51
|
|
52
|
Zhang X, Zhang T, Zhou X, Liu H, Sun H, Ma Z, Wu B. Enhancement of oral bioavailability of tripterine through lipid nanospheres: preparation, characterization, and absorption evaluation. J Pharm Sci 2014; 103:1711-9. [PMID: 24700417 DOI: 10.1002/jps.23967] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/17/2014] [Accepted: 03/17/2014] [Indexed: 12/16/2022]
Abstract
Oral delivery of anticancer drugs remains challenging because of limited water-solubility and/or poor permeability. Here, we aimed to enhance the oral bioavailability of tripterine (TRI, a plant-derived anticancer compound) using lipid nanospheres (LNs) and to determine the mechanisms of oral absorption. TRI-loaded LNs (TRI-LNs) were prepared by rapid dispersion of an ethanol mixture of TRI, lecithin, sodium oleate, and soybean oil into water. The obtained LNs were 150 nm in size with a high value of entrapment efficiency (99.95%). TRI-LNs were fairly stable and the drug release was negligible (<0.2%) in simulated physiological fluid. The pharmacokinetic results showed that LNs significantly enhanced the oral bioavailability of TRI with a relative bioavailability of 224.88% (TRI suspensions was used as a reference). The mechanistic studies demonstrated that improved intestinal permeability and post-enterocyte lymphatic transport were mainly responsible for the enhanced oral absorption. Our findings suggested that LNs may be a viable oral carrier for poorly bioavailable drugs.
Collapse
|
53
|
|
54
|
Sinnett SE, Brenman JE. Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators. Pharmacol Ther 2014; 143:111-8. [PMID: 24583089 DOI: 10.1016/j.pharmthera.2014.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Neurobiology Curriculum, University of North Carolina at Chapel Hill (UNC), United States
| | - Jay E Brenman
- UNC Neuroscience Center, United States; Department of Cell Biology and Physiology, UNC, United States.
| |
Collapse
|
55
|
Coats SJ, Garnier-Amblard EC, Amblard F, Ehteshami M, Amiralaei S, Zhang H, Zhou L, Boucle SRL, Lu X, Bondada L, Shelton JR, Li H, Liu P, Li C, Cho JH, Chavre SN, Zhou S, Mathew J, Schinazi RF. Chutes and ladders in hepatitis C nucleoside drug development. Antiviral Res 2013; 102:119-47. [PMID: 24275341 DOI: 10.1016/j.antiviral.2013.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023]
Abstract
Chutes and Ladders is an exciting up-and-down-again game in which players race to be the first to the top of the board. Along the way, they will find ladders to help them advance, and chutes that will cause them to move backwards. The development of nucleoside analogs for clinical treatment of hepatitis C presents a similar scenario in which taking shortcuts may help quickly advance a program, but there is always a tremendous risk of being sent backwards as one competes for the finish line. In recent years the treatment options for chronic hepatitis C virus (HCV) infection have expand due to the development of a replicon based in vitro evaluation system, allowing for the identification of multiple drugable viral targets along with a concerted and substantial drug discovery effort. Three major drug targets have reached clinical study for chronic HCV infection: the NS3/4A serine protease, the large phosphoprotein NS5A, and the NS5B RNA-dependent RNA polymerase. Recently, two oral HCV protease inhibitors were approved by the FDA and were the first direct acting anti-HCV agents to result from the substantial research in this area. There are currently many new chemical entities from several different target classes that are being evaluated worldwide in clinical trials for their effectiveness at achieving a sustained virologic response (SVR) (Pham et al., 2004; Radkowski et al., 2005). Clearly the goal is to develop therapies leading to a cure that are safe, widely accessible and available, and effective against all HCV genotypes (GT), and all stages of the disease. Nucleoside analogs that target the HCV NS5B polymerase that have reached human clinical trials is the focus of this review as they have demonstrated significant advantages in the clinic with broader activity against the various HCV GT and a higher barrier to the development of resistant viruses when compared to all other classes of HCV inhibitors.
Collapse
Affiliation(s)
- Steven J Coats
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | | | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sheida Amiralaei
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Hongwang Zhang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sebastien R L Boucle
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Lavanya Bondada
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Jadd R Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Hao Li
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Peng Liu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Chengwei Li
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Satish N Chavre
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Judy Mathew
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
56
|
Ostojic SM, Idrizovic K, Stojanovic MD. Sublingual nucleotides prolong run time to exhaustion in young physically active men. Nutrients 2013; 5:4776-85. [PMID: 24284618 PMCID: PMC3847760 DOI: 10.3390/nu5114776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/06/2013] [Accepted: 11/14/2013] [Indexed: 01/22/2023] Open
Abstract
Although dietary nucleotides have been determined to be required for normal immune function, there is limited direct interventional evidence confirming performance-enhancing effects of sublingual nucleotides in humans. A double-blind, placebo-controlled, randomized trial was conducted to evaluate the effect of sublingual nucleotides (50 mg/day) administered for 14 days in thirty young healthy physically active males, on endurance performance and immune responses. Fasting white blood cell count, natural killer cells (NKC) number, NKC cytotoxic activity, and serum immunoglobulin (IgA, IgM, IgG), and time to exhaustion, peak rate of perceived exertion, peak heart rate, and peak running speed during the exercise test were measured at baseline (day 0) and post-intervention (day 14). Time to exhaustion, as well as serum immunoglobulin A and NKC cytotoxic activity, were significantly higher at day 14 (p < 0.05) in participants supplemented with nucleotides compared with those who consumed placebo. No significant differences in other parameters were observed between groups at post-intervention. No volunteers withdrew before the end of the study nor reported any vexatious side effects of supplementation. The results of the present study suggest that sublingual nucleotides may provide pertinent benefit as both an ergogenic and immunostimulatory additive in active males.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Center for Health, Exercise and Sport Sciences, Deligradska 27, Stari DIF, Belgrade 11000, Serbia.
| | | | | |
Collapse
|
57
|
Laizure SC, Herring V, Hu Z, Witbrodt K, Parker RB. The role of human carboxylesterases in drug metabolism: have we overlooked their importance? Pharmacotherapy 2013; 33:210-22. [PMID: 23386599 DOI: 10.1002/phar.1194] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Carboxylesterases are a multigene family of mammalian enzymes widely distributed throughout the body that catalyze the hydrolysis of esters, amides, thioesters, and carbamates. In humans, two carboxylesterases, hCE1 and hCE2, are important mediators of drug metabolism. Both are expressed in the liver, but hCE1 greatly exceeds hCE2. In the intestine, only hCE2 is present and highly expressed. The most common drug substrates of these enzymes are ester prodrugs specifically designed to enhance oral bioavailability by hydrolysis to the active carboxylic acid after absorption from the gastrointestinal tract. Carboxylesterases also play an important role in the hydrolysis of some drugs to inactive metabolites. It has been widely believed that drugs undergoing hydrolysis by hCE1 and hCE2 are not subject to clinically significant alterations in their disposition, but evidence exists that genetic polymorphisms, drug-drug interactions, drug-disease interactions and other factors are important determinants of the variability in the therapeutic response to carboxylesterase-substrate drugs. The implications for drug therapy are far-reaching, as substrate drugs include numerous examples from widely prescribed therapeutic classes. Representative drugs include angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antiplatelet drugs, statins, antivirals, and central nervous system agents. As research interest increases in the carboxylesterases, evidence is accumulating of their important role in drug metabolism and, therefore, the outcomes of pharmacotherapy.
Collapse
Affiliation(s)
- S Casey Laizure
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
58
|
Karaman R. Prodrugs Design Based on Inter- and Intramolecular Chemical Processes. Chem Biol Drug Des 2013; 82:643-68. [DOI: 10.1111/cbdd.12224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Rafik Karaman
- Bioorganic Chemistry Department; Faculty of Pharmacy; Al-Quds University; P.O. Box 20002 Jerusalem Palestine
- Department of Science; University of Basilicata; Via dell'Ateneo Lucano 10 85100 Potenza Italy
| |
Collapse
|
59
|
Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep 2013; 65:1-14. [PMID: 23563019 DOI: 10.1016/s1734-1140(13)70959-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/14/2012] [Indexed: 12/31/2022]
Abstract
It is estimated that about 10% of the drugs approved worldwide can be classified as prodrugs. Prodrugs, which have no or poor biological activity, are chemically modified versions of a pharmacologically active agent, which must undergo transformation in vivo to release the active drug. They are designed in order to improve the physicochemical, biopharmaceutical and/or pharmacokinetic properties of pharmacologically potent compounds. This article describes the basic functional groups that are amenable to prodrug design, and highlights the major applications of the prodrug strategy, including the ability to improve oral absorption and aqueous solubility, increase lipophilicity, enhance active transport, as well as achieve site-selective delivery. Special emphasis is given to the role of the prodrug concept in the design of new anticancer therapies, including antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT).
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232 Łódź, Poland.
| | | | | |
Collapse
|
60
|
Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis. Antimicrob Agents Chemother 2013; 58:664-71. [PMID: 24145524 DOI: 10.1128/aac.01685-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.
Collapse
|
61
|
Liu B, Wen X, Huang C, Wei Y. Unraveling the complexity of hepatitis B virus: from molecular understanding to therapeutic strategy in 50 years. Int J Biochem Cell Biol 2013; 45:1987-96. [PMID: 23819994 DOI: 10.1016/j.biocel.2013.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a well-known hepadnavirus with a double-stranded circular DNA genome. Although HBV was first described approximately 50 years ago, the precise mechanisms of HBV infection and effective therapeutic strategies remain unclear. Here, we focus on summarizing the complicated mechanisms of HBV replication and infection, as well as genomic factors and epigenetic regulation. Additionally, we discuss in vivo models of HBV, as well as diagnosis, prevention and therapeutic drugs for HBV. Together, the data in this 50-year review may provide new clues to elucidate molecular mechanisms of HBV pathogenesis and shed new light on the future HBV therapies.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
62
|
Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65:880-90. [PMID: 23220325 DOI: 10.1016/j.addr.2012.11.005] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/28/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Oral chemotherapy is an important topic in the 21st century medicine, which may radically change the current regimen of chemotherapy and greatly improve the quality of life of the patients. Unfortunately, most anticancer drugs, especially those of high therapeutic efficacy such as paclitaxel and docetaxel, are not orally bioavailable due to the gastrointestinal (GI) drug barrier. The molecular basis of the GI barrier has been found mainly due to the multidrug efflux proteins, i.e. P-type glycoproteins (P-gp), which are rich in the epithelial cell membranes in the GI tract. Medical solution for oral chemotherapy is to apply P-gp inhibitors such as cyclosporine A, which, however, suppress the body's immune system either, thus causing medical complication. Pharmaceutical nanotechnology, which is to apply and further develop nanotechnology to solve the problems in drug delivery, may provide a better solution and thus change the way we make drug and the way we take drug. This review is focused on the problems encountered in oral chemotherapy and the pharmaceutical nanotechnology solutions such as prodrugs, nanoemulsions, dendrimers, micelles, liposomes, solid lipid nanoparticles and nanoparticles of biodegradable polymers. Proof-of-concept in vitro and in vivo results for oral delivery of anticancer drugs by the various nanocarriers, which can be found so far from the literature, are provided.
Collapse
|
63
|
El-Sayed HA, Moustafa AH, Haikal AEFZ. Synthesis, Antiviral, and Antimicrobial Activity of 1,2,4-Triazole Thioglycoside Derivatives. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.668990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hassan A. El-Sayed
- a Department of Chemistry, Faculty of Science , Zagazig University , Zagazig , Egypt
| | - Ahmed H. Moustafa
- a Department of Chemistry, Faculty of Science , Zagazig University , Zagazig , Egypt
| | | |
Collapse
|
64
|
Shastina NS, Maltseva TY, D’yakova LN, Lobach OA, Chataeva MS, Nosik DN, Shvetz VI. Synthesis, properties, and Anti-HIV activity of new lipophilic 3′-azido-3′-deoxythymidine conjugates containing functional phosphoric linkages. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:184-93. [DOI: 10.1134/s1068162013020118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
65
|
Gao WL, Li N, Zong MH. Enzymatic regioselective acylation of nucleosides in biomass-derived 2-methyltetrahydrofuran: Kinetic study and enzyme substrate recognition. J Biotechnol 2013; 164:91-6. [DOI: 10.1016/j.jbiotec.2013.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
|
66
|
Yang B, Smith DE. Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice. Drug Metab Dispos 2013; 41:608-14. [PMID: 23264448 PMCID: PMC3583488 DOI: 10.1124/dmd.112.049239] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/20/2012] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to quantitatively determine the contribution of PepT1 [peptide transporter 1 (SLC15A1)] to the intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir. In situ single-pass intestinal perfusions were employed (pH 6.5 × 90 minutes) to assess the effective permeability (P(eff)) of 100 μM [(3)H]valacyclovir in wild-type and PepT1 knockout mice. Acyclovir pharmacokinetics was also evaluated after oral administration of 25 nmol/g valacyclovir. In wild-type mice, jejunal uptake of valacyclovir was best described by both saturable (K(m) = 10.2 mM) and nonsaturable components where the saturable pathway accounted for 82% of total transport. Valacyclovir P(eff) was 2.4 × 10(-4) cm/s in duodenum, 1.7 × 10(-4) cm/s in jejunum, 2.1 × 10(-4) cm/s in ileum, and 0.27 × 10(-4) cm/s in colon. In Pept1 knockout mice, P(eff) values were about 10% of that in wild-type animals for these small intestinal segments. Valacyclovir P(eff) was similar in the colon of both genotypes. There were no differences in valacyclovir P(eff) between any of the intestinal segments of PepT1 knockout mice. Valacyclovir P(eff) was significantly reduced by the dipeptide glycylsarcosine and the aminocephalosporin cefadroxil, but not by the amino acids l-valine or l-histidine, the organic acid p-aminohippurate, or the organic base tetraethylammonium (all at 25 mM). PepT1 ablation resulted in 3- to 5-fold reductions in the in vivo rate and extent of valacyclovir absorption. Our findings conclusively demonstrate, using in situ and in vivo validations in genetically modified mice, that PepT1 has a major influence in improving the oral absorption of valacyclovir.
Collapse
Affiliation(s)
- Bei Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1150 W. Medical Center Drive, 4742C Medical Sciences II, Ann Arbor, MI 48109-5633, USA
| | | |
Collapse
|
67
|
First and facile enzymatic synthesis of β-fucosyl-containing disaccharide nucleosides through β-galactosidase-catalyzed regioselective glycosylation. J Biotechnol 2013; 164:371-5. [DOI: 10.1016/j.jbiotec.2013.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/25/2013] [Accepted: 01/26/2013] [Indexed: 11/21/2022]
|
68
|
Agarwal HK, Chhikara BS, Bhavaraju S, Mandal D, Doncel GF, Parang K. Emtricitabine prodrugs with improved anti-HIV activity and cellular uptake. Mol Pharm 2013; 10:467-476. [PMID: 22917277 DOI: 10.1021/mp300361a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three fatty acyl conjugates of (-)-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC, emtricitabine) were synthesized and evaluated against HIV-1 cell-free and cell-associated virus and compared with the corresponding parent nucleoside and physical mixtures of FTC and fatty acids. Among all the compounds, the myristoylated conjugate of FTC (5, EC(50) = 0.07-3.7 μM) displayed the highest potency. Compound 5 exhibited 10-24 and 3-13-times higher anti-HIV activity than FTC alone (EC(50) = 0.7-88.6 μM) and the corresponding physical mixtures of FTC and myristic acid (14, EC(50) = 0.2-20 μM), respectively. Cellular uptake studies confirmed that compound 5 accumulated intracellularly after 1 h of incubation and underwent intracellular hydrolysis in CCRF-CEM cells. Alternative studies were conducted using the carboxyfluorescein conjugated with FTC though β-alanine (12) and 12-aminododecanoic acid (13). Acylation of FTC with a long-chain fatty acid in 13 improved its cellular uptake by 8.5-20 fold in comparison to 12 with a short-chain β-alanine. Compound 5 (IC(90) = 15.7-16.1 nM) showed 6.6- and 35.2 times higher activity than FTC (IC(90) = 103-567 nM) against multidrug resistant viruses B-NNRTI and B-K65R, indicating that FTC conjugation with myristic acid generates a more potent analogue with a better resistance profile than its parent compound.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | | | | | | | | |
Collapse
|
69
|
Larregieu CA, Benet LZ. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS JOURNAL 2013; 15:483-97. [PMID: 23344793 DOI: 10.1208/s12248-013-9456-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/10/2013] [Indexed: 11/30/2022]
Abstract
There is a growing need for highly accurate in silico and in vitro predictive models to facilitate drug discovery and development. Results from in vitro permeation studies across the Caco-2 cell monolayer are commonly used for drug permeability screening in industry and are also accepted as a surrogate for human intestinal permeability measurements by the US FDA to support new drug applications. Countless studies carried out in this cell line with published permeability measurements have enabled the development of many in silico prediction models. We identify several common cases that illustrate how using Caco-2 permeability measurements in these in silico and in vitro predictive models will not correlate with human intestinal permeability and will further lead to inaccuracies in these models. We provide guidelines and recommendations for improving these models to more accurately predict clinically relevant information, thereby enhancing the drug discovery, development, and regulatory approval processes.
Collapse
Affiliation(s)
- Caroline A Larregieu
- Department of Bioengineering & Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, 533 Parnassus Avenue, Room U-68, San Francisco, CA 94143-0912, USA
| | | |
Collapse
|
70
|
Gupta D, Varghese Gupta S, Dahan A, Tsume Y, Hilfinger J, Lee KD, Amidon GL. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue. Mol Pharm 2013; 10:512-22. [PMID: 23244438 DOI: 10.1021/mp300564v] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) <1 mM) was observed for l-valyl and l-isoleucyl amino acid prodrugs in competition experiments with [(3)H]Gly-Sar, indicating a 3-6 times higher affinity for PEPT1 compared to valacyclovir, a well-known PEPT1 substrate and >30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and showed that the l-valyl prodrug (P(app) = 1.7 × 10(-6) cm/s) has the potential to be rapidly transported across the epithelial cell apical membrane. Significantly, only the parent drug (GOCarb) appeared in the basolateral compartment, indicating complete activation (hydrolysis) during transport. Intestinal rat jejunal permeability studies showed that l-valyl and l-isoleucyl prodrugs are highly permeable compared to the orally well absorbed metoprolol, while the parent drug had essentially zero permeability in the jejunum, consistent with its known poor low absorption. Prodrugs were rapidly converted to parent in cell homogenates, suggesting their ability to be activated endogenously in the epithelial cell, consistent with the transport studies. Additionally, l-valyl prodrug was found to be a substrate for valacyclovirase (K(m) = 2.37 mM), suggesting a potential cell activation mechanism. Finally we determined the oral bioavailability of our most promising candidate, GOC-l-Val, in mice to be 23% under fed conditions and 48% under fasted conditions. In conclusion, GOC-l-Val prodrug was found to be a very promising antiviral agent for oral delivery. These findings indicate that the carrier-mediated prodrug approach is an excellent strategy for improving oral absorption of polar neuraminidase inhibitors. These promising results demonstrate that the oral peptide transporter-mediated prodrug strategy has enormous promise for improving the oral mucosal cell membrane permeability of polar, poorly absorbed antiviral agents and treating influenza via the oral route of administration.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | |
Collapse
|
71
|
Shelton JR, Cutler CE, Browning MS, Balzarini J, Peterson MA. Synthesis and SAR of 2′,3′-bis-O-substituted N6, 5′-bis-ureidoadenosine derivatives: Implications for prodrug delivery and mechanism of action. Bioorg Med Chem Lett 2012; 22:6067-71. [DOI: 10.1016/j.bmcl.2012.08.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/01/2012] [Accepted: 08/13/2012] [Indexed: 11/16/2022]
|
72
|
Agarwal HK, Buckheit KW, Buckheit RW, Parang K. Synthesis and anti-HIV activities of symmetrical dicarboxylate esters of dinucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2012; 22:5451-5454. [PMID: 22858097 DOI: 10.1016/j.bmcl.2012.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Three nucleoside analogues, 3'-fluoro-2',3'-dideoxythymidine (FLT), 3'-azido-2',3'-dideoxythymidine (AZT), and 2',3'-dideoxy-3'-thiacytidine (3TC) were conjugated with three different dicarboxylic acids to afford the long chain dicarboxylate esters of nucleosides. In general, dinucleoside ester conjugates of FLT and 3TC with long chain dicarboxylic acids exhibited higher anti-HIV activity than their parent nucleosides. Dodecanoate and tetradecanoate dinucleoside ester derivatives of FLT were found to be the most potent compounds with EC(50) values of 0.8-1.0 nM and 3-4 nM against HIV-1(US/92/727) and HIV-1(IIIB) cells, respectively. The anti-HIV activity of the 3TC conjugates containing long chain dicarboxylate diester (EC(50)=3-60 nM) was improved by 1.5-66 fold when compared to 3TC (EC(50)=90-200 nM). This study reveals that the symmetrical ester conjugation of dicarboxylic acids with a number of nucleosides results in conjugates with improved anti-HIV profile.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | |
Collapse
|
73
|
Gao WL, Liu H, Li N, Zong MH. Regioselective enzymatic undecylenoylation of 8-chloroadenosine and its analogs with biomass-based 2-methyltetrahydrofuran as solvent. BIORESOURCE TECHNOLOGY 2012; 118:82-88. [PMID: 22705510 DOI: 10.1016/j.biortech.2012.04.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
2-Methyltetrahydrofuran (MeTHF), a biomass-derived compound, is a promising medium for biocatalysis and organometallic reactions. The regioselective acylation of 8-chloroadenosine (8-Cl-Ado) and its analogs was carried out in MeTHF with immobilized Penicillium expansum lipase. The lipase displayed more than twofold higher catalytic activity and much better thermostability in MeTHF than in other organic solvents and co-solvent systems. The optimum reaction medium, enzyme dosage, molar ratio of viny ester to nucleoside and reaction temperature for the enzymatic acylation of 8-Cl-Ado were MeTHF, 25 U/mL, 7.5 and 35 °C, respectively, under which the desirable 5'-O-undecylenoyl-8-Cl-Ado was obtained with a yield of 95% and a regioselectivity of >99% in 3 h. In addition, the lipase catalyzed regioselective undecylenoylation of other purine nucleosides, producing 5'-undecylenic acid esters with moderate to high yields (63-94%) and excellent 5'-regioselectivities (94->99%). Use of biomass-derived solvents might open up novel opportunities for sustainable and greener biocatalytic processes.
Collapse
Affiliation(s)
- Wen-Li Gao
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
74
|
Diab R, Jaafar-Maalej C, Fessi H, Maincent P. Engineered nanoparticulate drug delivery systems: the next frontier for oral administration? AAPS JOURNAL 2012; 14:688-702. [PMID: 22767270 DOI: 10.1208/s12248-012-9377-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/23/2012] [Indexed: 01/29/2023]
Abstract
For the past few decades, there has been a considerable research interest in the area of oral drug delivery using nanoparticle (NP) delivery systems as carriers. Oral NPs have been used as a physical approach to improve the solubility and the stability of active pharmaceutical ingredients (APIs) in the gastrointestinal juices, to enhance the intestinal permeability of drugs, to sustain and to control the release of encapsulated APIs allowing the dosing frequency to be reduced, and finally, to achieve both local and systemic drug targeting. Numerous materials have been used in the formulation of oral NPs leading to different nanoparticulate platforms. In this paper, we review various aspects of the formulation and the characterization of polymeric, lipid, and inorganic NPs. Special attention will be dedicated to their performance in the oral delivery of drug molecules and therapeutic genes.
Collapse
Affiliation(s)
- Roudayna Diab
- Pharmaceutical Technology Group, CITHÉFOR EA 3452, Faculty of Pharmacy, University of Lorraine, 54001, Nancy Cedex, France.
| | | | | | | |
Collapse
|
75
|
Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach. Expert Opin Drug Deliv 2012; 9:1001-13. [PMID: 22703376 DOI: 10.1517/17425247.2012.697055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The molecular revolution greatly impacted the field of drug design and delivery in general, and the utilization of the prodrug approach in particular. The increasing understanding of membrane transporters has promoted a novel 'targeted-prodrug' approach utilizing carrier-mediated transport to increase intestinal permeability, as well as specific enzymes to promote activation to the parent drug. AREAS COVERED This article provides the reader with a concise overview of this modern approach to prodrug design. Targeting the oligopeptide transporter PEPT1 for absorption and the serine hydrolase valacyclovirase for activation will be presented as examples for the successful utilization of this approach. Additionally, the use of computational approaches, such as DFT and ab initio molecular orbital methods, in modern prodrugs design will be discussed. EXPERT OPINION Overall, in the coming years, more and more information will undoubtedly become available regarding intestinal transporters and potential enzymes that may be exploited for the targeted modern prodrug approach. Hence, the concept of prodrug design can no longer be viewed as merely a chemical modification to solve problems associated with parent compounds. Rather, it opens promising opportunities for precise and efficient drug delivery, as well as enhancement of treatment options and therapeutic efficacy.
Collapse
Affiliation(s)
- Arik Dahan
- Ben-Gurion University of the Negev, School of Pharmacy, Faculty of Health Sciences, Department of Clinical Pharmacology, P.O. Box 653, Beer-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
76
|
Barbayianni E, Kokotos G. Biocatalyzed Regio- and Chemoselective Ester Cleavage: Synthesis of Bioactive Molecules. ChemCatChem 2012. [DOI: 10.1002/cctc.201200035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
77
|
Gokulgandhi MR, Barot M, Bagui M, Pal D, Mitra AK. Transporter-targeted lipid prodrugs of cyclic cidofovir: a potential approach for the treatment of cytomegalovirus retinitis. J Pharm Sci 2012; 101:3249-63. [PMID: 22499243 DOI: 10.1002/jps.23140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/25/2012] [Accepted: 03/16/2012] [Indexed: 01/24/2023]
Abstract
Cidofovir (CDF) and its cyclic analogue (cCDF) have shown potential in vitro and in vivo antiviral activity against cytomegalovirus (CMV) retinitis. However, hydrophilic nature of CDF may affect cell permeation across lipophilic epithelium and thus limit its effectiveness in the treatment of CMV retinitis. In the present study, we have tested a novel hypothesis, which involves chemical derivatization of cCDF into lipophilic transporter-targeted prodrug [via conjugation with different carbon chain length of lipid raft and targeting moiety (biotin) for sodium-dependent multivitamin transporter (SMVT)]. We have synthesized and characterized three derivatives of cCDF including biotin B-C2-cCDF, B-C6-cCDF, and B-C12-cCDF. Physicochemical properties such as solubility, partition coefficient (n-octanol/water and ocular tissue), bioreversion kinetics, and interaction with SMVT transporter have been determined. Among these novel conjugates, B-C12-cCDF has shown higher interaction to SMVT transporter with lowest half maximal inhibitory concentration value, higher cellular accumulation, and high tissue partitioning. Improvement in physicochemical properties, lipophilicity, and interaction with transporter was observed in the trend of increasing the lipid chain length, that is, B-C12-cCDF > B-C6-cCDF > B-C2-cCDF. These results indicate that transporter-targeted lipid analogue of cCDF exhibits improved cellular accumulation along with higher transporter affinity and hence could be a viable strategy for the treatment of CMV retinitis.
Collapse
Affiliation(s)
- Mitan R Gokulgandhi
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | | | | | | | |
Collapse
|
78
|
Rajendran L, Udayar V, Goodger ZV. Lipid-anchored drugs for delivery into subcellular compartments. Trends Pharmacol Sci 2012; 33:215-22. [DOI: 10.1016/j.tips.2012.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
|
79
|
Pertusat F, Serpi M, McGuigan C. Medicinal Chemistry of Nucleoside Phosphonate Prodrugs for Antiviral Therapy. ACTA ACUST UNITED AC 2012; 22:181-203. [DOI: 10.3851/imp2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 10/15/2022]
Abstract
Considerable attention has been focused on the development of phosphonate-containing drugs for application in many therapeutic areas. However, phosphonate diacids are deprotonated at physiological pH and thus phosphonate-containing drugs are not ideal for oral administration, an extremely desirable requisite for the treatment of chronic diseases. To overcome this limitation several prodrug structures of biologically active phosphonate analogues have been developed. The rationale behind the design of such agents is to achieve temporary blockade of the free phosphonic functional group until their systemic absorption and delivery, allowing the release of the active drug only once at the target. In this paper, an overview of acyclic and cyclic nucleoside phosphonate prodrugs, designed as antiviral agents, is presented.
Collapse
Affiliation(s)
| | - Michaela Serpi
- Welsh School of Pharmacy, Cardiff University, Cardiff, UK
| | | |
Collapse
|
80
|
Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 2012; 33:3353-62. [DOI: 10.1016/j.biomaterials.2012.01.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/11/2012] [Indexed: 11/30/2022]
|
81
|
Zhang L, Zhang L, Luo T, Zhou J, Sun L, Xu Y. Synthesis and evaluation of a dipeptide-drug conjugate library as substrates for PEPT1. ACS COMBINATORIAL SCIENCE 2012; 14:108-14. [PMID: 22263689 DOI: 10.1021/co200141b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oligopeptide transporter PEPT1 is considered as a valuable target for prodrug design, but its 3D structure and substrate specificity of PEPT1 are not fully understood. In this study, we designed a focused dipeptide conjugated azidothymidine (AZT) library and described a convenient and efficient solid phase synthesis scheme based on click chemistry. Over 60 candidate structures containing various dipeptide sequences were obtained with high purity, and screened in a PEPT1 overexpressing cell model for their abilities to compete with the known ligand cephalexin. Some of the compounds selected to have medium or high affinity were tested for their in vivo transport in a single-pass intestinal perfusion experiment. Results showed that the designed library contained some new structure features that have high affinities toward PEPT1 and could be further explored for their application in prodrug design and development.
Collapse
Affiliation(s)
- Lihui Zhang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Tian Luo
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Jie Zhou
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Lingyi Sun
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| |
Collapse
|
82
|
Kwak EY, Shim WS, Chang JE, Chong S, Kim DD, Chung SJ, Shim CK. Enhanced intracellular accumulation of a non-nucleoside anti-cancer agent via increased uptake of its valine ester prodrug through amino acid transporters. Xenobiotica 2012; 42:603-13. [DOI: 10.3109/00498254.2011.646339] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
83
|
Shelton JR, Cutler CE, Oliveira M, Balzarini J, Peterson MA. Synthesis, SAR, and preliminary mechanistic evaluation of novel antiproliferative N6,5′-bis-ureido- and 5′-carbamoyl-N6-ureidoadenosine derivatives. Bioorg Med Chem 2012; 20:1008-19. [DOI: 10.1016/j.bmc.2011.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/19/2011] [Accepted: 11/19/2011] [Indexed: 01/26/2023]
|
84
|
Sautrey G, Clarot I, Rogalska E, Regnouf-de-Vains JB. New potential prodrugs of aciclovir using calix[4]arene as a lipophilic carrier: synthesis and drug-release studies at the air–water interface. NEW J CHEM 2012. [DOI: 10.1039/c2nj40338b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
85
|
Zakharova VM, Serpi M, Krylov IS, Peterson LW, Breitenbach JM, Borysko KZ, Drach JC, Collins M, Hilfinger JM, Kashemirov BA, McKenna CE. Tyrosine-based 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine and -adenine ((S)-HPMPC and (S)-HPMPA) prodrugs: synthesis, stability, antiviral activity, and in vivo transport studies. J Med Chem 2011; 54:5680-93. [PMID: 21812420 DOI: 10.1021/jm2001426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Eight novel single amino acid (6-11) and dipeptide (12, 13) tyrosine P-O esters of cyclic cidofovir ((S)-cHPMPC, 4) and its cyclic adenine analogue ((S)-cHPMPA, 3) were synthesized and evaluated as prodrugs. In vitro IC(50) values for the prodrugs (<0.1-50 μM) vs vaccinia, cowpox, human cytomegalovirus, and herpes simplex type 1 virus were compared to those for the parent drugs ((S)-HPMPC, 2; (S)-HPMPA, 1; IC(50) 0.3-35 μM); there was no cytoxicity with KB or HFF cells at ≤100 μM. The prodrugs exhibited a wide range of half-lives in rat intestinal homogenate at pH 6.5 (<30-1732 min) with differences of 3-10× between phostonate diastereomers. The tyrosine alkylamide derivatives of 3 and 4 were the most stable. (l)-Tyr-NH-i-Bu cHPMPA (11) was converted in rat or mouse plasma solely to two active metabolites and had significantly enhanced oral bioavailability vs parent drug 1 in a mouse model (39% vs <5%).
Collapse
Affiliation(s)
- Valeria M Zakharova
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Quevedo MA, Nieto LE, Briñón MC. P-glycoprotein limits the absorption of the anti-HIV drug zidovudine through rat intestinal segments. Eur J Pharm Sci 2011; 43:151-9. [DOI: 10.1016/j.ejps.2011.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/17/2011] [Accepted: 04/12/2011] [Indexed: 12/13/2022]
|
87
|
Martins NH, Meza AN, Santos CR, de Giuseppe PO, Murakami MT. Molecular cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of a purine nucleoside phosphorylase from Bacillus subtilis strain 168. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:618-22. [PMID: 21543875 PMCID: PMC3087654 DOI: 10.1107/s1744309111010414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/19/2011] [Indexed: 11/10/2022]
Abstract
Purine nucleoside phosphorylase (PNP; EC 2.4.2.1) is a key enzyme of the purine-salvage pathway. Its ability to transfer glycosyl residues to acceptor bases is of great biotechnological interest owing to its potential application in the synthesis of nucleoside analogues used in the treatment of antiviral infections and in anticancer chemotherapy. Although hexameric PNPs are prevalent in prokaryotes, some microorganisms, such as Bacillus subtilis, present both hexameric and trimeric PNPs. The hexameric PNP from B. subtilis strain 168, named BsPNP233, was cloned, expressed and crystallized. Crystals belonging to different space groups (P32(1), P2(1)2(1)2(1), P6(3)22 and H32) were grown in distinct conditions with pH values ranging from 4.2 to 10.5. The crystals diffracted to maximum resolutions ranging from 2.65 to 1.70 Å.
Collapse
Affiliation(s)
- Nadia Helena Martins
- National Laboratory for Biosciences, Brazilian Synchrotron Light Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Andreia Navarro Meza
- National Laboratory for Biosciences, Brazilian Synchrotron Light Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Camila Ramos Santos
- National Laboratory for Biosciences, Brazilian Synchrotron Light Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Priscila Oliveira de Giuseppe
- National Laboratory for Biosciences, Brazilian Synchrotron Light Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Mario Tyago Murakami
- National Laboratory for Biosciences, Brazilian Synchrotron Light Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
88
|
|
89
|
Bobeck DR, Schinazi RF, Coats SJ. Advances in nucleoside monophosphate prodrugs as anti-HCV agents. Antivir Ther 2011; 15:935-50. [PMID: 21041908 DOI: 10.3851/imp1667] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleoside monophosphate prodrugs that are eventually bioconverted to the active nucleoside triphosphate (NTP) offer the potential to deliver increased intracellular NTP levels and/or organ-specific NTP enhancement. There are several classes of monophosphate prodrugs that have been applied to HCV drug discovery, and some of these approaches are currently being evaluated in humans. This review discusses recent advances in monophosphate prodrug approaches to improve oral absorption, stability and pharmacokinetic profile, including their advantages and potential pitfalls.
Collapse
|
90
|
Chhikara BS, Parang K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin Drug Deliv 2010; 7:1399-1414. [PMID: 20964588 DOI: 10.1517/17425247.2010.527330] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD Cytarabine is a polar nucleoside drug used for the treatment of myeloid leukemia and non-Hodgkin's lymphoma. The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Among the recent cytarabine prodrugs, amino acid conjugate ValCytarabine and fatty acid derivative CP-4055 (in Phase III trials) have been investigated for the treatment of leukemia and solid tumors, respectively. Alternatively, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation (DepoCyt®, Pacira Pharmaceuticals Inc., New Jersey, USA) has been approved for the treatment of lymphomatous meningitis. AREAS COVERED IN THIS REVIEW Various prodrug strategies evaluated for cytarabine are discussed. Then, the review summarizes the drug delivery systems that have been used for more effective cancer therapy. WHAT THE READER WILL GAIN This review provides in-depth discussion of the prodrug strategy and delivery systems of cytarabine derivatives for the treatment of cancer. The design of cytarabine prodrugs and delivery systems provides insights for designing the next generation of more effective anticancer agents with enhanced delivery and stability. TAKE HOME MESSAGE Strategies on designing cytarabine prodrug and delivery formulations showed great promise in developing effective anticancer agents with better therapeutic profile. Similar studies with other anticancer nucleosides can be an alternative approach to gaining access to more effective anticancer agents.
Collapse
Affiliation(s)
- Bhupender S Chhikara
- University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, 41 Lower College Road, Kingston, RI 02881, USA
| | | |
Collapse
|
91
|
Sun J, Dahan A, Walls ZF, Lai L, Lee KD, Amidon GL. Specificity of a prodrug-activating enzyme hVACVase: the leaving group effect. Mol Pharm 2010; 7:2362-8. [PMID: 21028903 DOI: 10.1021/mp100300k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human valacyclovirase (hVACVase) is a prodrug-activating enzyme for amino acid prodrugs including the antiviral drugs valacyclovir and valganciclovir. In hVACVase-catalyzed reactions, the leaving group of the substrate corresponds to the drug moiety of the prodrug, making the leaving group effect essential for the rational design of new prodrugs targeting hVACVase activation. In this study, a series of valine esters, phenylalanine esters, and a valine amide were characterized for the effect of the leaving group on the efficiency of hVACVase-mediated prodrug activation. Except for phenylalanine methyl and ethyl esters, all of the ester substrates exhibited a relatively high specificity constant (k(cat)/K(m)), ranging from 850 to 9490 mM(-1)·s(-1). The valine amide Val-3-APG exhibited significantly higher K(m) and lower k(cat) values compared to the corresponding ester Val-3-HPG, indicating poor specificity for hVACVase. In conclusion, the substrate leaving group has been shown to affect both binding and specific activity of hVACVase-catalyzed activation. It is proposed that hVACVase is an ideal target for α-amino acid ester prodrugs with relatively labile leaving groups while it is relatively inactivate toward amide prodrugs.
Collapse
Affiliation(s)
- Jing Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | | | | | | | | | | |
Collapse
|
92
|
Jonckers THM, Lin TI, Buyck C, Lachau-Durand S, Vandyck K, Van Hoof S, Vandekerckhove LAM, Hu L, Berke JM, Vijgen L, Dillen LLA, Cummings MD, de Kock H, Nilsson M, Sund C, Rydegård C, Samuelsson B, Rosenquist Å, Fanning G, Van Emelen K, Simmen K, Raboisson P. 2′-Deoxy-2′-spirocyclopropylcytidine Revisited: A New and Selective Inhibitor of the Hepatitis C Virus NS5B Polymerase. J Med Chem 2010; 53:8150-60. [DOI: 10.1021/jm101050a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tim H. M. Jonckers
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Tse-I Lin
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Christophe Buyck
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sophie Lachau-Durand
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Koen Vandyck
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Steven Van Hoof
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Leen A. M. Vandekerckhove
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Lili Hu
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jan Martin Berke
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Leen Vijgen
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Lieve L. A. Dillen
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maxwell D. Cummings
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman de Kock
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | | | | | | | - Gregory Fanning
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kristof Van Emelen
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kenneth Simmen
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Pierre Raboisson
- Tibotec BVBA, A Division of Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
93
|
Sabo JP, Cong XJ, Kraft MF, Wallace L, Castles MA, Mauss S, MacGregor TR. Lack of a pharmacokinetic interaction between steady-state tipranavir/ritonavir and single-dose valacyclovir in healthy volunteers. Eur J Clin Pharmacol 2010; 67:277-81. [PMID: 20963404 DOI: 10.1007/s00228-010-0907-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/21/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study assessed the single-dose pharmacokinetics of the herpes antiviral acyclovir (administered as the pro-drug valacyclovir) alone and in combination with twice-daily 200 mg ritonavir-boosted tipranavir (500 mg) at steady state. METHODS The study was an open label, one-sequence cross-over pharmacokinetic study in HIV-negative adults. Plasma drug concentrations were measured by validated LC/MS/MS assays; pharmacokinetics (AUC, C(max)) were determined using noncompartmental methods. The geometric mean ratio and 90% confidence interval [GMR, 90% CI] were used to evaluate the drug interaction. RESULTS Twenty-six of 29 subjects completed the trial. With steady-state tipranavir/ritonavir, acyclovir C(max) decreased 4.9% [0.95, 0.88-1.02] and AUC increased 6.6% [1.07, 1.04-1.09]. The majority of subjects experienced at least one adverse event, most of which were mild gastrointestinal disorders. Three subjects discontinued tipranavir/ritonavir treatment as a result of drug-related increases in ALT/AST, including one subject who experienced mild upper abdominal pain. All subjects recovered without sequelae. CONCLUSIONS When administered as a single dose of valacyclovir with steady-state tipranavir/ritonavir, there were no clinically important changes in acyclovir pharmacokinetics. This result indicates that valacyclovir can be co-administered safely with no dose adjustments.
Collapse
Affiliation(s)
- John P Sabo
- Boehringer Ingelheim Pharmaceuticals, Inc., R&D, 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Sugiura T, Kato S, Shimizu T, Wakayama T, Nakamichi N, Kubo Y, Iwata D, Suzuki K, Soga T, Asano M, Iseki S, Tamai I, Tsuji A, Kato Y. Functional expression of carnitine/organic cation transporter OCTN1/SLC22A4 in mouse small intestine and liver. Drug Metab Dispos 2010; 38:1665-72. [PMID: 20601551 DOI: 10.1124/dmd.110.032763] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnitine/organic cation transporter (OCTN1/SLC22A4) accepts various therapeutic agents as substrates in vitro and is expressed ubiquitously, although its function in most organs has not yet been examined. The purpose of the present study was to evaluate functional expression of OCTN1 in small intestine and liver, using octn1 gene knockout [octn1(-/-)] mice. After oral administration of [(3)H]ergothioneine ([(3)H]ERGO), a typical substrate of OCTN1, the amount of [(3)H]ERGO remaining in the small intestinal lumen was much higher in octn1(-/-) mice than in wild-type mice. In addition, uptake of [(3)H]ERGO by human embryonic kidney 293 cells heterologously expressing OCTN1 gene product and uptake of [(3)H]ERGO at the apical surface of intestinal everted sacs from wild-type mice were inhibited by OCTN1 substrates, tetraethylammonium and verapamil. Immunohistochemical analysis revealed that OCTN1 is localized on the apical surface of small intestine in mice and humans. These results suggest that OCTN1 is responsible for small intestinal absorption of [(3)H]ERGO. However, the plasma concentration of [(3)H]ERGO after oral administration was higher in octn1(-/-) mice than in wild-type mice, despite the lower absorption in octn1(-/-) mice. This was probably because of efficient hepatic uptake of [(3)H]ERGO, as revealed by integration plot analysis; the uptake clearance was close to the hepatic plasma flow rate. The uptake of [(3)H]ERGO by isolated hepatocytes was minimal, whereas [(3)H]ERGO uptake was observed in isolated nonparenchymal cells. This finding is consistent with immunostaining of OCTN1 in liver sinusoids. Thus, our results indicate that OCTN1 is functionally expressed in nonparenchymal liver cells.
Collapse
Affiliation(s)
- Tomoko Sugiura
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Hajdo L, Szulc AB, Klajnert B, Bryszewska M. Metabolic limitations of the use of nucleoside analogs in cancer therapy may be overcome by application of nanoparticles as drug carriers: A review. Drug Dev Res 2010. [DOI: 10.1002/ddr.20390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
96
|
Nannemann DP, Kaufmann KW, Meiler J, Bachmann BO. Design and directed evolution of a dideoxy purine nucleoside phosphorylase. Protein Eng Des Sel 2010; 23:607-16. [PMID: 20525731 DOI: 10.1093/protein/gzq033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Purine nucleoside phosphorylase (PNP) catalyzes the synthesis and phosphorolysis of purine nucleosides, interconverting nucleosides with their corresponding purine base and ribose-1-phosphate. While PNP plays significant roles in human and pathogen physiology, we are interested in developing PNP as a catalyst for the formation of nucleoside analog drugs of clinical relevance. Towards this aim, we describe the engineering of human PNP to accept 2',3'-dideoxyinosine (ddI, Videx((R))) as a substrate for phosphorolysis using a combination of site-directed mutagenesis and directed evolution. In human PNP, we identified a single amino acid, Tyr-88, as a likely modulator of ribose selectivity. RosettaLigand was employed to calculate binding energies for substrate and substrate analog transition state complexes for single mutants of PNP where Tyr-88 was replaced with another amino acid. In parallel, these mutants were generated by site-directed mutagenesis, expressed and purified. A tyrosine to phenylalanine mutant (Y88F) was predicted by Rosetta to improve PNP catalytic activity with respect to ddI. Kinetic characterization of this mutant determined a 9-fold improvement in k(cat) and greater than 2-fold reduction in K(M). Subsequently, we used directed evolution to select for improved variants of PNP-Y88F in Escherichia coli cell extracts resulting in an additional 3-fold improvement over the progenitor strain. The engineered PNP may form the basis for catalysts and pathways for the biosynthesis of ddI.
Collapse
Affiliation(s)
- David P Nannemann
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
97
|
Li N, Smith TJ, Zong MH. Biocatalytic transformation of nucleoside derivatives. Biotechnol Adv 2010; 28:348-66. [DOI: 10.1016/j.biotechadv.2010.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 11/25/2022]
|
98
|
Reyes G, Naydenova Z, Abdulla P, Chalsev M, Villani A, Rose JB, Chaudary N, DeSouza L, Siu KWM, Coe IR. Characterization of mammalian equilibrative nucleoside transporters (ENTs) by mass spectrometry. Protein Expr Purif 2010; 73:1-9. [PMID: 20399865 DOI: 10.1016/j.pep.2010.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins that facilitate the movement of nucleosides and hydrophilic nucleoside analog (NA) drugs across cell membranes. ENTs are also targets for cardioprotectant drugs, which block re-uptake of the purine nucleoside adenosine, thereby enhancing purinergic receptor signaling pathways. ENTs are therefore important contributors to drug bioavailability and efficacy. Despite this important clinical role, very little is known about the structure and regulation of ENTs. Biochemical and structural studies on ENT proteins have been limited by their low endogenous expression levels, hydrophobicity and labile nature. To address these issues, we developed an approach whereby tagged mammalian ENT1 protein was over-expressed in mammalian cell lines, confirmed to be functional and isolated by affinity purification to sufficient levels to be analyzed using MALDI-TOF and tandem MS mass spectrometry. This proteomic approach will allow for a more detailed analysis of the structure, function and regulation of ENTs in the future.
Collapse
Affiliation(s)
- German Reyes
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Rautio J, Leppänen J, Lehtonen M, Laine K, Koskinen M, Pystynen J, Savolainen J, Sairanen M. Design, synthesis and in vitro/in vivo evaluation of orally bioavailable prodrugs of a catechol-O-methyltransferase inhibitor. Bioorg Med Chem Lett 2010; 20:2614-6. [DOI: 10.1016/j.bmcl.2010.02.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 11/26/2022]
|
100
|
Li F, Wu X, Hadig X, Huang S, Hong L, Tran T, Brandl M, Alfredson T. Chemical stability of 4′-azidocytidine and its prodrug balapiravir. Drug Dev Ind Pharm 2010; 36:413-20. [DOI: 10.3109/03639040903225075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|