51
|
Zhu L, Li W, Zha J, Li N, Wang Z. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): Docking study, hormone levels, histology, and transcriptional responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109683. [PMID: 31550567 DOI: 10.1016/j.ecoenv.2019.109683] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Thiamethoxam has emerged as an environmental contaminant detected in aqueous environments, and its endocrine-disrupting effect at chronic exposure in teleosts remains unknown. In the present study, a docking experiment and an in vivo test were integrated to systematically explore the toxic mechanisms of thiamethoxam in fish. Histological analysis, plasma VTG and hormone level (E2, 11-KT, T3 and T4) determinations, and HPG and HPT gene expression quantification were performed after Chinese rare minnow (Gobiocypris rarus) was exposed to thiamethoxam (0, 0.5, 5, and 50 μg/L) for 90 days. According to the docking study, thiamethoxam had different interactions with ERα, AR and TRα via hydrogen bonding. A decrease in body length and plasma T4 was observed in both genders. The histological damage in liver and delayed gonadal development were observed in both genders at 50 μg/L thiamethoxam treatment. In males, the following HPG axis genes were upregulated: gnrh and cyp19b in the brain; vtg and cyp19a in the liver; and cyp17 and cyp19a in the gonad. In females, erɑ in the liver was significantly upregulated with 0.5 μg/L thiamethoxam treatment, and cyp17 in the gonad was upregulated with all treatment. The suppression of cyp19a, gnrh, cyp11a, and ttr was observed at the concentration of 5 μg/L in the female liver. Taken together, the endocrine system of Chinese rare minnow might be disrupted after chronic exposure to thiamethoxam.
Collapse
Affiliation(s)
- Lifei Zhu
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - Wei Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jinmiao Zha
- State Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Na Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| |
Collapse
|
52
|
Reddam A, Mitchell CA, Dasgupta S, Kirkwood JS, Vollaro A, Hur M, Volz DC. mRNA-Sequencing Identifies Liver as a Potential Target Organ for Triphenyl Phosphate in Embryonic Zebrafish. Toxicol Sci 2019; 172:51-62. [PMID: 31368501 PMCID: PMC6813745 DOI: 10.1093/toxsci/kfz169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Triphenyl phosphate (TPHP) is a commonly used organophosphate flame retardant and plasticizer in the United States. Using zebrafish as a model, the overall objective of this study was to identify potential organs that might be targeted by TPHP during embryonic development. Based on mRNA-sequencing, TPHP exposure from 24 to 30 h post fertilization (hpf) and 24 to 48 hpf significantly affected the abundance of 305 and 274 transcripts, respectively, relative to vehicle (0.1% DMSO) controls. In addition to minor effects on cardiotoxicity- and nephrotoxicity-related pathways, Ingenuity Pathway Analysis (IPA) of significantly affected transcripts within 30- and 48-hpf embryos revealed that hepatotoxicity-related pathways were strongly affected following exposure to TPHP alone. Moreover, while pre-treatment with fenretinide (a retinoic acid receptor agonist) mitigated TPHP-induced pericardial edema and liver enlargement at 72 hpf and 128 hpf, respectively, IPA revealed that fenretinide was unable to block TPHP-induced effects on cardiotoxicity-, nephrotoxicity-, and hepatotoxicity-related pathways at 48 hpf, suggesting that TPHP-induced effects on the transcriptome were not associated with toxicity later in development. In addition, based on Oil Red O staining, we found that exposure to TPHP nearly abolished neutral lipids from the embryonic head and trunk and, based on metabolomics, significantly decreased the total abundance of metabolites - including betaine, a known osmoprotectant - at 48 and 72 hpf. Overall, our data suggest that, in addition to the heart, TPHP exposure during early development results in adverse effects on the liver, lipid utilization, and osmoregulation within embryonic zebrafish.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.,Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Constance A Mitchell
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.,Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
53
|
Liu X, Cai Y, Wang Y, Xu S, Ji K, Choi K. Effects of tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) on sex-dependent alterations of thyroid hormones in adult zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:25-32. [PMID: 30508752 DOI: 10.1016/j.ecoenv.2018.11.058] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 05/28/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been widely used as alternatives to polybrominated diphenyl ethers for fire prevention. OPFRs are suspected of causing potential thyroid disruption in humans. In fish, their thyroid hormone modulation is reported but the mechanisms of this modulation are less understood. Thyroid-disturbing effects of OPFRs were evaluated using adult zebrafish (Danio rerio) following 14d exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCPP) or triphenyl phosphate (TPP). Plasma concentrations of thyroid hormones were measured and transcriptions of several genes involved in thyroid function were quantified in brain, thyroid, and liver. Exposure to TDCPP or TPP led to significant decreases in plasma triiodothyronine (T3) and thyroxine (T4) concentrations in the male fish, while the increases were observed in the female fish. Exposure to the OPFRs also altered the transcription of regulatory genes and receptors in hypothalamus, pituitary, and thyroid of the fish in sex-dependent manner. In the male fish, transcriptions of corticotropin-releasing hormone (crh) and thyroid-stimulating hormone (tsh) in the brain were significantly up-regulated, probably as a compensation for hypothyroidism, but thyroglobulin (tg) and deiodinase 2 (dio2) were down-regulated in thyroid or liver. In contrast, in the females, transcriptions of crh and tsh genes were significantly down-regulated. These observations show that TDCPP and TPP exposure can lead to sex-dependent disruptions of thyroid hormone balances in the adult zebrafish through alterations of the hypothalamus-pituitary-thyroid (HPT) axis.
Collapse
Affiliation(s)
- Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Yi Cai
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518-060, China
| | - Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Suhua Xu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin 17092, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
54
|
Doherty BT, Hoffman K, Keil AP, Engel SM, Stapleton HM, Goldman BD, Olshan AF, Daniels JL. Prenatal exposure to organophosphate esters and behavioral development in young children in the Pregnancy, Infection, and Nutrition Study. Neurotoxicology 2019; 73:150-160. [PMID: 30951742 DOI: 10.1016/j.neuro.2019.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Organophosphate esters (OPEs) are commonly used as plasticizers and flame retardants in consumer products, and exposure is relatively ubiquitous in most populations studied. This may be of concern as some OPEs may be neurotoxic, endocrine-disrupting, and interfere with behavioral development; however, observational evidence is limited. We used data from the Pregnancy, Infection, and Nutrition Study, a prospective birth cohort study, to investigate associations between maternal OPE metabolite concentrations during pregnancy and behavioral development in offspring. Women provided a urine sample during pregnancy that was analyzed for concentrations of OPE metabolites, including diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl phosphate) (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and 1-hydroxyl-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP). Offspring's behavioral development was assessed by the Behavioral Assessment System for Children (2nd Edition) (BASC-2) at approximately 36 months. Linear regression was used to estimate associations between tertiles in specific gravity-corrected OPE metabolite concentrations and children's scores on the BASC-2, adjusted for maternal age, maternal BMI, maternal race, maternal education, familial income, maternal depression, quality of the home environment, and sex. Higher BDCIPP concentrations were associated with higher scores on the Behavioral Symptoms Index (1st vs. 3rd tertile: β = 3.03; 95% CI = 0.40, 5.67) and Externalizing Problems (1st vs. 3rd tertile: β = 2.49; 95% CI: -0.12, 5.10) composites. Among BASC-2 scales, BDCIPP was most strongly associated with Withdrawal, Attention Problems, Depression, Hyperactivity, and Aggression. DPHP concentrations were also associated with higher scores on the Externalizing Problems and Behavioral Symptoms Index composites, but not as strongly as BDCIPP. Conversely, higher concentrations of ip-PPP were associated with fewer adverse behavioral symptoms, including an inverse association with the Internalizing Problems composite (1st vs. 3rd tertile: β = -3.74; 95% CI = -6.75, -0.74) and constituent scales. BCIPHIPP was not strongly associated with any measured behavioral outcomes. Our results suggest that greater maternal exposure to tris(1,3-dichloro-2-propyl phosphate) (TDCIPP, parent compound of BDCIPP) and, to a lesser degree, triphenyl phosphate (TPHP, parent compound of DPHP) during pregnancy is associated with adverse behavioral development in children. Our study contributes to the growing body of evidence pertaining to adverse developmental effects of prenatal OPE exposure and highlights the need for further research to characterize risks associated with this ubiquitous family of chemicals.
Collapse
Affiliation(s)
- Brett T Doherty
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA.
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 27708, Durham, NC, 27708, USA
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 27708, Durham, NC, 27708, USA
| | - Barbara D Goldman
- Frank Porter Graham Child Development Institute & Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Frank Porter Graham Child Development Institute, The University of North Carolina at Chapel Hill, CB 8180, 27599, NC, USA
| | - Andrew F Olshan
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Julie L Daniels
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| |
Collapse
|
55
|
Mitchell CA, Reddam A, Dasgupta S, Zhang S, Stapleton HM, Volz DC. Diphenyl Phosphate-Induced Toxicity During Embryonic Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3908-3916. [PMID: 30864794 PMCID: PMC6445678 DOI: 10.1021/acs.est.8b07238] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diphenyl phosphate (DPHP) is an aryl phosphate ester (APE) used as an industrial catalyst and chemical additive and is the primary metabolite of flame retardant APEs, including triphenyl phosphate (TPHP). Minimal DPHP-specific toxicity studies have been published despite ubiquitous exposure within human populations following metabolism of TPHP and other APEs. Therefore, the objective of this study was to determine the potential for DPHP-induced toxicity during embryonic development. Using zebrafish as a model, we found that DPHP significantly increased the distance between the sinus venosus and bulbus arteriosis (SV-BA) at 72 h postfertilization (hpf) following initiation of exposure before and after cardiac looping. Interestingly, pretreatment with d-mannitol mitigated DPHP-induced effects on SV-BA length despite the absence of DPHP effects on pericardial area, suggesting that DPHP-induced cardiac defects are independent of pericardial edema formation. Using mRNA-sequencing, we found that DPHP disrupts pathways related to mitochondrial function and heme biosynthesis; indeed, DPHP significantly decreased hemoglobin levels in situ at 72 hpf following exposure from 24 to 72 hpf. Overall, our findings suggest that, similar to TPHP, DPHP impacts cardiac development, albeit the potency of DPHP is significantly less than TPHP within developing zebrafish.
Collapse
Affiliation(s)
- Constance A. Mitchell
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Sharon Zhang
- Division of Environmental Sciences and Policy, Duke University, Durham, North Carolina 27708, United States
| | - Heather M. Stapleton
- Division of Environmental Sciences and Policy, Duke University, Durham, North Carolina 27708, United States
| | - David C. Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Corresponding Author Phone: (951) 827-4450. Fax: (951) 827-4652.,
| |
Collapse
|
56
|
Huang Y, Liu J, Yu L, Liu C, Wang J. Gonadal impairment and parental transfer of tris (2-butoxyethyl) phosphate in zebrafish after long-term exposure to environmentally relevant concentrations. CHEMOSPHERE 2019; 218:449-457. [PMID: 30497028 DOI: 10.1016/j.chemosphere.2018.11.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) is a ubiquitous environmental contaminant due to its overuse. TBOEP has been found to cause reproductive toxicity and endocrine disruption during acute toxic experiment. In this study, we examined the effects of TBOEP on growth in initial generation (F0) zebrafish and transgenerational effects on growth of first generation (F1) larvae after parental long-term exposure (120 d) to environmentally relevant concentrations (0, 0.1, 1, 10 and 100 μg/L). Exposure to TBOEP resulted in significantly less growth as measured by body length, body weight and gonadosomatic index (GSI) in F0 females but not F0 males. Furthermore, the bioaccumulation of TBOEP in gonad, the alteration of the gene transcriptions in the hypothalamic-pituitary-gonadal (HPG) axis, and the delay in gonadal development in both female and male zebrafish were demonstrated. In addition, the residues of TBOEP were detected in F1 larvae after parental exposure, resulting in lower survival and shorter body length, as well as faster heart rate. And no significant changes in gene expressions along the growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis were found in F1 larvae. In conclusion, these results indicated that long-term parental exposure to environmentally relevant concentrations of TBOEP could inhibit the development of progeny by parental gonadal impairment and by TBOEP transfer to offspring, instead of gene transcription in GH/IGF and HPT axes.
Collapse
Affiliation(s)
- Yangyang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
57
|
Wang L, Huang X, Lim DJ, Laserna AKC, Li SFY. Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: Insights from untargeted metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1239-1249. [PMID: 30308812 DOI: 10.1016/j.scitotenv.2018.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 05/25/2023]
Abstract
The flame retardant triphenyl phosphate (TPhP) has been widely detected in surface waters. Yet, little information is known regarding its impact on microalgae. We investigated the uptake and toxicity of TPhP on two freshwater microalgae Chlorella vulgaris (CV) and Scenedesmus obliquus (SO) after exposure to 10 μg/l-10 mg/l for 5 days. The presence of microalgae significantly enhanced TPhP degradation, with the final concentrations dropped to 5.5-35.1% of the original concentrations. Most of the medium TPhP were sorbed and transformed by microalgae in just one day. Growth of CV was inhibited in a concentration-dependent manner, whereas growth of SO were only inhibited significantly at 10 mg/l TPhP exposure. Mass spectrometry-based untargeted metabolomics revealed concentration- and species-dependent metabolic responses. Exposure to TPhP in CV resulted in enhanced respiration (increase of fumarate and malate) and osmoregulation (increase of sucrose and myo-inositol), synthesis of membrane lipids (accumulation of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), decrease of lysoglycerolipids, fatty acids, and glyceryl-glucoside). Exposure to TPhP in SO resulted in enhanced osmoregulation (increase of valine, proline, and raffinose) and lipolysis (decrease of MGDG, accumulation of fatty acids, lysophospholipids, and glycerol phosphate). Although chlorophyll a and b contents did not change significantly, decrease of chlorophyll derivatives was observed in both CV and SO at high exposure concentrations. Further bioassays confirmed that CV exhibited enhanced membrane integrity and decreased cellular reactive oxygen species (ROS) possibly as a defense strategy, whereas SO showed disruption of membrane integrity and induction of ROS at 10 mg/l exposure. This study demonstrated the potential of microalgae to remove TPhP in water, and offered new insights for the risk assessment of TPhP on freshwater microalgae using metabolomics.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Xulei Huang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Dorothy Jingwen Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | | | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
58
|
Doherty BT, Hoffman K, Keil AP, Engel SM, Stapleton HM, Goldman BD, Olshan AF, Daniels JL. Prenatal exposure to organophosphate esters and cognitive development in young children in the Pregnancy, Infection, and Nutrition Study. ENVIRONMENTAL RESEARCH 2019; 169:33-40. [PMID: 30408751 PMCID: PMC6347494 DOI: 10.1016/j.envres.2018.10.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 05/20/2023]
Abstract
Organophosphate esters (OPEs) are a class of chemicals commonly used as flame retardants and plasticizers. OPEs are applied to a wide variety of consumer products and have a propensity to leach from these products. Consequently, OPEs are ubiquitous contaminants in many human environments and human exposure is pervasive. Accumulating evidence suggests that OPEs are capable of interfering with childhood cognitive development through both neurologic- and endocrine-mediated mechanisms. However, observational evidence of cognitive effects is limited. We used data collected in the third phase of the Pregnancy, Infection, and Nutrition Study to investigate cognitive effects of prenatal exposure to OPEs. In a spot prenatal maternal urine sample, we measured the following OPE metabolites: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl phosphate) (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and 1-hydroxyl-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP). We assessed children's language and multi-faceted and overall cognitive development between two and three years of age using the MacArthur-Bates Communicative Development Inventories (MB-CDI) and the Mullen Scales of Early Learning (MSEL). We used linear regression to estimate the change in children's scores on these developmental assessments per interquartile range (IQR) increase in log-transformed, specific-gravity-corrected prenatal OPE metabolite concentrations, adjusted for maternal age, education, income, race/ethnicity, BMI, and child's sex. A total of 149 children had both OPE metabolite measurements and MB-CDI scores, and 227 children had both OPE metabolite measurements and MSEL scores. We observed that higher concentrations of ip-PPP (ng/ml) were associated with lower scores on the MSEL Cognitive Composite Score (β = -2.61; 95% CI: -5.69, 0.46), and separately on two of the four MSEL Scales that comprise the Cognitive Composite, specifically the Fine Motor Scale (β = -3.08; 95% CI: -5.26, -0.91) and the Expressive Language Scale (β = -1.21; 95% CI: -2.91, 0.49). We similarly observed that prenatal ip-PPP concentrations were inversely associated with age-standardized scores on the MB-CDI Vocabulary assessment (β = -1.19; 95% CI: -2.53, 0.16). Other OPE metabolites were not strongly associated with performance on either assessment. Our results suggest that isopropylated triarylphosphate isomers, the presumed parent compounds of ip-PPP, may adversely impact cognitive development, including fine motor skills and early language abilities. Our study contributes to the growing body of observational evidence that suggests prenatal exposure to OPEs may adversely affect cognitive development.
Collapse
Affiliation(s)
- Brett T Doherty
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA.
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 27708, Durham, NC 27708, USA
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 27708, Durham, NC 27708, USA
| | - Barbara D Goldman
- Frank Porter Graham Child Development Institute & Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, CB 8180, Chapel Hill, NC 27599, USA
| | - Andrew F Olshan
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Julie L Daniels
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
59
|
Leuthold D, Klüver N, Altenburger R, Busch W. Can Environmentally Relevant Neuroactive Chemicals Specifically Be Detected with the Locomotor Response Test in Zebrafish Embryos? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:482-493. [PMID: 30516976 DOI: 10.1021/acs.est.8b04327] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemicals considered as neuroactive (such as certain pesticides, pharmaceuticals, and industrial chemicals) are among the largest groups of bioactive substances recently detected in European rivers. However, the determination of nervous-system-specific effects has been limited using in vitro tests or conventional end points including lethality. Thus, neurobehavioral tests using in vivo models (e.g., zebrafish embryo) have been proposed as complementary approaches. To investigate the specificity and sensitivity of a light-dark transition locomotor response (LMR) test in 4 to 5 days post fertilization zebrafish with respect to different modes of action (MoAs), we analyzed a set of 18 environmentally relevant compounds with various anticipated MoAs. We found that exposure-induced behavioral alterations were reproducible and dependent on concentration and time. Comparative and quantitative analyses of the obtained locomotor patterns revealed that behavioral effects were not restricted to compounds primarily known to target the nervous system. A clear distinction of MoAs based on locomotor patterns was not possible for most compounds. Furthermore, chemicals with an anticipated same MoA did not necessarily provoke similar behavioral phenotypes. Finally, we determined an increased sensitivity (≥10-fold) compared to observed mortality in the LMR assay for five of eight neuroactive chemicals as opposed to non-neuroactive compounds.
Collapse
|
60
|
Wang L, Huang X, Laserna AKC, Li SFY. Untargeted metabolomics reveals transformation pathways and metabolic response of the earthworm Perionyx excavatus after exposure to triphenyl phosphate. Sci Rep 2018; 8:16440. [PMID: 30401822 PMCID: PMC6219545 DOI: 10.1038/s41598-018-34814-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Triphenyl phosphate (TPHP) is one of the most highly utilized organophosphorus flame retardants, and has been frequently detected in various environmental matrices, including soil. So far, limited information is known regarding the potential toxicity of TPHP to the earthworm-soil ecosystem. We investigated the metabolism of TPHP and the perturbation of the endogenous metabolome in the earthworm, Perionyx excavatus, using gas chromatography mass spectrometry (GC-MS) and liquid chromatography quadrupole time-of-flight (LC-QTOF)-based untargeted metabolomics approach after acute exposure to TPHP for one and two days through a filter paper contact test, as well as after chronic exposure for 28 days in a soil microcosm experiment. TPHP showed low bioaccumulation potential in the earthworm-soil ecosystem at concentrations of 10 mg/kg and 50 mg/kg. Identified phase I metabolites include diphenyl phosphate, mono-hydroxylated and di-hydroxylated TPHP. Two groups of phase II metabolites, thiol conjugates (including mercaptolactic acid, cysteine, cysteinylglycine, and mercaptoethanol conjugates) and glucoside conjugates (including glucoside, glucoside-phosphate, and C14H19O10P conjugates), were putatively identified. Only acute TPHP exposure caused significant perturbations of the endogenous metabolome in earthworms, featuring fluctuations in amino acids, glucose, inosine and phospholipids. These results reveal novel phase II metabolism and toxicity of TPHP in P. excavatus.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, Singapore
| | - Xulei Huang
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, Singapore
| | | | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, Singapore. .,NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
61
|
Behringer V, Deimel C, Hohmann G, Negrey J, Schaebs FS, Deschner T. Applications for non-invasive thyroid hormone measurements in mammalian ecology, growth, and maintenance. Horm Behav 2018; 105:66-85. [PMID: 30063897 DOI: 10.1016/j.yhbeh.2018.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
Thyroid hormones (THs) play a pivotal role in the regulation of metabolic activity throughout all life stages. Cross-talk with other hormone systems permits THs to coordinate metabolic changes as well as modifications in growth and maintenance in response to changing environmental conditions. The scope of this review is to explain the relevant basics of TH endocrinology, highlight pertinent topics that have been investigated so far, and offer guidance on measuring THs in non-invasively collected matrices. The first part of the review provides an overview of TH biochemistry, which is necessary to understand and interpret the findings of existing studies and to apply non-invasive TH monitoring. The second part focuses on the role of THs in mammalian ecology, and the third part highlights the role of THs in growth and maintenance. The fourth part deals with the advantages and difficulties of measuring THs in non-invasively collected samples. This review concludes with a summary that considers future directions in the study of THs.
Collapse
Affiliation(s)
- V Behringer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - C Deimel
- Department of Anthropology, Indiana University Bloomington, 701 E Kirkwood Ave, Bloomington, IN 47405, USA
| | - G Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - J Negrey
- Department of Anthropology, Boston University, 232 Bay State Road, Boston, MA 02215, USA
| | - F S Schaebs
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - T Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
62
|
A case-control study of exposure to organophosphate flame retardants and risk of thyroid cancer in women. BMC Cancer 2018; 18:637. [PMID: 29871608 PMCID: PMC5989427 DOI: 10.1186/s12885-018-4553-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/25/2018] [Indexed: 11/29/2022] Open
Abstract
Background Growing evidence demonstrates that exposure to organophosphate flame retardants (PFRs) is widespread and that these chemicals can alter thyroid hormone regulation and function. We investigated the relationship between PFR exposure and thyroid cancer and whether individual or temporal factors predict PFR exposure. Methods We analyzed interview data and spot urine samples collected in 2010–2013 from 100 incident female, papillary thyroid cancer cases and 100 female controls of a Connecticut-based thyroid cancer case-control study. We measured urinary concentrations of six PFR metabolites with mass spectrometry. We estimated odds ratios (OR) and 95% confidence intervals (95% CI) for continuous and categories (low, medium, high) of concentrations of individual and summed metabolites, adjusting for potential confounders. We examined relationships between concentrations of PFR metabolites and individual characteristics (age, smoking status, alcohol consumption, body mass index [BMI], income, education) and temporal factors (season, year) using multiple linear regression analysis. Results No PFRs were significantly associated with papillary thyroid cancer risk. Results remained null when stratified by microcarcinomas (tumor diameter ≤ 1 cm) and larger tumor sizes (> 1 cm). We observed higher urinary PFR concentrations with increasing BMI and in the summer season. Conclusions Urinary PFR concentrations, measured at time of diagnosis, are not linked to increased risk of thyroid cancer. Investigations in a larger population or with repeated pre-diagnosis urinary biomarker measurements would provide additional insights into the relationship between PFR exposure and thyroid cancer risk. Electronic supplementary material The online version of this article (10.1186/s12885-018-4553-9) contains supplementary material, which is available to authorized users.
Collapse
|
63
|
Hill KL, Hamers T, Kamstra JH, Willmore WG, Letcher RJ. Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. Toxicol Lett 2018; 285:87-93. [PMID: 29306024 DOI: 10.1016/j.toxlet.2017.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
The toxicological properties of organophosphate (OP) triesters that are used as flame retardants and plasticizers are currently not well understood, though increasing evidence suggests they can affect the thyroid system. Perturbation of thyroid hormone (TH) transport is one mechanism of action that may affect thyroid function. The present study applied an in vitro competitive protein binding assay with thyroxine (T4) and human transthyretin (hTTR) transport protein to determine the potential for the OP triesters, TDCIPP (tris(1,3-dichloro-2-propyl) phosphate), TBOEP (tris(butoxyethyl) phosphate), TEP (triethyl phosphate), TPHP (triphenyl phosphate), p-OH-TPHP (para-hydroxy triphenyl phosphate), and the OP diester DPHP (diphenyl phosphate), to competitively displace T4 from hTTR. Enhancement of T4 binding to hTTR, rather than the hypothesized competition, was observed for the six OP esters and in a concentration-dependent manner. For example, T4-hTTR binding was significantly increased at concentrations of TBOEP as low as 64 nM, and up to 184% of controls at 5000 nM. A plausible explanation of these results, which to our knowledge has not been previously reported, may be allosteric interactions of the OP esters with hTTR allowing T4 to access the second site of the TH binding pocket. These in vitro results suggest a novel mechanism of OP ester toxicity via T4 binding enhancement, and possible dysregulation of T4-hTTR interactions.
Collapse
Affiliation(s)
- Katie L Hill
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada; Intrinsik Corp., Ottawa, Canada
| | - Timo Hamers
- Department of Environment and Health, Vrije Universiteit Amsterdam, The Netherlands
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Science and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, Oslo, 0033, Norway
| | | | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada.
| |
Collapse
|
64
|
Ye X, Pan W, Zhao S, Zhao Y, Zhu Y, Liu J, Liu W. Relationships of Pyrethroid Exposure with Gonadotropin Levels and Pubertal Development in Chinese Boys. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6379-6386. [PMID: 28478668 DOI: 10.1021/acs.est.6b05984] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although an acceleration of male pubertal development has been observed, precisely which endocrine-disrupting chemicals (EDCs) might contribute to the advancing onset of puberty in boys remains unclear. Here, pyrethroids, a class of widely used insecticides that have been considered as EDCs, are proposed as new environmental risk factors. In this study, 463 boys at the age of 9-16 years old were recruited in Hangzhou, Zhejiang, China. The common metabolites of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), as well as gonadotropins, including luteinizing hormone (LH) and follicle-stimulating hormone (FSH), were analyzed in urine samples. Pubertal development was assessed based on Tanner stages and testicular volume (TV). A positive association between 3-PBA and gonadotropins was found (p < 0.001), in which a 10% increase in 3-PBA was associated with a 2.4% and 2.9% increase in LH and FSH, respectively. Higher urinary levels of 3-PBA in boys were associated with 275% and 280% increase in the risk of being genitalia stage 3 (G3) and G4, respectively (p < 0.05). There was a significant (132%) induction in odd of being TV 12-19 mL with increasing 3-PBA concentration compared to being in TV < 4 mL (p < 0.05). For the first time to our knowledge, this work reports on an association of increased pyrethroid exposure with elevated gonadotropins levels and earlier pubertal development in boys.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Shilin Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Yuehao Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Yimin Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
65
|
Yang X, Li X, Zhang L, Gong J. Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate. Biosens Bioelectron 2017; 92:61-67. [DOI: 10.1016/j.bios.2017.01.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
66
|
Zhang Q, Wang J, Zhu J, Liu J, Zhao M. Potential Glucocorticoid and Mineralocorticoid Effects of Nine Organophosphate Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5803-5810. [PMID: 28430429 DOI: 10.1021/acs.est.7b01237] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organophosphate flame retardants (OPFRs), as alternatives of polybrominated diphenyl ethers (PBDEs), have been frequently detected in the environment and biota, and could pose adverse effects on organisms. However, information on the potential endocrine disruption of OPFRs, especially their effects on steroid hormone receptors, such as glucocorticoid and mineralocorticoid receptors (GR/MR), is limited. In this study, the dual-luciferase reporter gene assay via GR/MR and a H295R steroidogenesis assay were employed to evaluate the endocrine disruption of nine OPFRs. We found TMPP, TPHP, and TDBPP exhibited both GR and MR antagonistic activities, while TNBP and TDCIPP only showed MR antagonistic property within a concentration range of 10-8 to 10-5 mol/L(M). In the H295R steroidogenesis assay, the fold changes of eight steroidogenic genes in response to OPFRs were further studied. We found CYP17,CYP21, and CYP11B1 expression were significantly down-regulated following TMPP, TPHP, or TDBPP exposure at a concentration of 2 × 10-6 M. Meanwhile TMPP decreased the production of cortisol and TDBPP down-regulated the secretion of aldosterone. Our results indicate that some OPFRs can interact with GR and MR, and have the potential to disturb steroidogenesis. Data provided here will be helpful to comprehensively understand the potential endocrine disruption of OPFRs.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Landmark Center West, Boston, Massachusetts 02215, United States
| | - Jinghua Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
| | - Jing Liu
- College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang 310032, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Landmark Center West, Boston, Massachusetts 02215, United States
| |
Collapse
|
67
|
Preston EV, McClean MD, Claus Henn B, Stapleton HM, Braverman LE, Pearce EN, Makey CM, Webster TF. Associations between urinary diphenyl phosphate and thyroid function. ENVIRONMENT INTERNATIONAL 2017; 101:158-164. [PMID: 28162782 PMCID: PMC5348264 DOI: 10.1016/j.envint.2017.01.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 05/18/2023]
Abstract
Triphenyl phosphate (TPHP) is a commonly used organophosphate flame retardant and plasticizer with widespread human exposure. Data on health effects of TPHP are limited. Recent toxicological studies suggest TPHP may alter thyroid function. We used repeated measures to assess the temporal variability in urinary concentrations of the TPHP metabolite, diphenyl phosphate (DPHP), and to examine relationships between DPHP concentrations and thyroid hormones. We sampled 51 adults at months 1, 6, and 12 from 2010 to 2011. Urine samples were analyzed for DPHP. Serum samples were analyzed for free and total thyroxine (fT4, TT4), total triiodothyronine (TT3), and thyroid stimulating hormone (TSH). We assessed variability in DPHP using intraclass correlation coefficients (ICCs) and kappa statistics. We used linear mixed-effects models to examine associations between DPHP and thyroid hormones. DPHP was detected in 95% of urine samples. Mean DPHP concentrations were 43% higher in women than men. DPHP showed high within-subject variability (ICC range, 0.13-0.39; kappa range, 0.16-0.39). High versus low (≥2.65 vs. <2.65ng/mL) DPHP in all participants was associated with a 0.43μg/dL (95% confidence interval: 0.15, 0.72) increase in mean TT4 levels. In sex-stratified analyses, high versus low DPHP was associated with a 0.91μg/dL (95% CI: 0.47, 1.36) increase in mean TT4 in women. The association was attenuated in men (βeta=0.19; 95% CI: -0.15, 0.52). We found no significant associations between DPHP and fT4, TT3, or TSH. We found evidence that TPHP exposure may be associated with increased TT4 levels, especially in women.
Collapse
Affiliation(s)
- Emma V Preston
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Lewis E Braverman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth N Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Colleen M Makey
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|