51
|
Zhang M, Yang F, Fan F, Wang Z, Hong X, Tan Y, Tan S, Hong LE. Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia. NEUROIMAGE-CLINICAL 2020; 26:102218. [PMID: 32126520 PMCID: PMC7052514 DOI: 10.1016/j.nicl.2020.102218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Functional connectivity between amygdala subregions and the brain was studied with resting-state (RS) functional MRI. RS functional connectivity was compared between patients with first episode schizophrenia (FES) and healthy controls. FES patients showed changes in functional connectivity between amygdala subregions and sensorimotor cortex. Altered basolateral amygdala-precentral gyrus connectivity correlated with positive symptoms in FES patients.
Altered resting-state functional connectivity (rsFC) of the amygdala has been demonstrated to be implicated in schizophrenia neuronal pathophysiology. However, whether rsFC of amygdala subregions is differentially affected in schizophrenia remains unclear. This study compared the functional networks of each amygdala subdivision between healthy controls (HC) and patients with first-episode schizophrenia (FES). In total, 47 HC and 78 patients with FES underwent resting-state functional magnetic resonance imaging. The amygdala was divided into the following three subregions using the Juelich histological atlas: basolateral amygdala (BLA), centromedial amygdala (CMA), and superficial amygdala (SFA). The rsFC of the three amygdala subdivisions was computed and compared between the two groups. Significantly increased rsFC of the right CMA with the right postcentral gyrus and decreased rsFC of the right BLA with the left precentral gyrus were observed in the FES group compared with the HC group. Notably, the right BLA-left precentral gyrus connectivity was negatively correlated with positive symptoms and conceptual disorganization in patients with FES. In conclusion, this study found that patients with FES had abnormal functional connectivity in the amygdala subregions, and the altered rsFC was associated with positive symptoms. The present findings demonstrate the disruptive rsFC patterns of amygdala subregional-sensorimotor networks in FES and may provide new insights into the neuronal pathophysiology of FES.
Collapse
Affiliation(s)
- Meng Zhang
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Fude Yang
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China.
| | - Fengmei Fan
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Zhiren Wang
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Xiang Hong
- Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Yunlong Tan
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China
| | - Shuping Tan
- Peking University HuiLonGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, United States
| |
Collapse
|
52
|
DeMayo MM, Young LJ, Hickie IB, Song YJC, Guastella AJ. Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neurosci Biobehav Rev 2019; 107:388-398. [PMID: 31560922 DOI: 10.1016/j.neubiorev.2019.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
Early life social experiences shape neural pathways in infants to develop lifelong social skills. This review presents the first unified circuit-based model of social learning that can be applied to early life social development, drawing together unique human developmental milestones, sensitive learning periods, and behavioral and neural scaffolds. Circuit domains for social learning are identified governing Activation, Integration, Discrimination, Response and Reward (AIDRR) to sculpt and drive human social learning. This unified model can be used to identify social delays earlier in development. We propose social impairments observed in Autism Spectrum Disorder are underpinned by early mistimed sensitive periods in brain development and alterations in amygdala development to disrupt the AIDRR circuits. This model directs how interventions can target neural circuits for social development and be applied early in life. To illustrate, the role of oxytocin and its use as an intervention is explored. The AIDRR model shifts focus away from delivering broad treatments based only on diagnostic classifications, to specifying and targeting the relevant circuits, at the right time of development, to optimize social learning.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.
| | - Ian B Hickie
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Yun Ju C Song
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| |
Collapse
|
53
|
King JL, Kaimal G, Konopka L, Belkofer C, Strang CE. Practical Applications of Neuroscience-Informed Art Therapy. ART THERAPY 2019. [DOI: 10.1080/07421656.2019.1649549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
54
|
Pick S, Goldstein LH, Perez DL, Nicholson TR. Emotional processing in functional neurological disorder: a review, biopsychosocial model and research agenda. J Neurol Neurosurg Psychiatry 2019; 90:704-711. [PMID: 30455406 PMCID: PMC6525039 DOI: 10.1136/jnnp-2018-319201] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/20/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Functional neurological disorder (FND) is a common and highly disabling disorder, but its aetiology remains enigmatic. Conceptually, there has been reduced emphasis on the role of psychosocial stressors in recent years, with a corresponding increase in neurobiological explanations. However, a wealth of evidence supports the role of psychosocial adversities (eg, stressful life events, interpersonal difficulties) as important risk factors for FND. Therefore, there is a need to integrate psychosocial (environmental) and neurobiological factors (eg, sensorimotor and cognitive functions) in contemporary models of FND. Altered emotional processing may represent a key link between psychosocial risk factors and core features of FND. Here, we summarise and critically appraise experimental studies of emotional processing in FND using behavioural, psychophysiological and/or neuroimaging measures in conjunction with affective processing tasks. We propose that enhanced preconscious (implicit) processing of emotionally salient stimuli, associated with elevated limbic reactivity (eg, amygdala), may contribute to the initiation of basic affective/defensive responses via hypothalamic and brainstem pathways (eg, periaqueductal grey). In parallel, affect-related brain areas may simultaneously exert a disruptive influence on neurocircuits involved in voluntary motor control, awareness and emotional regulation (eg, sensorimotor, salience, central executive networks). Limbic-paralimbic disturbances in patients with FND may represent one of several neurobiological adaptations linked to early, severe and/or prolonged psychosocial adversity. This perspective integrates neurobiological and psychosocial factors in FND and proposes a research agenda, highlighting the need for replication of existing findings, multimodal sampling across emotional response domains and further examination of emotional influences on sensorimotor and cognitive functions in FND populations.
Collapse
Affiliation(s)
- Susannah Pick
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Laura H Goldstein
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David L Perez
- Department of Neurology, Functional Neurology Research Group, Cognitive Behavioural Neurology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Neuropsychiatry Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy R Nicholson
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
55
|
Maratos FA, Pessoa L. What drives prioritized visual processing? A motivational relevance account. PROGRESS IN BRAIN RESEARCH 2019; 247:111-148. [PMID: 31196431 DOI: 10.1016/bs.pbr.2019.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emotion is fundamental to our being, and an essential aspect guiding behavior when rapid responding is required. This includes whether we approach or avoid a stimulus, and the accompanying physiological responses. A common tenet is that threat-related content drives stimulus processing and biases visual attention, so that rapid responding can be initiated. In this paper, it will be argued instead that prioritization of threatening stimuli should be encompassed within a motivational relevance framework. To more fully understand what is, or is not, prioritized for visual processing one must, however, additionally consider: (i) stimulus ambiguity and perceptual saliency; (ii) task demands, including both perceptual load and cognitive load; and (iii) endogenous/affective states of the individual. Combined with motivational relevance, this then leads to a multifactorial approach to understanding the drivers of prioritized visual processing. This accords with current recognition that the brain basis allowing for visual prioritization is also multifactorial, including transient, dynamic and overlapping networks. Taken together, the paper provides a reconceptualization of how "emotional" information prioritizes visual processing.
Collapse
Affiliation(s)
- Frances Anne Maratos
- Department of Psychology and Human Sciences Research Centre, University of Derby, Derby, United Kingdom.
| | - Luiz Pessoa
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park, MD, United States
| |
Collapse
|
56
|
Schönfeld LM, Wojtecki L. Beyond Emotions: Oscillations of the Amygdala and Their Implications for Electrical Neuromodulation. Front Neurosci 2019; 13:366. [PMID: 31057358 PMCID: PMC6482269 DOI: 10.3389/fnins.2019.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 01/18/2023] Open
Abstract
The amygdala is a structure involved in emotions, fear, learning and memory and is highly interconnected with other brain regions, for example the motor cortex and the basal ganglia that are often targets of treatments involving electrical stimulation. Deep brain stimulation of the basal ganglia is successfully used to treat movement disorders, but can carry along non-motor side effects. The origin of these non-motor side effects is not fully understood yet, but might be altered oscillatory communication between specific motor areas and the amygdala. Oscillations in various frequency bands have been detected in the amygdala during cognitive and emotional tasks, which can couple with oscillations in cortical regions or the hippocampus. However, data on oscillatory coupling between the amygdala and motor areas are still lacking. This review provides a summary of oscillation frequencies measured in the amygdala and their possible functional relevance in different species, followed by evidence for connectivity between the amygdala and motor areas, such as the basal ganglia and the motor cortex. We hypothesize that the amygdala could communicate with motor areas through coherence of low frequency bands in the theta-alpha range. Furthermore, we discuss a potential role of the amygdala in therapeutic approaches based on electrical stimulation.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist, Kempen, Germany
| |
Collapse
|
57
|
Gvozdanovic G, Stämpfli P, Seifritz E, Rasch B. Structural brain differences predict early traumatic memory processing. Psychophysiology 2019; 57:e13354. [PMID: 30825218 DOI: 10.1111/psyp.13354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 01/20/2019] [Indexed: 01/31/2023]
Abstract
Intrusive memories are a key symptom of post-traumatic stress disorder (PTSD). They emerge early after trauma exposure and are predictive for PTSD development. There is a high relevance in evaluating the neurobiological mechanisms of early stages of intrusive symptom development to provide a further understanding of PTSD. In the present study, we explore structural differences in healthy young female subjects preceding experimental trauma exposure and their relationship to early intrusive memory development using a traumatic film paradigm. With voxel-based morphometry, we demonstrate that smaller insular volume was associated with an increased number of early intrusive film memories. Moreover, larger lingual gyrus/cerebellar and inferior frontal gyrus/precentral gyrus volumes were also related to an increased number of early intrusive film memories. Our results identify unique brain areas associated with early experimental trauma memory processing and highlight the necessity of evaluating early symptom stages relevant for personalized PTSD prevention and treatment.
Collapse
Affiliation(s)
- Geraldine Gvozdanovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,Institute of Psychology, University of Zürich, Zürich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric Hospital of the University of Zürich, Zürich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,Competence Center of Sleep & Health Zürich, University of Zürich, Zürich, Switzerland
| | - Björn Rasch
- Competence Center of Sleep & Health Zürich, University of Zürich, Zürich, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
58
|
Vetter P, Badde S, Phelps EA, Carrasco M. Emotional faces guide the eyes in the absence of awareness. eLife 2019; 8:43467. [PMID: 30735123 PMCID: PMC6382349 DOI: 10.7554/elife.43467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
The ability to act quickly to a threat is a key skill for survival. Under awareness, threat-related emotional information, such as an angry or fearful face, has not only perceptual advantages but also guides rapid actions such as eye movements. Emotional information that is suppressed from awareness still confers perceptual and attentional benefits. However, it is unknown whether suppressed emotional information can directly guide actions, or whether emotional information has to enter awareness to do so. We suppressed emotional faces from awareness using continuous flash suppression and tracked eye gaze position. Under successful suppression, as indicated by objective and subjective measures, gaze moved towards fearful faces, but away from angry faces. Our findings reveal that: (1) threat-related emotional stimuli can guide eye movements in the absence of visual awareness; (2) threat-related emotional face information guides distinct oculomotor actions depending on the type of threat conveyed by the emotional expression.
Collapse
Affiliation(s)
- Petra Vetter
- Department of Psychology, Center for Neural Science, New York University, New York, United States.,Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
| | - Stephanie Badde
- Department of Psychology, Center for Neural Science, New York University, New York, United States
| | - Elizabeth A Phelps
- Department of Psychology, Center for Neural Science, New York University, New York, United States.,Department of Psychology, Harvard University, Cambridge, United States
| | - Marisa Carrasco
- Department of Psychology, Center for Neural Science, New York University, New York, United States
| |
Collapse
|
59
|
Bertini C, Starita F, Passamonti C, Santoro F, Zamponi N, Michelucci R, Scarpazza C. Fear‐specific enhancement of tactile perception is disrupted after amygdala lesion. J Neuropsychol 2019; 14:165-182. [DOI: 10.1111/jnp.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/13/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Caterina Bertini
- Center for Studies and Research in Cognitive Neuroscience University of Bologna Italy
- Department of Psychology University of Bologna Italy
| | - Francesca Starita
- Center for Studies and Research in Cognitive Neuroscience University of Bologna Italy
- Department of Psychology University of Bologna Italy
| | - Claudia Passamonti
- Regional Center for Pediatric Epilepsy Department of Neuropsychiatry Ospedali Riuniti Ancona Italy
| | - Francesca Santoro
- Unit of Neurology IRCCS – Institute of Neurological Sciences of Bologna Bellaria Hospital Bologna Italy
| | - Nelia Zamponi
- Regional Center for Pediatric Epilepsy Department of Neuropsychiatry Ospedali Riuniti Ancona Italy
| | - Roberto Michelucci
- Unit of Neurology IRCCS – Institute of Neurological Sciences of Bologna Bellaria Hospital Bologna Italy
| | - Cristina Scarpazza
- Center for Studies and Research in Cognitive Neuroscience University of Bologna Italy
- Department of Psychology University of Bologna Italy
- Department of General Psychology University of Padova Italy
| |
Collapse
|
60
|
Altered Central Autonomic Network in Baseball Players: A Resting-state fMRI Study. Sci Rep 2019; 9:110. [PMID: 30643162 PMCID: PMC6331574 DOI: 10.1038/s41598-018-36329-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
The physiological adaptive regulation of healthy population with a high fitness level is associated with enhanced cognitive control in brain. This study further investigated the effects of different levels of sporting experience on intrinsic brain networks involved in central autonomic processing using resting-state functional magnetic resonance imaging. We explored functional connectivity of four core regions within central autonomic network (CAN), namely posterior midcingulate cortex (pMCC), left amygdala (AMYG), and right anterior (aINS) and left posterior insular cortices, in advanced and intermediate baseball players, and compared their strength of connectivity with individuals without baseball-playing experience. Functional connectivity maps across three groups confirmed a close relationship between CAN and large-scale brain networks in sensory, motor and cognitive domains. Crucially, both advanced and intermediate batters demonstrated enhanced connectivity between pMCC and sensorimotor network, between right aINS and dorsal anterior cingulate cortex, and between left AMYG and right putamen, than controls. These results reflected a stronger interregional coupling in sensorimotor and cognitive control, and in motor skill consolidation. In conclusion, we provided evidence that different levels of sporting experience could reorganize/enhance intrinsic functional connectivity for central autonomic processing.
Collapse
|
61
|
Sojka P, Bareš M, Kašpárek T, Světlák M. Processing of Emotion in Functional Neurological Disorder. Front Psychiatry 2018; 9:479. [PMID: 30344497 PMCID: PMC6182079 DOI: 10.3389/fpsyt.2018.00479] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023] Open
Abstract
Emotions have traditionally been considered crucial in the development of functional neurological disorder, but the evidence underpinning this association is not clear. We aimed to summarize evidence for association between functional neurological disorder and emotions as formulated by Breuer and Freud in their conception of hysterical conversion. Based on a systematic literature search, we identified 34 controlled studies and categorized them into four groups: (i) autonomic arousal, (ii) emotion-motion interactions, (iii) social modulation of symptoms, and (iv) bodily awareness in FND. We found evidence for autonomic dysregulation in FND; convergent neuroimaging findings implicate abnormal limbic-motor interactions in response to emotional stimuli in FND. Our results do not provide enough empirical evidence for social modulation of the symptoms, but there is a clinical support for the role of suggestion and placebo in FND. Our results provide evidence for abnormal bodily awareness in FND. Based on these findings, we propose that functional neurological symptoms are forms of emotional reactions shaped into symptoms by previous experience with illness and possibly reinforced by actual social contexts. Additional research should investigate the effect of social context on the intensity of functional neurological symptoms and associated brain regions.
Collapse
Affiliation(s)
- Petr Sojka
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
| | - Martin Bareš
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Tomáš Kašpárek
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Miroslav Světlák
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
- Department of Psychology and Psychosomatics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| |
Collapse
|
62
|
Fishman I, Linke AC, Hau J, Carper RA, Müller RA. Atypical Functional Connectivity of Amygdala Related to Reduced Symptom Severity in Children With Autism. J Am Acad Child Adolesc Psychiatry 2018; 57:764-774.e3. [PMID: 30274651 PMCID: PMC6230473 DOI: 10.1016/j.jaac.2018.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Converging evidence indicates that brain abnormalities in autism spectrum disorders (ASDs) involve atypical network connectivity. Given the central role of social deficits in the ASD phenotype, this investigation examined functional connectivity of the amygdala-a brain structure critically involved in processing of social information-in children and adolescents with ASDs, as well as age-dependent changes and links with clinical symptoms. METHOD Resting-state functional magnetic resonance imaging (rs-fMRI) data from 55 participants with ASDs and 50 typically developing (TD) controls, aged 7 to 17 years, were included. Groups were matched for age, gender, IQ, and head motion. Functional connectivity MRI (fcMRI) analysis was applied to examine intrinsic functional connectivity (iFC) of the amygdala, including cross-sectional tests of age-related changes. RESULTS Direct between-group comparisons revealed reduced functional connectivity between bilateral amygdalae and left inferior occipital cortex, accompanied by greater connectivity between right amygdala and right sensorimotor cortex in the ASD group. This atypical pattern of amygdala connectivity was associated with decreased symptom severity and better overall functioning, as specifically seen in an ASD subgroup with the most atypical amygdala iFC but the least impaired social functioning. Age-related strengthening of amygdala-prefrontal connectivity, as observed in the TD group, was not detected in children with ASDs. CONCLUSION Findings support aberrant network sculpting in ASDs, specifically atypical integration between amygdala and primary sensorimotor circuits. Paradoxical links between atypical iFC and behavioral measures suggest that abnormal amygdala functional connections may be compensatory in some individuals with ASDs.
Collapse
|
63
|
Anterior Temporal Lobectomy Impairs Neural Classification of Body Emotions in Right Superior Temporal Sulcus and Reduces Emotional Enhancement in Distributed Brain Areas without Affecting Behavioral Classification. J Neurosci 2018; 38:9263-9274. [PMID: 30228228 DOI: 10.1523/jneurosci.0634-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Humans with amygdalar lesions show proportional reductions of the emotional response to facial expressions in the fusiform face area as well as deficits in emotion recognition from facial expressions. While processing of bodily expressions shares many similarities with facial expressions, there is no substantial evidence that lesions of the amygdala result in similar behavioral and neural sequelae. We combined behavioral assessment with functional neuroimaging in a group of male and female humans with unilateral anterior temporal lobe (ATL) resections, including the amygdala (right: n = 10; left: n = 10) and 12 matched controls. The objective was to assess whether the amygdala is crucial for the recognition of body expressions and for modulatory effects on distant areas during perception of body expressions. The behavioral results revealed normal performance in both patient groups on emotion categorization of body expressions. The neuroimaging results showed that ATL patients displayed no enhanced activations in right fusiform body area and left extrastriate body area and that left ATL patients additionally displayed no enhanced activations in right posterior superior temporal sulcus and right extrastriate body area, respectively. Multivoxel pattern analysis revealed altered categorization capacity between emotional and neutral stimuli in right posterior superior temporal sulcus in right ATL patients. In addition, we also found emotional enhancement in frontal, parietal, occipital, and cingulate regions in controls. Together, our data show that the amygdala and ATLs are not necessary for recognition of dynamic body expressions, but suggest that amygdala lesions affect body emotion processing in distant brain areas.SIGNIFICANCE STATEMENT For humans, information from emotional expressions of others is crucial to support social interactions. The majority of emotion studies has focused on facial expressions; however, in daily life, we also use information from body postures and body movement. Visual processing of body expressions relies on a brain network, including body-specific visual areas and visuomotor areas. Even though the importance of the amygdala and its modulatory effects on distant brain regions have been documented, it remains unclear whether the amygdala plays a crucial role in emotional body processing. By combining behavioral and neuroimaging data in patients with amygdalar lesions, we provide further evidence for its modulatory effect on distant areas during the perception of body expressions.
Collapse
|
64
|
Rizzo G, Milardi D, Bertino S, Basile GA, Di Mauro D, Calamuneri A, Chillemi G, Silvestri G, Anastasi G, Bramanti A, Cacciola A. The Limbic and Sensorimotor Pathways of the Human Amygdala: A Structural Connectivity Study. Neuroscience 2018; 385:166-180. [DOI: 10.1016/j.neuroscience.2018.05.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
|
65
|
Sander D, Grandjean D, Scherer KR. An Appraisal-Driven Componential Approach to the Emotional Brain. EMOTION REVIEW 2018. [DOI: 10.1177/1754073918765653] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article suggests that methodological and conceptual advancements in affective sciences militate in favor of adopting an appraisal-driven componential approach to further investigate the emotional brain. Here we propose to operationalize this approach by distinguishing five functional networks of the emotional brain: (a) the elicitation network, (b) the expression network, (c) the autonomic reaction network, (d) the action tendency network, and (e) the feeling network, and discuss these networks in the context of the affective neuroscience literature. We also propose that further investigating the “appraising brain” is the royal road to better understand the elicitation network, and may be key to revealing the neural causal mechanisms underlying the emotion process as a whole.
Collapse
Affiliation(s)
- David Sander
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
- Department of Psychology, FPSE, University of Geneva, Switzerland
| | - Didier Grandjean
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
- Department of Psychology, FPSE, University of Geneva, Switzerland
| | - Klaus R. Scherer
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
- Department of Psychology, FPSE, University of Geneva, Switzerland
| |
Collapse
|
66
|
Xiao T, Zhang S, Lee LE, Chao HH, van Dyck C, Li CSR. Exploring Age-Related Changes in Resting State Functional Connectivity of the Amygdala: From Young to Middle Adulthood. Front Aging Neurosci 2018; 10:209. [PMID: 30061823 PMCID: PMC6055042 DOI: 10.3389/fnagi.2018.00209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Functional connectivities of the amygdala support emotional and cognitive processing. Life-span development of resting-state functional connectivities (rsFC) of the amygdala may underlie age-related differences in emotion regulatory mechanisms. To date, age-related changes in amygdala rsFC have been reported through adolescence but not as thoroughly for adulthood. This study investigated age-related differences in amygdala rsFC in 132 young and middle-aged adults (19–55 years). Data processing followed published routines. Overall, amygdala showed positive rsFC with the temporal, sensorimotor and ventromedial prefrontal cortex (vmPFC), insula and lentiform nucleus, and negative rsFC with visual, frontoparietal, and posterior cingulate cortex and caudate head. Amygdala rsFC with the cerebellum was positively correlated with age, and rsFCs with the dorsal medial prefrontal cortex (dmPFC) and somatomotor cortex were negatively correlated with age, at voxel p < 0.001 in combination with cluster p < 0.05 FWE. These age-dependent changes in connectivity appeared to manifest to a greater extent in men than in women, although the sex difference was only evident for the cerebellum in a slope test of age regressions (p = 0.0053). Previous studies showed amygdala interaction with the anterior cingulate cortex (ACC) and vmPFC during emotion regulation. In region of interest analysis, amygdala rsFC with the ACC and vmPFC did not show age-related changes. These findings suggest that intrinsic connectivity of the amygdala evolved from young to middle adulthood in selective brain regions, and may inform future studies of age-related emotion regulation and maladaptive development of the amygdala circuits as an etiological marker of emotional disorders.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Lue-En Lee
- Department of Psychiatry, National Taiwan University, Taipei, Taiwan
| | - Herta H Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Christopher van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States.,Beijing Huilongguan Hospital, Peking University, Beijing, China
| |
Collapse
|
67
|
Dynamic Interactions between Emotion Perception and Action Preparation for Reacting to Social Threat: A Combined cTBS-fMRI Study. eNeuro 2018; 5:eN-NWR-0408-17. [PMID: 29971249 PMCID: PMC6027957 DOI: 10.1523/eneuro.0408-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023] Open
Abstract
Expressions of emotion are powerful triggers for situation-appropriate responses by the observer. Of particular interest regarding the preparation of such adaptive actions are parietal and premotor cortices, given their potential for interaction with the amygdala (AMG), which is known to play a crucial role in the processing of affective information and in motor response. We set out to disentangle the respective roles of the inferior parietal lobule (IPL) and ventral premotor cortex (PMv) in humans in the processing of emotional body expressions by assessing remote effects of continuous theta burst stimulation (cTBS) in the action network and in AMG. Participants were presented with blocks of short videos showing either angry or neutral whole-body actions. The experiment consisted of three fMRI sessions: two sessions were preceded by stimulation of either right IPL (rIPL) or right PMv (rPMv); and a third session assessed baseline activity. Interestingly, whereas at baseline the left AMG did not differentiate between neutral and angry body postures, a significant difference between these conditions emerged after stimulation of either rIPL or rPMv, with much larger responses to angry than to neutral stimuli. In addition, the effects of cTBS stimulation and emotion were also observed in two other action-relevant areas, the supplementary motor area and the superior parietal cortex. Together, these results show how areas involved in action and emotion perception and in action preparation interact dynamically.
Collapse
|
68
|
The detrimental effect of acute stress on response inhibition when exposed to acute stress: an event-related potential analysis. Neuroreport 2018; 28:922-928. [PMID: 28777259 DOI: 10.1097/wnr.0000000000000859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Response inhibition as a core cognitive function plays a critical role in our daily activities. However, response inhibition can be easily altered when exposed to acute stress. The current study investigated how and whether or not acute stress impacted response inhibition and the underlying neural mechanism with behavioral and event-related potential methods. Healthy participants were assigned randomly to a modified Trier Social Stress Test as a stressor and a control condition. Then, event-related potentials were measured when participants performed a modified Go/No-Go task. In this task, participants were informed to make or withhold a response according to the colored frame of three different emotional pictures: negative, neutral, and positive. Increased negative effect in the stress condition compared with the control condition indicated a successful acute stress induction. The stress group showed significantly smaller frontal and central N2 mean difference waves, relatively less positive parietal P3 mean difference waves, and prolonged N2 and Nogo-P3 latency compared with the control group. In addition, the reaction time in 'Go' trials was correlated negatively with N2 and P3 difference waves in the stress group. Behaviorally, acute stress did not influence response times and miss rates of 'Go' trials as well as the rate of false alarms in 'No-Go' trials. These findings suggested that acute stress impaired conflict detection, monitoring processes, and response inhibition processes on the neural level without a behavioral performance deficit. These findings provide neural evidence for understanding how the dynamic processes of acute stress influence response inhibition.
Collapse
|
69
|
Lagravinese G, Pelosin E, Bonassi G, Carbone F, Abbruzzese G, Avanzino L. Gait initiation is influenced by emotion processing in Parkinson's disease patients with freezing. Mov Disord 2018; 33:609-617. [PMID: 29392774 DOI: 10.1002/mds.27312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Freezing of gait is a symptom that affects more than 50% of Parkinson's disease (PD) patients and increasing evidence suggests that nonmotor systems (i.e., limbic system) are involved in its underlying mechanisms. OBJECTIVE The objective of this study was to investigate whether gait initiation characteristics are influenced by emotional stimuli in patients with PD, with or without freezing of gait. METHODS A total of 44 participants, divided into 3 groups (15 PD patients with and 15 PD patients without freezing of gait and 14 controls), stood on a sensorized mat and were asked to take a step forward in response to a pleasant image and a step backward in response to an unpleasant one (congruent task, low cognitive load) or to take a step backward in response to a pleasant image and a step forward in response to an unpleasant one (incongruent task, high cognitive load). Reaction time, step size, anticipatory postural adjustments, and sway path were measured. RESULTS In PD with freezing of gait, the reaction time was longer and the step size was shorter than in the other groups when they took a step forward in response to an unpleasant image (incongruent task). Changes in reaction time performance in response to unpleasant images remained significant after having adjusted for executive dysfunction and positively correlated with the "frequency" of freezing episodes. CONCLUSIONS This study demonstrates that gait initiation was influenced by the emotional valence of visual stimuli in addition to the cognitive load of the task suggesting that the limbic system may be involved in freezing of gait. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giovanna Lagravinese
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genova, Genova, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia, Genova, Italy
| | - Gaia Bonassi
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genova, Genova, Italy
| | - Federico Carbone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
| | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia, Genova, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genova, Genova, Italy
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia, Genova, Italy
| |
Collapse
|
70
|
Mineo L, Concerto C, Patel D, Mayorga T, Chusid E, Infortuna C, Aguglia E, Sarraf Y, Battaglia F. Modulation of sensorimotor circuits during retrieval of negative Autobiographical Memories: Exploring the impact of personality dimensions. Neuropsychologia 2018; 110:190-196. [DOI: 10.1016/j.neuropsychologia.2017.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 02/04/2023]
|
71
|
Wei L, Chen H, Wu GR. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability. Front Hum Neurosci 2018; 12:2. [PMID: 29545744 PMCID: PMC5838315 DOI: 10.3389/fnhum.2018.00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022] Open
Abstract
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.
Collapse
Affiliation(s)
- Luqing Wei
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
72
|
Ishida H, Inoue KI, Takada M. Multisynaptic Projections from the Amygdala to the Ventral Premotor Cortex in Macaque Monkeys: Anatomical Substrate for Feeding Behavior. Front Neuroanat 2018; 12:3. [PMID: 29403364 PMCID: PMC5780351 DOI: 10.3389/fnana.2018.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/05/2018] [Indexed: 01/25/2023] Open
Abstract
The amygdala codes the visual-gustatory/somatosensory valence for feeding behavior. On the other hand, the ventral premotor cortex (PMv) plays a central role in reaching and grasping movements prerequisite for feeding behavior. This implies that object valence signals derived from the amygdala may be crucial for feeding-related motor actions exerted by PMv. However, since no direct connectivity between the amygdala and PMv has been reported, the structural basis of their functional interactions still remains elusive. In the present study, we employed retrograde transneuronal labeling with rabies virus to identify the amygdalar origin and possible route of multisynaptic projections to PMv in macaque monkeys. Histological analysis of the distribution pattern of labeled neurons has found that PMv receives disynaptic input primarily from the basal nucleus, especially from its intermediate subdivision. It has also been revealed that the medial (e.g., the cingulate motor areas, CMA) and lateral (e.g., the insular cortices) cortical areas, and the cholinergic cell group 4 in the basal forebrain probably mediate the projections from the amygdala to PMv. Such multisynaptic pathways might represent amygdalar influences on PMv functions for feeding behavior.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
73
|
Ghai S, Ghai I, Effenberg AO. "Low road" to rehabilitation: a perspective on subliminal sensory neuroprosthetics. Neuropsychiatr Dis Treat 2018; 14:301-307. [PMID: 29398914 PMCID: PMC5775748 DOI: 10.2147/ndt.s153392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fear can propagate parallelly through both cortical and subcortical pathways. It can instigate memory consolidation habitually and might allow internal simulation of movements independent of the cortical structures. This perspective suggests delivery of subliminal, aversive and kinematic audiovisual stimuli via neuroprosthetics in patients with neocortical dysfunctions. We suggest possible scenarios by which these stimuli might bypass damaged neocortical structures and possibly assisting in motor relearning. Anticipated neurophysiological mechanisms and methodological scenarios have been discussed in this perspective. This approach introduces novel perspectives into neuropsychology as to how subcortical pathways might be used to induce motor relearning.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hannover, Hannover
| | - Ishan Ghai
- School of Life Sciences, Jacobs University, Bremen, Germany
| | | |
Collapse
|
74
|
Caparelli EC, Ross TJ, Gu H, Liang X, Stein EA, Yang Y. Graph theory reveals amygdala modules consistent with its anatomical subdivisions. Sci Rep 2017; 7:14392. [PMID: 29089582 PMCID: PMC5663902 DOI: 10.1038/s41598-017-14613-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Similarities on the cellular and neurochemical composition of the amygdaloid subnuclei suggests their clustering into subunits that exhibit unique functional organization. The topological principle of community structure has been used to identify functional subnetworks in neuroimaging data that reflect the brain effective organization. Here we used modularity to investigate the organization of the amygdala using resting state functional magnetic resonance imaging (rsfMRI) data. Our goal was to determine whether such topological organization would reliably reflect the known neurobiology of individual amygdaloid nuclei, allowing for human imaging studies to accurately reflect the underlying neurobiology. Modularity analysis identified amygdaloid elements consistent with the main anatomical subdivisions of the amygdala that embody distinct functional and structural properties. Additionally, functional connectivity pathways of these subunits and their correlation with task-induced amygdala activation revealed distinct functional profiles consistent with the neurobiology of the amygdala nuclei. These modularity findings corroborate the structure–function relationship between amygdala anatomical substructures, supporting the use of network analysis techniques to generate biologically meaningful partitions of brain structures.
Collapse
Affiliation(s)
- Elisabeth C Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Xia Liang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.,Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, China
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
75
|
Gökdemir S, Gündüz A, Özkara Ç, Kızıltan ME. Fear-conditioned alterations of motor cortex excitability: The role of amygdala. Neurosci Lett 2017; 662:346-350. [PMID: 29097251 DOI: 10.1016/j.neulet.2017.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVE We hypothesized that fear-conditioning may increase motor cortical excitability in preparation for response to fear. We tested our hypothesis in healthy subjects and in the second step, to determine the role of amygdala in alterations of motor cortex excitability, we included a group of patients who previously underwent unilateral amygdalo-hippocampectomy for temporal lobe epilepsy. PATIENTS AND METHODS In the first step, we included 16 healthy volunteers. In the second step, 14 patients who previously underwent unilateral amygdalo-hippocampectomy for temporal lobe epilepsy and who were seizure-free were included in the study. Motor evoked potentials (MEPs) recorded over right hand were recorded twice before and after the observation of fearful faces (fear-conditioning). Auditory startle response (ASR) was also recorded. RESULTS Comparisons of before and after fear-conditioning MEP parameters within the healthy subjects group showed MEP amplitude was higher after fear-conditioning (p=0.019). Same comparison in patients with unilateral amygdalo-hippocampectomy demonstrated shorter MEP latency (p=0.036) and higher MEP amplitudes after fear-conditioning (p=0.046). CSPs did not show any change after this paradigm in both groups. Comparisons of ASR findings before and after fear-conditioning demonstrated enhanced responses after fear-conditioning in both healthy subjects and in patients with unilateral amygdalo-hippocampectomy. For MEPs or ASRs, there was a similar enhancement in patients with left- or right-sided operation. CONCLUSIONS Fear-potentiation of both corticospinal and reticulospinal pathways occurs in healthy humans and bilateral potentiation of ASR and potentiation of MEPs are maintained even after resection of unilateral amygdala regardless of its side.
Collapse
Affiliation(s)
- Selim Gökdemir
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 K.M.Pasa, Istanbul, Turkey
| | - Ayşegül Gündüz
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 K.M.Pasa, Istanbul, Turkey.
| | - Çiğdem Özkara
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 K.M.Pasa, Istanbul, Turkey
| | - Meral E Kızıltan
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 K.M.Pasa, Istanbul, Turkey
| |
Collapse
|
76
|
Le QV, Nishimaru H, Matsumoto J, Takamura Y, Nguyen MN, Mao CV, Hori E, Maior RS, Tomaz C, Ono T, Nishijo H. Gamma oscillations in the superior colliculus and pulvinar in response to faces support discrimination performance in monkeys. Neuropsychologia 2017; 128:87-95. [PMID: 29037507 DOI: 10.1016/j.neuropsychologia.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
The subcortical visual pathway including the superior colliculus (SC), pulvinar, and amygdala has been implicated in unconscious visual processing of faces, eyes, and gaze direction in blindsight. Our previous studies reported that monkey SC and pulvinar neurons responded preferentially to images of faces while performing a delayed non-matching to sample (DNMS) task to discriminate different visual stimuli (Nguyen et al., 2013, 2014). However, the contribution of SC and pulvinar neurons to the discrimination of the facial images and subsequent behavioral performance remains unknown. Since gamma oscillations have been implicated in sensory and cognitive processes as well as behavioral execution, we hypothesized that gamma oscillations during neuronal responses might contribute to achieving the appropriate behavioral performance (i.e., a correct response). In the present study, we re-analyzed those neuronal responses in the monkey SC and pulvinar to investigate possible relationships between gamma oscillations in these neurons and behavioral performance (correct response ratios) during the DNMS task. Gamma oscillations of SC and pulvinar neuronal activity were analyzed in three phases around the stimulus onset [inter-trial interval (ITI): 1000ms before trial onset; Early: 0-200ms after stimulus onset; and Late: 300-500ms after stimulus onset]. We found that human facial images elicited stronger gamma oscillations in the early phase than the ITI and late phase in both the SC and pulvinar neurons. Furthermore, there was a significant correlation between strengths of gamma oscillations in the early phase and behavioral performance in both the SC and pulvinar. The results suggest that gamma oscillatory activity in the SC and pulvinar contributes to successful behavioral performance during unconscious perceptual and behavioral processes.
Collapse
Affiliation(s)
- Quan Van Le
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Vietnam Military Medical University, Hanoi, Vietnam
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minh Nui Nguyen
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Vietnam Military Medical University, Hanoi, Vietnam
| | - Can Van Mao
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Vietnam Military Medical University, Hanoi, Vietnam
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Rafael S Maior
- Department of Physiological Sciences, Primate Center and Laboratory of Neurosciences and Behavior, Institute of Biology, University of Brasília, CEP 70910-900 Brasilia, DF, Brazil
| | - Carlos Tomaz
- Department of Physiological Sciences, Primate Center and Laboratory of Neurosciences and Behavior, Institute of Biology, University of Brasília, CEP 70910-900 Brasilia, DF, Brazil; Neuroscience Research Group, CEUMA University, CE 65065-120 São Luís, Brazil
| | | | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| |
Collapse
|
77
|
Brain activation in response to overt and covert fear and happy faces in women with borderline personality disorder. Brain Imaging Behav 2017; 10:319-31. [PMID: 26007149 DOI: 10.1007/s11682-015-9406-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Borderline personality disorder (BPD) is a serious condition involving emotion dysregulation. Past research has identified BPD-associated differences within fronto-limbic circuitry during conditions of processing negative emotion. Functional magnetic resonance imaging (fMRI) paradigms that incorporate overt and covert (masked) presentations of emotional stimuli can provide complementary information about neural systems underlying emotion processing (e.g., both slow [overt] and fast [covert; automatic] processing pathways). This study examined brain activation during processing of overt and covert presentations of emotional faces in 12 women with BPD and 12 age-matched healthy controls. To assess a range of emotional valence and arousal, we examined responses to fear, happy and neutral expressions. All participants underwent an fMRI scanning session in which participants passively viewed emotional faces. Scanning sessions consisted of 5 runs including: (1) Overt Fear (OF) versus Neutral (N), (2) Covert Fear (CF) versus Covert Neutral (CN), (3) Overt Happy (OH) versus N, (4) Covert Happy (CH) versus CN, and (5) N versus fixation. We compared whole-brain activation between groups for each run. In response to overt fear, BPD patients showed greater activation both in left amygdala and in several frontal cortical regions. There were no significant differences in brain activation in response to overt happy faces. In response to covert fear and covert happy stimuli, the BPD group also showed greater activation than controls in several regions including frontal and temporal cortical regions, as well as cerebellum and thalamus. These findings add to prior reports suggesting increased amygdala activation in BPD, but we found this only in the overt fear versus fixation condition. In this sample, BPD patients showed hyper-activation, rather than hypo-activation, of cortical regulatory regions during overt fear. Enhanced cortical recruitment in response to covert fear and happy faces in BPD could reflect a more extended response system in which stimuli that typically only activate automatic pathways are additionally tapping into cortical regulatory systems. The observation of this pattern both in response to fear and in response to happy presentations suggests that the effect of arousal may be as or more impactful than the effect of emotional valence.
Collapse
|
78
|
Blakemore RL, Vuilleumier P. An Emotional Call to Action: Integrating Affective Neuroscience in Models of Motor Control. EMOTION REVIEW 2017. [DOI: 10.1177/1754073916670020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intimate relationships between emotion and action have long been acknowledged, yet contemporary theories and experimental research within affective and movement neuroscience have not been linked into a coherent framework bridging these two fields. Accumulating psychological and neuroimaging evidence has, however, brought new insights regarding how emotions affect the preparation, execution, and control of voluntary movement. Here we review main approaches and findings on such emotion–action interactions. To assimilate key emotion concepts of action tendencies and motive states with fundamental constructs of the motor system, we underscore the need for integrating an information-processing approach of motor control into affective neuroscience. This should provide a rich foundation to bridge the two fields, allowing further refinement and empirical testing of emotion theories and better understanding of affective influences in movement disorders.
Collapse
Affiliation(s)
- Rebekah L. Blakemore
- Department of Neuroscience, University of Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Patrik Vuilleumier
- Department of Neuroscience, University of Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
- Department of Neurology, University Hospitals of Geneva, Switzerland
| |
Collapse
|
79
|
Hardee JE, Cope LM, Munier EC, Welsh RC, Zucker RA, Heitzeg MM. Sex differences in the development of emotion circuitry in adolescents at risk for substance abuse: a longitudinal fMRI study. Soc Cogn Affect Neurosci 2017; 12:965-975. [PMID: 28338724 PMCID: PMC5472107 DOI: 10.1093/scan/nsx021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/24/2017] [Accepted: 02/13/2017] [Indexed: 01/09/2023] Open
Abstract
There is substantial evidence for behavioral sex differences in risk trajectories for alcohol and substance use, with internalizing factors such as negative affectivity contributing more to female risk. Because the neural development of emotion circuitry varies between males and females across adolescence, it represents a potential mechanism by which underlying neurobiology contributes to risk for substance use. Longitudinal functional magnetic resonance imaging was conducted in males and females (n = 18 each) with a family history of alcohol use disorders starting at ages 8-13 years. Participants performed an affective word task during functional magnetic resonance imaging at 1- to 2-year intervals, covering the age range of 8.5-17.6 years (3-4 scans per participant). Significant age-related sex differences were found in the right amygdala and right precentral gyrus for the negative vs neutral word condition. Males showed a significant decrease in both amygdala and precentral gyrus activation with age, whereas the response in females persisted. The subjective experience of internalizing symptomatology significantly increased with age for females but not for males. Taken together, these results reveal sex differences in negative affect processing in at-risk adolescents, and offer longitudinal neural evidence for female substance use risk through internalizing pathways.
Collapse
Affiliation(s)
- Jillian E. Hardee
- Department of Psychiatry
- Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Lora M. Cope
- Department of Psychiatry
- Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Emily C. Munier
- Department of Psychiatry
- Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Robert C. Welsh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Zucker
- Department of Psychiatry
- Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Mary M. Heitzeg
- Department of Psychiatry
- Addiction Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
80
|
Abivardi A, Bach DR. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Hum Brain Mapp 2017; 38:3927-3940. [PMID: 28512761 PMCID: PMC5729634 DOI: 10.1002/hbm.23639] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 01/22/2023] Open
Abstract
Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aslan Abivardi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Division of Clinical Psychiatry Research, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
| | - Dominik R Bach
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Division of Clinical Psychiatry Research, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland.,Wellcome Trust Centre for Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1N 3BG, United Kingdom
| |
Collapse
|
81
|
Sato W, Kochiyama T, Uono S, Yoshikawa S, Toichi M. Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing. Cereb Cortex 2017; 27:1878-1890. [PMID: 26908633 DOI: 10.1093/cercor/bhw036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine and
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute International, Soraku-gun, Kyoto 619-0288, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine and
| | - Sakiko Yoshikawa
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motomi Toichi
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
82
|
Borgomaneri S, Vitale F, Avenanti A. Behavioral inhibition system sensitivity enhances motor cortex suppression when watching fearful body expressions. Brain Struct Funct 2017; 222:3267-3282. [DOI: 10.1007/s00429-017-1403-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 03/07/2017] [Indexed: 11/28/2022]
|
83
|
Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions. Sci Rep 2017; 7:45260. [PMID: 28345642 PMCID: PMC5366904 DOI: 10.1038/srep45260] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.
Collapse
|
84
|
Toschi N, Duggento A, Passamonti L. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project. Eur J Neurosci 2017; 45:1224-1229. [PMID: 28231395 DOI: 10.1111/ejn.13544] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
Abstract
The word 'e-motion' derives from the Latin word 'ex-moveo' which literally means 'moving away from something/somebody'. Emotions are thus fundamental to prime action and goal-directed behavior with obvious implications for individual's survival. However, the brain mechanisms underlying the interactions between emotional and motor cortical systems remain poorly understood. A recent diffusion tensor imaging study in humans has reported the existence of direct anatomical connections between the amygdala and sensory/(pre)motor cortices, corroborating an initial observation in animal research. Nevertheless, the functional significance of these amygdala-sensory/(pre)motor pathways remain uncertain. More specifically, it is currently unclear whether a distinct amygdala-sensory/(pre)motor circuit can be identified with resting-state functional magnetic resonance imaging (rs-fMRI). This is a key issue, as rs-fMRI offers an opportunity to simultaneously examine distinct neural circuits that underpin different cognitive, emotional and motor functions, while minimizing task-related performance confounds. We therefore tested the hypothesis that the amygdala and sensory/(pre)motor cortices could be identified as part of the same resting-state functional connectivity network. To this end, we examined independent component analysis results in a very large rs-fMRI data-set drawn from the Human Connectome Project (n = 820 participants, mean age: 28.5 years). To our knowledge, we report for the first time the existence of a distinct amygdala-sensory/(pre)motor functional network at rest. rs-fMRI studies are now warranted to examine potential abnormalities in this circuit in psychiatric and neurological diseases that may be associated with alterations in the amygdala-sensory/(pre)motor pathways (e.g. conversion disorders, impulse control disorders, amyotrophic lateral sclerosis and multiple sclerosis).
Collapse
Affiliation(s)
- Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome"Tor Vergata", Rome, Italy.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome"Tor Vergata", Rome, Italy
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| |
Collapse
|
85
|
Hortensius R, Terburg D, Morgan B, Stein DJ, van Honk J, de Gelder B. The role of the basolateral amygdala in the perception of faces in natural contexts. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0376. [PMID: 27069053 DOI: 10.1098/rstb.2015.0376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
The amygdala is a complex structure that plays its role in perception and threat-related behaviour by activity of its specific nuclei and their separate networks. In the present functional magnetic resonance imaging study, we investigated the role of the basolateral amygdala in face and context processing. Five individuals with focal basolateral amygdala damage and 12 matched controls viewed fearful or neutral faces in a threatening or neutral context. We tested the hypothesis that basolateral amygdala damage modifies the relation between face and threatening context, triggering threat-related activation in the dorsal stream. The findings supported this hypothesis. First, activation was increased in the right precentral gyrus for threatening versus neutral scenes in the basolateral amygdala damage group compared with the control group. Second, activity in the bilateral middle frontal gyrus, and left anterior inferior parietal lobule was enhanced for neutral faces presented in a threatening versus neutral scene in the group with basolateral amygdala damage compared with controls. These findings provide the first evidence for the neural consequences of basolateral amygdala damage during the processing of complex emotional situations.
Collapse
Affiliation(s)
- Ruud Hortensius
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands Cognitive and Affective Neuroscience Laboratory, Tilburg University, Warandelaan 2, 5000 LE Tilburg, The Netherlands Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - David Terburg
- Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands
| | - Barak Morgan
- Global Risk Governance Program, Department of Public Law and Institute for Humanities in Africa, University of Cape Town, University Avenue, Rondebosch 7700, Cape Town, South Africa DST-NRF Centre of Excellence in Human Development, DVC Research Office, University of Witwatersrand, York Road, Parktown, Johannesburg, South Africa
| | - Dan J Stein
- Department of Psychiatry and Medical Research Council (MRC) Unit on Anxiety & Stress Disorders, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Jack van Honk
- Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| |
Collapse
|
86
|
Salvia E, Süß M, Tivadar R, Harkness S, Grosbras MH. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures. Front Psychol 2016; 7:1099. [PMID: 27489547 PMCID: PMC4951528 DOI: 10.3389/fpsyg.2016.01099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023] Open
Abstract
Observing others’ actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential – MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects – hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings.
Collapse
Affiliation(s)
- Emilie Salvia
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique and Aix-Marseille UniversitéMarseille, France; Centre National de la Recherche Scientifique, Fédération 3C (FR 3512), Aix-Marseille UniversitéMarseille, France
| | - Moritz Süß
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Ruxandra Tivadar
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Sarah Harkness
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Marie-Hélène Grosbras
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique and Aix-Marseille UniversitéMarseille, France; Centre National de la Recherche Scientifique, Fédération 3C (FR 3512), Aix-Marseille UniversitéMarseille, France; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgow, UK
| |
Collapse
|
87
|
Cacciola A, Milardi D, Anastasi GP, Basile GA, Ciolli P, Irrera M, Cutroneo G, Bruschetta D, Rizzo G, Mondello S, Bramanti P, Quartarone A. A Direct Cortico-Nigral Pathway as Revealed by Constrained Spherical Deconvolution Tractography in Humans. Front Hum Neurosci 2016; 10:374. [PMID: 27507940 PMCID: PMC4960230 DOI: 10.3389/fnhum.2016.00374] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Substantia nigra is an important neuronal structure, located in the ventral midbrain, that exerts a regulatory function within the basal ganglia circuitry through the nigro-striatal pathway. Although its subcortical connections are relatively well-known in human brain, little is known about its cortical connections. The existence of a direct cortico-nigral pathway has been demonstrated in rodents and primates but only hypothesized in humans. In this study, we aimed at evaluating cortical connections of substantia nigra in vivo in human brain by using probabilistic constrained spherical deconvolution (CSD) tractography on magnetic resonance diffusion weighted imaging data. We found that substantia nigra is connected with cerebral cortex as a whole, with the most representative connections involving prefrontal cortex, precentral and postcentral gyri and superior parietal lobule. These results may be relevant for the comprehension of the pathophysiology of several neurological disorders involving substantia nigra, such as parkinson's disease, schizophrenia, and pathological addictions.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy; IRCCS Centro Neurolesi "Bonino Pulejo"Messina, Italy
| | - Giuseppe P Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Gianpaolo A Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Pietro Ciolli
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Mariangela Irrera
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | - Stefania Mondello
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina Messina, Italy
| | | | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of MessinaMessina, Italy; IRCCS Centro Neurolesi "Bonino Pulejo"Messina, Italy
| |
Collapse
|
88
|
Hortensius R, de Gelder B, Schutter DJLG. When anger dominates the mind: Increased motor corticospinal excitability in the face of threat. Psychophysiology 2016; 53:1307-16. [PMID: 27325519 PMCID: PMC5113684 DOI: 10.1111/psyp.12685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Threat demands fast and adaptive reactions that are manifested at the physiological, behavioral, and phenomenological level and are responsive to the direction of threat and its severity for the individual. Here, we investigated the effects of threat directed toward or away from the observer on motor corticospinal excitability and explicit recognition. Sixteen healthy right‐handed volunteers completed a transcranial magnetic stimulation (TMS) task and a separate three‐alternative forced‐choice emotion recognition task. Single‐pulse TMS to the left primary motor cortex was applied to measure motor evoked potentials from the right abductor pollicis brevis in response to dynamic angry, fearful, and neutral bodily expressions with blurred faces directed toward or away from the observer. Results showed that motor corticospinal excitability increased independent of direction of anger compared with fear and neutral. In contrast, anger was better recognized when directed toward the observer compared with when directed away from the observer, while the opposite pattern was found for fear. The present results provide evidence for the differential effects of threat direction on explicit recognition and motor corticospinal excitability. In the face of threat, motor corticospinal excitability increases independently of the direction of anger, indicative of the importance of more automatic reactions to threat.
Collapse
Affiliation(s)
- Ruud Hortensius
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands.,Cognitive and Affective Neuroscience Laboratory, Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dennis J L G Schutter
- Donders Institute of Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
89
|
Pisner DA, Smith R, Alkozei A, Klimova A, Killgore WDS. Highways of the emotional intellect: white matter microstructural correlates of an ability-based measure of emotional intelligence. Soc Neurosci 2016; 12:253-267. [PMID: 27072165 DOI: 10.1080/17470919.2016.1176600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Individuals differ in their ability to understand emotional information and apply that understanding to make decisions and solve problems effectively - a construct known as Emotional Intelligence (EI). While considerable evidence supports the importance of EI in social and occupational functioning, the neural underpinnings of this capacity are relatively unexplored. We used Tract-Based Spatial Statistics (TBSS) to determine the white matter correlates of EI as measured by the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Participants included 32 healthy adults (16 men; 16 women), aged 18-45 years. White matter integrity in key tracts was positively correlated with the Strategic Area branches of the MSCEIT (Understanding Emotions and Managing Emotions), but not the Experiential branches (Perceiving and Facilitating Emotions). Specifically, the Understanding Emotions branch was associated with greater fractional anisotropy (FA) within somatosensory and sensory-motor fiber bundles, particularly those of the left superior longitudinal fasciculus and corticospinal tract. Managing Emotions was associated with greater FA within frontal-affective association tracts including the anterior forceps and right uncinate fasciculus, along with frontal-parietal cingulum and interhemispheric corpus callosum tracts. These findings suggest that specific components of EI are directly related to the structural microarchitecture of major axonal pathways.
Collapse
Affiliation(s)
- Derek A Pisner
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - Ryan Smith
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - Anna Alkozei
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - Aleksandra Klimova
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - William D S Killgore
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA.,b Social Cognitive and Affective Neuroscience Laboratory, McLean Hospital , Harvard Medical School , Belmont , MA , USA
| |
Collapse
|
90
|
Guo Z, Liu X, Hou H, Wei F, Liu J, Chen X. Abnormal degree centrality in Alzheimer's disease patients with depression: A resting-state functional magnetic resonance imaging study. Exp Gerontol 2016; 79:61-6. [PMID: 27079332 DOI: 10.1016/j.exger.2016.03.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/10/2016] [Accepted: 03/25/2016] [Indexed: 01/15/2023]
Abstract
Depression is common in Alzheimer's disease (AD) and occurs in AD patients with a prevalence of up to 40%. It reduces cognitive function and increases the burden on caregivers. Currently, there are very few medications that are useful for treating depression in AD patients. Therefore, understanding the brain abnormalities in AD patients with depression (D-AD) is crucial for developing effective interventions. The aim of this study was to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks at the voxel level in D-AD patients based on degree centrality (DC) as measured by resting-state functional magnetic resonance imaging (R-fMRI). Our study included 32 AD patients. All patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale and further divided into two groups: 15 D-AD patients and 17 non-depressed AD (nD-AD) patients. R-fMRI datasets were acquired from these D-AD and nD-AD patients. First, we performed a DC analysis to identify voxels that showed altered whole brain functional connectivity (FC) with other voxels. We then further investigated FC using the abnormal DC regions to examine in more detail the connectivity patterns of the identified DC changes. D-AD patients had lower DC values in the right middle frontal, precentral, and postcentral gyrus than nD-AD patients. Seed-based analysis revealed decreased connectivity between the precentral and postcentral gyrus to the supplementary motor area and middle cingulum. FC also decreased in the right middle frontal, precentral, and postcentral gyrus. Thus, AD patients with depression fit a 'network dysfunction model' distinct from major depressive disorder and AD.
Collapse
Affiliation(s)
- Zhongwei Guo
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Xiaozheng Liu
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Hongtao Hou
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Fuquan Wei
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Jian Liu
- The Seventh Hospital of Hangzhou, Hangzhou, Zhejiang 310013, China; Clinical Institute of Mental Health in Hangzhou, Anhui Medical University, Hangzhou, Zhejiang 310013, China; Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China.
| | - Xingli Chen
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
91
|
Erickson LC, Rauschecker JP, Turkeltaub PE. Meta-analytic connectivity modeling of the human superior temporal sulcus. Brain Struct Funct 2016; 222:267-285. [PMID: 27003288 DOI: 10.1007/s00429-016-1215-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/06/2016] [Indexed: 12/11/2022]
Abstract
The superior temporal sulcus (STS) is a critical region for multiple neural processes in the human brain Hein and Knight (J Cogn Neurosci 20(12): 2125-2136, 2008). To better understand the multiple functions of the STS it would be useful to know more about its consistent functional coactivations with other brain regions. We used the meta-analytic connectivity modeling technique to determine consistent functional coactivation patterns across experiments and behaviors associated with bilateral anterior, middle, and posterior anatomical STS subregions. Based on prevailing models for the cortical organization of audition and language, we broadly hypothesized that across various behaviors the posterior STS (pSTS) would coactivate with dorsal-stream regions, whereas the anterior STS (aSTS) would coactivate with ventral-stream regions. The results revealed distinct coactivation patterns for each STS subregion, with some overlap in the frontal and temporal areas, and generally similar coactivation patterns for the left and right STS. Quantitative comparison of STS subregion coactivation maps demonstrated that the pSTS coactivated more strongly than other STS subregions in the same hemisphere with dorsal-stream regions, such as the inferior parietal lobule (only left pSTS), homotopic pSTS, precentral gyrus and supplementary motor area. In contrast, the aSTS showed more coactivation with some ventral-stream regions, such as the homotopic anterior temporal cortex and left inferior frontal gyrus, pars orbitalis (only right aSTS). These findings demonstrate consistent coactivation maps across experiments and behaviors for different anatomical STS subregions, which may help future studies consider various STS functions in the broader context of generalized coactivations for individuals with and without neurological disorders.
Collapse
Affiliation(s)
- Laura C Erickson
- Neurology Department, Georgetown University Medical Center, 4000 Reservoir Road NW, Building D, Suite 165, Washington, DC, 20057, USA.,Neuroscience Department, Georgetown University Medical Center, 3900 Reservoir Road NW, New Research Building, Room WP19, Washington, DC, 20057, USA
| | - Josef P Rauschecker
- Neuroscience Department, Georgetown University Medical Center, 3900 Reservoir Road NW, New Research Building, Room WP19, Washington, DC, 20057, USA.,Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2, 85748, Garching bei München, Germany
| | - Peter E Turkeltaub
- Neurology Department, Georgetown University Medical Center, 4000 Reservoir Road NW, Building D, Suite 165, Washington, DC, 20057, USA. .,Research Division, MedStar National Rehabilitation Hospital, 102 Irving St NW, Washington, DC, 20010, USA.
| |
Collapse
|
92
|
He F, Ai HB. Effects of electrical stimulation at different locations in the central nucleus of amygdala on gastric motility and spike activity. Physiol Res 2016; 65:693-700. [PMID: 26988148 DOI: 10.33549/physiolres.933125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to determine the effects of electrical stimulation of different locations in the central nucleus of amygdala (CNA) on gastric motility and spike activity in dorsal vagal complex. Gastric motility index (GMI) and firing rate (FR) of dorsal vagal complex neurons were measured in adult Wistar rats respectively. Neuronal spikes in dorsal vagal complex (DVC) were recorded extracellularly with single-barrel glass microelectrodes. Each type of responses elicited by electrical stimulation in medial (CEM) and lateral (CEL) subdivisions of CNA were recorded, respectively. GMI was significantly increased after stimulation of CEM (p<0.01), and significantly decreased in response to CEL stimulation (p<0.01). After stimulation of CEM, FR in medial nucleus of the solitary tract (mNST) decreased by 31.6 % (p<0.01) and that in dorsal motor nucleus of the vagus (DMNV) increased by 27.1 % (p<0.01). On the contrary, FR in mNST increased (p<0.01) and that in DMNV decreased in response to CEL stimulation (p<0.05). In conclusions, our findings indicated that different loci of CNA may mediate differential effects on gastric activity via changes in the firing of brainstem neurons controlling gut activity.
Collapse
Affiliation(s)
- Feng He
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Lixia District, Jinan, P. R. China.
| | | |
Collapse
|
93
|
Negative emotions facilitate isometric force through activation of prefrontal cortex and periaqueductal gray. Neuroimage 2016; 124:627-640. [DOI: 10.1016/j.neuroimage.2015.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/12/2015] [Accepted: 09/14/2015] [Indexed: 02/04/2023] Open
|
94
|
El Zein M, Wyart V, Grèzes J. Anxiety dissociates the adaptive functions of sensory and motor response enhancements to social threats. eLife 2015; 4. [PMID: 26712157 PMCID: PMC4868536 DOI: 10.7554/elife.10274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Efficient detection and reaction to negative signals in the environment is essential for survival. In social situations, these signals are often ambiguous and can imply different levels of threat for the observer, thereby making their recognition susceptible to contextual cues – such as gaze direction when judging facial displays of emotion. However, the mechanisms underlying such contextual effects remain poorly understood. By computational modeling of human behavior and electrical brain activity, we demonstrate that gaze direction enhances the perceptual sensitivity to threat-signaling emotions – anger paired with direct gaze, and fear paired with averted gaze. This effect arises simultaneously in ventral face-selective and dorsal motor cortices at 200 ms following face presentation, dissociates across individuals as a function of anxiety, and does not reflect increased attention to threat-signaling emotions. These findings reveal that threat tunes neural processing in fast, selective, yet attention-independent fashion in sensory and motor systems, for different adaptive purposes. DOI:http://dx.doi.org/10.7554/eLife.10274.001 Facial expressions can communicate important social signals, and understanding these signals can be essential for surviving threatening situations. Past studies have identified changes to brain activity and behavior in response to particular social threats, but it is not clear how the brain processes information from the facial expressions of others to identify these threats. Here, El Zein, Wyart and Grèzes aimed to identify how signals of threat are represented in the human brain. The experiment used a technique called electroencephalography to record brain activity in healthy human volunteers as they examined angry and fearful facial expressions. El Zein, Wyart and Grèzes found that emotions that signaled a threat to the observer are better represented in particular regions of the brain – including those that control action – within a fraction of a second after the facial expression was shown to the volunteer. Moreover, the response of the brain regions that control action was greater in volunteers with higher levels of anxiety, which highlights the role of anxiety in reacting rapidly to social threats in the environment. El Zein, Wyart and Grèzes’ findings show that social threats can alter brain activity very rapidly, and in a more selective manner than previously believed. A future challenge is to find out whether other aspects in threatening environments can stimulate similar increases in brain activity. DOI:http://dx.doi.org/10.7554/eLife.10274.002
Collapse
Affiliation(s)
- Marwa El Zein
- Laboratoire de Neurosciences Cognitives, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Valentin Wyart
- Laboratoire de Neurosciences Cognitives, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Julie Grèzes
- Laboratoire de Neurosciences Cognitives, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, France
| |
Collapse
|
95
|
Early changes in corticospinal excitability when seeing fearful body expressions. Sci Rep 2015; 5:14122. [PMID: 26388400 PMCID: PMC4585670 DOI: 10.1038/srep14122] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/18/2015] [Indexed: 11/08/2022] Open
Abstract
Quick inhibition of approach tendencies in response to signals of potential threats is thought to promote survival. However, little is known about the effect of viewing fearful expressions on the early dynamics of the human motor system. We used the high temporal resolution of single-pulse and paired-pulse transcranial magnetic stimulation (TMS) over the motor cortex to assess corticospinal excitability (CSE) and intracortical facilitation (ICF) during observation of happy, fearful and neutral body postures. To test motor circuits involved in approach tendencies, CSE and ICF were recorded from the first dorsal interosseous (FDI), a muscle involved in grasping, and the abductor pollicis brevis (APB), which served as a control. To test early motor dynamics, CSE and ICF were measured 70–90 ms after stimulus onset. We found a selective reduction in CSE in the FDI when participants observed fearful body expressions. No changes in ICF or in the excitability of APB were detected. Our study establishes an extremely rapid motor system reaction to observed fearful body expressions. This motor modulation involves corticospinal downstream projections but not cortical excitatory mechanisms, and appears to reflect an inhibition of hand grasping. Our results suggest a fast visuo-motor route that may rapidly inhibit inappropriate approaching actions.
Collapse
|
96
|
Kirsch LP, Dawson K, Cross ES. Dance experience sculpts aesthetic perception and related brain circuits. Ann N Y Acad Sci 2015; 1337:130-9. [PMID: 25773627 PMCID: PMC4402020 DOI: 10.1111/nyas.12634] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous research on aesthetic preferences demonstrates that people are more likely to judge a stimulus as pleasing if it is familiar. Although general familiarity and liking are related, it is less clear how motor familiarity, or embodiment, relates to a viewer's aesthetic appraisal. This study directly compared how learning to embody an action impacts the neural response when watching and aesthetically evaluating the same action. Twenty-two participants trained for 4 days on dance sequences. Each day they physically rehearsed one set of sequences, passively watched a second set, listened to the music of a third set, and a fourth set remained untrained. Functional MRI was obtained prior to and immediately following the training period, as were affective and physical ability ratings for each dance sequence. This approach enabled precise comparison of self-report methods of embodiment with nonbiased, empirical measures of action performance. Results suggest that after experience, participants most enjoy watching those dance sequences they danced or observed. Moreover, brain regions involved in mediating the aesthetic response shift from subcortical regions associated with dopaminergic reward processing to posterior temporal regions involved in processing multisensory integration, emotion, and biological motion.
Collapse
Affiliation(s)
- Louise P Kirsch
- Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, North Wales, United Kingdom
| | | | | |
Collapse
|
97
|
Seeing fearful body language rapidly freezes the observer's motor cortex. Cortex 2015; 65:232-45. [DOI: 10.1016/j.cortex.2015.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
|
98
|
Candidi M, Stienen BMC, Aglioti SM, de Gelder B. Virtual lesion of right posterior superior temporal sulcus modulates conscious visual perception of fearful expressions in faces and bodies. Cortex 2015; 65:184-94. [PMID: 25835522 DOI: 10.1016/j.cortex.2015.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/01/2014] [Accepted: 01/18/2015] [Indexed: 02/03/2023]
Abstract
The posterior Superior Temporal Suclus (pSTS) represents a central hub in the complex cerebral network for person perception and emotion recognition as also suggested by its heavy connections with face- and body-specific cortical (e.g., the fusiform face area, FFA and the extrastriate body area, EBA) and subcortical structures (e.g., amygdala). Information on whether pSTS is causatively involved in sustaining conscious visual perception of emotions expressed by faces and bodies is lacking. We explored this issue by combining a binocular rivalry procedure (where emotional and neutral face and body postures rivaled with house images) with off-line, 1-Hz repetitive transcranial magnetic stimulation (rTMS). We found that temporary inhibition of the right pSTS reduced perceptual dominance of fearful faces and increased perceptual dominance of fearful bodies, while leaving unaffected the perception of neutral face and body images. Inhibition of the vertex had no effect on conscious visual perception of neutral or emotional face or body stimuli. Thus, the right pSTS plays a causal role in shortening conscious vision of fearful faces and in prolonging conscious vision of fearful bodies. These results suggest that pSTS selectively modulates the activity of segregated networks involved in the conscious visual perception of emotional faces or bodies. We speculate that the opposite role of the right pSTS for conscious perception of fearful face and body may be explained by the different connections that this region entertains with face- and body-selective visual areas as well as with amygdalae and premotor regions.
Collapse
Affiliation(s)
- Matteo Candidi
- Department of Psychology, University "Sapienza", Rome, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy.
| | - Bernard M C Stienen
- Cognitive and Affective Neurosciences Laboratory, Tilburg University, Tilburg, The Netherlands
| | - Salvatore M Aglioti
- Department of Psychology, University "Sapienza", Rome, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Beatrice de Gelder
- Cognitive and Affective Neurosciences Laboratory, Tilburg University, Tilburg, The Netherlands; Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
99
|
Williamson JB, Porges EC, Lamb DG, Porges SW. Maladaptive autonomic regulation in PTSD accelerates physiological aging. Front Psychol 2015; 5:1571. [PMID: 25653631 PMCID: PMC4300857 DOI: 10.3389/fpsyg.2014.01571] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022] Open
Abstract
A core manifestation of post-traumatic stress disorder (PTSD) is a disconnection between physiological state and psychological or behavioral processes necessary to adequately respond to environmental demands. Patients with PTSD experience abnormal oscillations in autonomic states supporting either fight and flight behaviors or withdrawal, immobilization, and dissociation without an intervening “calm” state that would provide opportunities for positive social interactions. This defensive autonomic disposition is adaptive in dangerous and life threatening situations, but in the context of every-day life may lead to significant psychosocial distress and deteriorating social relationships. The perpetuation of these maladaptive autonomic responses may contribute to the development of comorbid mental health issues such as depression, loneliness, and hostility that further modify the nature of cardiovascular behavior in the context of internal and external stressors. Over time, changes in autonomic, endocrine, and immune function contribute to deteriorating health, which is potently expressed in brain dysfunction and cardiovascular disease. In this theoretical review paper, we present an overview of the literature on the chronic health effects of PTSD. We discuss the brain networks underlying PTSD in the context of autonomic efferent and afferent contributions and how disruption of these networks leads to poor health outcomes. Finally, we discuss treatment approaches based on our theoretical model of PTSD.
Collapse
Affiliation(s)
- John B Williamson
- Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL, USA ; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine , Gainesville, FL, USA
| | - Eric C Porges
- Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL, USA ; Institute on Aging, Department of Aging and Geriatric Research, University of Florida , Gainesville, FL, USA
| | - Damon G Lamb
- Brain Rehabilitation and Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL, USA ; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine , Gainesville, FL, USA
| | - Stephen W Porges
- Department of Psychiatry, University of North Carolina at Chapel Hill , Durham, NC, USA
| |
Collapse
|
100
|
Nigro S, Passamonti L, Riccelli R, Toschi N, Rocca F, Valentino P, Nisticò R, Fera F, Quattrone A. Structural 'connectomic' alterations in the limbic system of multiple sclerosis patients with major depression. Mult Scler 2014; 21:1003-12. [PMID: 25533294 DOI: 10.1177/1352458514558474] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/14/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Major depression (MD) is a common psychiatric disorder in multiple sclerosis (MS). Despite the negative impact of MD on the quality of life of MS patients, little is known about its underlying brain mechanisms. OBJECTIVE We studied the whole-brain connectivity patterns that were associated with MD in MS. Alterations were mainly expected within limbic circuits. METHODS Diffusion tensor imaging data were collected in 20 MS patients with MD, 22 non-depressed MS patients and 16 healthy controls. We used deterministic tractography and graph analysis to study the white-matter connectivity patterns that characterized MS patients with MD. RESULTS We found that MD in MS was associated with increased local path length in the right hippocampus and right amygdala. Further analyses revealed that these effects were driven by an increased shortest distance between both the right hippocampus and right amygdala and a series of regions including the dorsolateral and ventrolateral prefrontal cortex, orbitofrontal cortex, sensory-motor cortices and supplementary motor area. CONCLUSION Our data provide strong support for neurobiological accounts positing that MD in MS is mediated by abnormal 'communications' within limbic circuits. We also found evidence that MD in MS may be linked with connectivity alterations at the limbic-motor interface, a group of regions that translates emotions into survival-oriented behaviors.
Collapse
Affiliation(s)
- Salvatore Nigro
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Roberta Riccelli
- Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy/AA Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | - Federico Rocca
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Paola Valentino
- Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| | - Rita Nisticò
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Francesco Fera
- Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| | - Aldo Quattrone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy/Department of Medical and Surgical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| |
Collapse
|