51
|
Alexander A, Sumohan Pillai A, Sri Varalakshmi G, Ananthi N, Pal H, V. M. V. Enoch I, Sayed M. G-Quadruplex binding affinity variation on molecular encapsulation of ligands by porphyrin-tethered cyclodextrin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
52
|
Deciphering the interactions of genistein with β-cyclodextrin derivatives through experimental and microsecond timescale umbrella sampling simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
53
|
Sabin C, Sam S, Hrishikes A, Salin B, Vigneshkumar PN, George J, John F. Supramolecular Drug Delivery Systems Based on Host‐Guest Interactions for Nucleic Acid Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christeena Sabin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Samanta Sam
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - A. Hrishikes
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Biyatris Salin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - P. N. Vigneshkumar
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
- Department of Chemistry The University of British Columbia Okanagan Vancouver BC V6T 1Z4 Canada
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
54
|
Zhang J, Gabel D, Assaf KI, Nau WM. A Fluorescein-Substituted Perbrominated Dodecaborate Cluster as an Anchor Dye for Large Macrocyclic Hosts and Its Application in Indicator Displacement Assays. Org Lett 2022; 24:9184-9188. [PMID: 36507622 DOI: 10.1021/acs.orglett.2c03615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perhalogenated boron clusters derived from B12Br122-, a superchaotropic dianion with a globular icosahedral shape, serve as inorganic cavity binders for cyclodextrins (CDs), in particular for large CDs (γ-CD and δ-CD), with high binding affinity (Ka > 106 M-1) in aqueous solution. This opens the door for applications of this anchoring moiety by linking it to organic residues, prominently fluorescent dyes. We report here the synthesis of a novel fluorescein-substituted perbrominated dodecaborate cluster by a copper(I)-catalyzed azide-alkyne click reaction. The formation of host-guest inclusion complexes between the dodecaborate-modified fluorescein dye and CDs can be readily followed by optical titrations, which afforded a binding constant of ∼1 × 104 M-1 with γ-CD; that is, the cluster functionalization allows binding of an otherwise nonbinding dye to the macrocycle ("anchor dye"). The formation of the 1:1 host-guest inclusion complex between the dye and γ-CD occurs over a broad range of pH values, which allows its application as a sensitive reporter pair according to the indicator displacement method, e.g., for drug detection. In addition, the substituted dye shows outer-wall binding to cucurbiturils through the dodecaborate moiety, leading to the formation of aggregates and significant fluorescence quenching of the dye.
Collapse
Affiliation(s)
- Jinling Zhang
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Detlef Gabel
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| | - Werner M Nau
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
55
|
Kang JH, Lee JE, Jeong SJ, Park CW, Kim DW, Weon KY. Design and Optimization of Rivaroxaban-Cyclodextrin-Polymer Triple Complex Formulation with Improved Solubility. Drug Des Devel Ther 2022; 16:4279-4289. [PMID: 36561308 PMCID: PMC9767707 DOI: 10.2147/dddt.s389884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose This study aimed to ensure the convenience of administration and reproducibility of efficacy, regardless of the meal, by improving the solubility of rivaroxaban (RIV). Methods RIV is a non-vitamin K antagonist oral anticoagulants that exhibits a coagulation effect by directly inhibiting coagulation factor Xa. However, RIV has a very low solubility; therefore, it must be administered with a meal at high doses. We used a drug- hydroxypropyl-beta-cyclodextrin (CD)-water-soluble polymer triple complex (R-C-P complex) to solubilize RIV. Using Minitab, we evaluated the effect of each factor on RIV solubility and developed an optimal R-C-P complex formulation. The amount of CD, amount of polymer, and polymer type were set as the independent variables X1, X2, and X3, respectively. RIV solubility (Y1) and dissolution rate for 45 min in pH 4.5 medium (Y2) and pH 1.2 medium (Y3) were set as response variables. Results The most efficient RIV solubilization effect was obtained from the composition using CD and HPMC 2208, and physicochemical properties and dissolution parameters were analyzed. RIV in the R-C-P complex was present in an amorphous form and showed high solubility. Unlike commercial products, it showed a 100% dissolution rate. The R-C-P complex formulation secured high RIV solubility and 100% release regardless of pH. Conclusion The results imply that high-dose RIV can be administered regardless of the meal, reducing the risk of changing the drug effect due to the patient's administration mistake.
Collapse
Affiliation(s)
- Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Ji-Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - So-Jeong Jeong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan, Korea,Correspondence: Dong-Wook Kim, College of Pharmacy, Wonkwang University, Iksan, 54538, Korea, Tel +82-63-229-7130, Fax +82-63-850-7309, Email
| | - Kwon-Yeon Weon
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Korea,Kwon-Yeon Weon, College of Pharmacy, Daegu Catholic University, Gyeongsan, 38430, Korea, Tel +82-53-850-3616, Fax +82-53-850-3602, Email
| |
Collapse
|
56
|
Shah PJ, Patel MP, Shah J, Nair AB, Kotta S, Vyas B. Amalgamation of solid dispersion and melt adsorption techniques for augmentation of oral bioavailability of novel anticoagulant rivaroxaban. Drug Deliv Transl Res 2022; 12:3029-3046. [PMID: 35467325 DOI: 10.1007/s13346-022-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
The objective of the present study was to evaluate the potential of solid dispersion adsorbate (SDA) to improve the solubility and bioavailability of rivaroxaban (RXN). SDA of RXN was developed by fusion method using PEG 4000 as carrier and Neusilin as adsorbent. A 32 full factorial design was utilized to formulate various SDAs. The selected independent variables were the amount of carrier (X1) and amount of adsorbent (X2). The responses measured were the time required for 85% drug release (Y1) and saturated solubility (Y2). MTT assay was employed for cytotoxicity studies on Caco-2 cells. In vivo pharmacokinetics and pharmacodynamic evaluations were carried out to assess the prepared SDA. Pre-compression evaluation of SDA suggests the prepared batches (B1-B9) possess adequate flow properties and could be used for compression of tablets. Differential scanning calorimetry and X-ray diffraction data signified the conversion of the crystalline form of drug to amorphous form, a key parameter accountable for improvement in drug dissolution. Optimization data suggests that the amount of carrier and amount of adsorbent significantly (P < 0.05) influence both dependent variables. Post-compression data signifies that the compressibility behavior of prepared tablets was within the official standard limits. A significant increase (P < 0.0001) in the in vitro dissolution characteristics of RXN was noticed in optimized SDA (> 85% in 10 min) as compared to the pure drug, marketed product, and directly compressible tablet. Cytotoxicity studies confirmed the nontoxicity of prepared RXN SDA tablets. RXN SDA tablets exhibited 2.79- and 1.85-fold higher AUC in comparison to RXN suspension and Xarelto tablets respectively indicating improved oral bioavailability. Higher bleeding time and percentage of platelet aggregation noticed with RXN SDA tablets in comparison to RXN suspension further substantiate the efficacy of the prepared formulation. In summary, the results showed the potential of RXN SDA tablets to enhance the bioavailability of RXN and hence can be an alternate approach of solid dosage form for its development for commercial application.
Collapse
Affiliation(s)
- Pranav J Shah
- Maliba Pharmacy College, Uka Tarsadia University, Bardoli, Surat, 394350, India.
| | - Milan P Patel
- Maliba Pharmacy College, Uka Tarsadia University, Bardoli, Surat, 394350, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bhavin Vyas
- Maliba Pharmacy College, Uka Tarsadia University, Bardoli, Surat, 394350, India
| |
Collapse
|
57
|
Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022; 11:foods11233871. [PMID: 36496679 PMCID: PMC9736450 DOI: 10.3390/foods11233871] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Food safety issues are a major threat to public health and have attracted much attention. Therefore, exploring accurate, efficient, sensitive, and economical detection methods is necessary to ensure consumers' health. In this regard, cyclodextrins (CDs) are promising candidates because they are nontoxic and noncaloric. The main body of CDs is a ring structure with hydrophobic cavity and hydrophilic exterior wall. Due to the above characteristics, CDs can encapsulate small guest molecules into their cavities, enhance their stability, avoid agglomeration and oxidation, and, at the same time, interact through hydrogen bonding and electrostatic interactions. Additionally, they can selectively capture the target molecules to be detected and improve the sensitivity of food detection. This review highlights recent advances in CD inclusion technology in food safety analysis, covering various applications from small molecule and heavy metal sensing to amino acid and microbial sensing. Finally, challenges and prospects for CDs and their derivatives are presented. The current review can provide a reference and guidance for current research on CDs in the food industry and may inspire breakthroughs in this field.
Collapse
|
58
|
Li Z, Li K, Teng M, Li M, Sui X, Liu B, Tian B, Fu Q. Functionality-related characteristics of hydroxypropyl-β-cyclodextrin for the complexation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
59
|
Özyılmaz ED, Comoglu T. Development of pediatric orally disintegrating mini-tablets containing atomoxetine hydrochloride-β-cyclodextrin inclusion complex using experimental design. Drug Dev Ind Pharm 2022; 48:667-681. [PMID: 36454038 DOI: 10.1080/03639045.2022.2154787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVE The aim of the study was to develop and evaluate characteristics of orally disintegrating mini-tablet (ODMT) formulations including atomoxetine hydrochloride (ATO)/β-cyclodextrin (β-CD) inclusion complex for pediatric therapy of attention deficit and hyperactivity disorder (ADHD). METHODS Design of experiment approach was used to develop ODMTs. The ODMTs were compressed using direct compression method with two different superdisintegrants (Parteck ODT® and Ac-Di-Sol®) and characterized with quality control tests. In vitro dissolution and taste studies were performed. RESULTS The hardness and friability values of the optimized three ODMT formulations were determined as 41.7 N, 42.4 N, and 40.8 N and 0.32%, 0.29%, and 0.42%, respectively. The disintegration time of all the optimized formulations was found to be less than one minute. In addition, dissolution profiles of ATO from optimized ODMTs were determined in four different dissolution media (distilled water, pH 1.2, 6.8, and 7.4) and it was determined that the maximum dissolved ATO amount reached at the end of 20 min. CONCLUSION As a conclusion, the novel formulation of ODMTs with ATO/β-CD inclusion complex was successfully developed for pediatric use.
Collapse
Affiliation(s)
- Emine Dilek Özyılmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR. North Cyprus, Turkey
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
60
|
Abou Taleb S, Moatasim Y, GabAllah M, Asfour MH. Quercitrin loaded cyclodextrin based nanosponge as a promising approach for management of lung cancer and COVID-19. J Drug Deliv Sci Technol 2022; 77:103921. [PMID: 36338534 PMCID: PMC9616482 DOI: 10.1016/j.jddst.2022.103921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
Lung cancer and pandemic acute respiratory disease, COVID-19, are examples of the most worldwide widespread diseases. The aim of the current study is to develop cyclodextrin based nanosponge (CD-NS) for loading the flavonoid drug, quercitrin (QCT). This is to improve its solubility in an attempt to enhance its activity against lung cancer as well as SARS-CoV-2 virus responsible for COVID-19. Preparation of CD-NS was performed by ultrasound-assisted synthesis method. Two CDs were employed, namely, β cyclodextrin (βCD) and 2-hydroxy propyl-β-cyclodextrin (2-HPβCD) that were crosslinked with diphenyl carbonate, one at a time. QCT loaded CD-NS revealed entrapment efficiency and particle size ranged between 94.17 and 99.03% and 97.10–325.90 nm, respectively. QCT loaded 2-HPβCD-NS revealed smaller particle size compared with that of QCT loaded βCD-NS. Zeta potential absolute values of the prepared formulations were >20 mV, indicating physically stable nanosystems. The selected formulations were investigated by Fourier transform infrared spectroscopy, X-ray powder diffraction and scanning electron microscopy which proved the formation of QCT loaded CD-NS exhibiting porous structure. QCT exhibited partial and complete amorphization in βCD-NS and 2-HPβCD-NS, respectively. In vitro release revealed an improved release of QCT from CD-NS formulations. The biological activity of free QCT and QCT loaded CD-NS was investigated against lung cancer cell line A549 as well as SARS-CoV-2 virus. The results revealed that IC50 values of free QCT against lung cancer cell line A549 and SARS-CoV-2 were higher than those exhibited by QCT loaded CD-NS by 1.57–5.35 and 5.95–26.95 folds, respectively. QCT loaded 2-HPβCD-NS revealed enhanced in vitro release and superior biological activity compared with QCT loaded βCD-NS.
Collapse
Affiliation(s)
- Sally Abou Taleb
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt,Corresponding author
| |
Collapse
|
61
|
Electrospun nanofibrous membrane functionalized with dual drug-cyclodextrin inclusion complexes for the potential treatment of otitis externa. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
62
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
63
|
Stability, Antioxidant Activity and Intestinal Permeation of Oleuropein Inclusion Complexes with Beta-Cyclodextrin and Hydroxypropyl-Beta-Cyclodextrin. Molecules 2022; 27:molecules27165077. [PMID: 36014317 PMCID: PMC9412325 DOI: 10.3390/molecules27165077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Compared to beta-cyclodextrins (beta-CD), hydroxypropyl-beta-cyclodextrins (HP-beta-CD) are a more popular material used to prepare inclusion complexes due to their superior solubility and intestinal absorption. In this study, oleuropein (OL) inclusion complexes with beta-CD (beta-CD:OL) and HP-beta-CD (HP-beta-CD:OL) were prepared and the formation of inclusion complexes was validated by IR, PXRD, and DSC. A phase solubility test showed that the lgK (25 °C) and binding energy of beta-CD:OL and HP-beta-CD:OL was 2.32 versus 1.98, and −6.1 versus −24.66 KJ/mol, respectively. Beta-CD:OL exhibited a more powerful effect than HP-beta-CD:OL in protecting OL from degradation upon exposure to light, high temperature and high humidity. Molecular docking, peak intensity of carbonyls in IR, and ferric reducing power revealed that beta-CD:OL formed more hydrogen bonds with the unstable groups of OL. Both inclusion complexes significantly enhanced the solubility, intestinal permeation and antioxidant activity of OL (p < 0.05). Though HP-beta-CD:OL had higher solubility and intestinal absorption over beta-CD:OL, the difference was not significant (p > 0.05). The study implies that lower binding energy is not always associated with the higher stability of a complex. Beta-CD can protect a multiple-hydroxyl compound more efficiently than HP-beta-CD with the intestinal permeation comparable to HP-beta-CD complex.
Collapse
|
64
|
Haddad R, Alrabadi N, Altaani B, Masadeh M, Li T. Hydroxypropyl Beta Cyclodextrin as a Potential Surface Modifier for Paclitaxel Nanocrystals. AAPS PharmSciTech 2022; 23:219. [PMID: 35945468 DOI: 10.1208/s12249-022-02373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Paclitaxel (PTX) is a hydrophobic chemotherapeutic agent cytotoxic against many serious cancers. This study aimed at designing novel PTX nanocrystals (PTX-NCs) coated with the biocompatible and biodegradable hydroxypropyl-beta-cyclodextrin (HPβCD) polymer with specific characteristics through the formation of a non-inclusion complex. Briefly, PTX-NCs were prepared by the anti-solvent method followed by homogenization. Then, the surface of the prepared PTX-NCs was modified using the HPβCD coat (HPβCD-PTX-NCs). The prepared nanocrystals, both coated and uncoated, were characterized in terms of size, polydispersity index, charge, morphology, and stability. Moreover, the nanocrystals were investigated using powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR). As well, the in vitro release of PTX from the nanocrystals was determined under conditions similar to the IV route of administration. Furthermore, the tendency of the nanocrystals to induce hemolysis was investigated. Results indicated that the size was about 241.4 and 310.5 nm, the polydispersity index was 0.14 and 0.21, and the zeta potential was about - 22.6 and - 16.4 mV for PTX-NCs and HPβCD-PTX-NCs, respectively. Additionally, the PXRD, FTIR, and DSC profiles can be explained by the NCs' integrity and coat formation. The SEM images showed that both PTX-NCs and HPβCD-PTX-NCs have rod-like structures. Moreover, HPβCD-PTX-NCs had significantly superior in vitro release than both PTX-NCs and PTX. Interestingly, the hemolytic assay showed that HPβCD-PTX-NCs had a more efficient and safer profile than PTX-NCs. This study emphasized that HPβCD could be an interesting candidate for the surface modification of PTX-NCs providing superior properties such as release and safety profiles.
Collapse
Affiliation(s)
- Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Bashar Altaani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
65
|
Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydr Polym 2022; 297:120033. [DOI: 10.1016/j.carbpol.2022.120033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/20/2022]
|
66
|
Minecka A, Tarnacka M, Jurkiewicz K, Hachuła B, Wrzalik R, Bródka A, Kamiński K, Kamińska E. The impact of the size of acetylated cyclodextrin on the stability of amorphous metronidazole. Int J Pharm 2022; 624:122025. [PMID: 35850185 DOI: 10.1016/j.ijpharm.2022.122025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
Modified oligosaccharides with cyclic topology seem to be promising excipients for the preparation of Amorphous Solid Dispersions (ASDs), especially with those Active Pharmaceutical Ingredients (APIs), which have a strong crystallization tendency from the amorphous/glassy state. Herein, the usefulness of two acetylated cyclodextrins (ac-α-CD and ac-β-CD) with various molecular weights (Mw) as stabilizers for the supercooled metronidazole (Met) has been discussed. X-ray diffraction (XRD) studies carried out on Met-acCDs mixtures (prepared in molar ratios from 1:2 to 5:1) showed that the system with ac-α-CD containing the highest amount of API (5:1 m/m) crystallizes immediately after preparation, whereas all Met-ac-β-CD ASDs remain stable. What is more, long-term XRD measurements confirmed that the Met-ac-α-CD 2:1 m/m system crystallizes after 100 days of storage in contrast to the same system containing ac-β-CD. The non-isothermal calorimetric data revealed that the activation barrier for crystallization (Ecr) in ASDs with the oligosaccharide having a greater Mw (i.e., composed of seven acGLU molecules) is slightly higher. Finally, to explain the differences in behavior between the mixtures with both acCDs, infrared studies, DFT calculations and Molecular Dynamics simulations were performed. All methods excluded the scenario of API incorporation inside the acCDs' core. On the other hand, obtained results suggested that in comparison to ac-α-CD, the greater amount of Met molecules might be bounded on the outside surface of ac-β-CD. Therefore, this modified saccharide is a better stabilizer of the examined API.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland.
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| | - Roman Wrzalik
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Aleksander Bródka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland.
| |
Collapse
|
67
|
Thakur A, Jain S, Pant A, Sharma A, Kumar R, Singla N, Suttee A, Kumar S, Barnwal RP, Katare OP, Singh G. Cyclodextrin Derivative Enhances the Ophthalmic Delivery of Poorly Soluble Azithromycin. ACS OMEGA 2022; 7:23050-23060. [PMID: 35847282 PMCID: PMC9280958 DOI: 10.1021/acsomega.1c07218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZM), a macrolide antibiotic used for the treatment of chlamydial conjunctivitis, is less effective for the treatment of this disease due to its poor bioavailability (38%). Various alternatives have been developed for improving the physicochemical properties (i.e., solubility) of the AZM without much success. To overcome the problems associated with AZM, an inclusion complex employing a modified cyclodextrin, i.e., sulfobutylether-β-cyclodextrin (SBE-β-CD), was prepared and characterized by phase solubility studies and PXRD techniques. The results portrayed the formation of an inclusion complex of AZM with SBE-β-CD in 1:2 molar stoichiometric ratios. This inclusion complex was later incorporated into a polymer matrix to prepare an in situ gel. Various combinations of Carbopol 934P and hydroxypropyl methylcellulose (HPMC K4M) polymers were used and evaluated by rheological and in vitro drug release studies. The optimized formulation (F4) containing Carbopol 934P (0.2% w/v) and HPMC K4M (0.2% w/v) was evaluated for clarity, pH, gelling capacity, drug content, rheological properties, in vitro drug release pattern, ocular irritation test, and antimicrobial efficacy. Finally, owing to the improved antimicrobial efficacy and increased residence time, the AZM:SBE-β-CD in situ gel was found to be a promising formulation for the efficient treatment of bacterial ocular disease.
Collapse
Affiliation(s)
- Anil Thakur
- Lachoo
Memorial College of Science and Technology, Jodhpur 342001, India
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Sourabh Jain
- Lachoo
Memorial College of Science and Technology, Jodhpur 342001, India
| | - Anjali Pant
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Akanksha Sharma
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
- Department
of Biophysics, Panjab University, Chandigarh 160014, India
| | - Rajiv Kumar
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Neha Singla
- Department
of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ashish Suttee
- Lovely
Professional University, Phagwara, Panjab 144411, India
| | - Santosh Kumar
- Department
of Biotechnology, Panjab University, Chandigarh 160014, India
- National
Centre for Cell Science, NCCS Complex, S.
P. Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Ravi P. Barnwal
- Department
of Biophysics, Panjab University, Chandigarh 160014, India
| | - Om Prakash Katare
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Gurpal Singh
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| |
Collapse
|
68
|
Szabó R, Rácz CP, Dulf FV. Bioavailability Improvement Strategies for Icariin and Its Derivates: A Review. Int J Mol Sci 2022; 23:ijms23147519. [PMID: 35886867 PMCID: PMC9318307 DOI: 10.3390/ijms23147519] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been considerable interest in icariin (ICA) and its derivates, icariside II (ICS) and icaritin (ICT), due to their wide range of potential applications in preventing cancer, cardiovascular disease, osteoporosis, delaying the effects of Alzheimer’s disease, treating erectile dysfunction, etc. However, their poor water solubility and membrane permeability, resulting in low bioavailability, dampens their potential beneficial effects. In this regard, several strategies have been developed, such as pharmaceutical technologies, structural transformations, and absorption enhancers. All these strategies manage to improve the bioavailability of the above-mentioned flavonoids, thus increasing their concentration in the desired places. This paper focuses on gathering the latest knowledge on strategies to improve bioavailability for enhancing the efficacy of icariin, icariside II, and icaritin. We conclude that there is an opportunity for many further improvements in this field. To the best of our knowledge, no such review articles scoping the bioavailability improvement of icariin and its derivates have been published to date. Therefore, this paper can be a good starting point for all those who want to deepen their understanding of the field.
Collapse
Affiliation(s)
- Róbert Szabó
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Csaba Pál Rácz
- Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János 11, 400028 Cluj-Napoca, Romania;
| | - Francisc Vasile Dulf
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
69
|
Saleem Z, Rehman K, Hamid Akash MS. Role of Drug Delivery System in Improving the Bioavailability of Resveratrol. Curr Pharm Des 2022; 28:1632-1642. [DOI: 10.2174/1381612828666220705113514] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Resveratrol (RSV) is known as a natural polyphenolic compound that is known for its therapeutic activities but has limited bioavailability. The aim of our study was to explore various drug-delivering methods that are being employed to achieve target-oriented delivery and therapeutic performance of RSV. To improve the bioavailability and pharmacokinetic properties of RSV, efforts are being made by producing efficient formulations accompanying efficient drug delivery strategies. Several clinical trial studies have been conducted on RSV isomers, and the majority of studies indicated that trans-RSV had better clinical potential and therapeutic effectiveness in various types of complications such as colorectal cancer, metabolic syndrome, hypertension, obesity, neurodegenerative diseases, diabetes, hepatic disease, cardiac disorders, and breast cancer. However, multiple research studies enable us to understand various strategies that can enhance the systemic availability and efficacy of topical RSV formulations. In this article, we emphasize the hurdles of RSV delivery processes. We summarized that for delivering liquid and solid microparticles of RSV, the micro-particulate system works efficiently. Another technique in which particles are enclosed by a coating is called microencapsulation. This technique reduces the degradation of pharmaceutical compounds. Similarly, the cyclodextrin system is mainly used for poorly soluble drugs. On the other hand, the vesicular system is another micro-particulate system that can encapsulate hydrophilic and hydrophobic drugs. However, the RSV nanosponge formulations have advanced nanodrug delivery systems also make it possible to use RSV for its antioxidant potential.
Collapse
Affiliation(s)
- Zonish Saleem
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | | |
Collapse
|
70
|
Garibyan A, Delyagina E, Agafonov M, Khodov I, Terekhova I. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
71
|
Mullick P, R Hegde A, Gopalan D, Pandey A, Nandakumar K, Jain S, Kuppusamy G, Mutalik S. Evolving era of "sponges": Nanosponges as a versatile nanocarrier for the effective skin delivery of drugs. Curr Pharm Des 2022; 28:1885-1896. [PMID: 35585809 DOI: 10.2174/1381612828666220518090431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanosponge, as a carrier for skin delivery system for drugs, plays a vital role. It not only serves to administer the drug to the targeted layer of skin but also increases the drug retention and deposition on the skin. OBJECTIVE In this review, we aim to highlight the effects of several process and formulation variables prompting the characteristics of various nanosponges for the delivery of drugs into/ across the skin. METHOD In the present review article, over-all introduction of nanosponges, its preparation, characterstics features, advanatges, disadvantages, factors affecting their preparation are covered. Furthermore, an elaborative description of nanosponges for skin delivery and its toxicological perspective with some referential examples of nanosponge drugs have also been deliberated here. RESULTS Factors associated with the formation of nanosponges can directly or indirectly affect its efficacy in skin delivery of drugs. These nanoforms are efficient in delivering the drugs which possess lower aqueous solubility, therefore, the aqueous solubility of drugs possessing a narrow therapeutic window can easily be enhanced. It also helps in achieving targeted drug delivery, controlled release of drugs, increases bioavailability, reduces drug toxicity, decreases drug degradation, and many more. CONCLUSION Nanosponges have been identified as a potential drug delivery carriers into as well as across skin. Delivery of biologics such as vaccines, enzymes, peptides, proteins, and antibodies, is also gaining attention in the recent past.
Collapse
Affiliation(s)
- Prashansha Mullick
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Aswathi R Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) 160062, Punjab State, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Nilgiris, Tamilnadu, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
72
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
73
|
Jansook P, Loftsson T. Self-assembled γ-cyclodextrin as nanocarriers for enhanced ocular drug bioavailability. Int J Pharm 2022; 618:121654. [DOI: 10.1016/j.ijpharm.2022.121654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
|
74
|
Kondoros BA, Jójárt-Laczkovich O, Berkesi O, Szabó-Révész P, Csóka I, Ambrus R, Aigner Z. Development of Solvent-Free Co-Ground Method to Produce Terbinafine Hydrochloride Cyclodextrin Binary Systems; Structural and In Vitro Characterizations. Pharmaceutics 2022; 14:pharmaceutics14040744. [PMID: 35456578 PMCID: PMC9025016 DOI: 10.3390/pharmaceutics14040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Molecular complexation with cyclodextrins (CDs) has long been a known process for modifying the physicochemical properties of problematic active pharmaceutical ingredients with poor water solubility. In current times, the focus has been on the solvent-free co-grinding process, which is an industrially feasible process qualifying as a green technology. In this study, terbinafine hydrochloride (TER), a low solubility antifungal drug was used as a model drug. This study aimed to prepare co-ground products and follow through the preparation process of the co-grinding method in the case of TER and two amorphous CD derivatives: (2-hydroxypropyl)-β-cyclodextrin (HPBCD); heptakis-(2,6-di-O-methyl)-β-cyclodextrin (DIMEB). For this evaluation, the following analytical tools and methods were used: phase solubility studies, differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), hot-stage X-ray powder diffractometry (HOT-XRPD), Fourier-transform infrared (FT-IR), Raman spectroscopy, and Scanning Electron Microscopy (SEM). Furthermore, in vitro characterization (dissolution and diffusion studies) was performed in two kinds of dissolution medium without enzymes. In the XRPD and SEM studies, it was found that the co-grinding of the components resulted in amorphous products. FT-IR and Raman spectroscopies confirmed the formation of an inclusion complex through the unsaturated aliphatic chain of TER and CDs. In vitro characterization suggested better dissolution properties for both CDs and decreased diffusion at higher pH levels in the case of HPBCD.
Collapse
Affiliation(s)
- Balázs Attila Kondoros
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Ottó Berkesi
- Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary;
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
- Correspondence: ; Tel.: +36-62-545-575
| | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| |
Collapse
|
75
|
Seow HC, Liao Q, Lau ATY, Leung SWS, Yuan S, Lam JKW. Dual targeting powder formulation of antiviral agent for customizable nasal and lung deposition profile through single intranasal administration. Int J Pharm 2022; 619:121704. [PMID: 35358643 PMCID: PMC8958263 DOI: 10.1016/j.ijpharm.2022.121704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 12/09/2022]
Abstract
Unpredictable outbreaks due to respiratory viral infections emphasize the need for new drug delivery strategies to the entire respiratory tract. As viral attack is not limited to a specific anatomic region, antiviral therapy that targets both the upper and lower respiratory tract would be most effective. This study aimed to formulate tamibarotene, a retinoid derivative previously reported to display broad-spectrum antiviral activity against influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), as a novel dual particle size powder formulation that targets both the nasal cavity and the lung by a single route of intranasal administration. Spray freeze drying (SFD) and spray drying (SD) techniques were employed to prepare tamibarotene powder formulations, and cyclodextrin was used as the sole excipient to enhance drug solubility. With the employment of appropriate atomizing nozzles, particles of size above 10 μm and below 5 μm could be produced for nasal and lung deposition, respectively. The aerosol performance of the powder was evaluated using Next Generation Impactor (NGI) coupled with a glass expansion chamber and the powder was dispersed with a nasal powder device. By blending powder of two different particle sizes, a single powder formulation with dual aerosol deposition characteristic in both the nasal and pulmonary regions was produced. The aerosol deposition fractions in the nasal cavity and pulmonary region could be modulated by varying the powder mixing ratio. All dry powder formulations exhibited spherical structures, amorphous characteristics and improved dissolution profile as compared to the unformulated tamibarotene. Overall, a novel dual targeting powder formulation of tamibarotene exhibiting customizable aerosol deposition profile was developed. This exceptional formulation strategy can be adopted to deliver other antimicrobial agents to the upper and lower airways for the prevention and treatment of human respiratory infections.
Collapse
Affiliation(s)
- Han Cong Seow
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Andy T Y Lau
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Caro Yu Centre for Infection, Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science Park, New Territories, Hong Kong SAR
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Hong Kong SAR.
| |
Collapse
|
76
|
Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem 2022; 384:132467. [PMID: 35219231 DOI: 10.1016/j.foodchem.2022.132467] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 01/19/2023]
Abstract
This review offers a vision of the chemical behaviour of natural ingredients, synthetic drugs and other related compounds complexed using cyclodextrins. The review takes care of different sections related to i) the inclusion complexes formation with cyclodextrins, ii) the determination of the inclusion formation constant, iii) the most used methods to prepare host inclusion in the non-polar cavity of cyclodextrins and iv) the analytical techniques to evidence host inclusion. The review provides different literature that shows the application of cyclodextrins to improve physical, chemical, and biological characteristics of food compounds including solubility, stability and their elimination/masking. Moreover, the review also offers examples of commercial food/supplement products of cyclodextrins to indicate that cyclodextrins can be used to generate biotechnological substances with innovative properties and improve the development of food products.
Collapse
Affiliation(s)
- Antonio Cid-Samamed
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense 32004, España.
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand.
| | - Juan Carlos Mejuto
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense 32004, España.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense E-32004, Spain.
| | - Gonzalo Astray
- Universidade de Vigo, Departamento de Química Física, Facultade de Ciencias, Ourense 32004, España.
| |
Collapse
|
77
|
Pereira EWM, Heimfarth L, Santos TK, Passos FRS, Siqueira-Lima P, Scotti L, Scotti MT, Almeida JRGDS, Campos AR, Coutinho HDM, Martin P, Quintans-Júnior LJ, Quintans JSS. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: Evidence for involvement of the PKA and PKC pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153893. [PMID: 35026511 DOI: 10.1016/j.phymed.2021.153893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic orofacial pain is a serious public health problem with a prevalence of 7-11% in the population. This disorder has different etiologies and characteristics that make pharmacological treatment difficult. Natural products have been shown to be a promising source of treatments for the management of chronic pain, as an example the terpenes. PURPOSE The aim of this study was to evaluate the anti-nociceptive and anti-inflammatory effects of one of these terpenes, d-limonene (LIM - a common monoterpene found in citrus fruits) alone and complexed with hydroxypropyl-β-cyclodextrin (LIM/HPβCD) in preclinical animal models. METHODS Orofacial pain was induced by the administration of hypertonic saline on the corneal surface, the injection of formalin into the temporomandibular joint (TMJ), or chronic constriction injury of the infraorbital nerve (CCI-IoN). The study used male Wistar rats and Swiss mice treated with LIM (50 mg/kg), LIM/HPβCD (50 mg/kg), vehicle (control), gabapentin or morphine, and eyes wiping (induced by hypertonic saline), face rubbing (formalin-induced in TMJ) or mechanical hyperalgesia (provoked by CCI-IoN) were assessed. Additionally, ELISA was used to measure TNF-α, and western blot analysis to assess levels of PKAcα, NFκB, p38MAPK and phosphorylated PKC substrates. Serum levels of aspartate aminotransferase (AST) and alanine transferase (ALT) were also evaluated. RESULTS LIM and LIM/HPβCD significantly reduced (p < 0.001) corneal nociception and formalin-induced TMJ nociception. In addition, both substances attenuated (p < 0.001) mechanical hyperalgesia in the CCI-IoN model. The antinociceptive effect induced by LIM and HPβCD/LIM was associated with decreased TNF-α levels, downregulation of the NFκB and p38MAPK signalling pathways and reduced PKC substrate phosphorylation and PKA immunocontent. Moreover, the results demonstrated that complexation with HPβCD was able to decrease the therapeutic dose of LIM. CONCLUSION LIM was found to be a promising molecule for the treatment of orofacial pain due to its capacity to modulate some important mediators essential to the establishment of pain, and HPβCD can be a key tool to improve the profile of LIM.
Collapse
Affiliation(s)
- Erik W M Pereira
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luana Heimfarth
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tiffany Kb Santos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | - Adriana R Campos
- Experimental Biology Centre (NUBEX). University of Fortaleza, Fortaleza, CE, Brazil
| | | | - Patrick Martin
- Univ Artois, UniLaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
78
|
Chen Z, Higashi K, Ueda K, Moribe K. Transition from Amorphous Cyclosporin A Nanoparticles to Size-Reduced Stable Nanocrystals in a Poloxamer 407 Solution. Mol Pharm 2022; 19:188-199. [PMID: 34843257 DOI: 10.1021/acs.molpharmaceut.1c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amorphous drug nanoparticles usually exhibit low storage stability. A comprehensive understanding of the molecular states and physicochemical properties of the product is indispensable for designing stable formulations. In the present study, an amorphous cyclosporin A (CyA) nanosuspension with a mean particle size of approximately 370 nm was prepared by wet bead milling with poloxamer 407 (P407). Interestingly, the prepared amorphous CyA nanoparticles were transformed into uniform CyA nanocrystals with a reduced mean particle size of approximately 200 nm during storage at 25 °C. The CyA nanocrystals were stably maintained for at least 1 month. The particle morphologies and molecular structures of the CyA nanosuspensions before and after storage were thoroughly characterized by cryogenic transmission electron microscopy and magic-angle spinning nuclear magnetic resonance spectroscopy, respectively. They revealed that the freshly prepared amorphous CyA nanoparticles (∼370 nm) were secondary particles composed of aggregated primary particles with an estimated size of 50 nm. A portion of P407 was found to be entrapped at the gaps between the primary particles due to aggregation, while most of P407 was dissolved in the solution either adsorbing at the solid/liquid interface or forming polymeric micelles. The entrapped P407 is considered to play an important role in the destabilization of the amorphous CyA nanoparticles. The resultant CyA nanocrystals (∼200 nm) were uniform single crystals of Form 2 hydrate and showed corner-truncated bipyramidal features. Owing to the narrow particle size distribution of the CyA nanocrystals, the rate of Ostwald ripening was slow, giving long-term stability to the CyA nanocrystals. This study provides new insights into the destabilization mechanism of amorphous drug nanoparticles.
Collapse
Affiliation(s)
- Ziqiao Chen
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
79
|
MOREIRA RSDS, NOVAIS JS, SILVA RFD, NUNES RP, ABREU LCLD, DIAS EP, CASTRO HC, CARMO FAD, RODRIGUES CR, SOUSA VPD, CABRAL LM. Preparation and evaluation of red propolis and nystatin cyclodextrin inclusion complexes against oral microbiome opportunistic microorganisms. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
80
|
Native Cyclodextrins as Complexation Agents for Pterostilbene: Complex Preparation and Characterization in Solution and in the Solid State. Pharmaceutics 2021; 14:pharmaceutics14010008. [PMID: 35056903 PMCID: PMC8777607 DOI: 10.3390/pharmaceutics14010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Pterostilbene (3,5-dimethoxy-4′-hydroxystilbene, PTB) is a natural dietary stilbene, occurring primarily in blueberries and Pterocarpus marsupium heartwood. The interest in this compound is related to its different biological and pharmacological properties, such as its antioxidant, anti-inflammatory, and anticarcinogenic activities and its capacity to reduce and regulate cholesterol and blood sugar levels. Nevertheless, its use in therapy is hindered by its low aqueous solubility; to overcome this limitation we studied the feasibility of the use of cyclodextrins (CDs) as solubility-enhancing agents. CDs are natural macrocyclic oligomers composed of α-d-glucose units linked by α-1,4 glycosidic bonds to form torus-shaped molecules, responsible for inclusion complex formation with organic molecules. In particular, the aim of this study was to evaluate the feasibility of complexation between PTB and native CDs using various preparative methods. The isolated solid products were characterized using differential scanning calorimetry (DSC), simultaneous thermogravimetric/DSC analysis (TGA/DSC), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) on powder and single crystals. The results indicated little or no evidence of the affinity of PTB to complex with α-CD using the kneading method. However, with β-CD and γ-CD thermal analysis revealed an interaction which was also corroborated by FT-IR and 1H-NMR spectroscopy. With β-CD, a hydrated complex of PTB was isolated and its characterization by single-crystal XRD revealed, for the first time, the mode of inclusion of the PTB molecule in the cavity of a CD. To complement the solid-state data, liquid-phase studies were carried out to establish the effect of CDs on the aqueous solubility of PTB and to determine the complex stoichiometries and the association constants for complex formation. Phase-solubility studies showed AL-type profiles for α- and β-CD and a BS profile for γ-CD, with K1:1 values of 1144, 4950, and 133 M−1 for α-CD·PTB, β-CD·PTB, and γ-CD·PTB, respectively. The stoichiometry of CD·PTB complexes, determined by Job’s method, revealed for each system a 1:1 molar ratio. The dissolution rate of PTB was approximately doubled just by employing simple physical mixtures, but the best performance was achieved by products obtained via kneading and co-precipitation, which effected the complete dissolution of PTB in 40 and 20 min for β-CD and γ-CD, respectively.
Collapse
|
81
|
Mendonça MCP, Cronin MF, Cryan JF, O'Driscoll CM. Modified cyclodextrin-based nanoparticles mediated delivery of siRNA for huntingtin gene silencing across an in vitro BBB model. Eur J Pharm Biopharm 2021; 169:309-318. [PMID: 34793942 DOI: 10.1016/j.ejpb.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene, leading to a toxic version of the HTT protein. There are currently no disease-modifying therapies available. In this scenario, gene-based treatments for HD aimed at lowering HTT levels have become one of the most promising emerging therapeutic options. To date, however, promising results have only been achieved following direct intrathecal or intracranial injections designed to circumvent the blood-brain barrier (BBB). Consequently, efforts to develop less invasive delivery platforms are highly desirable. Here, we described a novel delivery system based on modified cyclodextrin nanoparticles (CDs) loaded with small interfering RNAs (siRNAs) targeting HTT andcomplexed with the rabies virus glycoprotein(RVG), a BBB-shuttle peptide. Results using an in vitro BBB model, indicate the formulation successfully crosses the brain endothelial cells, releases the encapsulated siRNAs into the cytoplasm of neuronal cells, and mediates downregulation of HTT. In conclusion, the CD platform is a promising option for delivery of siRNA-based therapeutics for HD with wider potential to treat other diseases with a genetically validated target in the central nervous system.
Collapse
Affiliation(s)
| | - Michael F Cronin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
82
|
Gandhi S, Shende P. Cyclodextrins-modified metallic nanoparticles for effective cancer therapy. J Control Release 2021; 339:41-50. [PMID: 34560156 DOI: 10.1016/j.jconrel.2021.09.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022]
Abstract
Cancer, a disease of unknown origin is the second most common reason of death worldwide after heart attacks and therefore is a major threat to human beings. Currently, chemotherapy is the only approach for delivering anti-cancer drugs but shows severe systemic toxicities such as alopecia, loss of appetite, anemia, gastric irritation, neurotoxicity and nephrotoxicity. Additionally, chemotherapeutics fails to achieve the expected therapeutic outcome due to their limited solubility, in-vivo instability and lack of targeting efficiency. Encapsulating drugs in metallic nanoparticles like gold, silver and metal oxides (magnetic) help to overcome limitations of chemotherapy and transports anti-cancer drugs effectively at the targeted site due to the advantages such as optimal size, surface morphology, higher conductivity and in-vivo stability. Moreover, these metals can be triggered externally using NIR radiations or magnetic field thereby improving the drug release kinetics. Some frequently used chemotherapeutic agents such as doxorubicin, paclitaxel, methotrexate, etc. degrade rapidly due to their hydrophobic nature and show in-vivo instability. Cyclodextrin offers structural compatibility for encapsulating such hydrophobic drugs and improves their loading capacity, solubility and stability without showing any systemic toxicities. Therefore, researchers designed cyclodextrin-complexed metallic nanoparticles as a novel platform to overcome pitfalls of conventional chemotherapy like gastric irritation, hair loss, neurotoxicity, etc. This review article provides detail insight of metallic nanocarriers containing cyclodextrin-encapsulated anti-cancer agents for effective cancer therapy. It can be concluded that this novel approach holds a great potential for clinical application in cancer diagnosis, treatment with minimum toxicity and maximum efficacy.
Collapse
Affiliation(s)
- Sahil Gandhi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
83
|
Snetkov P, Morozkina S, Olekhnovich R, Uspenskaya M. Diflunisal Targeted Delivery Systems: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6687. [PMID: 34772213 PMCID: PMC8588122 DOI: 10.3390/ma14216687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Diflunisal is a well-known drug for the treatment of rheumatoid arthritis, osteoarthritis, primary dysmenorrhea, and colon cancer. This molecule belongs to the group of nonsteroidal anti-inflammatory drugs (NSAID) and thus possesses serious side effects such as cardiovascular diseases risk development, renal injury, and hepatic reactions. The last clinical data demonstrated that diflunisal is one of the recognized drugs for the treatment of cardiac amyloidosis and possesses a survival benefit similar to that of clinically approved tafamidis. Diflunisal stabilizes the transthyretin (TTR) tetramer and prevents the misfolding of monomers and dimers from forming amyloid deposits in the heart. To avoid serious side effects of diflunisal, the various delivery systems have been developed. In the present review, attention is given to the recent development of diflunisal-loaded delivery systems, its technology, release profiles, and effectiveness.
Collapse
Affiliation(s)
- Petr Snetkov
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia; (S.M.); (R.O.); (M.U.)
| | | | | | | |
Collapse
|
84
|
Khalil NK, Abo Dena AS, El-Sherbiny IM. Boosting the mechanical strength and solubility-enhancement properties of hydroxypropyl-β-cyclodextrin nanofibrous films. Drug Dev Ind Pharm 2021; 47:1413-1423. [PMID: 34735303 DOI: 10.1080/03639045.2021.1995407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
2-hydroxypropyl-β-cyclodextrin (HPβCD) nanofiber films have high surface-to-volume ratio and show high dissolution rate of hydrophobic drugs. However, the solubility-enhancement effect of HPβCD films may not be enough to include an effective dose in a sublingually administrable film. Moreover, unmodified HPβCD films are very brittle and difficultly transported and/or handled. So, the addition of polyethylene glycol (PEG) as a plasticizer was suggested to improve their ultimate tensile strength (UTS) and solubilization of hydrophobic drugs. Accordingly, six nanofiber films were developed and characterized, using three molecular weights of PEG (400, 1500 and 6000 Da) with two concentrations each (1:100 and 2:100 PEG:HPβCD), in addition to the unmodified HPβCD nanofibrous film. The results revealed that adding 1:100 of PEG 400 increases the UTS (∼2-fold) and the average fiber diameter (AFD) (∼3-fold). Moreover, the addition of PEG 400 significantly increased the solubility of two hydrophobic model drugs; coumarin (up to 7.7-fold of the original solubility) and 2-nitroimidazole (up to 1.6-fold of the original solubility). However, with higher PEG concentration/molecular weight, both AFD and UTS of the films decreased. On the other hand, it was noted that the solubility of the two model drugs decreased upon using 1500-Da PEG, and then increased with 6000-Da PEG.
Collapse
Affiliation(s)
- Noha K Khalil
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt.,Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
85
|
Cyclodextrin Polymers as Delivery Systems for Targeted Anti-Cancer Chemotherapy. Molecules 2021; 26:molecules26196046. [PMID: 34641590 PMCID: PMC8512365 DOI: 10.3390/molecules26196046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/09/2022] Open
Abstract
In the few last years, nanosystems have emerged as a potential therapeutic approach to improve the efficacy and selectivity of many drugs. Cyclodextrins (CyDs) and their nanoparticles have been widely investigated as drug delivery systems. The covalent functionalization of CyD polymer nanoparticles with targeting molecules can improve the therapeutic potential of this family of nanosystems. In this study, we investigated cross-linked γ- and β-cyclodextrin polymers as carriers for doxorubicin (ox) and oxaliplatin (Oxa). We also functionalized γ-CyD polymer bearing COOH functionalities with arginine-glycine-aspartic or arginine moieties for targeting the integrin receptors of cancer cells. We tested the Dox and Oxa anti-proliferative activity in the presence of the precursor polymer with COOH functionalities and its derivatives in A549 (lung, carcinoma) and HepG2 (liver, carcinoma) cell lines. We found that CyD polymers can significantly improve the antiproliferative activity of Dox in HepG2 cell lines only, whereas the cytotoxic activity of Oxa resulted as enhanced in both cell lines. The peptide or amino acid functionalized CyD polymers, loaded with Dox, did not show any additional effect compared to the precursor polymer. Finally, studies of Dox uptake showed that the higher antiproliferative activity of complexes correlates with the higher accumulation of Dox inside the cells. The results show that CyD polymers could be used as carriers for repositioning classical anticancer drugs such as Dox or Oxa to increase their antitumor activity.
Collapse
|
86
|
Sheng TM, Kumar PV. A New Approach for β-Cyclodextrin Conjugated Drug Delivery System in Cancer Therapy. Curr Drug Deliv 2021; 19:266-300. [PMID: 34620064 DOI: 10.2174/1567201818666211006103452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Natural cyclodextrins (CDs) are macrocyclic starch molecules discovered a decade ago, in which α-, β-, and γ-CD were commonly used. They originally acted as pharmaceutical excipients to enhance the aqueous solubility and alter the physicochemical properties of drugs that fall under class II and IV categories according to the Biopharmaceutics Classification System (BPS). The industrial significance of CDs became apparent during the 1970s as scientists started to discover more of CD's potential in chemical modifications and the formation of inclusion complexes. CDs can help in masking and prolonging the half-life of drugs used in cancer. Multiple optimization techniques were discovered to prepare the derivatives of CDs and increase their complexation and drug delivery efficiency. In recent years, due to the advancement of nanotechnology in pharmaceutical sectors, there has been growing interest in CDs. This review mainly focuses on the formulation of cyclodextrin conjugated nanocarriers using graphenes, carbon nanotubes, nanosponges, hydrogels, dendrimers, and polymers to achieve drug-release characteristics specific to cells. These approaches benefit the discovery of novel anti-cancer treatments, solubilization of new drug compounds, and cell specific drug delivery properties. Due to these unique properties of CDs, they are essential in achieving and enhancing tumor-specific cancer treatment.
Collapse
Affiliation(s)
- Teng Meng Sheng
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur. Malaysia
| | - Palanirajan Vijayaraj Kumar
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur. Malaysia
| |
Collapse
|
87
|
Morgen M, Fabrowski P, Amtmann E, Gunkel N, Miller AK. Inclusion Complexes of Gold(I)-Dithiocarbamates with β-Cyclodextrin: A Journey from Drug Repurposing towards Drug Discovery. Chemistry 2021; 27:12156-12165. [PMID: 34114261 PMCID: PMC8456977 DOI: 10.1002/chem.202101366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/11/2022]
Abstract
The gold(I)-dithiocarbamate (dtc) complex [Au(N,N-diethyl)dtc]2 was identified as the active cytotoxic agent in the combination treatment of sodium aurothiomalate and disulfiram on a panel of cancer cell lines. In addition to demonstrating pronounced differential cytotoxicity to these cell lines, the gold complex showed no cross-resistance in therapy-surviving cancer cells. In the course of a medicinal chemistry campaign on this class of poorly soluble gold(I)-dtc complexes, >35 derivatives were synthesized and X-ray crystallography was used to examine structural aspects of the dtc moiety. A group of hydroxy-substituted complexes has an improved solubility profile, and it was found that these complexes form 2 : 1 host-guest inclusion complexes with β-cyclodextrin (CD), exhibiting a rarely observed "tail-to-tail" arrangement of the CD cones. Formulation of a hydroxy-substituted gold(I)-dtc complex with excess sulfobutylether-β-CD prevents the induction of mitochondrial reactive oxygen species, which is a major burden in the development of metallodrugs.
Collapse
Affiliation(s)
- Michael Morgen
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Piotr Fabrowski
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Eberhard Amtmann
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Nikolas Gunkel
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development Group (A390)German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
88
|
Progress in nasal drug delivery systems. Int J Pharm 2021; 607:120994. [PMID: 34390810 DOI: 10.1016/j.ijpharm.2021.120994] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/02/2023]
Abstract
Most of the available drugs are usually administered orally (e.g. in tablets or capsules) or by parenteral injection in the case of substances being destroyed in the gastric environment or not being absorbed. However, this bears disadvantages as many people have trouble swallowing tablets and parenteral injection requires trained personnel and/or a reasonably sterile environment to minimize the possibility of contamination. Thus, as an easy to use alternative nasal drug delivery was developed. Drug delivery systems are used to achieve a reproducible high drug concentration. These systems overcome various disadvantages leading to stabilization of the drug, advanced drug transport, improvement of the physicochemical properties of the drug like water solubility, and increase of drug uptake and bioavailability. In addition, properties such as bad taste or smell of the drug are masked. Nasal drug delivery systems are suitable for use both locally and systemically. In the last five years, the development and progression of nasal drug delivery systems has gained importance due to their numerous advantages. This work gives an overview of the basics, such as structure and function of the nose, as well as a short introduction to local and systemic application of drugs. Furthermore, selected drug delivery systems are explained with examples of active ingredients, as well as additional possibilities to increase nasal drug uptake and factors influencing the absorption.
Collapse
|
89
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics 2021; 13:pharmaceutics13081180. [PMID: 34452141 PMCID: PMC8401481 DOI: 10.3390/pharmaceutics13081180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation—Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
- Correspondence: ; Tel.: +39-079228754
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy;
| |
Collapse
|
90
|
Cirri M, Maestrelli F, Nerli G, Mennini N, D’Ambrosio M, Luceri C, Mura PA. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics 2021; 13:pharmaceutics13070969. [PMID: 34206967 PMCID: PMC8309035 DOI: 10.3390/pharmaceutics13070969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
A thermosensitive, mucoadhesive in-situ gel for clonazepam (CLZ) intranasal delivery was developed, which aimed to achieve prolonged in-situ residence and controlled drug release, overcoming problems associated with its oral or parenteral administration. Poloxamer was selected as a thermosensitive polymer and chitosan glutamate and sodium hyaluronate as mucoadhesive and permeation enhancer. Moreover, randomly methylated β-Cyclodextrin (RAMEB) was used to improve the low drug solubility. A screening DoE was applied for a systematic examination of the effect of varying the formulation components proportions on gelation temperature, gelation time and pH. Drug-loaded gels at different clonazepam-RAMEB concentrations were then prepared and characterized for gelation temperature, gelation time, gel strength, mucoadhesive strength, mucoadhesion time, and drug release properties. All formulations showed suitable gelation temperature (29-30.5 °C) and time (50-65 s), but the one with the highest drug-RAMEB concentration showed the best mucoadhesive strength, longest mucoadhesion time (6 h), and greatest release rate. Therefore, it was selected for cytotoxicity and permeation studies through Caco-2 cells, compared with an analogous formulation without RAMEB and a drug solution. Both gels were significantly more effective than the solution. However, RAMEB was essential not only to promote drug release, but also to reduce drug cytotoxicity and further improve its permeability.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
- Correspondence: ; Tel.: +39-(0)5-5457-3711
| | - Giulia Nerli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Natascia Mennini
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Mario D’Ambrosio
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Cristina Luceri
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Paola Angela Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| |
Collapse
|
91
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
92
|
Development of Mucoadhesive Buccal Film for Rizatriptan: In Vitro and In Vivo Evaluation. Pharmaceutics 2021; 13:pharmaceutics13050728. [PMID: 34063402 PMCID: PMC8157038 DOI: 10.3390/pharmaceutics13050728] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
The reduced therapeutic efficacy of rizatriptan in migraine treatment is primarily due to low oral bioavailability and extensive first pass metabolism. The purpose of this investigation was to optimize the thin mucoadhesive buccal film of rizatriptan and assess the practicability of its development as a potential substitute for conventional migraine treatment. Buccal films (FR1-FR10) were fabricated by a conventional solvent casting method utilizing a combination of polymers (Proloc, hydroxypropyl methylcellulose and Eudragit RS 100). Drug-loaded buccal films (F1-F4) were examined for mechanical, mucoadhesive, swelling and release characteristics. In vivo pharmacokinetics parameters of selected buccal film (F1) in rabbits were compared to oral administration. Films F1-F4 displayed optimal physicomechanical properties including mucoadhesive strength, which can prolong the buccal residence time. A biphasic, complete and higher drug release was seen in films F1 and F4, which followed Weibull model kinetics. The optimized film, F1, exhibited significantly higher (p < 0.005) rizatriptan buccal flux (71.94 ± 8.26 µg/cm2/h) with a short lag time. Film features suggested the drug particles were in an amorphous form, compatible with the polymers used and had an appropriate surface morphology suitable for buccal application. Pharmacokinetic data indicated a significantly higher rizatriptan plasma level (p < 0.005) and Cmax (p < 0.0001) upon buccal film application as compared to oral solution. The observed AUC0-12h (994.86 ± 95.79 ng.h/mL) in buccal treatment was two-fold higher (p < 0.0001) than the control, and the relative bioavailability judged was 245%. This investigation demonstrates the prospective of buccal films as a viable and alternative approach for effective rizatriptan delivery.
Collapse
|
93
|
Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, Patel V. Enhanced Solubility and Bioavailability of Dolutegravir by Solid Dispersion Method: In Vitro and In Vivo Evaluation-a Potential Approach for HIV Therapy. AAPS PharmSciTech 2021; 22:127. [PMID: 33835317 DOI: 10.1208/s12249-021-01995-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
Collapse
|
94
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
95
|
Exploring Charged Polymeric Cyclodextrins for Biomedical Applications. Molecules 2021; 26:molecules26061724. [PMID: 33808780 PMCID: PMC8003440 DOI: 10.3390/molecules26061724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, cyclodextrin uses have been widely reviewed and their proprieties provide a very attractive approach in different biomedical applications. Cyclodextrins, due to their characteristics, are used to transport drugs and have also been studied as molecular chaperones with potential application in protein misfolding diseases. In this study, we designed cyclodextrin polymers containing different contents of β- or γ-cyclodextrin, and a different number of guanidinium positive charges. This allowed exploration of the influence of the charge in delivering a drug and the effect in the protein anti-aggregant ability. The polymers inhibit Amiloid β peptide aggregation; such an ability is modulated by both the type of CyD cavity and the number of charges. We also explored the effect of the new polymers as drug carriers. We tested the Doxorubicin toxicity in different cell lines, A2780, A549, MDA-MB-231 in the presence of the polymers. Data show that the polymers based on γ-cyclodextrin modified the cytotoxicity of doxorubicin in the A2780 cell line.
Collapse
|
96
|
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021; 18:1491-1506. [PMID: 33734715 PMCID: PMC8824433 DOI: 10.1021/acs.molpharmaceut.0c01238] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
RNA-based therapeutics have emerged
as one of the most powerful
therapeutic options used for the modulation of gene/protein expression
and gene editing with the potential to treat neurodegenerative diseases.
However, the delivery of nucleic acids to the central nervous system
(CNS), in particular by the systemic route, remains a major hurdle.
This review will focus on the strategies for systemic delivery of
therapeutic nucleic acids designed to overcome these barriers. Pathways
and mechanisms of transport across the blood–brain barrier
which could be exploited for delivery are described, focusing in particular
on smaller nucleic acids including antisense oligonucleotides (ASOs)
and small interfering RNA (siRNA). Approaches used to enhance delivery
including chemical modifications, nanocarrier systems, and target
selection (cell-specific delivery) are critically analyzed. Learnings
achieved from a comparison of the successes and failures reported
for CNS delivery of ASOs versus siRNA will help identify opportunities
for a wider range of nucleic acids and accelerate the clinical translation
of these innovative therapies.
Collapse
Affiliation(s)
- Monique C P Mendonça
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Ayse Kont
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
97
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
98
|
Ghiciuc CM, Shleghm MR, Vasile C, Tantaru G, Creteanu A, Ochiuz L. Study on Acute Toxicity of Amiodarone New Complexes With Cyclodextrin. Front Pharmacol 2021; 12:640705. [PMID: 33897429 PMCID: PMC8058604 DOI: 10.3389/fphar.2021.640705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Amiodarone low solubility and high permeability is the limiting step for its bioavailability, therefore new formulations are needed to improve the solubility of amiodarone either to increase its oral bioavailability or to reduce its toxic effects. Complexation of amiodarone with cyclodextrin results in improved dissolution rate, solubility, and allows for a more controlled drug release. We characterized the acute toxicity of a new amiodarone 2-hydroxypropyl-β-cyclodextrin complex (AMD/HP-β-CD) as powdered form and as a matrix based on Kollidon® and chitosan, administered intraperitoneally in laboratory animals. There were developed two formulations of matrix: one containing only pure AMD as a control sample (Fc) and one containing the inclusion complex with the optimal solubility (F). AMD was equitoxic with HP-β-CD after intraperitoneal administration (289.4 mg/kg for AMD and 298.3 mg/kg for AMD/HP-β-CD), with corresponding histopathological changes. The matrix based formulations presented higher LD50 values for acute toxicity, of 347.5 mg/kg for Fc and 455.6 mg/kg for F10, conducting to the idea of a safer administration because KOL and CHT matrix modified the solubility and controlled the AMD release. The LD50 is 1.5 higher for AMD/HP-β-CD included in a KOL and CHT based matrix compared to the pure AMD, administered intraperitoneally.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maytham Razaq Shleghm
- Department of “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Gladiola Tantaru
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Andreea Creteanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Lacramioara Ochiuz
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
99
|
Dos Santos Silva Araújo L, Lazzara G, Chiappisi L. Cyclodextrin/surfactant inclusion complexes: An integrated view of their thermodynamic and structural properties. Adv Colloid Interface Sci 2021; 289:102375. [PMID: 33592397 DOI: 10.1016/j.cis.2021.102375] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) play an important role in self-assembly systems of amphiphiles. The structure of CDs provides distinguished physicochemical properties, including the ability to form host-guest complexes. The complexation affects the properties of guest molecules and can produce supramolecular aggregates with desirable characteristics for fundamental and practical applications. Surfactants are particularly attractive host molecules due to their wide variety, availability, responsiveness to different stimuli, and high relevance in different fields, e.g. medical, cosmetic, pharmaceutical, and food industries. The tendency of organization in higher-order supramolecular aggregates arises the interest in applying such versatile complexes in the development of novel materials. In this review, we provide a comprehensive overview of the thermodynamics aspects of surfactants and CDs inclusion complexes formation in aqueous environment, emphasizing the assessment of the interactions, thermodynamic driving forces, and structural aspects. Also, the most common analytical techniques used to gather deep insight into the aspects of CDs complexes are discussed and the perspectives for the surfactant-cyclodextrin complexes are pointed out.
Collapse
Affiliation(s)
- Larissa Dos Santos Silva Araújo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy; Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy.
| | - Leonardo Chiappisi
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
100
|
Möller K, Macaulay B, Bein T. Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:489. [PMID: 33672006 PMCID: PMC7919290 DOI: 10.3390/nano11020489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
The efficiency of anti-cancer drugs is commonly determined by endpoint assays after extended incubation times, often after days. Here we demonstrate that curcumin encapsulated in crosslinked cyclodextrin nanoparticles (CD-NP) acts extremely rapidly on cell metabolism resulting in an immediate and complete inhibition of cell growth and in efficient cancer-cell killing only few hours after incubation. This early onset of anti-cancer action was discovered by live-cell high-throughput fluorescence microscopy using an environmental stage. To date, only very few examples of covalently crosslinked nanoscale CD-based (CD-NP) drug carriers exist. Crosslinking cyclodextrins enables the adsorption of unusually high payloads of hydrophobic curcumin (762 µg CC/mg CD-NP) reflecting a molar ratio of 2.3:1 curcumin to cyclodextrin. We have investigated the effect of CD-NP encapsulated curcumin (CD-CC-NP) in comparison to free, DMSO-derived curcumin nanoparticles (CC-NP) on 4 different cell lines. Very short incubations times as low as 1 h were applied and cell responses after medium change were subsequently followed over two days. We show that cell proliferation is inhibited nearly immediately in all cell lines and that a cell- and concentration dependent cancer-cell killing occurs. Anti-cancer effects were similar with free and encapsulated curcumin, however, encapsulation in CD-NP drastically extends the long-term photostability and anti-cancer activity of curcumin. Curcumin-sensitivity is highest in HeLa cells reaching up to 90% cell death under these conditions. Sensitivity decreased from HeLa to T24 to MDA MB-231 cells. Strikingly, the immortalized non-cancerous cell line MCF-10A was robust against curcumin concentrations that were highly toxic to the other cell lines. Our results underline the potential of curcumin as gentle and yet effective natural anti-cancer agent when delivered solvent-free in stabilizing and biocompatible drug carriers such as CD-NP that enable efficient cellular delivery.
Collapse
Affiliation(s)
- Karin Möller
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| |
Collapse
|