51
|
Lee EJ, Jang Y, Kang K, Song DH, Kim R, Chang HW, Lee DE, Song CKE, Choi B, Kang MJ, Chang EJ. Atrazine induces endoplasmic reticulum stress-mediated apoptosis of T lymphocytes via the caspase-8-dependent pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:998-1008. [PMID: 25640594 DOI: 10.1002/tox.22109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Atrazine (ATR) is one of the most commonly applied broad-spectrum herbicides. Although ATR is well known to be a biologically hazardous molecule with potential toxicity in the immune system, the molecular mechanisms responsible for ATR-induced immunotoxicity remain unclear. In this study, we found that the immunotoxic properties of ATR were mediated through the induction of apoptotic changes in T lymphocytes. Mice exposed to ATR for 4 weeks exhibited a significant decrease in the number of spleen CD3(+) T lymphocytes, while CD19(+) B lymphocytes and nonlymphoid cells were unaffected. ATR exposure also led to inhibition of cell growth and induction of apoptosis in human Jurkat T-cells. Importantly, ATR triggered the activation of caspase-3 and the cleavage of caspase-8 and PARP, whereas it did not affect the release of cytochrome c from the mitochondria in Jurkat T-cells. In addition, ATR activated the unfolded protein response signaling pathway, as indicated by eIF2α phosphorylation and CHOP induction. Our results demonstrate that ATR elicited an immunotoxic effect by inducing ER stress-induced apoptosis in T-cells, therefore providing evidence for the molecular mechanism by which ATR induces dysregulation of the immune system. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 998-1008, 2016.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Youngsaeng Jang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Kwonyoon Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Da-Hyun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Rihyun Kim
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Hee-Won Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Dong Eil Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Claire Ka-Eun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| |
Collapse
|
52
|
Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O, Carle GF. Autophagy in bone: Self-eating to stay in balance. Ageing Res Rev 2015; 24:206-17. [PMID: 26318060 DOI: 10.1016/j.arr.2015.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022]
Abstract
Autophagy, a major catabolic pathway responsible of the elimination of damaged proteins and organelles, is now recognized as an anti-aging process. In addition to its basal role in cell homeostasis, autophagy is also a stress-responsive mechanism for survival purposes. Here, we review recent literature to highlight the autophagy role in the different bone cell types, i.e., osteoblasts, osteoclasts and osteocytes. We also discuss the effects of autophagy modulators in bone physiology and of bone anabolic compounds in autophagy. Finally, we analyzed studies regarding bone cell autophagy-deficient mouse models to obtain a more general view on how autophagy modulates bone physiology and pathophysiology, particularly during aging.
Collapse
Affiliation(s)
- Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France.
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Olivier Camuzard
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France; Service de Chirurgie Réparatrice et de la main, CHU de Nice, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/iBEB, Université Nice Sophia Antipolis, Faculté de Médecine Nice, France
| |
Collapse
|
53
|
Shi J, Wang L, Zhang H, Jie Q, Li X, Shi Q, Huang Q, Gao B, Han Y, Guo K, Liu J, Yang L, Luo Z. Glucocorticoids: Dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy. Bone 2015; 79:222-32. [PMID: 26115910 DOI: 10.1016/j.bone.2015.06.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/09/2023]
Abstract
Whether glucocorticoids directly enhance or interrupt osteoclastogenesis is still a controversial subject. In this study, we ascertained the dose-dependent positive effects of glucocorticoids on osteoclastogenesis in vivo and in vitro as well as investigated the mechanism in vitro. As the dose of glucocorticoids increased, osteoclastogenesis was stimulated at 0.1 μM, a peak was achieved at 1 μM and a corresponding decrease occurred at 10 μM. Reactive oxygen species (ROS), which play a crucial role in osteoclastogenesis, and autophagy flux activity, a cellular recycling process, were consistently up-regulated along with the dose-dependent effects of the glucocorticoids on osteoclast formation and function. N-acetyl-cysteine (NAC), a ROS scavenger, abrogated the effects of the glucocorticoids on autophagy and osteoclastogenesis. Moreover, 3-methyladenine (3-MA), an autophagy inhibitor, interrupted osteoclastogenesis stimulation by the glucocorticoids. These results implied that with glucocorticoid administration, ROS and autophagy, as a downstream factor of ROS, played vital roles in osteoclast formation and function. 3-MA administration did not enhance ROS accumulation, so that autophagy had no effect on ROS induced by glucocorticoids. Our investigation demonstrated that glucocorticoids had dose-dependent positive effects on osteoclast formation and function via ROS and autophagy. These results provide support for ROS and autophagy as therapeutic targets in glucocorticoid-related bone loss diseases such as glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Jun Shi
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Long Wang
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Hongyang Zhang
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Qiang Jie
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Xiaojie Li
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Qiyue Shi
- Institute of Orthopedics, Xi'an Chinese Medicine Hospital, China
| | - Qiang Huang
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Bo Gao
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Yuehu Han
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Kai Guo
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China
| | - Jian Liu
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China.
| | - Liu Yang
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China.
| | - Zhuojing Luo
- Institute of Orthopedics, Xijing Hospital, Fourth Military Medical University, China.
| |
Collapse
|
54
|
Li RF, Chen G, Ren JG, Zhang W, Wu ZX, Liu B, Zhao Y, Zhao YF. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis. J Histochem Cytochem 2014; 62:879-88. [PMID: 25163928 DOI: 10.1369/0022155414551367] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases.
Collapse
Affiliation(s)
- Rui-Fang Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Gang Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Jian-Gang Ren
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Zhong-Xing Wu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Bing Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Yi Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| |
Collapse
|