recombination via JAK2-mediated histone modifications in spermatogenesis. Nucleic Acids Res 2020; 48:4780-4796. [PMID: 32232334 PMCID: PMC7229831 DOI: 10.1093/nar/gkaa203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023] Open
Abstract
Previously, we have shown that human sperm Prohibitin (PHB) expression is significantly negatively correlated with mitochondrial ROS levels but positively correlated with mitochondrial membrane potential and motility. However, the possible role of PHB in mammalian spermatogenesis has not been investigated. Here we document the presence of PHB in spermatocytes and its functional roles in meiosis by generating the first male germ cell-specific Phb-cKO mouse. Loss of PHB in spermatocytes resulted in complete male infertility, associated with not only meiotic pachytene arrest with accompanying apoptosis, but also apoptosis resulting from mitochondrial morphology and function impairment. Our mechanistic studies show that PHB in spermatocytes regulates the expression of STAG3, a key component of the meiotic cohesin complex, via a non-canonical JAK/STAT pathway, and consequently promotes meiotic DSB repair and homologous recombination. Furthermore, the PHB/JAK2 axis was found as a novel mechanism in the maintenance of stabilization of meiotic STAG3 cohesin complex and the modulation of heterochromatin formation in spermatocytes during meiosis. The observed JAK2-mediated epigenetic changes in histone modifications, reflected in a reduction of histone 3 tyrosine 41 phosphorylation (H3Y41ph) and a retention of H3K9me3 at the Stag3 locus, could be responsible for Stag3 dysregulation in spermatocytes with the loss of PHB.
Collapse
Affiliation(s)
- Ling-Fei Zhang
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Jing Tan-Tai
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Hui Li
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui-Juan Shi
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and DevelopmentInstitution, Shanghai 200032, China
| | | | - Wai-Sum O
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hong Chen
- Department of Anatomy, Histology & Embryology, Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
57
|
Wells D, Bitoun E, Moralli D, Zhang G, Hinch A, Jankowska J, Donnelly P, Green C, Myers SR. ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair. eLife 2020; 9:53392. [PMID: 32744506 PMCID: PMC7494361 DOI: 10.7554/elife.53392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
During meiosis, homologous chromosomes pair and recombine, enabling balanced segregation and generating genetic diversity. In many vertebrates, double-strand breaks (DSBs) initiate recombination within hotspots where PRDM9 binds, and deposits H3K4me3 and H3K36me3. However, no protein(s) recognising this unique combination of histone marks have been identified. We identified Zcwpw1, containing H3K4me3 and H3K36me3 recognition domains, as having highly correlated expression with Prdm9. Here, we show that ZCWPW1 has co-evolved with PRDM9 and, in human cells, is strongly and specifically recruited to PRDM9 binding sites, with higher affinity than sites possessing H3K4me3 alone. Surprisingly, ZCWPW1 also recognises CpG dinucleotides. Male Zcwpw1 knockout mice show completely normal DSB positioning, but persistent DMC1 foci, severe DSB repair and synapsis defects, and downstream sterility. Our findings suggest ZCWPW1 recognition of PRDM9-bound sites at DSB hotspots is critical for synapsis, and hence fertility. Sexual reproduction – that is, the combination of sex cells from two different individuals to produce an embryo – is one of the many mechanisms that have evolved to maintain genetic diversity. Most human cells contain 23 pairs of chromosomes, with each chromosome in a pair carrying either a paternal or maternal copy of the same gene. To form an embryo with the right number of chromosomes, each sex cell (the egg or sperm cell) must only contain one chromosome from each pair. Sex cells are produced from parent cells containing two sets of paternal and maternal chromosomes: these cells then divide twice to form four sex cells which contain only one chromosome from each pair. Before the parent cell divides, a process known as ‘recombination’ takes place, which allows chromosomes in a pair to exchange bits of genetic information. This reshuffling ensures that each chromosome in a sex cell is unique. A protein called PRDM9 helps control which sections of genetic information are recombined by modifying proteins attached to the chromosomes, marking them as locations for exchange. The DNA at each of these sites is then broken and repaired using the genetic sequence of the chromosome it is paired with as a template, thus causing the two chromosomes to swap genes. In 2019, a group of researchers found a set of genes in the testis of mice that are expressed at the same time as the gene for PRDM9. This suggested that another protein called ZCWPW1 is likely involved in recombination, but the precise role of this protein was unclear. To answer this question, Wells, Bitoun et al. – including many of the researchers involved in the 2019 study – examined human cells grown in the laboratory to determine where ZCWPW1 binds to in the chromosome. This revealed that ZCWPW1 can be found at the same sites as PRDM9, which is responsible for bringing it there. Furthermore, cells from male mice lacking the gene for ZCWPW1 cannot complete the exchange of genetic information between chromosomes, meaning that the mice are infertile. As such, ZCWPW1 seems to connect location selection by PRDM9 to the DNA repair mechanisms needed for gene exchange between chromosomes. Infertility is a significant issue for humans affecting as many as one in every six couples. Fertility is complex and many of the biological mechanisms involved are not fully understood. This work suggests that both PRDM9 and ZCWPW1 are key to the production of sex cells and may be worth investigating as factors that affect fertility in humans.
Collapse
Affiliation(s)
- Daniel Wells
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Bitoun
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Gang Zhang
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Anjali Hinch
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Julia Jankowska
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Peter Donnelly
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Catherine Green
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Simon R Myers
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom.,Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
58
|
Liu Y, Zhang Y, Yin J, Gao Y, Li Y, Bai D, He W, Li X, Zhang P, Li R, Zhang L, Jia Y, Zhang Y, Lin J, Zheng Y, Wang H, Gao S, Zeng W, Liu W. Distinct H3K9me3 and DNA methylation modifications during mouse spermatogenesis. J Biol Chem 2019; 294:18714-18725. [PMID: 31662436 DOI: 10.1074/jbc.ra119.010496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation and histone modifications critically regulate the expression of many genes and repeat regions during spermatogenesis. However, the molecular details of these processes in male germ cells remain to be addressed. Here, using isolated murine sperm cells, ultra-low-input native ChIP-Seq (ULI-NChIP-Seq), and whole genome bisulfite sequencing (WGBS), we investigated genome-wide DNA methylation patterns and histone 3 Lys-9 trimethylation (H3K9me3) modifications during mouse spermatogenesis. We found that DNA methylation and H3K9me3 have distinct sequence preferences and dynamics in promoters and repeat elements during spermatogenesis. H3K9me3 modifications in histones at gene promoters were highly enriched in round spermatids. H3K9me3 modification on long terminal repeats (LTRs) and long interspersed nuclear elements (LINEs) was involved in silencing active transcription from these regions in conjunction with reestablishment of DNA methylation. Furthermore, H3K9me3 remodeling on the X chromosome was involved in meiotic sex chromosome inactivation and in partial transcriptional reactivation of sex chromosomes in spermatids. Our findings also revealed the DNA methylation patterns and H3K9me3 modification profiles of paternal and maternal germline imprinting control regions (gICRs) during spermatogenesis. Taken together, our results provide a genome-wide map of H3K9me3 modifications during mouse spermatogenesis that may be helpful for understanding male reproductive disorders.
Collapse
Affiliation(s)
- Yingdong Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhe Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenteng He
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xueliang Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongnan Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yalin Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiaming Lin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yi Zheng
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Wenxian Zeng
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
59
|
Kruger AN, Brogley MA, Huizinga JL, Kidd JM, de Rooij DG, Hu YC, Mueller JL. A Neofunctionalized X-Linked Ampliconic Gene Family Is Essential for Male Fertility and Equal Sex Ratio in Mice. Curr Biol 2019; 29:3699-3706.e5. [PMID: 31630956 DOI: 10.1016/j.cub.2019.08.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
The mammalian sex chromosomes harbor an abundance of newly acquired ampliconic genes, although their functions require elucidation [1-9]. Here, we demonstrate that the X-linked Slx and Slxl1 ampliconic gene families represent mouse-specific neofunctionalized copies of a meiotic synaptonemal complex protein, Sycp3. In contrast to the meiotic role of Sycp3, CRISPR-loxP-mediated multi-megabase deletions of the Slx (5 Mb) and Slxl1 (2.3Mb) ampliconic regions result in post-meiotic defects, abnormal sperm, and male infertility. Males carrying Slxl1 deletions sire more male offspring, whereas males carrying Slx and Slxl1 duplications sire more female offspring, which directly correlates with Slxl1 gene dosage and gene expression levels. SLX and SLXL1 proteins interact with spindlin protein family members (SPIN1 and SSTY1/2) and males carrying Slxl1 deletions downregulate a sex chromatin modifier, Scml2, leading us to speculate that Slx and Slxl1 function in chromatin regulation. Our study demonstrates how newly acquired X-linked genes can rapidly evolve new and essential functions and how gene amplification can increase sex chromosome transmission.
Collapse
Affiliation(s)
- Alyssa N Kruger
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Michele A Brogley
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Jamie L Huizinga
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA.
| |
Collapse
|
60
|
Varuzhanyan G, Rojansky R, Sweredoski MJ, Graham RL, Hess S, Ladinsky MS, Chan DC. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. eLife 2019; 8:51601. [PMID: 31596236 PMCID: PMC6805159 DOI: 10.7554/elife.51601] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/22/2023] Open
Abstract
Differentiating cells tailor their metabolism to fulfill their specialized functions. We examined whether mitochondrial fusion is important for metabolic tailoring during spermatogenesis. Acutely after depletion of mitofusins Mfn1 and Mfn2, spermatogenesis arrests due to failure to accomplish a metabolic shift during meiosis. This metabolic shift includes increased mitochondrial content, mitochondrial elongation, and upregulation of oxidative phosphorylation (OXPHOS). With long-term mitofusin loss, all differentiating germ cell types are depleted, but proliferation of stem-like undifferentiated spermatogonia remains unaffected. Thus, compared with undifferentiated spermatogonia, differentiating spermatogonia and meiotic spermatocytes have cell physiologies that require high levels of mitochondrial fusion. Proteomics in fibroblasts reveals that mitofusin-null cells downregulate respiratory chain complexes and mitochondrial ribosomal subunits. Similarly, mitofusin depletion in immortalized spermatocytes or germ cells in vivo results in reduced OXPHOS subunits and activity. We reveal that by promoting OXPHOS, mitofusins enable spermatogonial differentiation and a metabolic shift during meiosis.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Rebecca Rojansky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Robert Lj Graham
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Sonja Hess
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
61
|
Lam KWG, Brick K, Cheng G, Pratto F, Camerini-Otero RD. Cell-type-specific genomics reveals histone modification dynamics in mammalian meiosis. Nat Commun 2019; 10:3821. [PMID: 31444359 PMCID: PMC6707301 DOI: 10.1038/s41467-019-11820-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Meiosis is the specialized cell division during which parental genomes recombine to create genotypically unique gametes. Despite its importance, mammalian meiosis cannot be studied in vitro, greatly limiting mechanistic studies. In vivo, meiocytes progress asynchronously through meiosis and therefore the study of specific stages of meiosis is a challenge. Here, we describe a method for isolating pure sub-populations of nuclei that allows for detailed study of meiotic substages. Interrogating the H3K4me3 landscape revealed dynamic chromatin transitions between substages of meiotic prophase I, both at sites of genetic recombination and at gene promoters. We also leveraged this method to perform the first comprehensive, genome-wide survey of histone marks in meiotic prophase, revealing a heretofore unappreciated complexity of the epigenetic landscape at meiotic recombination hotspots. Ultimately, this study presents a straightforward, scalable framework for interrogating the complexities of mammalian meiosis. Meiotic DSB formation, repair and recombination occur in a continuum of substages termed leptonema, zygonema, pachynema, and diplonema. Here, authors develop a method for isolating pure sub-populations of nuclei that allows for detailed study of meiotic substages.
Collapse
Affiliation(s)
- Kwan-Wood Gabriel Lam
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Brick
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gang Cheng
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Florencia Pratto
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
62
|
Hill RJ, Crossan GP. DNA cross-link repair safeguards genomic stability during premeiotic germ cell development. Nat Genet 2019; 51:1283-1294. [PMID: 31367016 PMCID: PMC6675612 DOI: 10.1038/s41588-019-0471-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/24/2019] [Indexed: 11/09/2022]
Abstract
Germline de novo mutations are the basis of evolutionary diversity but also of genetic disease. However, the molecular origin, mechanisms and timing of germline mutagenesis are not fully understood. Here, we define a fundamental role for DNA interstrand cross-link repair in the germline. This repair process is essential for primordial germ cell (PGC) maturation during embryonic development. Inactivation of cross-link repair leads to genetic instability that is restricted to PGCs within the genital ridge during a narrow temporal window. Having successfully activated the PGC transcriptional program, a potent quality control mechanism detects and drives damaged PGCs into apoptosis. Therefore, these findings define a source of DNA damage and the nature of the subsequent DNA repair response in germ cells, which ensures faithful transmission of the genome between generations.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
63
|
Elsayed HYA, Borroto ET, Pliego AB, Dibarrat JA, Ramirez FR, Chagoyán JCV, Salas NP, Diaz-Albiter H. Sperm Quality in Mouse After Exposure to Low Doses of TCDD. Curr Top Med Chem 2019; 19:931-943. [DOI: 10.2174/1568026619666190520090132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Background:
In the last decade, the harmful use of dioxin has been demonstrated in human
health and in the whole environment. It is well known among scientists that 2, 3, 7, 8-tetrachloro
dibenzo-p-dioxin (TCDD) is an environmental pollutant that causes endocrine disruption, which causes
male reproductive toxicity.
Objective:
The objective of the present study was to evaluate the toxicity effect of low doses of TCDD
in male CD1 mice.
Materials and Methods:
Three concentrations of TCDD (0.375, 0.75, 1.5 mg / kg) were analyzed and
the effects on spermatozoa were evaluated 10 days after oral administration of the product. As
bioindicators of TCDD toxicity, an exhaustive analysis of several spermatic parameters including
motility, vitality, count, morphology and viability, flow cytometry was used to determine the affected
sperm population by cytotoxicity and apoptosis. In addition, a morphometric analysis of testicles was
performed.
Results:
The results show that the body weight of the treated animals was reduced in medium and high
doses (0.75, 1.5 mg / kg) with respect to the control groups. In the groups treated with TCDD, the
abnormal head of the sperm increased by 52.5% more than the control group. Significant differences in
apoptosis were observed between the negative control and vehicle control, including the median dose
(0.75 mg / kg).
Conclusion:
It is concluded that at these low doses there was an impact on the quality of the mouse
sperm, adding an effect on apoptosis and cytotoxicity of sperm exposed to these doses of TCDD.
Collapse
Affiliation(s)
- Heba Yehia Anwar Elsayed
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Esvieta Tenorio Borroto
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Alberto Barbabosa Pliego
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Jorge Acosta Dibarrat
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | | | - Juan Carlos Vázquez Chagoyán
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Nazario Pescador Salas
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Hector Diaz-Albiter
- Universidad Tecnologica del Valla de Toluca, Estado de Mexico, Toluca, Mexico
| |
Collapse
|
64
|
Ren M, Xu Y, Erdjument-Bromage H, Donelian A, Phoon CKL, Terada N, Strathdee D, Neubert TA, Schlame M. Extramitochondrial cardiolipin suggests a novel function of mitochondria in spermatogenesis. J Cell Biol 2019; 218:1491-1502. [PMID: 30914420 PMCID: PMC6504895 DOI: 10.1083/jcb.201808131] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/29/2018] [Accepted: 03/07/2019] [Indexed: 12/03/2022] Open
Abstract
The acrosome is a protease-rich organelle in sperm essential for fertilization but little is known about acrosome biogenesis. Ren et al. find that the mitochondrial lipid cardiolipin and some mitochondrial proteins translocate to the acrosome during spermatogenesis, suggesting that mitochondria directly contribute to the assembly of this sperm-specific organelle. Mitochondria contain cardiolipin (CL), an organelle-specific phospholipid that carries four fatty acids with a strong preference for unsaturated chains. Unsaturation is essential for the stability and for the function of mitochondrial CL. Surprisingly, we found tetrapalmitoyl-CL (TPCL), a fully saturated species, in the testes of humans and mice. TPCL was absent from other mouse tissues but was the most abundant CL species in testicular germ cells. Most intriguingly, TPCL was not localized in mitochondria but was in other cellular membranes even though mitochondrial CL was the substrate from which TPCL was synthesized. During spermiogenesis, TPCL became associated with the acrosome, a sperm-specific organelle, along with a subset of authentic mitochondrial proteins, including Ant4, Suox, and Spata18. Our data suggest that mitochondria-derived membranes are assembled into the acrosome, challenging the concept that this organelle is strictly derived from the Golgi apparatus and revealing a novel function of mitochondria.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, NY .,Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, NY
| | - Hediye Erdjument-Bromage
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | - Alec Donelian
- Department of Anesthesiology, New York University School of Medicine, New York, NY
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, NY
| | - Naohiro Terada
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Glasgow, UK
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, NY .,Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
65
|
Zagore LL, Akesson CC, Licatalosi DD. Efficient GFP-labeling and analysis of spermatogenic cells using the IRG transgene and flow cytometry. Genesis 2019; 57:e23283. [PMID: 30663216 PMCID: PMC6519249 DOI: 10.1002/dvg.23283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/03/2022]
Abstract
Spermatogenesis is a highly ordered developmental program that produces haploid male germ cells. The study of male germ cell development in the mouse has provided unique perspectives into the molecular mechanisms that control cell development and differentiation in mammals, including tissue‐specific gene regulatory programs. An intrinsic challenge in spermatogenesis research is the heterogeneity of germ and somatic cell types present in the testis. Techniques to separate and isolate distinct mouse spermatogenic cell types have great potential to shed light on molecular mechanisms controlling mammalian cell development, while also providing new insights into cellular events important for human reproductive health. Here, we detail a versatile strategy that combines Cre‐lox technology to fluorescently label germ cells, with flow cytometry to discriminate and isolate germ cells in different stages of development for cellular and molecular analyses.
Collapse
Affiliation(s)
- Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio
| | - Cydni C Akesson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
66
|
林 震, 陈 瑶, 张 玉, 童 明. 应用流式细胞技术分选小鼠各级精母细胞的方法. Bio Protoc 2019. [DOI: 10.21769/bioprotoc.1010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
67
|
Romer KA, de Rooij DG, Kojima ML, Page DC. Isolating mitotic and meiotic germ cells from male mice by developmental synchronization, staging, and sorting. Dev Biol 2018; 443:19-34. [PMID: 30149006 DOI: 10.1016/j.ydbio.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023]
Abstract
Isolating discrete populations of germ cells from the mouse testis is challenging, because the adult testis contains germ cells at every step of spermatogenesis, in addition to somatic cells. We present a novel method for isolating precise, high-purity populations of male germ cells. We first synchronize germ cell development in vivo by manipulating retinoic acid metabolism, and perform histological staging to verify synchronization. We use fluorescence-activated cell sorting to separate the synchronized differentiating germ cells from contaminating somatic cells and undifferentiated spermatogonia. We achieve ~90% purity at each step of development from undifferentiated spermatogonia through late meiotic prophase. Utilizing this "3 S" method (synchronize, stage, and sort), we can separate germ cell types that were previously challenging or impossible to distinguish, with sufficient yield for epigenetic and biochemical studies. 3 S expands the toolkit of germ cell sorting methods, and should facilitate detailed characterization of molecular and biochemical changes that occur during the mitotic and meiotic phases of spermatogenesis.
Collapse
Affiliation(s)
- Katherine A Romer
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dirk G de Rooij
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA
| | - Mina L Kojima
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
68
|
Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, Moritz L, Sultan C, Gurczynski SJ, Moore BB, Tallquist MD, Li JZ, Hammoud SS. A Comprehensive Roadmap of Murine Spermatogenesis Defined by Single-Cell RNA-Seq. Dev Cell 2018; 46:651-667.e10. [PMID: 30146481 DOI: 10.1016/j.devcel.2018.07.025] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Spermatogenesis requires intricate interactions between the germline and somatic cells. Within a given cross section of a seminiferous tubule, multiple germ and somatic cell types co-occur. This cellular heterogeneity has made it difficult to profile distinct cell types at different stages of development. To address this challenge, we collected single-cell RNA sequencing data from ∼35,000 cells from the adult mouse testis and identified all known germ and somatic cells, as well as two unexpected somatic cell types. Our analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to spermatids and identified candidate transcriptional regulators at several transition points during differentiation. Focused analyses delineated four subtypes of spermatogonia and nine subtypes of Sertoli cells; the latter linked to histologically defined developmental stages over the seminiferous epithelial cycle. Overall, this high-resolution cellular atlas represents a community resource and foundation of knowledge to study germ cell development and in vivo gametogenesis.
Collapse
Affiliation(s)
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel L Manske
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Simone Marini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Moritz
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Bethany B Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
69
|
Kruger AN, Ellison Q, Brogley MA, Gerlinger ER, Mueller JL. Male mice with large inversions or deletions of X-chromosome palindrome arms are fertile and express their associated genes during post-meiosis. Sci Rep 2018; 8:8985. [PMID: 29895860 PMCID: PMC5997626 DOI: 10.1038/s41598-018-27360-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 11/09/2022] Open
Abstract
Large (>10 kb) palindromic sequences are enriched on mammalian sex chromosomes. In mice, these palindromes harbor gene families (≥2 gene copies) expressed exclusively in post-meiotic testicular germ cells, a time when most single-copy sex-linked genes are transcriptionally repressed. This observation led to the hypothesis that palindromic structures or having ≥2 gene copies enable post-meiotic gene expression. We tested these hypotheses by using CRISPR to precisely engineer large (10’s of kb) inversions and deletions of X-chromosome palindrome arms for two regions that carry the mouse 4930567H17Rik and Mageb5 palindrome gene families. We found that 4930567H17Rik and Mageb5 gene expression is unaffected in mice carrying palindrome arm inversions and halved in mice carrying palindrome arm deletions. We assessed whether palindrome-associated genes were sensitive to reduced expression in mice carrying palindrome arm deletions. Male mice carrying palindrome arm deletions are fertile and show no defects in post-meiotic spermatogenesis. Together, these findings suggest palindromic structures on the sex chromosomes are not necessary for their associated genes to evade post-meiotic transcriptional repression and that these genes are not sensitive to reduced expression levels. Large sex chromosome palindromes may be important for other reasons, such as promoting gene conversion between palindrome arms.
Collapse
Affiliation(s)
- Alyssa N Kruger
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Quinn Ellison
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Michele A Brogley
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emma R Gerlinger
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
70
|
Zuo X, Rong B, Li L, Lv R, Lan F, Tong MH. The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem 2018; 293:9188-9197. [PMID: 29716999 DOI: 10.1074/jbc.ra118.002851] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/26/2018] [Indexed: 11/06/2022] Open
Abstract
Spermatogenesis is precisely controlled by complex gene expression programs and involves epigenetic reprogramming, including histone modification and DNA methylation. SET domain-containing 2 (SETD2) is the predominant histone methyltransferase catalyzing the trimethylation of histone H3 lysine 36 (H3K36me3) and plays key roles in embryonic stem cell differentiation and somatic cell development. However, its role in male germ cell development remains elusive. Here, we demonstrate an essential role of Setd2 for spermiogenesis, the final stage of spermatogenesis. Using RNA-seq, we found that, in postnatal mouse testes, Setd2 mRNA levels dramatically increase in 14-day-old mice. Using a germ cell-specific Setd2 knockout mouse model, we also found that targeted Setd2 knockout in germ cells causes aberrant spermiogenesis with acrosomal malformation before step 8 of the round-spermatid stage, resulting in complete infertility. Furthermore, we noted that the Setd2 deficiency results in complete loss of H3K36me3 and significantly decreases expression of thousands of genes, including those encoding acrosin-binding protein 1 (Acrbp1) and protamines, required for spermatogenesis. Our findings thus reveal a previously unappreciated role of the SETD2-dependent H3K36me3 modification in spermiogenesis and provide clues to the molecular mechanisms in epigenetic disorders underlying male infertility.
Collapse
Affiliation(s)
- Xiaoli Zuo
- From the State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bowen Rong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China, and
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ruitu Lv
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China, and
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China, and
| | - Ming-Han Tong
- From the State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
71
|
Gaysinskaya V, Miller BF, De Luca C, van der Heijden GW, Hansen KD, Bortvin A. Transient reduction of DNA methylation at the onset of meiosis in male mice. Epigenetics Chromatin 2018; 11:15. [PMID: 29618374 PMCID: PMC5883305 DOI: 10.1186/s13072-018-0186-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023] Open
Abstract
Background Meiosis is a specialized germ cell cycle that generates haploid gametes. In the initial stage of meiosis, meiotic prophase I (MPI), homologous chromosomes pair and recombine. Extensive changes in chromatin in MPI raise an important question concerning the contribution of epigenetic mechanisms such as DNA methylation to meiosis. Interestingly, previous studies concluded that in male mice, genome-wide DNA methylation patters are set in place prior to meiosis and remain constant subsequently. However, no prior studies examined DNA methylation during MPI in a systematic manner necessitating its further investigation. Results In this study, we used genome-wide bisulfite sequencing to determine DNA methylation of adult mouse spermatocytes at all MPI substages, spermatogonia and haploid sperm. This analysis uncovered transient reduction of DNA methylation (TRDM) of spermatocyte genomes. The genome-wide scope of TRDM, its onset in the meiotic S phase and presence of hemimethylated DNA in MPI are all consistent with a DNA replication-dependent DNA demethylation. Following DNA replication, spermatocytes regain DNA methylation gradually but unevenly, suggesting that key MPI events occur in the context of hemimethylated genome. TRDM also uncovers the prior deficit of DNA methylation of LINE-1 retrotransposons in spermatogonia resulting in their full demethylation during TRDM and likely contributing to the observed mRNA and protein expression of some LINE-1 elements in early MPI. Conclusions Our results suggest that contrary to the prevailing view, chromosomes exhibit dynamic changes in DNA methylation in MPI. We propose that TRDM facilitates meiotic prophase processes and gamete quality control. Electronic supplementary material The online version of this article (10.1186/s13072-018-0186-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valeriya Gaysinskaya
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brendan F Miller
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chiara De Luca
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Godfried W van der Heijden
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands
| | - Kasper D Hansen
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA.
| |
Collapse
|
72
|
Kumar M, Atkins J, Cairns M, Ali A, Tanwar PS. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs. Oncotarget 2018; 7:85709-85727. [PMID: 27992363 PMCID: PMC5349868 DOI: 10.18632/oncotarget.13920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/06/2016] [Indexed: 01/13/2023] Open
Abstract
Dysregulated Wnt signalling is associated with human infertility and testicular cancer. However, the role of Wnt signalling in male germ cells remains poorly understood. In this study, we first confirmed the activity of Wnt signalling in mouse, dog and human testes. To determine the physiological importance of the Wnt pathway, we developed a mouse model with germ cell-specific constitutive activation of βcatenin. In young mutants, similar to controls, germ cell development was normal. However, with age, mutant testes showed defective spermatogenesis, progressive germ cell loss, and flawed meiotic entry of spermatogonial cells. Flow sorting confirmed reduced germ cell populations at the leptotene/zygotene stages of meiosis in mutant group. Using thymidine analogues-based DNA double labelling technique, we further established decline in germ cell proliferation and differentiation. Overactivation of Wnt/βcatenin signalling in a spermatogonial cell line resulted in reduced cell proliferation, viability and colony formation. RNA sequencing analysis of testes revealed significant alterations in the non-coding regions of mutant mouse genome. One of the novel non-coding RNAs was switched on in mutant testes compared to controls. QPCR analysis confirmed upregulation of this unique non-coding RNA in mutant testis. In summary, our results highlight the significance of Wnt signalling in male germ cells.
Collapse
Affiliation(s)
- Manish Kumar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joshua Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Murray Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
73
|
Neirijnck Y, Calvel P, Kilcoyne KR, Kühne F, Stévant I, Griffeth RJ, Pitetti JL, Andric SA, Hu MC, Pralong F, Smith LB, Nef S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J 2018; 32:3321-3335. [PMID: 29401624 DOI: 10.1096/fj.201700769rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin family of growth factors (insulin, IGF1, and IGF2) are critical in sex determination, adrenal differentiation, and testicular function. Notably, the IGF system has been reported to mediate the proliferation of steroidogenic cells. However, the precise role and contribution of the membrane receptors mediating those effects, namely, insulin receptor (INSR) and type-I insulin-like growth factor receptor (IGF1R), have not, to our knowledge, been investigated. We show here that specific deletion of both Insr and Igf1r in steroidogenic cells in mice leads to severe alterations of adrenocortical and testicular development. Double-mutant mice display drastic size reduction of both adrenocortex and testes, with impaired corticosterone, testosterone, and sperm production. Detailed developmental analysis of the testes revealed that fetal Leydig cell (LC) function is normal, but there is a failure of adult LC maturation and steroidogenic function associated with accumulation of progenitor LCs (PLCs). Cell-lineage tracing revealed PLC enrichment is secondary to Insr and Igf1r deletion in differentiated adult LCs, suggesting a feedback mechanism between cells at different steps of differentiation. Taken together, these data reveal the cell-autonomous and nonautonomous roles of the IGF system for proper development and maintenance of steroidogenic lineages.-Neirijnck, Y., Calvel, P., Kilcoyne, K. R., Kühne, F., Stévant, I., Griffeth, R. J., Pitetti, J.-L., Andric, S. A., Hu, M.-C., Pralong, F., Smith, L. B., Nef, S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre Calvel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Karen R Kilcoyne
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Richard J Griffeth
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jean-Luc Pitetti
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Silvana A Andric
- Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - François Pralong
- Department of Internal Medicine, University Hospital, Lausanne, Switzerland; and
| | - Lee B Smith
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, United Kingdom.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
74
|
Abstract
Molecular analyses in mammalian meiotic cells have been hindered by the difficulty in isolating stage-specific cell populations, and this is especially true for early meiotic prophase stages (leptotene and zygotene). Here, we describe a method for obtaining cells in different spermatogenic stages from rodents including lepto-zygotene meiocytes at very high purity levels. The procedure includes an approach for the mechanical disaggregation of the testicular tissue, staining with a vital, noncytotoxic dye that is excitable with a blue laser, isolation of the cell populations by flow sorting, and different alternative protocols for the collection of the sorted cells.
Collapse
|
75
|
Alavattam KG, Abe H, Sakashita A, Namekawa SH. Chromosome Spread Analyses of Meiotic Sex Chromosome Inactivation. Methods Mol Biol 2018; 1861:113-129. [PMID: 30218364 PMCID: PMC8243718 DOI: 10.1007/978-1-4939-8766-5_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A distinct form of X chromosome inactivation takes place during male meiosis, when the male sex chromosomes undergo a phenomenon known as meiotic sex chromosome inactivation (MSCI). MSCI is directed by DNA damage response signaling independent of Xist RNA to silence the transcriptional activity of the sex chromosomes, an essential event in male germ cell development. Here, we present protocols for the preparation and analyses of chromosome spread slides of mouse meiotic spermatocytes, thereby enabling a quick, inexpensive, and powerful cytological method to complement gene expression studies.
Collapse
Affiliation(s)
- Kris G Alavattam
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hironori Abe
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
76
|
Hosono Y, Niknafs YS, Prensner JR, Iyer MK, Dhanasekaran SM, Mehra R, Pitchiaya S, Tien J, Escara-Wilke J, Poliakov A, Chu SC, Saleh S, Sankar K, Su F, Guo S, Qiao Y, Freier SM, Bui HH, Cao X, Malik R, Johnson TM, Beer DG, Feng FY, Zhou W, Chinnaiyan AM. Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA. Cell 2017; 171:1559-1572.e20. [PMID: 29245011 PMCID: PMC5734106 DOI: 10.1016/j.cell.2017.11.040] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 01/16/2023]
Abstract
Large-scale transcriptome sequencing efforts have vastly expanded the catalog of long non-coding RNAs (lncRNAs) with varying evolutionary conservation, lineage expression, and cancer specificity. Here, we functionally characterize a novel ultraconserved lncRNA, THOR (ENSG00000226856), which exhibits expression exclusively in testis and a broad range of human cancers. THOR knockdown and overexpression in multiple cell lines and animal models alters cell or tumor growth supporting an oncogenic role. We discovered a conserved interaction of THOR with IGF2BP1 and show that THOR contributes to the mRNA stabilization activities of IGF2BP1. Notably, transgenic THOR knockout produced fertilization defects in zebrafish and also conferred a resistance to melanoma onset. Likewise, ectopic expression of human THOR in zebrafish accelerated the onset of melanoma. THOR represents a novel class of functionally important cancer/testis lncRNAs whose structure and function have undergone positive evolutionary selection.
Collapse
Affiliation(s)
- Yasuyuki Hosono
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - John R Prensner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Matthew K Iyer
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Saravana M Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jean Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Anton Poliakov
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shih-Chun Chu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sahal Saleh
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Keerthana Sankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Malik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy M Johnson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - David G Beer
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
77
|
Mettl3-/Mettl14-mediated mRNA N 6-methyladenosine modulates murine spermatogenesis. Cell Res 2017; 27:1216-1230. [PMID: 28914256 DOI: 10.1038/cr.2017.117] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N6-methyladenosine (m6A), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive m6A mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A1 spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the m6A RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of m6A and depletion of SSCs. m6A depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA m6A modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.
Collapse
|
78
|
Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice. PLoS Genet 2017; 13:e1006926. [PMID: 28749988 PMCID: PMC5549759 DOI: 10.1371/journal.pgen.1006926] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/08/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes harbor millions of retrotransposon copies, some of which are transpositionally active. In mouse prospermatogonia, PIWI-interacting small RNAs (piRNAs) combat retrotransposon activity to maintain the genomic integrity. The piRNA system destroys retrotransposon-derived RNAs and guides de novo DNA methylation at some retrotransposon promoters. However, it remains unclear whether DNA methylation contributes to retrotransposon silencing in prospermatogonia. We have performed comprehensive studies of DNA methylation and polyA(+) RNAs (transcriptome) in developing male germ cells from Pld6/Mitopld and Dnmt3l knockout mice, which are defective in piRNA biogenesis and de novo DNA methylation, respectively. The Dnmt3l mutation greatly reduced DNA methylation levels at most retrotransposons, but its impact on their RNA abundance was limited in prospermatogonia. In Pld6 mutant germ cells, although only a few retrotransposons exhibited reduced DNA methylation, many showed increased expression at the RNA level. More detailed analysis of RNA sequencing, nascent RNA quantification, profiling of cleaved RNA ends, and the results obtained from double knockout mice suggest that PLD6 works mainly at the posttranscriptional level. The increase in retrotransposon expression was larger in Pld6 mutants than it was in Dnmt3l mutants, suggesting that RNA degradation by the piRNA system plays a more important role than does DNA methylation in prospermatogonia. However, DNA methylation had a long-term effect: hypomethylation caused by the Pld6 or Dnmt3l mutation resulted in increased retrotransposon expression in meiotic spermatocytes. Thus, posttranscriptional silencing plays an important role in the early stage of germ cell development, then transcriptional silencing becomes important in later stages. In addition, intergenic and intronic retrotransposon sequences, in particular those containing the antisense L1 promoters, drove ectopic expression of nearby genes in both mutant spermatocytes, suggesting that retrotransposon silencing is important for the maintenance of not only genomic integrity but also transcriptomic integrity. Retrotransposons are a class of transposable elements, of which mobility has mutagenic potential. Therefore, it is important to regulate the expression of retrotransposons for maintaining the genomic integrity. In male germ cells, DNA methylation and the piRNA system are thought to play roles in retrotransposon silencing. However, genome-wide DNA methylation is once erased (in primordial germ cells) and reestablished (in prospermatogonia) during development. In prospermatogonia, piRNAs guide de novo DNA methylation at some retrotransposons. To clarify the contribution of DNA methylation and the piRNA system to retrotransposon silencing in the course of male germ cell development, we analyzed DNA methylation and RNA expression in Dnmt3l and Pld6 knockout mice, which are defective in de novo DNA methylation and piRNA biogenesis, respectively. Our results reveal that, in prospermatogonia, the piRNA system works mainly at the posttranscriptional level, and plays a more important role than does DNA methylation in retrotransposon silencing. However, DNA methylation becomes much more important in later stages when germ cells enter meiosis (in spermatocytes). We also found that hypomethylated retrotransposons can drive ectopic expression of nearby genes; therefore, their transcriptional silencing by DNA methylation is important for maintaining the transcriptomic integrity as well.
Collapse
|
79
|
Lima AC, Jung M, Rusch J, Usmani A, Lopes AM, Conrad DF. A Standardized Approach for Multispecies Purification of Mammalian Male Germ Cells by Mechanical Tissue Dissociation and Flow Cytometry. J Vis Exp 2017. [PMID: 28745623 DOI: 10.3791/55913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fluorescence-activated cell sorting (FACS) has been one of the methods of choice to isolate enriched populations of mammalian testicular germ cells. Currently, it allows the discrimination of up to 9 murine germ cell populations with high yield and purity. This high-resolution in discrimination and purification is possible due to unique changes in chromatin structure and quantity throughout spermatogenesis. These patterns can be captured by flow cytometry of male germ cells stained with fluorescent DNA-binding dyes such as Hoechst-33342 (Hoechst). Herein is a detailed description of a recently developed protocol to isolate mammalian testicular germ cells. Briefly, single cell suspensions are generated from testicular tissue by mechanical dissociation, double stained with Hoechst and propidium iodide (PI) and processed by flow cytometry. A serial gating strategy, including the selection of live cells (PI negative) with different DNA content (Hoechst intensity), is used during FACS sorting to discriminate up to 5 germ cell types. These include, with corresponding average purities (determined by microscopy evaluation): spermatogonia (66%), primary (71%) and secondary (85%) spermatocytes, and spermatids (90%), further separated into round (93%) and elongating (87%) subpopulations. Execution of the entire workflow is straightforward, allows the isolation of 4 cell types simultaneously with the appropriate FACS machine, and can be performed in less than 2 h. As reduced processing time is crucial to preserve the physiology of ex vivo cells, this method is ideal for downstream high-throughput studies of male germ cell biology. Moreover, a standardized protocol for multispecies purification of mammalian germ cells eliminates methodological sources of variables and allows a single set of reagents to be used for different animal models.
Collapse
Affiliation(s)
- Ana C Lima
- Department of Genetics, Washington University School of Medicine; Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Institute of Biomedical Sciences, University of Porto; Instituto de Investigação e Inovação em Saúde, University of Porto; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto
| | - Min Jung
- Department of Genetics, Washington University School of Medicine
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine
| | - Abul Usmani
- Department of Genetics, Washington University School of Medicine
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, University of Porto; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine;
| |
Collapse
|
80
|
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.
Collapse
|
81
|
Ratnam S, Bozek G, Martin T, Gallagher SJ, Payne CJ, Storb U. Ssm1b expression and function in germ cells of adult mice and in early embryos. Mol Reprod Dev 2017; 84:596-613. [PMID: 28464323 DOI: 10.1002/mrd.22826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Ssm1b (Strain-specific modifier of DNA methylation 1b) is a Krüppel-associated box (KRAB) zinc finger gene that promotes CpG methylation in the mouse transgene HRD (Heavy chain enhancer, rearrangement by deletion). We report here that Ssm1b expression and concomitant HRD methylation are also present in the male and female germ cells of adult mice. Ssm1b is expressed in both diploid (2N) and haploid (1N) oocytes, as well as in 1N spermatids and spermatozoa, but not in 2N spermatogonia. Interestingly, Ssm1b mRNA is not detected in any other adult mouse organ examined, although Ssm1-family mRNAs are highly expressed in the heart. Reflecting strain specificity, Ssm1b expression and HRD methylation are not observed in early-stage C3H/HeJ mouse embryos; however, an Ssm1b-like gene that closely resembles an Ssm1b-like gene previously found in wild-derived mice is expressed in cultured embryonic stem cells derived from C3H/HeJ embryos, suggesting that culture conditions affect its expression. Collectively, this work demonstrates that HRD methylation by Ssm1b is more temporally restricted during spermatogenesis compared to oogenesis, and is altered when embryonic stem cells are cultured from C3H/HeJ inner cell mass cells.
Collapse
Affiliation(s)
- Sarayu Ratnam
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Grazyna Bozek
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Terence Martin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Shannon J Gallagher
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Christopher J Payne
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Departments of Pediatrics and Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ursula Storb
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
82
|
Lima AC, Jung M, Rusch J, Usmani A, Lopes AM, Conrad DF. Multispecies Purification of Testicular Germ Cells. Biol Reprod 2016; 95:85. [PMID: 27557646 PMCID: PMC5176363 DOI: 10.1095/biolreprod.116.140566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of nine germ cell types. This staining technique is straightforward to implement, is highly effective at purifying specific germ cell types, and yields sufficient cell numbers for high-throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, because of the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to four mammalian species that are widely used in testis research: Rattus norvegicus, Cavia porcellus, Canis familiaris, and Sus scrofadomesticus. We successfully isolated four germ cell populations from these species with average purity of 79% for spermatocytes, 90% for spermatids, and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.
Collapse
Affiliation(s)
- Ana C. Lima
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal–IPATIMUP, Porto, Portugal
| | - Min Jung
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Abul Usmani
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal–IPATIMUP, Porto, Portugal
| | - Donald F. Conrad
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence: Donald F. Conrad, Department of Genetics, Washington University School of Medicine, Campus Box 8232, St. Louis, MO 63110. E-mail:
| |
Collapse
|
83
|
Regulatory complexity revealed by integrated cytological and RNA-seq analyses of meiotic substages in mouse spermatocytes. BMC Genomics 2016; 17:628. [PMID: 27519264 PMCID: PMC4983049 DOI: 10.1186/s12864-016-2865-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/28/2016] [Indexed: 01/24/2023] Open
Abstract
Background The continuous and non-synchronous nature of postnatal male germ-cell development has impeded stage-specific resolution of molecular events of mammalian meiotic prophase in the testis. Here the juvenile onset of spermatogenesis in mice is analyzed by combining cytological and transcriptomic data in a novel computational analysis that allows decomposition of the transcriptional programs of spermatogonia and meiotic prophase substages. Results Germ cells from testes of individual mice were obtained at two-day intervals from 8 to 18 days post-partum (dpp), prepared as surface-spread chromatin and immunolabeled for meiotic stage-specific protein markers (STRA8, SYCP3, phosphorylated H2AFX, and HISTH1T). Eight stages were discriminated cytologically by combinatorial antibody labeling, and RNA-seq was performed on the same samples. Independent principal component analyses of cytological and transcriptomic data yielded similar patterns for both data types, providing strong evidence for substage-specific gene expression signatures. A novel permutation-based maximum covariance analysis (PMCA) was developed to map co-expressed transcripts to one or more of the eight meiotic prophase substages, thereby linking distinct molecular programs to cytologically defined cell states. Expression of meiosis-specific genes is not substage-limited, suggesting regulation of substage transitions at other levels. Conclusions This integrated analysis provides a general method for resolving complex cell populations. Here it revealed not only features of meiotic substage-specific gene expression, but also a network of substage-specific transcription factors and relationships to potential target genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2865-1) contains supplementary material, which is available to authorized users.
Collapse
|
84
|
da Cruz I, Rodríguez-Casuriaga R, Santiñaque FF, Farías J, Curti G, Capoano CA, Folle GA, Benavente R, Sotelo-Silveira JR, Geisinger A. Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics 2016; 17:294. [PMID: 27094866 PMCID: PMC4837615 DOI: 10.1186/s12864-016-2618-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/13/2016] [Indexed: 12/03/2022] Open
Abstract
Background Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. Results We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. Conclusions This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2618-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene da Cruz
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay.,Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | | | - Joaquina Farías
- Department of Proteins and Nucleic Acids, IIBCE, Montevideo, Uruguay
| | - Gianni Curti
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Carlos A Capoano
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Gustavo A Folle
- Flow Cytometry and Cell Sorting Core, IIBCE, Montevideo, Uruguay.,Department of Genetics, IIBCE, Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay. .,Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de la República (UDELAR), 11,400, Montevideo, Uruguay.
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay. .,Biochemistry-Molecular Biology, Facultad de Ciencias, UDELAR, Montevideo, Uruguay.
| |
Collapse
|
85
|
RNA Binding Protein Ptbp2 Is Essential for Male Germ Cell Development. Mol Cell Biol 2015; 35:4030-42. [PMID: 26391954 DOI: 10.1128/mcb.00676-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
RNA binding proteins (RBPs) are increasingly recognized as essential factors in tissue development and homeostasis. The polypyrimidine tract binding (PTB) protein family of RBPs are important posttranscriptional regulators of gene expression. In the nervous system, the function and importance of PTB protein 2 (Ptbp2) as a key alternative splicing regulator is well established. Ptbp2 is also abundantly expressed during spermatogenesis, but its role in this developmental program has not been explored. Additionally, the importance of alternative splicing regulation in spermatogenesis is unclear. Here, we demonstrate that Ptbp2 is essential for spermatogenesis. We also describe an improved dual fluorescence flow cytometry strategy to discriminate, quantify, and collect germ cells in different stages of development. Using this approach, in combination with traditional histological methods, we show that Ptbp2 ablation results in germ cell loss due to increased apoptosis of meiotic spermatocytes and postmeiotic arrest of spermatid differentiation. Furthermore, we show that Ptbp2 is required for alternative splicing regulation in the testis, as in brain. Strikingly, not all of the alternatively spliced RNAs examined were sensitive to Ptbp2 loss in both tissues. Collectively, the data provide evidence for an important role for alternative splicing regulation in germ cell development and a central role for Ptbp2 in this process.
Collapse
|
86
|
Abstract
Protocols for purification of murine male germ cells by FACS based on Hoechst 33342 (Ho342) dye staining have been reported and optimized. However, the protocols are often challenging to follow, partly due to difficulties related to sample preparation, instrument parameters, data display, and selection strategies. In addition, troubleshooting of flow cytometry experiments usually requires some fluency in technical principles and instrument specifications and settings. This unit describes setup and procedures for analysis and sorting of male meiotic prophase I (MPI) cells and other germ cells. Included are procedures that guide data acquisition, display, gating, and back-gating critical for optimal data visualization and cell sorting. Additionally, a flow cytometry analysis of spermatogenesis-defective testis is provided to illustrate the applicability of the technique to the characterization and purification of cells from mutant testis.
Collapse
Affiliation(s)
- Valeriya Gaysinskaya
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland.,Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| |
Collapse
|
87
|
Geisinger A, Rodríguez-Casuriaga R, Santiñaque FF, Folle GA. Revisiting testicular cell suspensions and meiocytes sorting. Cytometry A 2014; 85:989-90. [PMID: 25363876 DOI: 10.1002/cyto.a.22525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/12/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Adriana Geisinger
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Uruguay
| | | | | | | |
Collapse
|
88
|
Yuen BTK, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development 2014; 141:3483-94. [PMID: 25142466 DOI: 10.1242/dev.106450] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics.
Collapse
Affiliation(s)
- Benjamin T K Yuen
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Kelly M Bush
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Bonnie L Barrilleaux
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Rebecca Cotterman
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| |
Collapse
|