51
|
Rolfs N, Huber C, Schwarzkopf E, Mentzer D, Keller-Stanislawski B, Opgen-Rhein B, Frede W, Rentzsch A, Hecht T, Boehne M, Grafmann M, Kiski D, Graumann I, Foth R, Voges I, Schweigmann U, Ruf B, Fischer M, Wiegand G, Klingel K, Pickardt T, Friede T, Messroghli D, Schubert S, Seidel F. Clinical course and follow-up of pediatric patients with COVID-19 vaccine-associated myocarditis compared to non-vaccine-associated myocarditis within the prospective multicenter registry-"MYKKE". Am Heart J 2024; 267:101-115. [PMID: 37956921 DOI: 10.1016/j.ahj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Since the onset of widespread COVID-19 vaccination, increased incidence of COVID-19 vaccine-associated myocarditis (VA-myocarditis) has been noted, particularly in male adolescents. METHODS Patients <18 years with suspected myocarditis following COVID-19 vaccination within 21 days were enrolled in the PedMYCVAC cohort, a substudy within the prospective multicenter registry for pediatric myocarditis "MYKKE." Clinical data at initial admission, 3- and 9-months follow-up were monitored and compared to pediatric patients with confirmed non-vaccine-associated myocarditis (NVA-myocarditis) adjusting for various baseline characteristics. RESULTS From July 2021 to December 2022, 56 patients with VA-myocarditis across 15 centers were enrolled (median age 16.3 years, 91% male). Initially, 11 patients (20%) had mildly reduced left ventricular ejection fraction (LVEF; 45%-54%). No incidents of severe heart failure, transplantation or death were observed. Of 49 patients at 3-months follow-up (median (IQR) 94 (63-118) days), residual symptoms were registered in 14 patients (29%), most commonly atypical intermittent chest pain and fatigue. Diagnostic abnormalities remained in 23 patients (47%). Of 21 patients at 9-months follow-up (259 (218-319) days), all were free of symptoms and diagnostic abnormalities remained in 9 patients (43%). These residuals were mostly residual late gadolinium enhancement in magnetic resonance imaging. Patients with NVA-myocarditis (n=108) more often had symptoms of heart failure (P = .003), arrhythmias (P = .031), left ventricular dilatation (P = .045), lower LVEF (P < .001) and major cardiac adverse events (P = .102). CONCLUSIONS Course of COVID-19 vaccine-associated myocarditis in pediatric patients seems to be mild and differs from non-vaccine-associated myocarditis. Due to a considerable number of residual symptoms and diagnostic abnormalities at follow-up, further studies are needed to define its long-term implications.
Collapse
Affiliation(s)
- Nele Rolfs
- Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Cynthia Huber
- Medical Statistics, Universitätsmedizin Goettingen, Goettingen, Germany
| | - Eicke Schwarzkopf
- Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dirk Mentzer
- Paul-Ehrlich-Institut - Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Bernd Opgen-Rhein
- Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wiebke Frede
- Pediatric Cardiology and Congenital Heart Defects, Center for Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Axel Rentzsch
- Department of Pediatric Cardiology, Saarland University Hospital, Homburg (Saar), Germany
| | - Tobias Hecht
- Center of Congenital Heart Disease and Pediatric Cardiology, Heart- and Diabetes Center NRW and University Clinic of Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Martin Boehne
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Maria Grafmann
- Department of Pediatric Cardiology, Children's Heart Clinic, University Heart & Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Kiski
- Department of Pediatric Cardiology, University Hospital Muenster, Muenster, Germany
| | - Iva Graumann
- Department of Pediatrics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Rudi Foth
- Department of Pediatric Cardiology, Universitätsmedizin Goettingen, Goettingen, Germany
| | - Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Kiel, Germany
| | | | - Bettina Ruf
- Department of Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Marcus Fischer
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig Maximilians University of Munich, Munich, Germany
| | - Gesa Wiegand
- Department of Pediatric Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Pickardt
- Competence Network for Congenital Heart Defects, Berlin, Germany
| | - Tim Friede
- Medical Statistics, Universitätsmedizin Goettingen, Goettingen, Germany
| | - Daniel Messroghli
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Stephan Schubert
- Center of Congenital Heart Disease and Pediatric Cardiology, Heart- and Diabetes Center NRW and University Clinic of Ruhr-University Bochum, Bad Oeynhausen, Germany; DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Franziska Seidel
- Department of Congenital Heart Disease - Pediatric Cardiology, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
52
|
Di Florio DN, Macomb LP, Giresi PG, Beetler DJ, Bonvie-Hill NE, Shapiro KA, Naser ARN, Khatib S, Whelan ER, Weigel GJ, Edenfield BH, Balamurugan V, Burris SK, Rich LJ, Bruno KA, Cooper LT, McLeod CJ, Yamani MH, Fairweather D. Sex differences in left-ventricular strain in a murine model of coxsackievirus B3 myocarditis. iScience 2023; 26:108493. [PMID: 38146431 PMCID: PMC10749256 DOI: 10.1016/j.isci.2023.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 12/27/2023] Open
Abstract
Myocarditis is typically caused by viral infections, but most cases are thought to be subclinical. Echocardiography is often used for initial assessment of myocarditis patients but is poor at detecting subtle changes in cardiac dysfunction. Cardiac strain, such as global longitudinal strain (GLS) and global circumferential strain (GCS), represents an increasingly used set of measurements which can detect these subtle changes. Using a murine model of coxsackievirus B3 myocarditis, we characterized functional changes in the heart using echocardiography during myocarditis and by sex. We found that 2D GLS, 4D mode, and 4D strains detected a significant reduction in ejection fraction and GLS during myocarditis compared to baseline and in males compared to females. Furthermore, worse GLS correlated to increased levels of CD45+, CD11b+, and CD3+ immune cells. Our findings closely resemble published reports of GLS in patients with myocarditis indicating the usefulness of this animal model for translational studies of myocarditis.
Collapse
Affiliation(s)
- Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Presley G. Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Katie A. Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sami Khatib
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Gabriel J. Weigel
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Chris J. McLeod
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Mohamad H. Yamani
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
53
|
Baritussio A, Giordani AS, Basso C, Vicenzetto C, Lorenzoni G, Gasparin M, Iliceto S, Scarpa B, Gregori D, Marcolongo R, Caforio ALP. Uneventful COVID-19 Infection and Vaccination in a Cohort of Patients with Prior Myocarditis. Vaccines (Basel) 2023; 11:1742. [PMID: 38140147 PMCID: PMC10747303 DOI: 10.3390/vaccines11121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Myocarditis has in rare cases been associated with COVID-19 infection and has emerged as a possible rare side effect of vaccination with anti-COVID-19 messenger RNA vaccines. However, little is known about possible COVID-19 infection- and/or vaccination-related myocarditis relapse in patients with previous clinically suspected or biopsy-proven myocarditis. Myocarditis may relapse, particularly in females with immune-mediated/autoimmune features and a predisposing immunogenetic background. We aimed to assess the prevalence of myocarditis relapse during the COVID-19 outbreak and following COVID-19 vaccination in a cohort of patients with prior myocarditis. We included in the analysis myocarditis patients on active follow-up, for whom COVID-19 infection and vaccination statuses were known, and collected data on clinical, laboratory and echocardiographic findings, and myocarditis relapse. We enrolled 409 patients, of whom 114 (28%) reported COVID-19 infection and 347 (85%) completed the vaccination scheme. Only one patient, having COVID-19 infection before the vaccination campaign started, was admitted to hospital because of pneumonia; the remaining patients had an uneventful COVID-19 infection course, with only mild symptoms. No myocarditis relapse was recorded following COVID-19 infection or vaccination. Moreover, the frequency of new myocarditis cases following the COVID-19 outbreak was not different compared to the three-year period preceding the COVID-19 era. In conclusion, in our cohort of patients with prior myocarditis, both COVID-19 infection and vaccination were uneventful.
Collapse
Affiliation(s)
- Anna Baritussio
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, University of Padua, 35128 Padua, Italy; (A.B.); (A.S.G.); (C.V.); (S.I.); (R.M.)
| | - Andrea Silvio Giordani
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, University of Padua, 35128 Padua, Italy; (A.B.); (A.S.G.); (C.V.); (S.I.); (R.M.)
| | - Cristina Basso
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Cristina Vicenzetto
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, University of Padua, 35128 Padua, Italy; (A.B.); (A.S.G.); (C.V.); (S.I.); (R.M.)
| | - Giulia Lorenzoni
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (G.L.); (D.G.)
| | - Matteo Gasparin
- Department of Statistical Sciences, University of Padua, 35121 Padua, Italy; (M.G.); (B.S.)
| | - Sabino Iliceto
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, University of Padua, 35128 Padua, Italy; (A.B.); (A.S.G.); (C.V.); (S.I.); (R.M.)
| | - Bruno Scarpa
- Department of Statistical Sciences, University of Padua, 35121 Padua, Italy; (M.G.); (B.S.)
- Department of Mathematics “Tullio Levi Civita”, University of Padua, 35131 Padua, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (G.L.); (D.G.)
| | - Renzo Marcolongo
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, University of Padua, 35128 Padua, Italy; (A.B.); (A.S.G.); (C.V.); (S.I.); (R.M.)
| | - Alida Linda Patrizia Caforio
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, University of Padua, 35128 Padua, Italy; (A.B.); (A.S.G.); (C.V.); (S.I.); (R.M.)
| |
Collapse
|
54
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
55
|
Abstract
Myocarditis is frequently caused by viral infections, but animal models that closely resemble human disease suggest that virus-triggered autoimmune disease is the most likely cause of myocarditis. Myocarditis is a rare condition that occurs primarily in men under age 50. The incidence of myocarditis rose at least 15x during the COVID-19 pandemic from 1-10 to 150-400 cases/100,000 individuals, with most cases occurring in men under age 50. COVID-19 vaccination was also associated with rare cases of myocarditis primarily in young men under 50 years of age with an incidence as high as 50 cases/100,000 individuals reported for some mRNA vaccines. Sex differences in the immune response to COVID-19 are virtually identical to the mechanisms known to drive sex differences in myocarditis pre-COVID based on clinical studies and animal models. The many similarities between COVID-19 vaccine-associated myocarditis to COVID-19 myocarditis and non-COVID myocarditis suggest common immune mechanisms drive disease.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
56
|
Buergin N, Lopez-Ayala P, Hirsiger JR, Mueller P, Median D, Glarner N, Rumora K, Herrmann T, Koechlin L, Haaf P, Rentsch K, Battegay M, Banderet F, Berger CT, Mueller C. Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail 2023; 25:1871-1881. [PMID: 37470105 DOI: 10.1002/ejhf.2978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
AIMS To explore the incidence and potential mechanisms of oligosymptomatic myocardial injury following COVID-19 mRNA booster vaccination. METHODS AND RESULTS Hospital employees scheduled to undergo mRNA-1273 booster vaccination were assessed for mRNA-1273 vaccination-associated myocardial injury, defined as acute dynamic increase in high-sensitivity cardiac troponin T (hs-cTnT) concentration above the sex-specific upper limit of normal on day 3 (48-96 h) after vaccination without evidence of an alternative cause. To explore possible mechanisms, antibodies against interleukin-1 receptor antagonist (IL-1RA), the SARS-CoV-2-nucleoprotein (NP) and -spike (S1) proteins and an array of 14 inflammatory cytokines were quantified. Among 777 participants (median age 37 years, 69.5% women), 40 participants (5.1%; 95% confidence interval [CI] 3.7-7.0%) had elevated hs-cTnT concentration on day 3 and mRNA-1273 vaccine-associated myocardial injury was adjudicated in 22 participants (2.8% [95% CI 1.7-4.3%]). Twenty cases occurred in women (3.7% [95% CI 2.3-5.7%]), two in men (0.8% [95% CI 0.1-3.0%]). Hs-cTnT elevations were mild and only temporary. No patient had electrocardiographic changes, and none developed major adverse cardiac events within 30 days (0% [95% CI 0-0.4%]). In the overall booster cohort, hs-cTnT concentrations (day 3; median 5, interquartile range [IQR] 4-6 ng/L) were significantly higher compared to matched controls (n = 777, median 3 [IQR 3-5] ng/L, p < 0.001). Cases had comparable systemic reactogenicity, concentrations of anti-IL-1RA, anti-NP, anti-S1, and markers quantifying systemic inflammation, but lower concentrations of interferon (IFN)-λ1 (IL-29) and granulocyte-macrophage colony-stimulating factor (GM-CSF) versus persons without vaccine-associated myocardial injury. CONCLUSION mRNA-1273 vaccine-associated myocardial injury was more common than previously thought, being mild and transient, and more frequent in women versus men. The possible protective role of IFN-λ1 (IL-29) and GM-CSF warrant further studies.
Collapse
Affiliation(s)
- Natacha Buergin
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pedro Lopez-Ayala
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Department of Biomedicine, Translational Immunology, University of Basel, Basel, Switzerland
| | - Philip Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Median
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Noemi Glarner
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Klara Rumora
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Timon Herrmann
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luca Koechlin
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Philip Haaf
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina Rentsch
- Department of Laboratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Manuel Battegay
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Florian Banderet
- Department of Internal Medicine, Medical Outpatient Unit, University Hospital Basel, Basel, Switzerland
- Health Service, University Hospital Basel, Basel, Switzerland
| | - Christoph T Berger
- Department of Biomedicine, Translational Immunology, University of Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
57
|
Tomasoni D, Adamo M, Metra M. October 2023 at a glance: From prevention to diagnosis, prognosis and treatment of acute decompensation and comorbidities. Eur J Heart Fail 2023; 25:1719-1721. [PMID: 37903656 DOI: 10.1002/ejhf.3070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Affiliation(s)
- Daniela Tomasoni
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW The successes of the coronavirus disease 2019 (COVID-19) mRNA vaccines have accelerated the development of mRNA vaccines against other respiratory pathogens. The aim of this review is to highlight COVID-19 mRNA vaccine advances and provide an update on the progress of mRNA vaccine development against other respiratory pathogens. RECENT FINDINGS The COVID-19 mRNA vaccines demonstrated effectiveness in preventing severe COVID-19 and death. H7N9 and H10N8 avian influenza mRNA vaccines have demonstrated safety and immunogenicity in phase 1 clinical trials. Numerous seasonal influenza mRNA vaccines are in phase 1-3 clinical trials. Respiratory syncytial virus (RSV) mRNA vaccines have progressed to phase 2-3 clinical trials in adults and a phase 1 clinical trial in children. A combined human metapneumovirus and parainfluenza-3 mRNA vaccines was found to be well tolerated and immunogenic in a phase 1 trial among adults and trials are being conducted among children. Clinical trials of mRNA vaccines combining antigens from multiple respiratory viruses are underway. SUMMARY The development of mRNA vaccines against respiratory viruses has progressed rapidly in recent years. Promising vaccine candidates are moving through the clinical development pathway to test their efficacy in preventing disease against respiratory viral pathogens.
Collapse
Affiliation(s)
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology
- Department of Medicine
| | - C Mary Healy
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
59
|
Ciabatti M, Zocchi C, Olivotto I, Bolognese L, Pieroni M. Myocarditis and COVID-19 related issues. Glob Cardiol Sci Pract 2023; 2023:e202328. [PMID: 38404624 PMCID: PMC10886760 DOI: 10.21542/gcsp.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/12/2023] [Indexed: 02/27/2024] Open
Abstract
The recent COVID-19 (Coronavirus Disease 2019) pandemic by SARS-CoV2 infection has caused millions of deaths and hospitalizations across the globe. In the early pandemic phases, the infection had been initially considered a primary pulmonary disease. However, increasing evidence has demonstrated a wide range of possible cardiac involvement. Most of systemic and cardiac damage is likely sustained by a complex interplay between inflammatory, immune-related and thrombotic mechanisms. Biventricular failure and myocardial damage with elevation of cardiac biomarkers have been reported in COVID-19 patients, although histological demonstration of acute myocarditis has been rarely documented. Indeed while cardiac magnetic resonance findings include different patterns of myocardial involvement in terms of late gadolinium enhancement, histological data from necropsy and endomyocardial biopsy showed peculiar inflammatory patterns, mostly composed by macrophages. On the other hand COVID-19 vaccines based on mRN technology have been also associated with increased risk of myocarditis. COVID-19 and mRNA vaccine-related myocarditis present different clinical and imaging presentations and recent data suggest the presence of distinctive immunological mechanisms involved.
Collapse
Affiliation(s)
| | - Chiara Zocchi
- Cardiovascular Department, San Donato Hospital, Arezzo, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital, Florence, Italy
| | | | | |
Collapse
|
60
|
Tran H, Vu VH, Tran D, Pham QDD, Nguyen KD, Truong BQ. Myocarditis Following Inactivated SARS-CoV-2 Vaccine (Vero Cell) in an Adult Female in Vietnam: A Case Report. Int Med Case Rep J 2023; 16:551-559. [PMID: 37732113 PMCID: PMC10508278 DOI: 10.2147/imcrj.s410806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/03/2023] [Indexed: 09/22/2023] Open
Abstract
During the Coronavirus disease 2019 (COVID-19) pandemic, vaccination against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has proven to be an important measure to help control disease spread and improve patient outcome. There are four distinct vaccine categories: inactivated viral vaccines, messenger RNA (mRNA) vaccines, adenovirus vector-based vaccines, and adjuvanted protein vaccines. In 2021, increased cases of myocarditis and pericarditis were reported after mRNA and adenovirus vector-based COVID-19 vaccination. A similar reporting pattern has not been observed after receipt of inactivated virus vaccines. Here, we present a case of clinically suspected acute myocarditis in a 26-year-old female, occurring 11 days after the administration of Sinopharm Vero Cell, an inactivated virus COVID-19 vaccine. This event led to acute heart failure, with marked clinical resolution observed within 34 days.
Collapse
Affiliation(s)
- Hoa Tran
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Hoang Vu
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duc Tran
- Cardiovascular Center, University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Quang Dang Duy Pham
- Cardiovascular Center, University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Khang Duong Nguyen
- Cardiovascular Center, University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Binh Quang Truong
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
61
|
Abstract
The development of safe and effective vaccines against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a major turning point in the fight against the Coronavirus 2019 (COVID-19) pandemic. However, pharmacovigilance has revealed a small but significant incidence of cardiac inflammation manifesting clinically as myocarditis or pericarditis, particularly in younger vaccine recipients. The incidence is the highest among men under age 40 within a week of receiving the second dose of the mRNA vaccine. In this review, we summarise the evidence for, and guidelines in relation to, SARS-CoV2 vaccine-related myocarditis.
Collapse
Affiliation(s)
| | - Alina Hua
- Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London UK
| | - Tevfik Ismail
- King's College London, London, UK, and reader, King's College London, UK
| |
Collapse
|
62
|
Pari B, Babbili A, Kattubadi A, Thakre A, Thotamgari S, Gopinathannair R, Olshansky B, Dominic P. COVID-19 Vaccination and Cardiac Arrhythmias: A Review. Curr Cardiol Rep 2023; 25:925-940. [PMID: 37530946 DOI: 10.1007/s11886-023-01921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW In this review, we aim to delve into the existing literature, seeking to uncover the mechanisms, investigate the electrocardiographic changes, and examine the treatment methods of various cardiac arrhythmias that occur after administration of the COVID-19 vaccine. RECENT FINDINGS A global survey has exposed an incidence of arrhythmia in 18.27% of hospitalized COVID-19 patients. Furthermore, any type of COVID-19 vaccine - be it mRNA, adenovirus vector, whole inactivated, or protein subunit - appears to instigate cardiac arrhythmias. Among the cardiac adverse events reported post-COVID-19 vaccination, myocarditis emerges as the most common and is thought to be a potential cause of bradyarrhythmia. When a patient post-COVID-19 vaccination presents a suspicion of cardiac involvement, clinicians should perform a comprehensive history and physical examination, measure electrolyte levels, conduct ECG, and carry out necessary imaging studies. In our extensive literature search, we uncovered various potential mechanisms that might lead to cardiac conduction abnormalities and autonomic dysfunction in patients who have received the COVID-19 vaccine. These mechanisms encompass direct viral invasion through molecular mimicry/spike (S) protein production, an escalated inflammatory response, hypoxia, myocardial cell death, and the eventual scar/fibrosis. They correspond to a range of conditions including atrial tachyarrhythmias, bradyarrhythmia, ventricular arrhythmias, sudden cardiac death, and the frequently occurring myocarditis. For treating these COVID-19 vaccination-induced arrhythmias, we should incorporate general treatment strategies, similar to those applied to arrhythmias from other causes.
Collapse
Affiliation(s)
- Bavithra Pari
- Department of Medicine, LSUHSC-S, Shreveport, LA, USA
| | | | | | - Anuj Thakre
- Department of Medicine, LSUHSC-S, Shreveport, LA, USA
| | | | - Rakesh Gopinathannair
- The Kansas City Heart Rhythm Institute (KCHRI) & Research Foundation, Overland Park Regional Medical Center, KS, Kansas City, USA
| | - Brian Olshansky
- Division of Cardiology, Department of Medicine, The University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Paari Dominic
- Division of Cardiology, Department of Medicine, The University of Iowa, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
63
|
Golpour A, Suwalski P, Landmesser U, Heidecker B. Case report: Magnetocardiography as a potential method of therapy monitoring in amyloidosis. Front Cardiovasc Med 2023; 10:1224578. [PMID: 37663414 PMCID: PMC10469684 DOI: 10.3389/fcvm.2023.1224578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Amyloidosis is characterized by a disorder of protein conformation and metabolism, resulting in deposits of insoluble fibrils in various organs causing functional disturbances. Amyloidosis can also affect the heart. Cardiac amyloidosis tends to have a poor prognostic outcome if diagnosed at a late stage. Therefore, early diagnosis and initiation of therapy as well as monitoring of treatment response are crucial to improve outcomes and to learn more about its pathophysiology and clinical course. We present an 83-year-old woman with cardiac transthyretin amyloidosis (ATTR) who was treated with tafamidis. The patient significantly improved 18 months after initiation of therapy with regards to exercise capacity and quality of life. In addition to standard diagnostic methods, we used magnetocardiography (MCG) to monitor potential treatment response by detecting changes in the magnetic field of the heart. MCG is a non-invasive method that detects the cardiac magnetic field generated by electrical currents in the heart with high sensitivity. We have recently shown that this magnetic field changes in various types of cardiomyopathies may be used as a non-invasive screening tool. We determined previously that an MCG vector ≥0.052 was the optimal threshold to detect cardiac amyloidosis. The patient's MCG was measured at various time points during therapy. At the time of diagnosis, the patient's MCG vector was 0.052. After starting therapy, the MCG vector increased to 0.090, but improved to 0.037 after 4 months of therapy. The MCG vector reached a value of 0.017 after 5 months of therapy with tafamidis, and then increased slightly after 27 months to a value of 0.027 (<0.052). Data from this case support our previous findings that MCG may be used to monitor treatment response non-invasively. Further research is needed to understand the unexpected changes in the MCG vector that were observed at the beginning of therapy and later in the course. Larger studies will be necessary to determine how these changes in the electromagnetic field of the heart are related to structural changes and how they affect clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany
| |
Collapse
|
64
|
Reddy P, Kane GC, Oh JK, Luis SA. The Evolving Etiologic and Epidemiologic Portrait of Pericardial Disease. Can J Cardiol 2023; 39:1047-1058. [PMID: 37217161 DOI: 10.1016/j.cjca.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Pericardial disease includes a variety of conditions, including inflammatory pericarditis, pericardial effusions, constrictive pericarditis, pericardial cysts, and primary and secondary pericardial neoplasms. The true incidence of this varied condition is not well established, and the causes vary greatly across the world. This review aims to describe the changing pattern of epidemiology of pericardial disease and to provide an overview of causative etiologies. Idiopathic pericarditis (assumed most often to be viral) remains the most common etiology for pericardial disease globally, with tuberculous pericarditis being most common in developing countries. Other important etiologies include fungal, autoimmune, autoinflammatory, neoplastic (both benign and malignant), immunotherapy-related, radiation therapy-induced, metabolic, postcardiac injury, postoperative, and postprocedural causes. Improved understanding of the immune pathophysiological pathways has led to identification and reclassification of some idiopathic pericarditis cases into autoinflammatory etiologies, including immunoglobulin G (IgG)4-related pericarditis, tumour necrosis factor receptor-associated periodic syndrome (TRAPS), and familial Mediterranean fever in the current era. Contemporary advances in percutaneous cardiac interventions and the recent COVID-19 pandemic have also resulted in changes in the epidemiology of pericardial diseases. Further research is needed to improve our understanding of the etiologies of pericarditis, using the assistance of contemporary advanced imaging techniques and laboratory testing. Careful consideration of the range of potential causes and local epidemiologic patterns of causality are important for the optimization of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Prajwal Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Garvan C Kane
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jae K Oh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sushil Allen Luis
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
65
|
Root-Bernstein R, Huber J, Ziehl A, Pietrowicz M. SARS-CoV-2 and Its Bacterial Co- or Super-Infections Synergize to Trigger COVID-19 Autoimmune Cardiopathies. Int J Mol Sci 2023; 24:12177. [PMID: 37569555 PMCID: PMC10418384 DOI: 10.3390/ijms241512177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Autoimmune cardiopathies (AC) following COVID-19 and vaccination against SARS-CoV-2 occur at significant rates but are of unknown etiology. This study investigated the possible roles of viral and bacterial mimicry, as well as viral-bacterial co-infections, as possible inducers of COVID-19 AC using proteomic methods and enzyme-linked immunoadsorption assays. BLAST and LALIGN results of this study demonstrate that SARS-CoV-2 shares a significantly greater number of high quality similarities to some cardiac protein compared with other viruses; that bacteria such as Streptococci, Staphylococci and Enterococci also display very significant similarities to cardiac proteins but to a different set than SARS-CoV-2; that the importance of these similarities is largely validated by ELISA experiments demonstrating that polyclonal antibodies against SARS-CoV-2 and COVID-19-associated bacteria recognize cardiac proteins with high affinity; that to account for the range of cardiac proteins targeted by autoantibodies in COVID-19-associated autoimmune myocarditis, both viral and bacterial triggers are probably required; that the targets of the viral and bacterial antibodies are often molecularly complementary antigens such as actin and myosin, laminin and collagen, or creatine kinase and pyruvate kinase, that are known to bind to each other; and that the corresponding viral and bacterial antibodies recognizing these complementary antigens also bind to each other with high affinity as if they have an idiotype-anti-idiotype relationship. These results suggest that AC results from SARS-CoV-2 infections or vaccination complicated by bacterial infections. Vaccination against some of these bacterial infections, such as Streptococci and Haemophilus, may therefore decrease AC risk, as may the appropriate and timely use of antibiotics among COVID-19 patients and careful screening of vaccinees for signs of infection such as fever, diarrhea, infected wounds, gum disease, etc.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (J.H.); (A.Z.); (M.P.)
| | | | | | | |
Collapse
|
66
|
Alami A, Villeneuve PJ, Farrell PJ, Mattison D, Farhat N, Haddad N, Wilson K, Gravel CA, Crispo JAG, Perez-Lloret S, Krewski D. Myocarditis and Pericarditis Post-mRNA COVID-19 Vaccination: Insights from a Pharmacovigilance Perspective. J Clin Med 2023; 12:4971. [PMID: 37568373 PMCID: PMC10419493 DOI: 10.3390/jcm12154971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Concerns remain regarding the rare cardiovascular adverse events, myocarditis and pericarditis (myo/pericarditis), particularly in younger individuals following mRNA COVID-19 vaccination. Our study aimed to comprehensively assess potential safety signals related to these cardiac events following the primary and booster doses, with a specific focus on younger populations, including children as young as 6 months of age. Using the Vaccine Adverse Events Reporting System (VAERS), the United States national passive surveillance system, we conducted a retrospective pharmacovigilance study analyzing spontaneous reports of myo/pericarditis. We employed both frequentist and Bayesian methods and conducted subgroup analyses by age, sex, and vaccine dose. We observed a higher reporting rate of myo/pericarditis following the primary vaccine series, particularly in males and mainly after the second dose. However, booster doses demonstrated a lower number of reported cases, with no significant signals detected after the fourth or fifth doses. In children and young adults, we observed notable age and sex differences in the reporting of myo/pericarditis cases. Males in the 12-17 and 18-24-year-old age groups had the highest number of cases, with significant signals for both males and females after the second dose. We also identified an increased reporting for a spectrum of cardiovascular symptoms such as chest pain and dyspnea, which increased with age, and were reported more frequently than myo/pericarditis. The present study identified signals of myo/pericarditis and related cardiovascular symptoms after mRNA COVID-19 vaccination, especially among children and adolescents. These findings underline the importance for continued vaccine surveillance and the need for further studies to confirm these results and to determine their clinical implications in public health decision-making, especially for younger populations.
Collapse
Affiliation(s)
- Abdallah Alami
- School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada (N.F.)
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Paul J. Villeneuve
- Department of Neuroscience, Faculty of Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Patrick J. Farrell
- School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada (N.F.)
| | - Donald Mattison
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Nawal Farhat
- School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada (N.F.)
| | - Nisrine Haddad
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Kumanan Wilson
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Bruyère Research Institute, Ottawa, ON K1R 6M1, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Christopher A. Gravel
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 1Y7, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - James A. G. Crispo
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Division of Human Sciences, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Santiago Perez-Lloret
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
- Observatorio de Salud Pública, Pontificia Universidad Católica Argentina, Buenos Aires C1107AAZ, Argentina
- Department of Physiology, Faculty of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
| |
Collapse
|
67
|
Mistrulli R, Ferrera A, Muthukkattil ML, Volpe M, Barbato E, Battistoni A. SARS-CoV-2 Related Myocarditis: What We Know So Far. J Clin Med 2023; 12:4700. [PMID: 37510815 PMCID: PMC10380706 DOI: 10.3390/jcm12144700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
A minority of patients with severe acute respiratory syndrome coronavirus 2 (COVID-19) develop cardiovascular complications, such as acute cardiac lesions with elevated troponins, de novo systolic heart failure, pericardial effusion and, rarely, acute myocarditis. The prevalence of COVID-19-related myocarditis ranges from 10 to 105 cases per 100,000 COVID-19-infected individuals, with a male predominance (58%) and a median age of 50 years. The etiopathogenetic mechanism is currently unclear, but may involve direct virus-mediated damage or an exaggerated immune response to the virus. Mortality is high, as fulminant myocarditis (FM) develops very often in the form of cardiogenic shock and ventricular arrhythmias. Hence, medical therapy with ACE inhibitors and beta-blockers may not always be sufficient, in which case inotropic and immunosuppressive drugs, most commonly corticosteroids, may be necessary. In this review we analyze the current data on COVID-19 myocarditis, management strategies and therapy, with a brief description of COVID-19 vaccine-associated myocarditis to help clinicians dealing with this peculiar form of myocarditis.
Collapse
Affiliation(s)
- Raffaella Mistrulli
- Clinical and Molecular Medicine Department, Sapienza University of Rome, 00185 Roma, Italy; (A.F.); (M.V.); (E.B.); (A.B.)
| | - Armando Ferrera
- Clinical and Molecular Medicine Department, Sapienza University of Rome, 00185 Roma, Italy; (A.F.); (M.V.); (E.B.); (A.B.)
| | - Melwyn Luis Muthukkattil
- Clinical and Molecular Medicine Department, Sapienza University of Rome, 00185 Roma, Italy; (A.F.); (M.V.); (E.B.); (A.B.)
| | - Massimo Volpe
- Clinical and Molecular Medicine Department, Sapienza University of Rome, 00185 Roma, Italy; (A.F.); (M.V.); (E.B.); (A.B.)
- IRCCS San Raffaele, 00163 Roma, Italy
| | - Emanuele Barbato
- Clinical and Molecular Medicine Department, Sapienza University of Rome, 00185 Roma, Italy; (A.F.); (M.V.); (E.B.); (A.B.)
| | - Allegra Battistoni
- Clinical and Molecular Medicine Department, Sapienza University of Rome, 00185 Roma, Italy; (A.F.); (M.V.); (E.B.); (A.B.)
| |
Collapse
|
68
|
Schroth D, Garg R, Bocova X, Hansmann J, Haass M, Yan A, Fernando C, Chacko B, Oikonomou A, White J, Alhussein MM, Giusca S, Ochs A, Korosoglou G, André F, Friedrich MG, Ochs M. Predictors of persistent symptoms after mRNA SARS-CoV-2 vaccine-related myocarditis (myovacc registry). Front Cardiovasc Med 2023; 10:1204232. [PMID: 37416926 PMCID: PMC10321411 DOI: 10.3389/fcvm.2023.1204232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Aims Epidemiological surveillance has raised safety concerns for mRNA SARS-CoV-2-vaccination-related myocarditis. We aimed to analyze epidemiological, clinical and imaging findings associated with clinical outcomes in these patients in an international multi-center registry (NCT05268458). Methods and results Patients with clinical and CMR diagnosis of acute myocarditis within 30 days after mRNA SARS-CoV-2-vaccination were included from five centers in Canada and Germany between 05/21 and 01/22. Clinical follow-up on persistent symptoms was collected. We enrolled 59 patients (80% males, mean age 29 years) with CMR-derived mild myocarditis (hs-Troponin-T 552 [249-1,193] ng/L, CRP 28 [13-51] mg/L; LVEF 57 ± 7%, LGE 3 [2-5] segments). Most common symptoms at baseline were chest pain (92%) and dyspnea (37%). Follow-up data from 50 patients showed overall symptomatic burden improvement. However, 12/50 patients (24%, 75% females, mean age 37 years) reported persisting symptoms (median interval 228 days) of chest pain (n = 8/12, 67%), dyspnea (n = 7/12, 58%), with increasing occurrence of fatigue (n = 5/12, 42%) and palpitations (n = 2/12, 17%). These patients had initial lower CRP, lower cardiac involvement in CMR, and fewer ECG changes. Significant predictors of persisting symptoms were female sex and dyspnea at initial presentation. Initial severity of myocarditis was not associated with persisting complaints. Conclusion A relevant proportion of patients with mRNA SARS-CoV-2-vaccination-related myocarditis report persisting complaints. While young males are usually affected, patients with persisting symptoms were predominantly females and older. The severity of the initial cardiac involvement not predicting these symptoms may suggest an extracardiac origin.
Collapse
Affiliation(s)
- Daniel Schroth
- Departments of Radiology and Cardiology, Theresien Hospital, Mannheim, Germany
| | - Ria Garg
- Departments of Medicine and Diagnostic Radiology, McGill University Health Centre (MUHC), Montreal, QC, Canada
| | - Xhoi Bocova
- Departments of Radiology and Cardiology, Theresien Hospital, Mannheim, Germany
| | - Jochen Hansmann
- Departments of Radiology and Cardiology, Theresien Hospital, Mannheim, Germany
| | - Markus Haass
- Departments of Radiology and Cardiology, Theresien Hospital, Mannheim, Germany
| | - Andrew Yan
- Division of Cardiology, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON, Canada
| | - Carlos Fernando
- Division of Cardiology, Unity Health Toronto, St. Michael’s Hospital, Toronto, ON, Canada
| | - Binita Chacko
- Department of Medical Imaging, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| | - Anastasia Oikonomou
- Department of Medical Imaging, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| | - James White
- Stephenson Cardiac Imaging Centre, Foothills Medical Centre, Calgary, AB, Canada
| | | | - Sorin Giusca
- Department of Cardiology, GRN Hospital, Weinheim, Germany
| | - Andreas Ochs
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Florian André
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias G. Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University Health Centre (MUHC), Montreal, QC, Canada
| | - Marco Ochs
- Departments of Radiology and Cardiology, Theresien Hospital, Mannheim, Germany
| |
Collapse
|
69
|
Marabotti C, Pingitore A. Acute cardiac events after COVID-19 vaccines and during spontaneous SARS-CoV-2 infection. J Cardiovasc Med (Hagerstown) 2023; 24:323-325. [PMID: 37129927 DOI: 10.2459/jcm.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
70
|
Liu-Fei F, McKinney J, McManus BM. Viral Heart Disease: Diagnosis, Management, and Mechanisms. Can J Cardiol 2023; 39:829-838. [PMID: 37003416 DOI: 10.1016/j.cjca.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
"Viral heart disease" is a term encompassing numerous virus-triggered heart conditions, wherein cardiac myocytes are injured, causing contractile dysfunction, cell death, or both. Cardiotropic viruses may also damage interstitial cells and vascular cells. Clinical presentation of the disorder varies widely. In most cases, patients are asymptomatic. Presentation includes-but is not limited to-flu-like symptoms, chest pain, cardiac arrhythmias, heart failure, cardiogenic shock, and sudden cardiac death. Laboratory studies, including blood-based heart injury indicators and cardiac imaging, may be needed. Management of viral heart disease requires a graded approach. Watchful observation at home may be the first step. Closer observation, with additional testing such as echocardiography in the clinic or hospital is less common yet may inform the use of cardiac magnetic resonance imaging. Intensive care may be indicated in severe acute illness. Viral heart disease mechanisms are complex. Initially, damage is predominantly virus mediated, whereas, in the second week, immune responses bring unintended obverse consequences for the myocardium. Innate immunity is largely beneficial in initial attempts to quell viral replication, whereas adaptive immunity brings helpful and antigen-specific mechanisms to fight the pathogen but also introduces the capability of autoimmunity. Each cardiotropic virus family has its own pathogenesis signature, including attack on myocytes, vascular cells, and other constitutive cells of myocardial interstitium. The stage of disease and preponderant viral pathways lend opportunities for potential intervention but also the likelihood of uncertainty about management. Overall, this review provides a novel glimpse into the depth of and need for solutions in viral heart disease.
Collapse
Affiliation(s)
- Felicia Liu-Fei
- Department of Pathology and Laboratory Medicine, University of British Columbia, Delta, British Columbia, Canada
| | - James McKinney
- Department of Medicine, Division of Cardiology, University of British Columbia, Delta, British Columbia, Canada
| | - Bruce M McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Delta, British Columbia, Canada.
| |
Collapse
|
71
|
Wu YC, Kao CH, Liao CW, Sun SS, Hsieh TC. Bivalent mRNA COVID-19 Vaccine-Related Pericarditis on 18F-FDG PET/CT. Clin Nucl Med 2023; Publish Ahead of Print:00003072-990000000-00578. [PMID: 37256729 DOI: 10.1097/rlu.0000000000004711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
ABSTRACT A 13-year-old boy was suspected with pericarditis after a second booster dose of bivalent mRNA COVID-19 vaccine. After specific preparation for cardiac inflammation with carbohydrate-free, high-fat diet, the 18F-FDG PET/CT successfully demonstrated simultaneous presentation of vaccination-related axillary lymphadenopathy and pericarditis without the interference of physiological myocardial uptake.
Collapse
Affiliation(s)
| | | | - Chiung-Wei Liao
- From the Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung City
| | | | | |
Collapse
|
72
|
Altman NL, Berning AA, Mann SC, Quaife RA, Gill EA, Auerbach SR, Campbell TB, Bristow MR. Vaccination-Associated Myocarditis and Myocardial Injury. Circ Res 2023; 132:1338-1357. [PMID: 37167355 PMCID: PMC10171307 DOI: 10.1161/circresaha.122.321881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
SARS-CoV-2 vaccine-associated myocarditis/myocardial injury should be evaluated in the contexts of COVID-19 infection, other types of viral myocarditis, and other vaccine-associated cardiac disorders. COVID-19 vaccine-associated myocardial injury can be caused by an inflammatory immune cell infiltrate, but other etiologies such as microvascular thrombosis are also possible. The clinical diagnosis is typically based on symptoms and cardiac magnetic resonance imaging. Endomyocardial biopsy is confirmatory for myocarditis, but may not show an inflammatory infiltrate because of rapid resolution or a non-inflammatory etiology. Myocarditis associated with SARS-COVID-19 vaccines occurs primarily with mRNA platform vaccines, which are also the most effective. In persons aged >16 or >12 years the myocarditis estimated crude incidences after the first 2 doses of BNT162b2 and mRNA-1273 are approximately 1.9 and 3.5 per 100 000 individuals, respectively. These rates equate to excess incidences above control populations of approximately 1.2 (BNT162b2) and 1.9 (mRNA-1273) per 100 000 persons, which are lower than the myocarditis rate for smallpox but higher than that for influenza vaccines. In the studies that have included mRNA vaccine and SARS-COVID-19 myocarditis measured by the same methodology, the incidence rate was increased by 3.5-fold over control in COVID-19 compared with 1.5-fold for BNT162b2 and 6.2-fold for mRNA-1273. However, mortality and major morbidity are less and recovery is faster with mRNA vaccine-associated myocarditis compared to COVID-19 infection. The reasons for this include vaccine-associated myocarditis having a higher incidence in young adults and adolescents, typically no involvement of other organs in vaccine-associated myocarditis, and based on comparisons to non-COVID viral myocarditis an inherently more benign clinical course.
Collapse
Affiliation(s)
- Natasha L. Altman
- Division of Cardiology, Department of Medicine (N.L.A., R.A.Q., E.A.G., M.R.B.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Amber A. Berning
- Department of Pathology (A.A.B.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Sarah C. Mann
- Division of Infectious Diseases, Department of Medicine (S.C.M., T.B.C.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Robert A. Quaife
- Division of Cardiology, Department of Medicine (N.L.A., R.A.Q., E.A.G., M.R.B.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Edward A. Gill
- Division of Cardiology, Department of Medicine (N.L.A., R.A.Q., E.A.G., M.R.B.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Scott R. Auerbach
- Division of Cardiology, Department of Pediatrics (S.R.A.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Thomas B. Campbell
- Division of Infectious Diseases, Department of Medicine (S.C.M., T.B.C.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Michael R. Bristow
- Division of Cardiology, Department of Medicine (N.L.A., R.A.Q., E.A.G., M.R.B.), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
- Research and Development Department, ARCA Biopharma, CO (M.R.B.)
| |
Collapse
|
73
|
Holby SN, Richardson TL, Laws JL, McLaren TA, Soslow JH, Baker MT, Dendy JM, Clark DE, Hughes SG. Multimodality Cardiac Imaging in COVID. Circ Res 2023; 132:1387-1404. [PMID: 37167354 PMCID: PMC10171309 DOI: 10.1161/circresaha.122.321882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Infection with SARS-CoV-2, the virus that causes COVID, is associated with numerous potential secondary complications. Global efforts have been dedicated to understanding the myriad potential cardiovascular sequelae which may occur during acute infection, convalescence, or recovery. Because patients often present with nonspecific symptoms and laboratory findings, cardiac imaging has emerged as an important tool for the discrimination of pulmonary and cardiovascular complications of this disease. The clinician investigating a potential COVID-related complication must account not only for the relative utility of various cardiac imaging modalities but also for the risk of infectious exposure to staff and other patients. Extraordinary clinical and scholarly efforts have brought the international medical community closer to a consensus on the appropriate indications for diagnostic cardiac imaging during this protracted pandemic. In this review, we summarize the existing literature and reference major societal guidelines to provide an overview of the indications and utility of echocardiography, nuclear imaging, cardiac computed tomography, and cardiac magnetic resonance imaging for the diagnosis of cardiovascular complications of COVID.
Collapse
Affiliation(s)
- S Neil Holby
- Cardiovascular Medicine Fellowship, Division of Cardiology, Department of Internal Medicine (S.N.H., T.L.R., J.L.L.), Vanderbilt University Medical Center
| | - Tadarro Lee Richardson
- Cardiovascular Medicine Fellowship, Division of Cardiology, Department of Internal Medicine (S.N.H., T.L.R., J.L.L.), Vanderbilt University Medical Center
| | - J Lukas Laws
- Cardiovascular Medicine Fellowship, Division of Cardiology, Department of Internal Medicine (S.N.H., T.L.R., J.L.L.), Vanderbilt University Medical Center
| | - Thomas A McLaren
- Division of Cardiology, Department of Internal Medicine, Department of Radiology & Radiological Sciences (T.A.M., S.G.H.), Vanderbilt University Medical Center
| | - Jonathan H Soslow
- Thomas P. Graham Jr Division of Pediatric Cardiology, Department of Pediatrics (J.H.S.), Vanderbilt University Medical Center
| | - Michael T Baker
- Division of Cardiology, Department of Internal Medicine (M.T.B., J.M.D.), Vanderbilt University Medical Center
| | - Jeffrey M Dendy
- Division of Cardiology, Department of Internal Medicine (M.T.B., J.M.D.), Vanderbilt University Medical Center
| | - Daniel E Clark
- Division of Cardiology, Department of Internal Medicine, Stanford University School of Medicine (D.E.C.)
| | - Sean G Hughes
- Division of Cardiology, Department of Internal Medicine, Department of Radiology & Radiological Sciences (T.A.M., S.G.H.), Vanderbilt University Medical Center
| |
Collapse
|
74
|
Abstract
Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (D.F.,)
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Nicolas Musigk
- Deutsches Herzzentrum der Charité, Berlin, Germany (N.M., B.H.)
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
75
|
Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract 2023; 246:154497. [PMID: 37192595 DOI: 10.1016/j.prp.2023.154497] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Worldwide there have been over 760 million confirmed coronavirus disease 2019 (COVID-19) cases, and over 13 billion COVID-19 vaccine doses have been administered as of April 2023, according to the World Health Organization. An infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to an acute disease, i.e. COVID-19, but also to a post-acute COVID-19 syndrome (PACS, "long COVID"). Currently, the side effects of COVID-19 vaccines are increasingly being noted and studied. Here, we summarise the currently available indications and discuss our conclusions that (i) these side effects have specific similarities and differences to acute COVID-19 and PACS, that (ii) a new term should be used to refer to these side effects (post-COVID-19 vaccination syndrome, PCVS, colloquially "post-COVIDvac-syndrome"), and that (iii) there is a need to distinguish between acute COVID-19 vaccination syndrome (ACVS) and post-acute COVID-19 vaccination syndrome (PACVS) - in analogy to acute COVID-19 and PACS ("long COVID"). Moreover, we address mixed forms of disease caused by natural SARS-CoV-2 infection and COVID-19 vaccination. We explain why it is important for medical diagnosis, care and research to use the new terms (PCVS, ACVS and PACVS) in order to avoid confusion and misinterpretation of the underlying causes of disease and to enable optimal medical therapy. We do not recommend to use the term "Post-Vac-Syndrome" as it is imprecise. The article also serves to address the current problem of "medical gaslighting" in relation to PACS and PCVS by raising awareness among the medical professionals and supplying appropriate terminology for disease.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Christian-Albrecht May
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
76
|
Cari L, Naghavi Alhosseini M, Mencacci A, Migliorati G, Nocentini G. Differences in the Expression Levels of SARS-CoV-2 Spike Protein in Cells Treated with mRNA-Based COVID-19 Vaccines: A Study on Vaccines from the Real World. Vaccines (Basel) 2023; 11:vaccines11040879. [PMID: 37112792 PMCID: PMC10144021 DOI: 10.3390/vaccines11040879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Comirnaty (BNT162b2) and Spikevax (mRNA-1273) COVID-19 vaccines encode a full-length SARS-CoV-2 Spike (S) protein. To evaluate whether the S-protein expressed following treatment with the two vaccines differs in the real-world context, two cell lines were treated for 24 h with two concentrations of each vaccine, and the expression of the S-protein was evaluated using flow cytometry and ELISA. Vaccines were obtained from three vaccination centers in Perugia (Italy) that provided us with residual vaccines present in vials after administration. Interestingly, the S-protein was detected not only on the cell membrane but also in the supernatant. The expression was dose-dependent only in Spikevax-treated cells. Furthermore, the S-protein expression levels in both cells and supernatant were much higher in Spikewax-than in Comirnaty-treated cells. Differences in S-protein expression levels following vaccine treatment may be attributed to variations in the efficacy of lipid nanoparticles, differences in mRNA translation rates and/or loss of some lipid nanoparticles' properties and mRNA integrity during transport, storage, or dilution, and may contribute to explaining the slight differences in the efficacy and safety observed between the Comirnaty and Spikevax vaccines.
Collapse
Affiliation(s)
- Luigi Cari
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, I-06129 Perugia, Italy
| | - Mahdieh Naghavi Alhosseini
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, I-06129 Perugia, Italy
| | - Antonella Mencacci
- Section of Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, I-06129 Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, I-06129 Perugia, Italy
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, I-06129 Perugia, Italy
| |
Collapse
|
77
|
Zuin M, Zimelli E, Dalla Valle C, Cavedon S, Rigatelli G, Bilato C. Diagnosis of Acute Myocarditis Following mRNA Vaccines against SARS-CoV-2: A Methodological Review. Viruses 2023; 15:929. [PMID: 37112909 PMCID: PMC10143457 DOI: 10.3390/v15040929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The occurrence of acute myocarditis following the administration of mRNA vaccines against SARS-CoV-2 remains relatively rare, and it is associated with a very low mortality rate. The incidence varied by vaccine type, sex, and age and after the first, second, or third vaccination dose. However, the diagnosis of this condition often remains challenging. To further elucidate the relationship between myocarditis and SARS-CoV-2 mRNA vaccines, starting with two cases observed at the Cardiology Unit of the West Vicenza General Hospital located in the Veneto Region, which was among the first Italian areas hit by the COVID-19 pandemic, we performed a review of the available literature to highlight the clinical and diagnostic elements that could contribute to suspicion of myocarditis as an adverse event of SARS-CoV-2 immunization.
Collapse
Affiliation(s)
- Marco Zuin
- Division of Cardiology, West Vicenza General Hospitals, Via del Parco 1, 36071 Arzignano-Vicenza, Italy; (E.Z.); (C.D.V.); (S.C.)
- Department of Translational Medicine, University of Ferrara, 44100 Ferrara, Italy
| | - Emma Zimelli
- Division of Cardiology, West Vicenza General Hospitals, Via del Parco 1, 36071 Arzignano-Vicenza, Italy; (E.Z.); (C.D.V.); (S.C.)
| | - Chiara Dalla Valle
- Division of Cardiology, West Vicenza General Hospitals, Via del Parco 1, 36071 Arzignano-Vicenza, Italy; (E.Z.); (C.D.V.); (S.C.)
| | - Stefano Cavedon
- Division of Cardiology, West Vicenza General Hospitals, Via del Parco 1, 36071 Arzignano-Vicenza, Italy; (E.Z.); (C.D.V.); (S.C.)
| | - Gianluca Rigatelli
- Department of Cardiology, Ospedali Riuniti Padova Sud, 35043 Monselice, Italy;
| | - Claudio Bilato
- Division of Cardiology, West Vicenza General Hospitals, Via del Parco 1, 36071 Arzignano-Vicenza, Italy; (E.Z.); (C.D.V.); (S.C.)
| |
Collapse
|
78
|
Jin J, Li J. CVSARRP: A framework to predict the risk of adverse to severe adverse reactions for 10855 diseases after COVID-19 vaccination. Heliyon 2023; 9:e14828. [PMID: 37009244 PMCID: PMC10041818 DOI: 10.1016/j.heliyon.2023.e14828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
COVID-19 vaccines greatly reduce the risk of infection with SARS-CoV-2. However, some people have adverse reactions after vaccination, and these can sometimes be severe. Gender, age, vaccines, and especially certain diseases histories are related to severe adverse reactions following COVID-19 vaccination. However, there are thousands of diseases and only some are known to be related to these severe adverse reactions. The risk of severe adverse reactions with other diseases remains unknown. Therefore, there is a need for predictive studies to provide improved medical care and minimize risk. Herein, we analyzed the statistical results of existing COVID-19 vaccine adverse reaction data and proposed a COVID-19 vaccine severe adverse reaction risk prediction method, named CVSARRP. The performance of the CVSARRP method was tested using the leave-one-out cross-validation approach. The correlation coefficient between the predicted and real risk is greater than 0.86. The CVSARRP method predicts the risk from adverse reactions to severe adverse reactions after COVID-19 vaccination for 10855 diseases. People with certain diseases, such as central nervous system diseases, heart diseases, urinary system disease, anemia, cancer, and respiratory tract disease, among others, may potentially have increased of severe adverse reactions following vaccination against COVID-19 and experiencing adverse events.
Collapse
Affiliation(s)
- Jiahuan Jin
- Research Center of Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jie Li
- Research Center of Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Cardiac consequences occur in both acute COVID-19 and post-acute sequelae of COVID-19 (PASC). Here, we highlight the current understanding about COVID-19 cardiac effects, based upon clinical, imaging, autopsy, and molecular studies. RECENT FINDINGS COVID-19 cardiac effects are heterogeneous. Multiple, concurrent cardiac histopathologic findings have been detected on autopsies of COVID-19 non-survivors. Microthrombi and cardiomyocyte necrosis are commonly detected. Macrophages often infiltrate the heart at high density but without fulfilling histologic criteria for myocarditis. The high prevalences of microthrombi and inflammatory infiltrates in fatal COVID-19 raise the concern that recovered COVID-19 patients may have similar but subclinical cardiac pathology. Molecular studies suggest that SARS-CoV-2 infection of cardiac pericytes, dysregulated immunothrombosis, and pro-inflammatory and anti-fibrinolytic responses underlie COVID-19 cardiac pathology. The extent and nature by which mild COVID-19 affects the heart is unknown. Imaging and epidemiologic studies of recovered COVID-19 patients suggest that even mild illness confers increased risks of cardiac inflammation, cardiovascular disorders, and cardiovascular death. The mechanistic details of COVID-19 cardiac pathophysiology remain under active investigation. The ongoing evolution of SARS-CoV-2 variants and vast numbers of recovered COVID-19 patients portend a burgeoning global cardiovascular disease burden. Our ability to prevent and treat cardiovascular disease in the future will likely depend on comprehensive understanding of COVID-19 cardiac pathophysiologic phenotypes.
Collapse
Affiliation(s)
- Lorenzo R. Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Kevin J. Clerkin
- Center for Advanced Cardiac Care, Division of Cardiology, Columbia University Irving Medical Center, New York, NY USA
| | | | - Emily J. Tsai
- Center for Advanced Cardiac Care, Division of Cardiology, Columbia University Irving Medical Center, New York, NY USA
| |
Collapse
|
80
|
Khiali S, Rezagholizadeh A, Behzad H, Bannazadeh Baghi H, Entezari-Maleki T. Current evidence of COVID-19 vaccination-related cardiovascular events. Postgrad Med 2023; 135:102-120. [PMID: 36567602 DOI: 10.1080/00325481.2022.2161249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Currently, the world is recovering from the shock of the coronavirus disease 2019 (COVID-19) pandemic; however, this situation is still fragile. Health authorities recommend administering COVID-19 vaccines as the safest and most reliable tool for eliminating COVID-19. Subsequent to the extensive administration of the COVID-19 vaccines, a series of cardiovascular adverse effects have been reported. This comprehensive review aimed to provide an update on the etiology, pathophysiology, clinical features, and management of the cardiovascular adverse events associated with COVID-19 vaccines, including myocarditis, pericarditis, thrombosis with thrombocytopenia syndrome, myocardial infarction, cardiac arrhythmias, hypertension, and stress-induced cardiomyopathy. The benefits of COVID-19 vaccination far outweigh the reported adverse events. It would be clinically important to provide diagnostic scoring systems to differentiate COVID-19-related cardiovascular adverse events from other causes and develop therapeutic approaches for their management. Further evaluation of cardiovascular adverse events of the COVID-19 vaccines is crucial for implementing vaccination programs and developing safer and more reliable vaccines.
Collapse
Affiliation(s)
- Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afra Rezagholizadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Behzad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
81
|
Corrigendum to: 'A comprehensive characterization of acute heart failure with preserved versus mildly reduced versus reduced ejection fraction - insights from the ESC-HFA EORP Heart Failure Long-Term Registry' and articles listed below. Eur J Heart Fail 2023; 25:443. [PMID: 36799232 PMCID: PMC10117570 DOI: 10.1002/ejhf.2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
82
|
Bellavite P, Ferraresi A, Isidoro C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023; 11:451. [PMID: 36830987 PMCID: PMC9953067 DOI: 10.3390/biomedicines11020451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus responsible for the COVID-19 disease) uses the Spike proteins of its envelope for infecting target cells expressing on the membrane the angiotensin converting enzyme 2 (ACE2) enzyme that acts as a receptor. To control the pandemic, genetically engineered vaccines have been designed for inducing neutralizing antibodies against the Spike proteins. These vaccines do not act like traditional protein-based vaccines, as they deliver the message in the form of mRNA or DNA to host cells that then produce and expose the Spike protein on the membrane (from which it can be shed in soluble form) to alert the immune system. Mass vaccination has brought to light various adverse effects associated with these genetically based vaccines, mainly affecting the circulatory and cardiovascular system. ACE2 is present as membrane-bound on several cell types, including the mucosa of the upper respiratory and of the gastrointestinal tracts, the endothelium, the platelets, and in soluble form in the plasma. The ACE2 enzyme converts the vasoconstrictor angiotensin II into peptides with vasodilator properties. Here we review the pathways for immunization and the molecular mechanisms through which the Spike protein, either from SARS-CoV-2 or encoded by the mRNA-based vaccines, interferes with the Renin-Angiotensin-System governed by ACE2, thus altering the homeostasis of the circulation and of the cardiovascular system. Understanding the molecular interactions of the Spike protein with ACE2 and the consequent impact on cardiovascular system homeostasis will direct the diagnosis and therapy of the vaccine-related adverse effects and provide information for development of a personalized vaccination that considers pathophysiological conditions predisposing to such adverse events.
Collapse
Affiliation(s)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
83
|
Tomasoni D, Adamo M, Metra M. February 2023 at a glance: focus on pathophysiology and treatment. Eur J Heart Fail 2023; 25:135-138. [PMID: 36823990 DOI: 10.1002/ejhf.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/22/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Daniela Tomasoni
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
84
|
Abukhalil AD, Shatat SS, Abushehadeh RR, Al-Shami N, Naseef HA, Rabba A. Side effects of Pfizer/BioNTech (BNT162b2) COVID-19 vaccine reported by the Birzeit University community. BMC Infect Dis 2023; 23:5. [PMID: 36604613 PMCID: PMC9814351 DOI: 10.1186/s12879-022-07974-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The Pfizer BioNTech COVID-19 vaccine was the first to receive emergency authorization and approval from the FDA. Therefore, it is preferred by most recipients; however, many people are concerned about the vaccine's side effects. At the time of the study, December 2021, Palestine lacked a national reporting system for monitoring adverse vaccine effects. Therefore, this study investigates the post-vaccine adverse events following the Pfizer/BioNTech COVID-19 Vaccine administration in Palestine and identifies the occurrence, extent, and severity among university staff, employees, and students at Birzeit University. METHOD A questionnaire-based retrospective cross-sectional study was conducted using a university website (Ritaj), social media platforms (e.g., Facebook and Telegram), and in-person interviews. The Chi-square, Fisher's exact, and McNemar's tests were used to investigate significant relationships. Data were analyzed using SPSS version 22. RESULTS In total, 1137 participants completed the questionnaire, 33.2% were males, and the mean age was 21.163 years. All participants received at least one dose of the Pfizer-BioNTech COVID-19 vaccine. Approximately one-third of participants reported no adverse effects after receiving the first, second, or third doses (34%, 33.6%, and 32.5%, respectively). The most commonly reported adverse events were fever, chills, headache, fatigue, pain and swelling at the injection site, muscle pain, and joint pain. Allergic reactions were reported by 12.7% of the participants; furthermore, participants with a history of allergy or anaphylaxis before vaccination had a significantly higher tendency for post-vaccination allergic reactions. Eight participants reported rare side effects, including 7 (0.6%) cases of thrombocytopenia and one (0.1%) case of myocarditis. Males aged less than 20 years and smokers were significantly less likely to complain of adverse events. The number of reported side effects was significantly higher after the second vaccine dose than after the first dose. Finally, participants infected with COVID-19 before vaccination was significantly associated with side effects such as fever, chills, shortness of breath, and persistent cough. CONCLUSION In this study, the most common post- BNT162b2 Vaccination reported self-limiting side effects similar to those reported by Pfizer/BioNTech Company. However, higher rates of allergic reactions were reported in this sample. Rare side effects, such as thrombocytopenia and myocarditis, were reported by 8 participants. COVID vaccines have been developed at an accelerated pace, and vaccine safety is a top priority; therefore, standard monitoring through a national adverse event reporting system is necessary for safety assurance. Continuous monitoring and long-term studies are required to ensure vaccine safety.
Collapse
Affiliation(s)
- Abdallah Damin Abukhalil
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine.
| | - Sireen Sultan Shatat
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Raya Riyad Abushehadeh
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Ni'meh Al-Shami
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Hani A Naseef
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| | - Abdullah Rabba
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit, West Bank, Palestine
| |
Collapse
|
85
|
Noureddine Z, Madi L, Ullah S, Alrawashdeh H, Naseralallah L. A prospective observational study to evaluate the safety of COVID-19 mRNA vaccines administered to Qatar Rehabilitation Institute patients. Qatar Med J 2023; 2023:10. [PMID: 36874588 PMCID: PMC9979845 DOI: 10.5339/qmj.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND The safety of the COVID-19 mRNA vaccine in the outpatient setting has been extensively studied; however, there need to be more reports that specifically assess their safety in the inpatient population. It is hence imperative to explore the adverse drug reaction (ADR) profile in this population and monitor the progression of these ADRs in a hospital setting. This provides a unique opportunity to closely observe patients to ensure no side effects go undiagnosed. This study aims to explore and quantify the incidence and severity of ADRs in patients who have received the COVID-19 vaccine during their stay in the rehabilitation facility. METHODS This is a prospective observational study, which included adult patients admitted to the rehabilitation facility who were deemed eligible to receive the COVID-19 vaccine during their hospital stay. Data were collected by the investigators from June 2021 to May 2022 at 24 hours, 48 hours, and 7 days post-vaccination. A piloted data collection tool was utilized. RESULTS Thirty-five patients met the inclusion criteria. Pain at the injection site was the most commonly reported local ADR, while headache was the most frequent systemic ADR. The majority of the reported ADRs were mild to moderate in nature, with only one severe reaction detected. Although no statistical significance was noted among the variables, common patterns were identified, such as a higher occurrence of fever at 24 hours after the second dose as opposed to the first dose. Close monitoring of the included study subjects did not reveal any unanticipated ADRs or an increase in ADRs susceptibility and severity compared to the general population. CONCLUSION This study supports the initiation of vaccination campaigns in inpatient rehabilitation settings. This approach would offer the advantage of gaining full immunity and reducing the risk of contracting COVID-19 infection and complications once discharged.
Collapse
Affiliation(s)
- Zahra Noureddine
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293
| | - Lama Madi
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293
| | - Sami Ullah
- Department of Physical Medicine and Rehabilitation, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar
| | - Haneen Alrawashdeh
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293
| | - Lina Naseralallah
- Clinical Pharmacy Department, Qatar Rehabilitation Institute, Hamad Medical Corporation, Doha, Qatar. E-mail: ORCID: 0000-0001-9695-7293.,School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
86
|
Varga I, Michalka P, Mištinová JP. Complications after administration of mRNA vaccine against COVID-19 - case report and short review. VNITRNI LEKARSTVI 2023; 69:20-27. [PMID: 37468319 DOI: 10.36290/vnl.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The pandemic of the disease COVID-19 (COronaVIrus Disease 2019) caused by the SARS-CoV-2 coronavirus (severe acute respiratory syndrome coronavirus 2) resulted in millions of deaths and many patients have chronic consequences after overcoming the acute condition. Several vaccines have been developed in an effort to stop the spread of the virus, but they have potentially serious adverse effects. We present a case report of a patient with acute (myocarditis, exacerbation of bronchial asthma) and long-term (postural orthostatic tachycardia syndrome - POTS) complications after vaccination with the second dose of mRNA vaccine BNT162b2 (Comirnaty®). Treatment consists of regimen measures, numerous pharmacotherapy (metoprolol, ivabradine, corticosteroids, antihistamines, antiphlogistics, bronchodilators) and several nutraceuticals (maritime pine bark extract, quercetin, vitamins, magnesium, phosphatidylcholine). In the discussion, we analyze post-vaccination injury and present a short review of the current literature.
Collapse
|
87
|
Ciulla MM. Editorial: Viral hypothesis in cardiac arrhythmias. Front Cardiovasc Med 2022; 9:1067501. [PMID: 36568549 PMCID: PMC9780650 DOI: 10.3389/fcvm.2022.1067501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michele Mario Ciulla
- Smart Laboratory of Clinical Informatics and Cardiovascular Imaging, University of Milan, Milan, Italy,CLO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,*Correspondence: Michele Mario Ciulla
| |
Collapse
|
88
|
Porcari A. Filling the gap in epidemiology, management and clinical course of COVID-19 vaccination-related pericarditis. J Cardiovasc Med (Hagerstown) 2022; 23:784-786. [PMID: 36349943 DOI: 10.2459/jcm.0000000000001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
89
|
Riccardi M, Sammartino AM, Piepoli M, Adamo M, Pagnesi M, Rosano G, Metra M, von Haehling S, Tomasoni D. Heart failure: an update from the last years and a look at the near future. ESC Heart Fail 2022; 9:3667-3693. [PMID: 36546712 PMCID: PMC9773737 DOI: 10.1002/ehf2.14257] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the last years, major progress occurred in heart failure (HF) management. Quadruple therapy is now mandatory for all the patients with HF with reduced ejection fraction. Whilst verciguat is becoming available across several countries, omecamtiv mecarbil is waiting to be released for clinical use. Concurrent use of potassium-lowering agents may counteract hyperkalaemia and facilitate renin-angiotensin-aldosterone system inhibitor implementations. The results of the EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction (EMPEROR-Preserved) trial were confirmed by the Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction (DELIVER) trial, and we now have, for the first time, evidence for treatment of also patients with HF with preserved ejection fraction. In a pre-specified meta-analysis of major randomized controlled trials, sodium-glucose co-transporter-2 inhibitors reduced all-cause mortality, cardiovascular (CV) mortality, and HF hospitalization in the patients with HF regardless of left ventricular ejection fraction. Other steps forward have occurred in the treatment of decompensated HF. Acetazolamide in Acute Decompensated Heart Failure with Volume Overload (ADVOR) trial showed that the addition of intravenous acetazolamide to loop diuretics leads to greater decongestion vs. placebo. The addition of hydrochlorothiazide to loop diuretics was evaluated in the CLOROTIC trial. Torasemide did not change outcomes, compared with furosemide, in TRANSFORM-HF. Ferric derisomaltose had an effect on the primary outcome of CV mortality or HF rehospitalizations in IRONMAN (rate ratio 0.82; 95% confidence interval 0.66-1.02; P = 0.070). Further options for the treatment of HF, including device therapies, cardiac contractility modulation, and percutaneous treatment of valvulopathies, are summarized in this article.
Collapse
Affiliation(s)
- Mauro Riccardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Antonio Maria Sammartino
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Massimo Piepoli
- Clinical Cardiology, IRCCS Policlinico San DonatoUniversity of MilanMilanItaly
- Department of Preventive CardiologyUniversity of WrocławWrocławPoland
| | - Marianna Adamo
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Matteo Pagnesi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | | | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Goettingen Medical CenterGottingenGermany
- German Center for Cardiovascular Research (DZHK), Partner Site GöttingenGottingenGermany
| | - Daniela Tomasoni
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| |
Collapse
|
90
|
Frustaci A. Remarks on Myocarditis Associated with COVID-19 Infection and Myocarditis Following mRNA COVID-19 Vaccination. J Clin Med 2022; 11:6511. [PMID: 36362737 PMCID: PMC9654375 DOI: 10.3390/jcm11216511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2023] Open
Abstract
COVID-19 virus infection is responsible for one of the worst reported pandemics as of August 2022 [...].
Collapse
Affiliation(s)
- Andrea Frustaci
- Cellular and Molecular Cardiology Lab, IRCCS L. Spallanzani, 00149 Rome, Italy
| |
Collapse
|
91
|
Tomasoni D, Adamo M, Metra M. November 2022 at a glance: focus on epidemiology, prognosis and comorbidities. Eur J Heart Fail 2022; 24:1997-1999. [PMID: 36482159 DOI: 10.1002/ejhf.2242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Daniela Tomasoni
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
92
|
Drews SJ, O’Brien SF. Lessons Learned from the COVID-19 Pandemic and How Blood Operators Can Prepare for the Next Pandemic. Viruses 2022; 14:2126. [PMID: 36298680 PMCID: PMC9608827 DOI: 10.3390/v14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Humans interact with virus-infected animal hosts, travel globally, and maintain social networks that allow for novel viruses to emerge and develop pandemic potential. There are key lessons-learned from the coronavirus diseases 2019 (COVID-19) pandemic that blood operators can apply to the next pandemic. Warning signals to the COVID-19 pandemic included outbreaks of Severe acute respiratory syndrome-related coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome-related coronavirus (MERS-CoV) in the prior two decades. It will be critical to quickly determine whether there is a risk of blood-borne transmission of a new pandemic virus. Prior to the next pandemic blood operators should be prepared for changes in activities, policies, and procedures at all levels of the organization. Blood operators can utilize "Plan-Do-Study-Act" cycles spanning from: vigilance for emerging viruses, surveillance activities and studies, operational continuity, donor engagement and trust, and laboratory testing if required. Occupational health and donor safety issues will be key areas of focus even if the next pandemic virus is not transfusion transmitted. Blood operators may also be requested to engage in new activities such as the development of therapeutics or supporting public health surveillance activities. Activities such as scenario development, tabletop exercises, and drills will allow blood operators to prepare for the unknowns of the next pandemic.
Collapse
Affiliation(s)
- Steven J. Drews
- Canadian Blood Services, Microbiology, Donation and Policy Studies, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
- Division of Applied and Diagnostic Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sheila F. O’Brien
- Epidemiology and Surveillance, Donation Policy and Studies, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|