51
|
Haudum C, Lindheim L, Ascani A, Trummer C, Horvath A, Münzker J, Obermayer-Pietsch B. Impact of Short-Term Isoflavone Intervention in Polycystic Ovary Syndrome (PCOS) Patients on Microbiota Composition and Metagenomics. Nutrients 2020; 12:E1622. [PMID: 32492805 PMCID: PMC7656308 DOI: 10.3390/nu12061622] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide and is associated with disorders of glucose metabolism. Hormone and metabolic signaling may be influenced by phytoestrogens, such as isoflavones. Their endocrine effects may modify symptom penetrance in PCOS. Equol is one of the most active isoflavone metabolites, produced by intestinal bacteria, and acts as a selective estrogen receptor modulator. METHOD In this interventional study of clinical and biochemical characterization, urine isoflavone levels were measured in PCOS and control women before and three days after a defined isoflavone intervention via soy milk. In this interventional study, bacterial equol production was evaluated using the log(equol: daidzein ratio) and microbiome, metabolic, and predicted metagenome analyses were performed. RESULTS After isoflavone intervention, predicted stool metagenomic pathways, microbial alpha diversity, and glucose homeostasis in PCOS improved resembling the profile of the control group at baseline. In the whole cohort, larger equol production was associated with lower androgen as well as fertility markers. CONCLUSION The dynamics in our metabolic, microbiome, and predicted metagenomic profiles underline the importance of external phytohormones on PCOS characteristics and a potential therapeutic approach or prebiotic in the future.
Collapse
Affiliation(s)
- Christoph Haudum
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Lisa Lindheim
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angelo Ascani
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Christian Trummer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University Graz, 8010 Graz, Austria;
| | - Julia Münzker
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria; (L.L.); (A.A.); (C.T.); (J.M.); (B.O.-P.)
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
52
|
Tang HY, Fang Z, Ng K. Dietary fiber-based colon-targeted delivery systems for polyphenols. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
53
|
Loo YT, Howell K, Chan M, Zhang P, Ng K. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Compr Rev Food Sci Food Saf 2020; 19:1268-1298. [PMID: 33337077 DOI: 10.1111/1541-4337.12563] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
The gut microbiota plays a prominent role in human health. Alterations in the gut microbiota are linked to the development of chronic diseases such as obesity, inflammatory bowel disease, metabolic syndrome, and certain cancers. We know that diet plays an important role to initiate, shape, and modulate the gut microbiota. Long-term dietary patterns are shown to be closely related with the gut microbiota enterotypes, specifically long-term consumption of carbohydrates (related to Prevotella abundance) or a diet rich in protein and animal fats (correlated to Bacteroides). Short-term consumption of solely animal- or plant-based diets have rapid and reproducible modulatory effects on the human gut microbiota. These alterations in microbiota profile by dietary alterations can be due to impact of different dietary macronutrients, carbohydrates, protein, and fat, which have diverse modulatory effects on gut microbial composition. Food-derived phenolics, which encompass structural variants of flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, coumarins, stilbenes, ellagitannins, and lignans can modify the gut microbiota. Gut microbes have been shown to act on dietary fibers and phenolics to produce functional metabolites that contribute to gut health. Here, we discuss recent studies on the impacts of phenolics and phenolic fiber-rich foods on the human gut microbiota and provide an insight into potential synergistic roles between their bacterial metabolic products in the regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yit Tao Loo
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Howell
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Miin Chan
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ken Ng
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
54
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
55
|
Cömert ED, Gökmen V. Physiological relevance of food antioxidants. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:205-250. [PMID: 32711863 DOI: 10.1016/bs.afnr.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary antioxidants are associated with prevention of oxidative stress related chronic diseases including certain types of cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. In recent years, there has been a growing interest in extending the knowledge on their physiological effects in human body. There are numbers of epidemiological, clinical, meta-analysis, and in vitro studies to explain formation mechanisms of each chronic diseases as well as the potential effects of dietary antioxidants on these diseases and gut health. Comprehensive studies for food antioxidants' journey from dietary intake to target tissues/organs deserve a serious consideration to have a clear understanding on the physiological effects of dietary antioxidants. Therefore, absorption and metabolism of dietary antioxidants, and the factors affecting their absorption, such as solubility of antioxidants, food matrix, and interaction between antioxidants have been evaluated in several research articles. This chapter provides an overview about potential health effects of dietary antioxidants considering with their absorption and metabolism in human body.
Collapse
Affiliation(s)
- Ezgi Doğan Cömert
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
56
|
Mancano G, Mora-Ortiz M, Claus SP. Corrigendum to “Recent developments in nutrimetabolomics: from food characterisation to disease prevention” [Curr Opin Food Sci 22 (2018) 145–152]. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Wang Q, Spenkelink B, Boonpawa R, Rietjens IMCM, Beekmann K. Use of Physiologically Based Kinetic Modeling to Predict Rat Gut Microbial Metabolism of the Isoflavone Daidzein to S-Equol and Its Consequences for ERα Activation. Mol Nutr Food Res 2020; 64:e1900912. [PMID: 32027771 PMCID: PMC7154660 DOI: 10.1002/mnfr.201900912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Indexed: 12/13/2022]
Abstract
SCOPE To predict gut microbial metabolism of xenobiotics and the resulting plasma concentrations of metabolites formed, an in vitro-in silico-based testing strategy is developed using the isoflavone daidzein and its gut microbial metabolite S-equol as model compounds. METHODS AND RESULTS Anaerobic rat fecal incubations are optimized and performed to derive the apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for gut microbial conversion of daidzein to dihydrodaidzein, S-equol, and O-desmethylangolensin, which are input as parameters for a physiologically based kinetic (PBK) model. The inclusion of gut microbiota in the PBK model allows prediction of S-equol concentrations and slightly reduced predicted maximal daidzein concentrations from 2.19 to 2.16 µm. The resulting predicted concentrations of daidzein and S-equol are comparable to in vivo concentrations reported. CONCLUSION The optimized in vitro approach to quantify kinetics for gut microbial conversions, and the newly developed PBK model for rats that includes gut microbial metabolism, provide a unique tool to predict the in vivo consequences of daidzein microbial metabolism for systemic exposure of the host to daidzein and its metabolite S-equol. The predictions reveal a dominant role for daidzein in ERα-mediated estrogenicity despite the higher estrogenic potency of its microbial metabolite S-equol.
Collapse
Affiliation(s)
- Qianrui Wang
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Bert Spenkelink
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Rungnapa Boonpawa
- Faculty of Natural Resources and Agro‐IndustryKasetsart University Chalermphrakiat Sakon Nakhon Province CampusSakon Nakhon47000Thailand
| | | | - Karsten Beekmann
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
- Present address:
Wageningen Food Safety ResearchP. O. Box 2306700 AEWageningenThe Netherlands
| |
Collapse
|
58
|
Ajdžanović V, Miler M, Živanović J, Filipović B, Šošić-Jurjević B, Popovska-Perčinić F, Milošević V. The adrenal cortex after estradiol or daidzein application in a rat model of the andropause: Structural and hormonal study. Ann Anat 2020; 230:151487. [PMID: 32120001 DOI: 10.1016/j.aanat.2020.151487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION AND AIM Daidzein application may represent an effective and less harmful alternative to indicated, classical estrogenization of ageing men. The aim of this study was to perform structural and hormonal analysis of the adrenal cortex, after estradiol or daidzein supplementation in a rat model of the andropause. MATERIAL AND METHODS Middle-aged Wistar rats were divided into sham operated (SO; n = 8), orchidectomized (Orx; n = 8), estradiol treated orchidectomized (Orx + E; n = 8) and daidzein treated orchidectomized (Orx + D; n = 8) groups. Estradiol (0.625 mg/kg b.m./day) or daidzein (30 mg/kg b.m./day) were administered subcutaneously for three weeks, while the SO and Orx groups received the vehicle alone. Set objectives were achieved using stereology, histochemistry/immunohistochemistry, immunoassays and ultrastructural analysis. RESULTS Both estradiol and daidzein treatment significantly increased volumes of the zona glomerulosa cell and nuclei, but decreased circulating aldosterone levels. Estradiol markedly increased volumes of the zona fasciculata cell and nuclei in parallel with significant decrease of the adrenal tissue level of corticosterone, while daidzein significantly decreased both the adrenal and circulating levels of corticosterone. Serum DHEA level and volumes of the zona reticularis cell and nuclei significantly increased upon estradiol treatment, whereas daidzein even stronger increased the circulating level of DHEA. Shunting of the corticosteroidogenesis pathways towards adrenal androgens production, after the treatments, corresponded to the ultrastructural findings and zonal capillary network rearrangements. CONCLUSIONS Given the coherence of its effects and relative safety, daidzein could be the remedy of choice for the treatment of ageing-caused androgen deprivation and the hypothalamo-pituitary-adrenal axis hyperfunction/related metabolic issues in males.
Collapse
Affiliation(s)
- Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Živanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
59
|
Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol 2019; 177:1278-1293. [PMID: 31465555 PMCID: PMC7056468 DOI: 10.1111/bph.14850] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are secondary metabolites of plants that have been widely studied for their health benefits as antioxidants. In the last decade, several clinical trials and epidemiological studies have shown that long‐term consumption of polyphenol‐rich diet protects against chronic diseases such as cancers and cardiovascular diseases. Current cardiovascular studies have also suggested an important role of gut microbiota and circadian rhythm in the pathogenesis metabolic and cardiovascular diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with circadian clocks. In this article, we summarize recent findings, review the molecular mechanisms and the potential of polyphenols as dietary supplements for regulating gut microbiota and circadian rhythms, and discuss future research directions. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
60
|
Affiliation(s)
- Bing‐Juan Li
- Tianjin Key Laboratory of Food and Biotechnology Department of Biotechnology and Food Science Tianjin University of Commerce Tianjin China
| |
Collapse
|
61
|
Rosenfeld CS. Effects of Phytoestrogens on the Developing Brain, Gut Microbiota, and Risk for Neurobehavioral Disorders. Front Nutr 2019; 6:142. [PMID: 31555657 PMCID: PMC6727358 DOI: 10.3389/fnut.2019.00142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/14/2019] [Indexed: 01/11/2023] Open
Abstract
Many pregnant and nursing women consume high amounts of soy and other plant products that contain phytoestrogens, such as genistein (GEN) and daidzein. Infants may also be provided soy based formulas. With their ability to bind and activate estrogen receptors (ESR) in the brain, such compounds can disrupt normal brain programming and lead to later neurobehavioral disruptions. However, other studies suggest that maternal consumption of soy and soy based formulas containing such phytoestrogens might lead to beneficial behavioral effects. Select gut microbes might also convert daidzein and to a lesser extent genistein to even more potent forms, e.g., equol derivatives. Thus, infant exposure to phytoestrogens may result in contrasting effects dependent upon the gut flora. It is also becoming apparent that consumption or exposure to these xenoestrogens may lead to gut dysbiosis. Phytoestrogen-induced changes in gut bacteria might in turn affect the brain through various mechanisms. This review will consider the evidence to date in rodent and other animal models and human epidemiological data as to whether developmental exposure to phytoestrogens, in particular genistein and daidzein, adversely or beneficially impact offspring neurobehavioral programming. Consideration will be given to potential mechanisms by which such compounds might affect neurobehavioral responses. A better understanding of effects perinatal exposure to phytoestrogen can exert on brain programming will permit pregnant women and those seeking to become pregnant to make better-educated choices. If phytoestrogen-induced gut dysbiosis contributes to neurobehavioral disruptions, remediation strategies may be designed to prevent such gut microbiota alterations and thereby improve neurobehavioral outcomes.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- MU Informatics Institute, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
62
|
Liu ZQ. Anti-Oxidant in China: A Thirty-Year Journey. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1005-1024. [DOI: 10.1142/s0192415x19500514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anti-oxidant refers to such a kind of endogenous or exogenous compound that is able to retard or even prohibit in vivo or in vitro oxidation with only small amount being used. The study of anti-oxidants starts nearly 30 years ago, and the research on this topic in China almost begins simultaneously with that in the world. Gratifyingly, contributions on anti-oxidants from China researchers have rapidly increased in the recent decade as anti-oxidants have become a hot topic in biochemistry, pharmacology, food science, chemistry as well as other related disciplines. Anti-oxidants provide a specific viewpoint for clarifying pharmacological effects of Chinese medicinal herbs. For example, as a traditional Chinese medicinal herb, Panax ginseng C. A. Meyer is found to be a natural anti-oxidant resource. Meanwhile, some signaling pathways such as nuclear factor-[Formula: see text]B (NF-[Formula: see text]B), nuclear factor erythroid 2 related factor 2 (Nrf2), and Kelch-like ECH associated protein 1 (Keap1) are regarded to play an important role in anti-oxidant responses. These findings provide a substantial basis for understanding the pharmacological behaviors of Chinese medicinal herbs in view of regulating the aforementioned signaling pathways. Moreover, inhibition of reactive oxygen species (ROS) by supplementation of anti-oxidant becomes a popularly accepted idea in keeping health and treating diseases. Isolations of antio-xidative ingredients from medicinal herbs and foods lead to set up a large range of anti-oxidative compound libraries, and intake of anti-oxidants from foods may be the most efficient way for supplementing exogenous anti-oxidants. On the other hand, designing anti-oxidants with novel structures motivates organic and medicinal chemists to explore the structure–activity relationship, and then, to find novel structural features with anti-oxidative properties. Therefore, it is reasonable to believe that China researchers will donate more endeavors to obtain more achievements on anti-oxidants in the future.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
63
|
Chen S, Zhao H, Cheng N, Cao W. Rape bee pollen alleviates dextran sulfate sodium (DSS)-induced colitis by neutralizing IL-1β and regulating the gut microbiota in mice. Food Res Int 2019; 122:241-251. [DOI: 10.1016/j.foodres.2019.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
|
64
|
Gender Differences in Phytoestrogens and the Relationship with Speed of Processing in Older Adults: A Cross-Sectional Analysis of NHANES, 1999-2002. Nutrients 2019; 11:nu11081780. [PMID: 31374973 PMCID: PMC6723727 DOI: 10.3390/nu11081780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022] Open
Abstract
Sex hormone changes in adults are known to play a part in aging, including cognitive aging. Dietary intake of phytoestrogens can mimic estrogenic effects on brain function. Since sex hormones differ between genders, it is important to examine gender differences in the phytoestrogen–cognition association. Therefore, the goal of this study is to examine the relationship between urinary phytoestrogens and speed of processing (SOP) and the variation of the association between genders in older adults. Participants were drawn from the 1999–2002 National Health and Nutrition Examination Survey and included 354 individuals aged 65–85 years old. General linear models (GLMs) were used to test for significant gender differences in the relationship between phytoestrogens and SOP. Results from the GLMs showed significant gender differences in the relationship between genistein and SOP. Higher levels of genistein were associated with better SOP in women. This relationship was reversed in men: higher genistein levels were associated with worse performance. Results indicate that there are distinct gender differences in the relationship between genistein and SOP. These results emphasize the importance of considering gender differences when devising dietary and pharmacologic interventions that target phytoestrogens to improve brain health.
Collapse
|
65
|
Viggiani MT, Polimeno L, Di Leo A, Barone M. Phytoestrogens: Dietary Intake, Bioavailability, and Protective Mechanisms against Colorectal Neoproliferative Lesions. Nutrients 2019; 11:1709. [PMID: 31344966 PMCID: PMC6722977 DOI: 10.3390/nu11081709] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Phytoestrogens are natural substances that have been extensively studied for their beneficial effect on human health. Herein, we analyzed the data of the literature on the role of phytoestrogens in the prevention of colorectal neoproliferative lesions (CNL). Both in vitro and in vivo studies suggest that the beneficial effects of phytoestrogens on CNL mainly depend on their ability to bind estrogen receptor beta (ERβ) in the intestinal mucosa and counter ER-alpha (ERα) activity. Epidemiological data demonstrate a correlation between the low prevalence of CNL in Eastern populations and the consumption of soy products (phytoestrogen-enriched diet). However, both observational and interventional studies have produced inconclusive results. In our opinion, these discrepancies depend on an inadequate evaluation of phytoestrogen intake (dietary questionnaires were not aimed at establishing phytoestrogen intake) and absorption (depending mainly on the intestinal microbiota of the analyzed subjects). For this reason, in the present review, we performed an overview of phytoestrogen dietary intake and metabolism to offer the reader the opportunity for a better interpretation of the literature. Future prospective trials focusing on the protective effect of phytoestrogens against CNL should take into account both their dietary intake and absorption, considering the effective role of the intestinal microbiota.
Collapse
Affiliation(s)
- Maria Teresa Viggiani
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Policlinic University Hospital, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lorenzo Polimeno
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Policlinic University Hospital, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Alfredo Di Leo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Policlinic University Hospital, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Michele Barone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Policlinic University Hospital, Piazza G. Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
66
|
Ferreira LL, Silva TR, Maturana MA, Spritzer PM. Dietary intake of isoflavones is associated with a lower prevalence of subclinical cardiovascular disease in postmenopausal women: cross-sectional study. J Hum Nutr Diet 2019; 32:810-818. [PMID: 31305957 DOI: 10.1111/jhn.12683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Menopause has been associated with an increased risk of cardiovascular disease. It has been shown that isoflavones protect vascular endothelial cells against induced oxidative stress injury. Therefore, the present study aimed to investigate the association between the dietary intake of isoflavones and the presence of subclinical cardiovascular disease (CVD) in postmenopausal women. METHODS Ninety-six postmenopausal women [mean (SD) age 55.2 (4.9) years, body mass index (BMI) 27.2 (4.6) kg m-2 ] completed the study protocol. Habitual physical activity was assessed using a digital pedometer, resting metabolic rate was measured by indirect calorimetry and dietary intake was assessed via a validated food frequency questionnaire. Subclinical CVD was defined as carotid artery intima-media thickness (C-IMT) >0.9 mm and/or the presence of one or more atherosclerotic plaques in any of the studied segments. RESULTS Mean (SD) C-IMT was 0.74 (0.2) mm, 25% of participants were found to have atherosclerotic plaques and the prevalence of subclinical CVD was 35%. Participants with subclinical CVD were more likely to consume less selenium, magnesium, folate and isoflavones, even after adjusting for total energy intake. A multivariate-adjusted regression model showed that a BMI >27 kg m-2 was associated with 90% higher risk of having ≥1 plaque and/or C-IMT >0.9 mm (P = 0.017). Higher oestradiol levels (P = 0.004) and isoflavone intake (P = 0.021) were independently associated with a lower risk of having subclinical CVD. CONCLUSIONS In the present study, we observed that a higher isoflavone dietary intake was associated with a lower risk of subclinical CVD in postmenopausal women, independent of BMI and endogenous oestradiol levels.
Collapse
Affiliation(s)
- L L Ferreira
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Postgraduate Program in Endocrinology and Metabolism, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - T R Silva
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Postgraduate Program in Endocrinology and Metabolism, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M A Maturana
- Postgraduate Program, Cardiology University Foundation, Cardiology Institute of Rio Grande do Sul (IC-FUC), Porto Alegre, Brazil
| | - P M Spritzer
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Postgraduate Program in Endocrinology and Metabolism, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Physiology, Laboratory of Molecular Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
67
|
Tanaka Y, Kimura S, Ishii Y, Tateda K. Equol inhibits growth and spore formation of Clostridioides difficile. J Appl Microbiol 2019; 127:932-940. [PMID: 31211883 DOI: 10.1111/jam.14353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/01/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
AIMS Equol is a nonsteroidal oestrogen of the isoflavone class. We investigated the antibacterial ability of equol with respect to the growth rate, toxin production and spore-forming abilities of Clostridioides difficile BI/027/NAP1. METHODS AND RESULTS Isoflavones, or female hormones, were added to bacterial culture, which was grown at 35°C. The absorbance of the culture was measured at various time points for evaluating the growth inhibition. The toxin levels in the media and morphological changes were also assessed. To evaluate the influence of equol on the sporulation of C. difficile, cells were collected at various time points from the equol-supplemented culture and the number of spores was counted. Our results show that equol inhibits bacterial growth in a concentration-dependent manner. However, it does not inhibit the production of toxin by C. difficile. Other isoflavones and female hormones did not inhibit the C. difficile growth. At the 14th day, approximately 600 spores were present in the control medium and only six were seen in the equol-containing medium. CONCLUSION Our results suggest that equol may directly inhibit the C. difficile growth in a concentration-dependent manner and spore formation. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the antimicrobial ability of equol.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - S Kimura
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Y Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - K Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
68
|
S-equol glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice. Food Chem Toxicol 2019; 131:110542. [PMID: 31163218 DOI: 10.1016/j.fct.2019.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
S-equol, an active metabolite of the soy isoflavone daidzein, is mainly metabolized into glucuronide(s) by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, S-equol glucuronidation was examined in the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice using a kinetic analysis. CLint values for 7- and 4'-glucuronidation by liver microsomes were higher than those by intestinal microsomes in all species. CLint values for total glucuronidation (sum of 7- and 4'-glucuronidation) were rats (7.6) > monkeys (5.8) > mice (4.9) > dogs (2.8) > humans (1.0) for liver microsomes, and rats (9.6) > mice (2.8) > dogs (1.3) ≥ monkeys (1.2) > humans (1.0) for intestinal microsomes, respectively. Regarding regioselective glucuronidation by liver and intestinal microsomes, CLint values were 7-glucuronidation > 4'-glucuronidation for humans, monkeys, dogs, and mice, and 4'-glucuronidation > 7-glucuronidation for rats. These results suggest that the metabolic abilities of UGT enzymes toward S-equol in the liver and intestines markedly differ among humans, monkeys, dogs, rats, and mice.
Collapse
|
69
|
Zheng W, Ma Y, Zhao A, He T, Lyu N, Pan Z, Mao G, Liu Y, Li J, Wang P, Wang J, Zhu B, Zhang Y. Compositional and functional differences in human gut microbiome with respect to equol production and its association with blood lipid level: a cross-sectional study. Gut Pathog 2019; 11:20. [PMID: 31168326 PMCID: PMC6509798 DOI: 10.1186/s13099-019-0297-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Gut microbiota affects lipid metabolism interactively with diet. Equol, a metabolite of isoflavones produced by gut bacteria, may contribute substantially in beneficial lipid-lowering effects. This study aimed to examine equol production-related gut microbiota differences among humans and its consequent association with blood lipid levels. Results Characterization of the gut microbiota by deep shotgun sequencing and serum lipid profiles were compared between equol producers and non-producers. Gut microbiota differed significantly at the community level between equol producers and non-producers (P = 0.0062). At the individual level, 32 species associated with equol production were identified. Previously reported equol-producing related species Adlercreutzia equolifaciens and Bifidobacterium bifidum showed relatively higher abundance in this study in equol producers compared to non-producers (77.5% vs. 22.5%; 72.0% vs. 28.0%, respectively). Metabolic pathways also showed significant dissimilarity between equol producers and non-producers (P = 0.001), and seven metabolic pathways were identified to be associated with the equol concentration in urine. Previously reported equol production-related gene sequences in A. equolifaciens 19450T showed higher relative abundance in equol producers than in non-producers. Additionally, we found that equol production was significantly associated with the prevalence of dyslipidemia, including a marginal increase in serum lipids (27.1% vs. 50.0%, P = 0.02). Furthermore, equol production was not determined by intake of soy isoflavones, which suggested that gut microbiota is critical in the equol production process. Conclusion Both content and functioning of the microbial gut community significantly differed between equol producers and non-producers. Further, equol producers showed lower prevalences of dyslipidemia, which suggests the important role that equol might play in lipid metabolism by gut microbiota. Electronic supplementary material The online version of this article (10.1186/s13099-019-0297-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zheng
- 1Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,2Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yue Ma
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,4University of Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Ai Zhao
- 2Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tingchao He
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Na Lyu
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Ziqi Pan
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Geqi Mao
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Yan Liu
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Jing Li
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Peiyu Wang
- 2Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Wang
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China
| | - Baoli Zhu
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,4University of Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China.,7Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,8Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Zhongshan Road, Luzhou, Sichuan China
| | - Yumei Zhang
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| |
Collapse
|
70
|
Johnson SL, Kirk RD, DaSilva NA, Ma H, Seeram NP, Bertin MJ. Polyphenol Microbial Metabolites Exhibit Gut and Blood⁻Brain Barrier Permeability and Protect Murine Microglia against LPS-Induced Inflammation. Metabolites 2019; 9:metabo9040078. [PMID: 31010159 PMCID: PMC6523162 DOI: 10.3390/metabo9040078] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence supports the beneficial effects of polyphenol-rich diets, including the traditional Mediterranean diet, for the management of cardiovascular disease, obesity and neurodegenerative diseases. However, a common concern when discussing the protective effects of polyphenol-rich diets against diseases is whether these compounds are present in systemic circulation in their intact/parent forms in order to exert their beneficial effects in vivo. Here, we explore two common classes of dietary polyphenols, namely isoflavones and lignans, and their gut microbial-derived metabolites for gut and blood-brain barrier predicted permeability, as well as protection against neuroinflammatory stimuli in murine BV-2 microglia. Polyphenol microbial metabolites (PMMs) generally showed greater permeability through artificial gut and blood-brain barriers compared to their parent compounds. The parent polyphenols and their corresponding PMMs were evaluated for protective effects against lipopolysaccharide-induced inflammation in BV-2 microglia. The lignan-derived PMMs, equol and enterolactone, exhibited protective effects against nitric oxide production, as well as against pro-inflammatory cytokines (IL-6 and TNF-α) in BV-2 microglia. Therefore, PMMs may contribute, in large part, to the beneficial effects attributed to polyphenol-rich diets, further supporting the important role of gut microbiota in human health and disease prevention.
Collapse
Affiliation(s)
- Shelby L Johnson
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Riley D Kirk
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Nicholas A DaSilva
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Hang Ma
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Navindra P Seeram
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
71
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
72
|
Igwe EO, Charlton KE, Probst YC. Usual dietary anthocyanin intake, sources and their association with blood pressure in a representative sample of Australian adults. J Hum Nutr Diet 2019; 32:578-590. [PMID: 30916431 DOI: 10.1111/jhn.12647] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Anthocyanins represent an important subgroup of non-nutritive components of food as evidence continues to build related to their beneficial bioactive effects. Using a recently developed Australian anthocyanin database, the present study aimed to estimate the intake of both total anthocyanins and their subclasses, identify food sources of anthocyanins, and determine associations between anthocyanin intake and measured blood pressure (BP). METHODS The present study comprised a secondary analysis of the 2011-12 National Nutrition and Physical Activity component of the Australian Health Survey. Anthocyanin intake was estimated using an Australian anthocyanin database. Usual anthocyanin intake, as estimated from 24-h diet recall data, was computed using multiple source methods, whereas food sources were determined by calculating contribution of food groups to total anthocyanin intake. Regression analysis, adjusted for covariates (age, gender, body mass index, high BP diagnosis, smoking status and physical activity) assessed the relationship between anthocyanin intake and BP in adults aged ≥50 years. RESULTS Mean anthocyanin intake was 24.17 ± 0.32 mg day-1 . Across age groups, berries were the top sources: blackberry (5-65%), cherry (2-24%), blueberry (2-13%) and raspberry (3-12%). There was a significant inverse association between anthocyanin intake and systolic BP (β = -0.04, F = 16.8, d.f. = 6, r2 = 0.05, P < 0.01) and diastolic BP (β = 0.01, F = 5.35, d.f. = 6, R2 = 0.013, P < 0.01), in models that adjusted for covariates. CONCLUSIONS In comparison with the world composite database, anthocyanin intake in the Australian population was above average [mean (SD): 24.17 (0.32) mg day-1 versus 18.05 (21.14) mg day-1 ]. Berries were the primary source of anthocyanins. Anthocyanin intake in older adults aged ≥50 years was inversely associated with BP.
Collapse
Affiliation(s)
- E O Igwe
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - K E Charlton
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Y C Probst
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
73
|
Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, Trifan A. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr 2019; 60:626-659. [PMID: 30614249 DOI: 10.1080/10408398.2018.1546669] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A polyphenol-rich diet protects against chronic pathologies by modulating numerous physiological processes, such as cellular redox potential, enzymatic activity, cell proliferation and signaling transduction pathways. However, polyphenols have a low oral bioavailability mainly due to an extensive biotransformation mediated by phase I and phase II reactions in enterocytes and liver but also by gut microbiota. Despite low oral bioavailability, most polyphenols proved significant biological effects which brought into attention the low bioavailability/high bioactivity paradox. In recent years, polyphenol metabolites have attracted great interest as many of them showed similar or higher intrinsic biological effects in comparison to the parent compounds. There is a huge body of literature reporting on the biological functions of polyphenol metabolites generated by phase I and phase II metabolic reactions and gut microbiota-mediated biotransformation. In this respect, the review highlights the pharmacokinetic fate of the major dietary polyphenols (resveratrol, curcumin, quercetin, rutin, genistein, daidzein, ellagitannins, proanthocyanidins) in order to further address the efficacy of biometabolites as compared to parent molecules. The present work strongly supports the contribution of metabolites to the health benefits of polyphenols, thus offering a better perspective in understanding the role played by dietary polyphenols in human health.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania.,Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
| | - Irina Macovei
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Alexandra Bujor
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Anca Miron
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
| | - Ana Clara Aprotosoaie
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Adriana Trifan
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| |
Collapse
|
74
|
Sekikawa A, Ihara M, Lopez O, Kakuta C, Lopresti B, Higashiyama A, Aizenstein H, Chang YF, Mathis C, Miyamoto Y, Kuller L, Cui C. Effect of S-equol and Soy Isoflavones on Heart and Brain. Curr Cardiol Rev 2019; 15:114-135. [PMID: 30516108 PMCID: PMC6520578 DOI: 10.2174/1573403x15666181205104717] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Observational studies in Asia show that dietary intake of soy isoflavones had a significant inverse association with coronary heart disease (CHD). A recent randomized controlled trial (RCT) of soy isoflavones on atherosclerosis in the US, however, failed to show their benefit. The discrepancy may be due to the much lower prevalence of S-equol producers in Westerners: Only 20-30% of Westerners produce S-equol in contrast to 50-70% in Asians. S-equol is a metabolite of dietary soy isoflavone daidzein by gut microbiome and possesses the most antiatherogenic properties among all isoflavones. Several short-duration RCTs documented that soy isoflavones improves arterial stiffness. Accumulating evidence shows that both atherosclerosis and arterial stiffness are positively associated with cognitive decline/dementia. Therefore, potentially, soy isoflavones, especially S-equol, are protective against cognitive decline/dementia. METHODS/RESULTS This narrative review of clinical and epidemiological studies provides an overview of the health benefits of soy isoflavones and introduces S-equol. Second, we review recent evidence on the association of soy isoflavones and S-equol with CHD, atherosclerosis, and arterial stiffness as well as the association of atherosclerosis and arterial stiffness with cognitive decline/ dementia. Third, we highlight recent studies that report the association of soy isoflavones and S-equol with cognitive decline/dementia. Lastly, we discuss the future directions of clinical and epidemiological research on the relationship of S-equol and CHD and dementia. CONCLUSIONS Evidence from observational studies and short-term RCTs suggests that S-equol is anti-atherogenic and improves arterial stiffness and may prevent CHD and cognitive impairment/ dementia. Well-designed long-term (≥ 2years) RCTs should be pursued.
Collapse
Affiliation(s)
- Akira Sekikawa
- Address correspondence to this author at the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Suite 336, Pittsburgh, PA 15213, USA; Tel: 412-383-1063; Fax: 412-648-4401;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Hashimoto T, Nozawa D, Mukai K, Matsuyama A, Kuramochi K, Furuya T. Monooxygenase-catalyzed regioselective hydroxylation for the synthesis of hydroxyequols. RSC Adv 2019; 9:21826-21830. [PMID: 35518870 PMCID: PMC9066559 DOI: 10.1039/c9ra03913a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
A one-step product-selective approach for synthesizing hydroxyequols from equol using oxidation biocatalysts was developed.
Collapse
Affiliation(s)
- Takafumi Hashimoto
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| | - Daiki Nozawa
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| | | | | | - Kouji Kuramochi
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| | - Toshiki Furuya
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| |
Collapse
|
76
|
Luo T, Miranda-Garcia O, Sasaki G, Wang J, Shay NF. Genistein and daidzein decrease food intake and body weight gain in mice, and alter LXR signaling in vivo and in vitro. Food Funct 2018; 9:6257-6267. [PMID: 30402623 DOI: 10.1039/c8fo01718b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The study is designed to determine whether consumption of the soy isoflavones, genistein and daidzein, differentially influence metabolic syndrome, and to further investigate the involvement of Liver X Receptor (LXR) regulation. C57BL/6J mice were fed diets as follows: low fat diet (LF), western-style diet (WD), and WD containing 0.16% (w/w) of genistein (WD + G) or daidzein (WD + D) for 10 weeks. Intake of WD + G and WD + D produced a robust decrease in body weight gain by 40% and 19%, respectively (p < 0.05). Genistein reduced energy intake by 26%, and daidzein decreased energy intake by 8% (p < 0.05). A glucose tolerance test indicated that genistein consumption significantly decreased the incremental areas under the curve (AUC) from 60-120 min, compared to WD-fed mice. Gene array profiling of hepatic mRNA, and cell studies utilizing transiently-transfected HepG2 cells and mouse embryonic fibroblast cells devoid of or expressing LXRα, indicate that genistein and daidzein induce LXR-mediated pathways. In summary, addition of genistein, compared to daidzein, to a western-style diet, more profoundly decreased food intake, body weight gain, while both appear to regulate LXR-mediated pathways.
Collapse
Affiliation(s)
- Ting Luo
- Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA.
| | | | | | | | | |
Collapse
|
77
|
Blaženović I, Oh YT, Li F, Ji J, Nguyen AK, Wancewicz B, Bender JM, Fiehn O, Youn JH. Effects of Gut Bacteria Depletion and High-Na + and Low-K + Intake on Circulating Levels of Biogenic Amines. Mol Nutr Food Res 2018; 63:e1801184. [PMID: 30513547 DOI: 10.1002/mnfr.201801184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/13/2018] [Indexed: 12/18/2022]
Abstract
SCOPE High-sodium and low-potassium (HNaLK) content in Western diets increases the risk of hypertension and cardiovascular disease (CVD). It is investigated if the dietary minerals interact with gut bacteria to modulate circulating levels of biogenic amines, which are implicated in various pathologies, including hypertension and CVD. METHODS AND RESULTS Using a metabolomic approach to target biogenic amines, the effects of gut bacteria depletion and HNaLK intake on circulating levels of biogenic amines in rats are examined. Forty-five metabolites whose plasma levels are significantly altered by gut bacteria depletion (p < 0.05) are found, indicating their regulation by gut bacteria. Many of them are not previously linked to gut bacteria; therefore, these data provide novel insights into physiological or pathological roles of gut bacteria. A number of plasma metabolites that are altered both by gut bacteria and HNaLK intake are also found, suggesting possible interactions of the diet and gut bacteria in the modulation of these metabolites. The diet effects are observed with significant changes in the gut bacterial taxa Porphyromonadaceae and Prevotellaceae (p < 0.05). CONCLUSION The dietary minerals may regulate abundances of certain gut bacteria to alter circulating levels of biogenic amines, which may be linked to host physiology or pathology.
Collapse
Affiliation(s)
- Ivana Blaženović
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Young Taek Oh
- Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Fan Li
- Single Cell, Sequencing, and CyTOF Core Lab, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jian Ji
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA.,School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Ahn-Khoi Nguyen
- Department of Exercise Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin Wancewicz
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Jeffrey M Bender
- USC Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA.,Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jang H Youn
- Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| |
Collapse
|
78
|
Navrátilová L, Applová L, Horký P, Mladěnka P, Pávek P, Trejtnar F. Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1063-1071. [PMID: 29934673 DOI: 10.1007/s00210-018-1528-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The Ki values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.
Collapse
Affiliation(s)
- Lucie Navrátilová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Horký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
79
|
Lee PG, Lee UJ, Song H, Choi KY, Kim BG. Recent advances in the microbial hydroxylation and reduction of soy isoflavones. FEMS Microbiol Lett 2018; 365:5089968. [PMID: 30184116 DOI: 10.1093/femsle/fny195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2023] Open
Abstract
Soy isoflavones are naturally occurring phytochemicals, which are biotransformed into functional derivatives through oxidative and reductive metabolic pathways of diverse microorganisms. Such representative derivatives, ortho-dihydroxyisoflavones (ODIs) and equols, have attracted great attention for their versatile health benefits since they were found from soybean fermented foods and human intestinal fluids. Recently, scientists in food technology, nutrition and microbiology began to understand their correct biosynthetic pathways and nutraceutical values, and have attempted to produce the valuable bioactive compounds using microbial fermentation and whole-cell/enzyme-based biotransformation. Furthermore, artificial design of microbial catalysts and/or protein engineering of oxidoreductases were also conducted to enhance production efficiency and regioselectivity of products. This minireview summarizes and introduces the past year's studies and recent advances in notable production of ODIs and equols, and provides information on available microbial species and their catalytic performance with perspectives on industrial application.
Collapse
Affiliation(s)
- Pyung-Gang Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanbit Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- Bioengineering Institute, Seoul National University, Seoul 08826, South Korea
- Institute of Bioengineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
80
|
Woo HW, Kim MK, Lee YH, Shin DH, Shin MH, Choi BY. Habitual consumption of soy protein and isoflavones and risk of metabolic syndrome in adults ≥ 40 years old: a prospective analysis of the Korean Multi-Rural Communities Cohort Study (MRCohort). Eur J Nutr 2018; 58:2835-2850. [PMID: 30264377 DOI: 10.1007/s00394-018-1833-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 09/22/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Although considerable attention has been paid to the potential benefits of soy protein and isoflavones for preventing metabolic syndrome (MetS) and its components, findings linking habitual consumption of these factors to MetS are limited. This study aimed to evaluate the association of MetS incidence with habitual intake of soy protein/isoflavones among Korean men and women aged ≥ 40 years old who did not have MetS at baseline (n = 5509; 2204 men and 3305 women). METHODS Dietary intake of soy protein/isoflavones at baseline and average consumption during follow-up were used. RESULTS A significant inverse association between dietary intake and incidence of MetS was found in women (incidence rate ratios, IRR = 0.60, 95% CI = 0.46-0.78, P for trend = 0.0094 for the highest quintile of average soy protein intake compared with the lowest quintile; IRR = 0.57, 95% CI = 0.44-0.74, P for trend = 0.0048 for the highest quintile of average isoflavones intake compared with the lowest quintile). A tendency towards an inverse association was also found in men, although it was not significant for the highest quintile (IRR = 0.80, 95% CI = 0.58-1.11, P for trend = 0.9759, comparing the lowest to the highest quintile of average soy protein intake; IRR = 0.73, 95% CI = 0.53-1.01, P for trend = 0.8956, comparing the lowest to the highest quintile of average isoflavones intake). In terms of individual abnormalities, a significant inverse association was found between soy protein and isoflavones and the incidence of low-high-density lipoprotein cholesterol in both men and women. Abdominal obesity and elevated blood pressure were inversely related to soy protein/isoflavones only in women, and an inverse association of elevated triglyceride appeared only in men. CONCLUSION Our findings suggest that habitual intake of soy protein and isoflavones is inversely associated with the risk of MetS and its components. There is likely to be a reverse J-shaped association of average intake with MetS.
Collapse
Affiliation(s)
- Hye Won Woo
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea.,Institute for Health and Society, Hanyang University, Seoul, South Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea. .,Institute for Health and Society, Hanyang University, Seoul, South Korea.
| | - Young-Hoon Lee
- Department of Preventive Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, South Korea
| | - Dong Hoon Shin
- Department of Preventive Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea.,Institute for Health and Society, Hanyang University, Seoul, South Korea
| |
Collapse
|
81
|
de Ávila ARA, de Queirós LD, Lopes DB, Barin CG, Ueta TM, Ruiz ALTG, Macedo GA, Macedo JA. Enhanced estrogenic effects of biotransformed soy extracts. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
82
|
Li Y. Epigenetic Mechanisms Link Maternal Diets and Gut Microbiome to Obesity in the Offspring. Front Genet 2018; 9:342. [PMID: 30210530 PMCID: PMC6119695 DOI: 10.3389/fgene.2018.00342] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Nutrition is the most important environmental factor that can influence early developmental processes through regulation of epigenetic mechanisms during pregnancy and neonatal periods. Maternal diets or nutritional compositions contribute to the establishment of the epigenetic profiles in the fetus that have a profound impact on individual susceptibility to certain diseases or disorders in the offspring later in life. Obesity is considered a global epidemic that impairs human life quality and also increases risk of development of many human diseases such as diabetes and cardiovascular diseases. Studies have shown that maternal nutrition status is closely associated with obesity in progenies indicating obesity has a developmental origin. Maternal diets may also impact the early establishment of the fetal and neonatal microbiome leading to specific epigenetic signatures that may potentially predispose to the development of late-life obesity. This article will review the association of different maternal dietary statuses including essential nutritional quantity and specific dietary components with gut microbiome in determining epigenetic impacts on offspring susceptibility to obesity.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
83
|
Sugiura Y, Usui M, Katsuzaki H, Imai K, Kakinuma M, Amano H, Miyata M. Orally Administered Phlorotannins from Eisenia arborea Suppress Chemical Mediator Release and Cyclooxygenase-2 Signaling to Alleviate Mouse Ear Swelling. Mar Drugs 2018; 16:E267. [PMID: 30072652 PMCID: PMC6117712 DOI: 10.3390/md16080267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 01/29/2023] Open
Abstract
Phlorotannin is the collective term for polyphenols derived from brown algae belonging to the genera Ascopyllum, Ecklonia, Eisenia, Fucus and Sargassum etc. Since the incidence of allergies is currently increasing in the world, there is a focus on phlorotannins having anti-allergic and anti-inflammatory effects. In this study, six purified phlorotannins (eckol; 6,6'-bieckol; 6,8'-bieckol; 8,8'-bieckol; phlorofucofuroeckol (PFF)-A and PFF-B) from Eisenia arborea, orally administered to mice, were examined for their suppression effects on ear swelling. In considering the suppression, we also examined whether the phlorotannins suppressed release of chemical mediators (histamine, leukotriene B₄ and prostaglandin E₂), and mRNA expression and/or the activity of cyclooxygenase-2 (COX-2), using RBL-2H3 cells, a cultured mast cell model. Results showed that the phlorotnannins exhibited suppression effects in all experiments, with 6,8'-bieckol, 8,8'-bieckol and PFF-A showing the strongest of these effects. In conclusion, orally administered phlorotannins suppress mouse ear swelling, and this mechanism apparently involves suppression of chemical mediator release and COX-2 mRNA expression or activity. This is the first report of the anti-allergic effects of the orally administered purified phlorotannins in vivo. Phlorotannins show potential for use in functional foods or drugs.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| | - Masakatsu Usui
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Makoto Kakinuma
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Masaaki Miyata
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| |
Collapse
|
84
|
Mancano G, Mora-Ortiz M, Claus SP. Recent developments in nutrimetabolomics: from food characterisation to disease prevention. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
85
|
Hanioka N, Ohkawara S, Isobe T, Ochi S, Tanaka-Kagawa T, Jinno H. Regioselective glucuronidation of daidzein in liver and intestinal microsomes of humans, monkeys, rats, and mice. Arch Toxicol 2018; 92:2809-2817. [DOI: 10.1007/s00204-018-2265-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
|
86
|
Dymarska M, Janeczko T, Kostrzewa-Susłow E. Biotransformations of Flavones and an Isoflavone (Daidzein) in Cultures of Entomopathogenic Filamentous Fungi. Molecules 2018; 23:E1356. [PMID: 29874813 PMCID: PMC6100588 DOI: 10.3390/molecules23061356] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022] Open
Abstract
Entomopathogenic filamentous fungi of the genus Isaria are effective biocatalysts in the biotransformation of flavonoids as well as steroids. In the present study, the species Isariafumosorosea and Isariafarinosa isolated from the environment were used. Their catalytic capacity to carry out biotransformations of flavones-unsubstituted, with hydroxy- and amino-substituents as well as a hydroxylated isoflavone-was investigated. Biotransformations of flavone, 5-hydroxyflavone, 6-hydroxyflavone, 7-hydroxyflavone, and daidzein resulted in the formation of O-methylglucosides, in the case of flavone and 5-hydroxyflavone with additional hydroxylations. 7-Aminoflavone was transformed into two acetamido derivatives. The following products were obtained: From flavone⁻flavone 2'-O-β-d-(4''-O-methyl)-glucopyranoside, flavone 4'-O-β-d-(4''-O-methyl)-glucopyranoside and 3'-hydroxyflavone 4'-O-β-d-(4''-O-methyl)-glucopyranoside; from 5-hydroxyflavone⁻5-hydroxyflavone 4'-O-β-d-(4''-O-methyl)-glucopyranoside; from 6-hydroxyflavone⁻flavone 6-O-β-d-(4''-O-methyl)-glucopyranoside; from 7-hydroxyflavone⁻flavone 7-O-β-d-(4''-O-methyl)-glucopyranoside; from daidzein⁻daidzein 7-O-β-d-(4''-O-methyl)-glucopyranoside; and from 7-aminoflavone⁻7-acetamidoflavone and 7-acetamido-4'-hydroxyflavone. Seven of the products obtained by us have not been previously reported in the literature.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - Tomasz Janeczko
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| |
Collapse
|
87
|
Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediators Inflamm 2018; 2018:9734845. [PMID: 29785173 PMCID: PMC5896216 DOI: 10.1155/2018/9734845] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you “feed your microbiota and are fed by it.” GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases.
Collapse
|
88
|
Trnková A, Šancová K, Zapletalová M, Kašparovská J, Dadáková K, Křížová L, Lochman J, Hadrová S, Ihnatová I, Kašparovský T. Determination of in vitro isoflavone degradation in rumen fluid. J Dairy Sci 2018; 101:5134-5144. [PMID: 29550126 DOI: 10.3168/jds.2017-13610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the degradation of dietary isoflavones in rumen fluid under 2 feeding regimens. The experiments were performed in vitro using a rumen fluid buffer system. The rumen fluid was taken from cows fed either a hay diet or a concentrate-rich diet (the diet consisted of 34.6% maize silage, 17.6% haylage, 12.8% alfalfa hay, and 35.0% supplemental mixture on a dry matter basis). As a source of isoflavones, 40% soybean extract (Biomedica, Prague, Czech Republic) at levels of 5, 25, 50, and 75 mg per 40 mL of rumen fluid was used. Samples of soybean extract were incubated in triplicate at 39°C for 0, 3.0, 6.0, 12.0, and 24.0 h in incubation solution. The metabolism of daidzein and genistein was faster under concentrate-rich diet conditions. In general, production of equol started after 3 to 6 h of incubation and reached the highest rate after approximately 12 h of incubation regardless of the type of diet or concentration of extract. In most of the experiments, production of equol continued after 24 h of incubation. Generally, equol production was greater under the hay diet conditions. Furthermore, experiments with higher amounts of added soybean extract revealed possible inhibitory effects of high levels of isoflavones on the rumen microflora.
Collapse
Affiliation(s)
- Andrea Trnková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Kateřina Šancová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jitka Kašparovská
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Ludmila Křížová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Sylvie Hadrová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Ivana Ihnatová
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
89
|
Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int 2018; 105:76-93. [DOI: 10.1016/j.foodres.2017.10.056] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/18/2017] [Accepted: 10/28/2017] [Indexed: 01/16/2023]
|
90
|
Zhang L, Dong M, Tang H, Wang Y. Metabolomics Reveals that Dietary Ferulic Acid and Quercetin Modulate Metabolic Homeostasis in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1723-1731. [PMID: 29359554 DOI: 10.1021/acs.jafc.8b00054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phenolic compounds ingestion has been shown to have potential preventive and therapeutic effects against various metabolic diseases such as obesity and cancer. To provide a better understanding of these potential benefit effects, we investigated the metabolic alterations in urine and feces of rat ingested ferulic acid (FA) and quercetin (Qu) using NMR-based metabolomics approach. Our results suggested that dietary FA and/or Qu significantly decreased short chain fatty acids and elevated oligosaccharides in the feces, implying that dietary FA and Qu may modulate gut microbial community with inhibition of bacterial fermentation of dietary fibers. We also found that dietary FA and/or Qu regulated several host metabolic pathways including TCA cycle and energy metabolism, bile acid, amino acid, and nucleic acid metabolism. These biological effects suggest that FA and Qu display outstanding bioavailability and bioactivity and could be used for treatment of some metabolic syndromes, such as inflammatory bowel diseases and obesity.
Collapse
Affiliation(s)
- Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) , Wuhan 430071, China
| | - Manyuan Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) , Wuhan 430071, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre for Genetics and Development, Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, School of Life Sciences, Fudan University , Shanghai 200433, PR China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) , Wuhan 430071, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University , Hangzhou 310058, PR China
| |
Collapse
|
91
|
Monteiro NE, Queirós LD, Lopes DB, Pedro AO, Macedo GA. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
92
|
Modulating conversion of isoflavone glycosides to aglycones using crude beta-glycosidase extracts from almonds and processed soy. Food Chem 2017; 237:685-692. [DOI: 10.1016/j.foodchem.2017.05.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 11/23/2022]
|
93
|
Lee D, Kim MJ, Ahn J, Lee SH, Lee H, Kim JH, Park S, Jang Y, Ha T, Jung CH. Nutrikinetics of Isoflavone Metabolites After Fermented Soybean Product (Cheonggukjang) Ingestion in Ovariectomized Mice. Mol Nutr Food Res 2017; 61:1700322. [PMID: 28981201 PMCID: PMC6139428 DOI: 10.1002/mnfr.201700322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/28/2017] [Indexed: 12/31/2022]
Abstract
SCOPE Cheonggukjang (CGJ) is a soybean-based quick-fermented food popular in Korea that contains a variety of biologically active compounds including isoflavones and saponins. Isoflavone bioavailability may be important for the bone health of postmenopausal women; therefore, the aim of this study is to evaluate the influence of fermentation on the isoflavone metabolite nutrikinetic profile after single dose CGJ or unfermented soybean administration in ovariectomized (OVX) and sham mice. METHODS AND RESULTS We identify 34 isoflavone metabolites using UPLC-QTOF-MS and analyze their nutrikinetics at different time points (0.25, 0.5, 1, 2, 4, 8, 16, and 24 h) to understand their fermentation- and OVX-mediated time-dependent concentration changes. Nutrikinetics analysis shows that genistein, daidzein, genistein 4'-sulfate, dihydrodaidzein sulfate, equol 4'-sulfate, and equol-7-glucuronide are present at high concentrations in all groups based on area-under-the-curve analysis. OVX mice appear to show lower isoflavone bioavailability than mice in the sham group. CGJ enhances various isoflavone metabolite bioavailability including genistein, 3-hydroxygenistein, and equol 7-glucuronide, compared to the unfermented soybean-treated group. Among these metabolites, intact isoflavones, 3-hydroxygenistein, genistein 4'-sulfate, and equol 7-glucuronide promote osteoblastogenesis and inhibit osteoclast formation. CONCLUSIONS CGJ has good isoflavone bioavailability and may be beneficial for the bone health of postmenopausal women.
Collapse
Affiliation(s)
- Da‐Hye Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Min Jung Kim
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Jiyun Ahn
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Sang Hee Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Hyunjung Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Jin Hee Kim
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - So‐Hyun Park
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Young‐Jin Jang
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Tae‐Youl Ha
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Chang Hwa Jung
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| |
Collapse
|
94
|
Ono M, Ejima K, Higuchi T, Takeshima M, Wakimoto R, Nakano S. Equol Enhances Apoptosis-inducing Activity of Genistein by Increasing Bax/Bcl-xL Expression Ratio in MCF-7 Human Breast Cancer Cells. Nutr Cancer 2017; 69:1300-1307. [PMID: 29095048 DOI: 10.1080/01635581.2017.1367945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anticancer activities of soy isoflavones, such as genistein and equol, a bioactive metabolite of daidzein, have been extensively studied because of possible involvement in the prevention of breast cancer. However, their interactions still remain unclear. We investigated here whether cytotoxic activity of genistein was enhanced by equol, using estrogen receptor positive MCF-7, HER2-positive SK-BR-3, and triple-negative MDA-MB-468 cell lines. Although cytotoxicity of genistein did not significantly differ between three subtypes of breast cancer cells, cytotoxic activities of genistein were significantly enhanced in combination with 50 μM equol in MCF-7 cells, but not in SK-BR-3 and MDA-MB-468 cells. In fluorescence activated cell sorting (FACS) analyses, MCF-7 cells were arrested at the G2/M by genistein but at G1/S by equol. Combination treatment arrested cells at G2/M but abolished equol-induced G1 block, indicating an antagonistic activity of genistein against equol in cell-cycle progression. Although apoptosis was not so evident with genistein alone, the combination made a drastic induction of apoptosis, accompanied by the increase of Bax/Bcl-xL expression ratio, without affecting the activities of Akt and mTOR. Taken together, these data suggest that enhancement of genistein activity by equol would be mainly mediated by augmented induction of apoptosis rather than arrest or delay of the cell cycle.
Collapse
Affiliation(s)
- Misaki Ono
- a Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University , Fukuoka , Fukuoka , Japan
| | - Kaoru Ejima
- a Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University , Fukuoka , Fukuoka , Japan
| | - Takako Higuchi
- a Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University , Fukuoka , Fukuoka , Japan
| | - Mikako Takeshima
- a Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University , Fukuoka , Fukuoka , Japan
| | - Rei Wakimoto
- a Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University , Fukuoka , Fukuoka , Japan
| | - Shuji Nakano
- a Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University , Fukuoka , Fukuoka , Japan
| |
Collapse
|
95
|
Chen L, Teng H, Jia Z, Battino M, Miron A, Yu Z, Cao H, Xiao J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit Rev Food Sci Nutr 2017; 58:2908-2924. [PMID: 28682647 DOI: 10.1080/10408398.2017.1345853] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Maurizio Battino
- Center for Nutrition & Health, Universidad Europea del Atlantico, Santander, Spain and Dept. of Clinical Sciences, Universitr Nutrition & Health, Universidad Europea
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania
| | - Zhiling Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
96
|
Horiuchi H, Usami A, Shirai R, Harada N, Ikushiro S, Sakaki T, Nakano Y, Inui H, Yamaji R. S-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice. J Nutr 2017; 147:1631-1639. [PMID: 28768836 DOI: 10.3945/jn.117.250860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/19/2017] [Accepted: 06/27/2017] [Indexed: 11/14/2022] Open
Abstract
Background:S-equol, which is enantioselectively produced from daidzein by gut microbiota, has been suggested as a chemopreventive agent against type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear.Objective: We investigated the effects of S-equol on pancreatic β-cell function.Methods: β-Cell growth and insulin secretion were evaluated with male Institute of Cancer Research mice and isolated pancreatic islets from the mice, respectively. The mechanisms by which S-equol stimulated β-cell response were examined in INS-1 β-cells. The effect of S-equol treatment on β-cell function was assessed in low-dose streptozotocin-treated mice. S-equol was used at 10 μmol/L for in vitro and ex vivo studies and was administered by oral gavage (20 mg/kg, 2 times/d throughout the experimental period) for in vivo studies.Results:S-equol administration for 7 d increased Ki67-positive β-cells by 27% (P < 0.01) in mice. S-equol enantioselectively enhanced glucose-stimulated insulin secretion in mouse pancreatic islets by 41% (P < 0.001). In INS-1 cells, S-equol exerted stronger effects than daidzein on cell growth, insulin secretion, and cAMP-response element (CRE)-mediated transcription. These S-equol effects were diminished by inhibiting protein kinase A. The effective concentration of S-equol for stimulating cAMP production at the plasma membrane was lower than that for phosphodiesterase inhibition. S-equol-stimulated CRE activation was negatively controlled by the knockdown of G-protein α subunit group S (stimulatory) and positively controlled by that of G-protein-coupled receptor kinase-3 and -6. Compared with vehicle-treated controls, S-equol gavage treatment resulted in an increase in β-cell mass of 104% (P < 0.05), a trend toward high plasma insulin concentrations (by 118%; P = 0.06), and resistance to hyperglycemia after streptozotocin treatment (78% of AUC after glucose challenge; P < 0.01). S-equol administration significantly increased the number of Ki67-positive proliferating β-cells by 62% (P < 0.01) and decreased that of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic β-cells by 75% (P < 0.05).Conclusions: Our results show that S-equol boosts β-cell function and prevents hypoglycemia in mice, suggesting its potential for T2DM prevention.
Collapse
Affiliation(s)
- Hiroko Horiuchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| | - Atsuko Usami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| | - Rie Shirai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences,
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | | | - Hiroshi Inui
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan; and
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences
| |
Collapse
|
97
|
Effects of equol on multiple K+ channels stably expressed in HEK 293 cells. PLoS One 2017; 12:e0183708. [PMID: 28832658 PMCID: PMC5568406 DOI: 10.1371/journal.pone.0183708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the effects of equol on cardiovascular K+ channel currents. The cardiovascular K+ channel currents were determined in HEK 293 cells stably expressing cloned differential cardiovascular K+ channels with conventional whole-cell patch voltage-clamp technique. We found that equol inhibited hKv1.5 (IC50: 15.3 μM), hKv4.3 (IC50: 29.2 μM and 11.9 μM for hKv4.3 peak current and charge area, respectively), IKs (IC50: 24.7 μM) and IhERG (IC50: 31.6 and 56.5 μM for IhERG.tail and IhERG.step, respectively), but not hKir2.1 current, in a concentration-dependent manner. Interestingly, equol increased BKCa current with an EC50 of 0.1 μM. It had no significant effect on guinea pig ventricular action potentials at concentrations of ≤3 μM. These results demonstrate that equol inhibits several cardiac K+ currents at relatively high concentrations, whereas it increases BKCa current at very low concentrations, suggesting that equol is a safe drug candidate for treating patients with cerebral vascular disorders.
Collapse
|
98
|
Boonpawa R, Spenkelink A, Punt A, Rietjens IMCM. In vitro-in silico-based analysis of the dose-dependent in vivo oestrogenicity of the soy phytoestrogen genistein in humans. Br J Pharmacol 2017; 174:2739-2757. [PMID: 28585232 DOI: 10.1111/bph.13900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/21/2017] [Accepted: 05/28/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The in vivo oestrogenicity of genistein and its glycoside genistin is still under debate. The present study aimed to develop a physiologically based kinetic (PBK) model that provides insight in dose-dependent plasma concentrations of genistein aglycone and its metabolites and enables prediction of in vivo oestrogenic effective dose levels of genistein and genistin in humans. EXPERIMENTAL APPROACH A PBK model for genistein and genistin in humans was developed based on in vitro metabolic parameters. The model obtained was used to translate in vitro oestrogenic concentration-response curves of genistein to in vivo oestrogenic dose-response curves for intake of genistein and genistin. KEY RESULTS The model predicted that genistein-7-O-glucuronide was the major circulating metabolite and that levels of the free aglycone were generally low [0.5-17% of total plasma genistein at oral doses from 0.01 to 50 mg (kg·bw)-1 ]. The predicted in vivo benchmark dose for 5% response values for oestrogenicity varied between 0.06 and 4.39 mg kg-1 genistein. For genistin, these values were 1.3-fold higher. These values are in line with reported human data and show that oestrogenic responses can be expected at an Asian dietary and a supplementary intake, while intake resulting from a Western diet may not be effective. CONCLUSIONS AND IMPLICATIONS The present study shows how plasma concentrations of genistein and its metabolites and oestrogenic dose levels of genistein in humans can be predicted by combining in vitro oestrogenicity with PBK model-based reverse dosimetry, eliminating the need for human intervention studies.
Collapse
Affiliation(s)
- Rungnapa Boonpawa
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | | - Ans Punt
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
99
|
Vázquez L, Guadamuro L, Giganto F, Mayo B, Flórez AB. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures. Front Microbiol 2017; 8:1155. [PMID: 28713336 PMCID: PMC5491606 DOI: 10.3389/fmicb.2017.01155] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
This work introduces a novel real-time quantitative PCR (qPCR) protocol for detecting and quantifying equol-producing bacteria. To this end, two sets of primers targeting the dihydrodaidzein reductase (ddr) and tetrahydrodaidzein reductase (tdr) genes, which are involved in the synthesis of equol, were designed. The primers showed high specificity and sensitivity when used to examine DNA from control bacteria, such as Slackia isoflavoniconvertens, Slackia equolifaciens, Asaccharobacter celatus, Adlercreutzia equolifaciens, and Enterorhabdus mucosicola. To demonstrate the validity and reliability of the protocol, it was used to detect and quantify equol-producing bacteria in human faecal samples and their derived slurry cultures. These samples were provided by 18 menopausal women under treatment of menopause symptoms with a soy isoflavone concentrate, among whom three were known to be equol-producers given the prior detection of the molecule in their urine. The tdr gene was detected in the faeces of all these equol-producing women at about 4–5 log10 copies per gram of faeces. In contrast, the ddr gene was only amplified in the faecal samples of two of these three women, suggesting the presence in the non-amplified sample of reductase genes unrelated to those known to be involved in equol formation and used for primer design in this study. When tdr and ddr were present in the same sample, similar copy numbers of the two genes were recorded. However, no significant increase in the copy number of equol-related genes along isoflavone treatment was observed. Surprisingly, positive amplification for both tdr and ddr genes was obtained in faecal samples and derived slurry cultures from two non-equol producing women, suggesting the genes could be non-functional or the daidzein metabolized to other compounds in samples from these two women. This novel qPCR tool provides a technique for monitoring gut microbes that produce equol in humans. Monitoring equol-producing bacteria in the human gut could provide a means of evaluating strategies aimed at increasing the endogenous formation of this bioactive compound.
Collapse
Affiliation(s)
- Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Lucía Guadamuro
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Froilán Giganto
- Servicio Digestivo, Hospital Universitario Central de AsturiasOviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Ana B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| |
Collapse
|
100
|
Capuano E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit Rev Food Sci Nutr 2017; 57:3543-3564. [DOI: 10.1080/10408398.2016.1180501] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|