51
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
52
|
de la Visitación N, Robles-Vera I, Toral M, Gómez-Guzmán M, Sánchez M, Moleón J, González-Correa C, Martín-Morales N, O'Valle F, Jiménez R, Romero M, Duarte J. Gut microbiota contributes to the development of hypertension in a genetic mouse model of systemic lupus erythematosus. Br J Pharmacol 2021; 178:3708-3729. [PMID: 33931880 DOI: 10.1111/bph.15512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypertension is an important cardiovascular risk factor that is prevalent in the systemic lupus erythematosus patient population. Here, we have investigated whether intestinal microbiota is involved in hypertension in a genetic mouse model of systemic lupus erythematosus. EXPERIMENTAL APPROACH Twenty-six-week-old female NZW/LacJ (control) and NZBWF1 (F1 hybrid of New Zealand Black and New Zealand White strains; systemic lupus erythematosus) mice were treated for 6 weeks with a broad-spectrum antibiotic mixture or with vancomycin. Faecal microbiota transplantation was performed from donor systemic lupus erythematosus group to recipient to germ-depleted or germ-free mice. KEY RESULTS Antibiotic treatment inhibited the development of hypertension and renal injury, improved endothelial dysfunction and vascular oxidative stress, and decreased aortic Th17 infiltration in NZBWF1 mice. High BP and vascular complications found in systemic lupus erythematosus mice, but not autoimmunity, kidney inflammation and endotoxemia, were reproduced by the transfer of gut microbiota from systemic lupus erythematosus donors to germ-free or germ-depleted mice. Increased proportions of Bacteroides were linked with high BP in these mice. The reduced endothelium-dependent vasodilator responses to acetylcholine and the high BP induced by microbiota from hypertensive systemic lupus erythematosus mice were inhibited after IL-17 neutralization. CONCLUSION AND IMPLICATIONS Changes in T-cell populations, endothelial function, vascular inflammation and hypertension driven by a genetic systemic lupus erythematosus background can be modified by antibiotic-induced changes in gut microbiota. The vascular changes induced by hypertensive systemic lupus erythematosus microbiota were mediated by Th17 infiltration in the vasculature.
Collapse
Affiliation(s)
- Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | - Francisco O'Valle
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.,Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
53
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
54
|
Zhu Y, Liu Y, Wu C, Li H, Du H, Yu H, Huang C, Chen Y, Wang W, Zhu Q, Wang L. Enterococcus faecalis contributes to hypertension and renal injury in Sprague-Dawley rats by disturbing lipid metabolism. J Hypertens 2021; 39:1112-1124. [PMID: 33967216 DOI: 10.1097/hjh.0000000000002767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Increasing studies have demonstrated that gut microbiota play vital roles in the development of hypertension. However, the underlying mechanism is not fully understood. METHODS The relative abundance of Enterococcus faecalis was determined in the faecal samples of angiotensin II or deoxycorticosterone acetate/salt-induced hypertensive rats. Then, E. faecalis culture was administered orally to rats for 6 weeks. Blood pressure (BP) was measured, renal injury was estimated and a serum metabolomic analysis was performed. RESULTS Compared with control, E. faecalis was markedly enriched in the faecal samples of hypertensive rats. The rats receiving live E. faecalis but not dead bacteria exhibited higher BP and enhanced renal injury. The serum metabolomic data showed that the E. faecalis treatment resulted in 35 variable metabolites including 16 (46%) lipid/lipid-like molecules, suggesting significant disturbance of lipid metabolism. Furthermore, the mRNA levels of 18 lipid metabolic enzymes in the renal medulla and cortex presented distinct and dynamic changes in response to 3 or 6-week E. faecalis treatment. Consistently, the protein levels of lysophospholipases A1 (LYPLA1) and phospholipase A2 group 4 A (PLA2G4) were enhanced only by live E. faecalis, which thus may have decreased the nitric oxide production in the renal medulla and elevated BP. CONCLUSION Our results suggest that E. faecalis in the gut contributes to hypertension and renal injury in rats by disturbing the lipid metabolism. The information provided here could shed new light on the pathologic mechanisms and potential intervention targets for the treatment of gut dysbiosis-induced hypertension.
Collapse
Affiliation(s)
- Yeyan Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Yuting Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Chunying Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Haonan Li
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University
| | - Huiting Du
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Huijing Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Cailin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Yating Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qing Zhu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University
| | - Lei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine
| |
Collapse
|
55
|
de Oliveira Y, Cavalcante RGS, Cavalcanti Neto MP, Magnani M, Braga VDA, de Souza EL, de Brito Alves JL. Oral administration of Lactobacillus fermentum post-weaning improves the lipid profile and autonomic dysfunction in rat offspring exposed to maternal dyslipidemia. Food Funct 2021; 11:5581-5594. [PMID: 32524104 DOI: 10.1039/d0fo00514b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Maternal dyslipidemia alters the gut microbiota composition and contributes to the development of arterial hypertension (AH) in offspring. Here, we evaluated the effects of a new Lactobacillus fermentum probiotic formulation given post-weaning on cardiometabolic parameters and gut microbiota in male and female rat offspring from dams exposed to maternal dyslipidemia during pregnancy and lactation. METHODS Wistar rats (n = 14) were fed with a control diet (CTL = 7) or a dyslipidemic diet (DLP = 7) during pregnancy and lactation. After weaning, male and female offspring received a standard diet up to 90 days of life. Rats were allocated into three groups: CTL group + saline solution (n = 14); DLP group + saline solution (n = 14) and DLP group receiving a probiotic cocktail (n = 14). A vehicle or probiotic formulation containing L. fermentum 139, L. fermentum 263 and L. fermentum 296 (ratio 1 : 1 : 1, 1 × 109 CFU mL-1) was administered daily by oral gavage for 8 weeks. RESULTS The intervention with the probiotic formulation of L. fermentum in male and female offspring reduced total cholesterol (TC) and increased HDL-c, but did not affect the insulin resistance induced by maternal dyslipidemia. Additionally, the male and female rats that received the probiotic formulation of L. fermentum demonstrated improvement in fecal Lactobacillus sp. counts, blood pressure and sympathetic tone, without affecting baroreflex modulation. CONCLUSION The probiotic formulation containing L. fermentum improved the lipid profile and autonomic dysfunction in male and female offspring exposed to maternal dyslipidemia.
Collapse
Affiliation(s)
- Yohanna de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraíba, Joao Pessoa, Brazil
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil and Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
56
|
Pirozzolo I, Li Z, Sepulveda M, Alegre ML. Influence of the microbiome on solid organ transplant survival. J Heart Lung Transplant 2021; 40:745-753. [PMID: 34030971 DOI: 10.1016/j.healun.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The microbiome is an environmental factor in intricate symbiotic relationship with its hosts' immune system, potentially shaping anticancer immunity, autoimmunity, and transplant responses. The focus of this review is to discuss recent findings tying the microbiota to transplant outcomes and alloimmunity. The microbiota changes dynamically following transplantation, but whether these changes affect transplant outcomes can be difficult to parse out. New data reveal effects of the microbiota locally, as well as systemically, depending on the mucosal/epithelial surface colonized, the specific commensal communities present and the nature of microbial-derived molecules produced. These complex interactions result in the microbiota potentially impacting transplantation at different levels, including modulation of donor and/or recipient cells, alterations in the priming and/or effector phases of the alloimmune response, availability or metabolism of immunosuppressive drugs, transplant fate or post-transplant complications.
Collapse
Affiliation(s)
- Isabella Pirozzolo
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Zhipeng Li
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Martin Sepulveda
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
57
|
Yoon CH, Ryu JS, Moon J, Kim MK. Association between aging-dependent gut microbiome dysbiosis and dry eye severity in C57BL/6 male mouse model: a pilot study. BMC Microbiol 2021; 21:106. [PMID: 33832437 PMCID: PMC8033717 DOI: 10.1186/s12866-021-02173-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND While aging is a potent risk factor of dry eye disease, age-related gut dysbiosis is associated with inflammation and chronic geriatric diseases. Emerging evidence have demonstrated that gut dysbiosis contributes to the pathophysiology or exacerbation of ocular diseases including dry eye disease. However, the relationship between aging-related changes in gut microbiota and dry eye disease has not been elucidated. In this pilot study, we investigated the association between aging-dependent microbiome changes and dry eye severity in C57BL/6 male mice. RESULTS Eight-week-old (8 W, n = 15), one-year-old (1Y, n = 10), and two-year-old (2Y, n = 8) C57BL/6 male mice were used. Dry eye severity was assessed by corneal staining scores and tear secretion. Bacterial genomic 16 s rRNA from feces was analyzed. Main outcomes were microbiome compositional differences among the groups and their correlation to dry eye severity. In aged mice (1Y and 2Y), corneal staining increased and tear secretion decreased with statistical significance. Gut microbiome α-diversity was not different among the groups. However, β-diversity was significantly different among the groups. In univariate analysis, phylum Firmicutes, Proteobacteria, and Cyanobacteria, Firmicutes/Bacteroidetes ratio, and genus Alistipes, Bacteroides, Prevotella, Paraprevotella, and Helicobacter were significantly related to dry eye severity. After adjustment of age, multivariate analysis revealed phylum Proteobacteria, Firmicutes/Bacteroidetes ratio, and genus Lactobacillus, Alistipes, Prevotella, Paraprevotella, and Helicobacter to be significantly associated with dry eye severity. CONCLUSIONS Our pilot study suggests that aging-dependent changes in microbiome composition are related to severity of dry eye signs in C57BL/6 male mice.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jayoon Moon
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
58
|
Mohammed T, Singh M, Tiu JG, Kim AS. Etiology and management of hypertension in patients with cancer. CARDIO-ONCOLOGY 2021; 7:14. [PMID: 33823943 PMCID: PMC8022405 DOI: 10.1186/s40959-021-00101-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
The pathophysiology of hypertension and cancer are intertwined. Hypertension has been associated with an increased likelihood of developing certain cancers and with higher cancer-related mortality. Moreover, various anticancer therapies have been reported to cause new elevated blood pressure or worsening of previously well-controlled hypertension. Hypertension is a well-established risk factor for the development of cardiovascular disease, which is rapidly emerging as one of the leading causes of death and disability in patients with cancer. In this review, we discuss the relationship between hypertension and cancer and the role that hypertension plays in exacerbating the risk for anthracycline- and trastuzumab-induced cardiomyopathy. We then review the common cancer therapies that have been associated with the development of hypertension, including VEGF inhibitors, small molecule tyrosine kinase inhibitors, proteasome inhibitors, alkylating agents, glucocorticoids, and immunosuppressive agents. When available, we present strategies for blood pressure management for each drug class. Finally, we discuss blood pressure goals for patients with cancer and strategies for assessment and management. It is of utmost importance to maintain optimal blood pressure control in the oncologic patient to reduce the risk of chemotherapy-induced cardiotoxicity and to decrease the risk of long-term cardiovascular disease.
Collapse
Affiliation(s)
- Turab Mohammed
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Meghana Singh
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - John G Tiu
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Agnes S Kim
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA. .,Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
59
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
60
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
61
|
Robles-Vera I, de la Visitación N, Toral M, Sánchez M, Gómez-Guzmán M, Jiménez R, Romero M, Duarte J. Mycophenolate mediated remodeling of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rats. Biomed Pharmacother 2021; 135:111189. [PMID: 33388596 DOI: 10.1016/j.biopha.2020.111189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Microbiota has a role in the host blood pressure (BP) regulation. The immunosuppressive drug mofetil mycophenolate (MMF) ameliorates hypertension. The present study analyzes whether MMF improves dysbiosis in a genetic model of hypertension. Twenty weeks old male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were randomly divided into three groups: untreated WKY, untreated SHR, and SHR treated with MMF for 5 weeks. MMF treatment restored gut bacteria from the phyla Firmicutes and Bacteroidetes, and acetate- and lactate-producing bacteria to levels similar to those found in WKY, increasing butyrate-producing bacteria. MMF increased the percentage of anaerobic bacteria in the gut. The improvement of gut dysbiosis was associated with an enhanced colonic integrity and a decreased sympathetic drive in the gut. MMF inhibited neuroinflammation in the paraventricular nuclei in the hypothalamus. MMF increased the lower regulatory T cells proportion in mesenteric lymph nodes and Th17 and Th1 infiltration in aorta, improved aortic endothelial function and reduced systolic BP. This study demonstrates for the first time that MMF reduces gut dysbiosis in SHR. This effect could be related to its capability to improve gut integrity due to reduced sympathetic drive in the gut associated to the reduced brain neuroinflammation.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Marta Toral
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain; Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain; Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.
| |
Collapse
|
62
|
Yao Y, Liu T, Yin L, Man S, Ye S, Ma L. Polyphenol-Rich Extract from Litchi chinensis Seeds Alleviates Hypertension-Induced Renal Damage in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2138-2148. [PMID: 33470120 DOI: 10.1021/acs.jafc.0c07046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Litchi chinensis seed is a valuable byproduct of the subtropical fruit litchi (L. chinensis Sonn.), whose extract (LSE) has been confirmed to ameliorate dyslipidemia, hyperglycemia, and oxidative stress caused by type 2 diabetes. However, if LSE exerts an effect on anti-hypertension and hypertensive renal damage remains unknown. In this study, 13 polyphenols and one fatty acid were identified by UPLC-Q/TOF-MS. Network pharmacological analysis revealed that the therapeutic effects of LSE may be involved in multitargets and multipathways, such as the TNF signaling pathway, interleukin (IL)-6-mediated signaling pathway, NF-kappa B signaling pathway, removal of superoxide radicals, negative regulation of blood pressure, and so forth. Moreover, spontaneously hypertensive rats (SHRs) were daily gavaged with LSE (60 mg/kg) for 10 weeks. LSE remarkably reduced systolic blood pressure (SBP). The hypertension-induced renal damage was improved by suppressing inflammation and oxidative stress, which was consistent with the prediction of network pharmacology. In addition, LSE treatment remarkably increased the relative abundances of Lactobacillus and the production of short-chain fatty acids in the intestine. Our study indicated that a byproduct of litchi, namely, litchi seed, may be effective in reducing SBP and alleviating hypertensive renal damage.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Taohua Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shengying Ye
- Department of Pharmacy, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin 300142, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
63
|
Palmu J, Lahti L, Niiranen T. Targeting Gut Microbiota to Treat Hypertension: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1248. [PMID: 33561095 PMCID: PMC7908114 DOI: 10.3390/ijerph18031248] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
While hypertension remains the leading modifiable risk factor for cardiovascular morbidity and mortality, the pathogenesis of essential hypertension remains only partially understood. Recently, microbial dysbiosis has been associated with multiple chronic diseases closely related to hypertension. In addition, multiple small-scale animal and human studies have provided promising results for the association between gut microbial dysbiosis and hypertension. Animal models and a small human pilot study, have demonstrated that high salt intake, a risk factor for both hypertension and cardiovascular disease, depletes certain Lactobacillus species while oral treatment of Lactobacilli prevented salt-sensitive hypertension. To date, four large cohort studies have reported modest associations between gut microbiota features and hypertension. In this systematic literature review, we examine the previously reported links between the gut microbiota and hypertension and what is known about the functional mechanisms behind this association.
Collapse
Affiliation(s)
- Joonatan Palmu
- Department of Medicine, University of Turku, FI-20014 Turku, Finland;
- Division of Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, FI-20014 Turku, Finland;
| | - Teemu Niiranen
- Department of Medicine, University of Turku, FI-20014 Turku, Finland;
- Division of Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, FI-00271 Helsinki, Finland
| |
Collapse
|
64
|
Mycophenolate Improves Brain-Gut Axis Inducing Remodeling of Gut Microbiota in DOCA-Salt Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9121199. [PMID: 33260593 PMCID: PMC7761232 DOI: 10.3390/antiox9121199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Microbiota is involved in the host blood pressure (BP) regulation. The immunosuppressive drug mofetil mycophenolate (MMF) ameliorates hypertension. The present study analyzed whether MMF improves dysbiosis in mineralocorticoid-induced hypertension. Male Wistar rats were assigned to three groups: untreated (CTR), deoxycorticosterone acetate (DOCA)-salt, and DOCA treated with MMF for 4 weeks. MMF treatment reduced systolic BP, improved endothelial dysfunction, and reduced oxidative stress and inflammation in aorta. A clear separation in the gut bacterial community between CTR and DOCA groups was found, whereas the cluster belonging to DOCA-MMF group was found to be intermixed. No changes were found at the phylum level among all experimental groups. MMF restored the elevation in lactate-producing bacteria found in DOCA-salt joined to an increase in the acetate-producing bacteria. MMF restored the percentage of anaerobic bacteria in the DOCA-salt group to values similar to control rats. The improvement of gut dysbiosis was associated with an enhanced colonic integrity and a decreased sympathetic drive in the gut. MMF inhibited neuroinflammation in the paraventricular nuclei in the hypothalamus. This study demonstrates for the first time that MMF reduces gut dysbiosis in DOCA-salt hypertension models. This effect seems to be related to its capacity to improve gut integrity due to reduced sympathetic drive in the gut associated with reduced brain neuroinflammation.
Collapse
|
65
|
Robles-Vera I, Toral M, Duarte J. Microbiota and Hypertension: Role of the Sympathetic Nervous System and the Immune System. Am J Hypertens 2020; 33:890-901. [PMID: 32614942 DOI: 10.1093/ajh/hpaa103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
There are numerous studies indicating a direct association between hypertension and gut microbiota in both animal models and humans. In this review, we focused on the imbalance in the gut microbiota composition relative to healthy state or homeostasis, termed dysbiosis, associated with hypertension and discuss the current knowledge regarding how microbiota regulates blood pressure (BP), involving the sympathetic nervous system and the immune system. The profile of ecological parameters and bacterial genera composition of gut dysbiosis in hypertension varies according to the experimental model of hypertension. Recent evidence supports that gut microbiota can protect or promote the development of hypertension by interacting with gut secondary lymph organs and altering T helper 17/regulatory T cells polarization, with subsequent changes in T cells infiltration in vascular tissues. Here, we also describe the bidirectional communication between the microbiome and the host via the sympathetic nervous system and its role in BP regulation. Dysbiosis in hypertension is mainly associated with reduced proportions of short-chain fatty acid-producing bacteria, mainly acetate- and butyrate-producing bacteria, and an increased enrichment of the genes for lipopolysaccharide biosynthesis and export, lending to moderate endotoxemia. The role of these metabolic and structural products in both immune and sympathetic system regulation and vascular inflammation was also analyzed. Overall, gut microbiota is now recognized as a well-established target to dietary interventions with prebiotics or probiotics to reduce BP.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER-Enfermedades Cardiovasculares (CiberCV), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
- CIBER-Enfermedades Cardiovasculares (CiberCV), Madrid, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
66
|
Nath S, Sikidar J, Roy M, Deb B. In vitro screening of probiotic properties of Lactobacillus plantarum isolated from fermented milk product. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The screening of traditional fermented products is essential for the assessment of safety, security, and further development of functional foods for the well-being of human health. The aim of the present study was to isolate and identify bacteria from fermented raw milk samples that exhibit health benefits upon consumption.
Methods
In order to confirm the isolates as probiotics, several in vitro assays were conducted to assess the probiotic properties of isolated bacteria. The initial screening includes tolerance to acid, bile, pancreatin, and NaCl. The cell surface properties demonstrate their interaction with mucosal epithelium, which includes hydrophobicity and auto-aggregation assay. Safety assessment was done by performing haemolytic test and antibiotic susceptibility test. The antagonistic activity of probiotic strain was further evaluated against some pathogenic bacteria.
Results
Lactobacillus plantarum (L. plantarum) isolated from fermented raw milk was preliminarily identified by biochemical tests and further confirmed using 16S rRNA identification. The isolate designated as L. plantarum strain GCC_19M1 demonstrated significant tolerance to low pH, 0.3% bile, 0.5% pancreatin, and 5% NaCl. In the presence of simulated gastric juice (at pH 3), the isolate exhibited a survival rate of 93.48–96.97%. Furthermore, the development of ecological niches in the human gut and their successful accumulation have been revealed by auto-aggregation and hydrophobicity properties. Absence of haemolytic activity ensures the non-virulent nature of the strain. Lactobacillus plantarum strain GCC_19M1 showed susceptibility towards gentamicin, tetracycline, kanamycin, meropenem, and ceftriaxone and exhibited an antagonistic effect on pathogenic bacteria.
Conclusion
The obtained results conveyed that L. plantarum strain GCC_19M1 has strong probiotic potential, and its presence in the fermented raw milk products may serve as a potent functional probiotic food.
Collapse
Affiliation(s)
- Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar, India
- Institutional Biotech Hub, Gurucharan College, Silchar, India
| | - Jibalok Sikidar
- Department of Biotechnology, Gurucharan College, Silchar, India
| | - Monisha Roy
- Department of Biotechnology, Gurucharan College, Silchar, India
| | - Bibhas Deb
- Department of Biotechnology, Gurucharan College, Silchar, India
- Institutional Biotech Hub, Gurucharan College, Silchar, India
| |
Collapse
|
67
|
Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway. Hypertens Res 2020; 44:168-178. [PMID: 32908237 DOI: 10.1038/s41440-020-00548-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
Our recent work demonstrates that infusion of sodium butyrate (NaBu) into the renal medulla blunts angiotensin II-induced hypertension and improves renal injury. The present study aimed to test whether oral administration of NaBu attenuates salt-sensitive hypertension in deoxycorticosterone acetate (DOCA)/salt-treated rats. Uninephrectomized male Sprague-Dawley (SD) rats were treated with DOCA pellets (150 mg/rat) plus 1% NaCl drinking water for 2 weeks. Animals received oral administration of NaBu (1 g/kg) or vehicle once per day. Our results showed that NaBu administration significantly attenuated DOCA/salt-increased mean arterial pressure from 156 ± 4 mmHg to 136 ± 1 mmHg. DOCA/salt treatment markedly enhanced renal damage as indicated by an increased ratio of kidney weight/body weight, elevated urinary albumin, extensive fibrosis, and inflammation, whereas kidneys from NaBu-treated rats exhibited a significant reduction in these renal damage responses. Compared to the DOCA/salt group, the DOCA/salt-NaBu group had ~30% less salt water intake and decreased Na+ and Cl- excretion in urine but no alteration in 24-h urine excretion. Mechanistically, NaBu inhibited the protein levels of several sodium transporters stimulated by DOCA/salt in vivo, such as βENaC, γENaC, NCC, and NKCC-2. Further examination showed that NaBu downregulated the expression of mineralocorticoid receptor (MR) and serum and glucocorticoid-dependent protein kinase 1 (SGK1) in DOCA/salt-treated rats or aldosterone-treated human renal tubular duct epithelial cells. These results provide evidence that NaBu may attenuate DOCA/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway.
Collapse
|
68
|
The Potential of Lactobacillus spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants (Basel) 2020; 9:antiox9070610. [PMID: 32664392 PMCID: PMC7402165 DOI: 10.3390/antiox9070610] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is crucial for food digestion and nutrient absorption in humans. However, the GI tract is usually challenged with oxidative stress that can be induced by various factors, such as exogenous pathogenic microorganisms and dietary alterations. As a part of gut microbiota, Lactobacillus spp. play an important role in modulating oxidative stress in cells and tissues, especially in the GI tract. Oxidative stress is linked with excessive reactive oxygen species (ROS) that can be formed by a few enzymes, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs). The redox mechanisms of Lactobacillus spp. may contribute to the downregulation of these ROS-forming enzymes. In addition, nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf-2) and nuclear factor kappa B (NF-κB) are two common transcription factors, through which Lactobacillus spp. modulate oxidative stress as well. As oxidative stress is closely associated with inflammation and certain diseases, Lactobacillus spp. could potentially be applied for early treatment and amelioration of these diseases, either individually or together with prebiotics. However, further research is required for revealing their mechanisms of action as well as their extensive application in the future.
Collapse
|
69
|
Xu H, Wang X, Feng W, Liu Q, Zhou S, Liu Q, Cai L. The gut microbiota and its interactions with cardiovascular disease. Microb Biotechnol 2020; 13:637-656. [PMID: 31984651 PMCID: PMC7111081 DOI: 10.1111/1751-7915.13524] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022] Open
Abstract
The intestine is colonized by a considerable community of microorganisms that cohabits within the host and plays a critical role in maintaining host homeostasis. Recently, accumulating evidence has revealed that the gut microbial ecology plays a pivotal role in the occurrence and development of cardiovascular disease (CVD). Moreover, the effects of imbalances in microbe-host interactions on homeostasis can lead to the progression of CVD. Alterations in the composition of gut flora and disruptions in gut microbial metabolism are implicated in the pathogenesis of CVD. Furthermore, the gut microbiota functions like an endocrine organ that produces bioactive metabolites, including trimethylamine/trimethylamine N-oxide, short-chain fatty acids and bile acids, which are also involved in host health and disease via numerous pathways. Thus, the gut microbiota and its metabolic pathways have attracted growing attention as a therapeutic target for CVD treatment. The fundamental purpose of this review was to summarize recent studies that have illustrated the complex interactions between the gut microbiota, their metabolites and the development of common CVD, as well as the effects of gut dysbiosis on CVD risk factors. Moreover, we systematically discuss the normal physiology of gut microbiota and potential therapeutic strategies targeting gut microbiota to prevent and treat CVD.
Collapse
Affiliation(s)
- Hui Xu
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
- Pediatric Research InstituteDepartment of Pediatricsthe University of LouisvilleLouisvilleKY40202USA
| | - Xiang Wang
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
| | - Wenke Feng
- Department of Pharmacology and Toxicologythe University of Louisville School of MedicineLouisvilleKY40202USA
- Division of Gastroenterology, Hepatology and NutritionDepartment of Medicinethe University of Louisville School of MedicineLouisvilleKY40202USA
| | - Qi Liu
- Department of Pharmacology and Toxicologythe University of Louisville School of MedicineLouisvilleKY40202USA
- Division of Gastroenterology, Hepatology and NutritionDepartment of Medicinethe University of Louisville School of MedicineLouisvilleKY40202USA
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325035China
| | - Shanshan Zhou
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
| | - Quan Liu
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
| | - Lu Cai
- Pediatric Research InstituteDepartment of Pediatricsthe University of LouisvilleLouisvilleKY40202USA
- Department of Pharmacology and Toxicologythe University of Louisville School of MedicineLouisvilleKY40202USA
| |
Collapse
|
70
|
Robles-Vera I, Toral M, de la Visitación N, Sánchez M, Gómez-Guzmán M, Muñoz R, Algieri F, Vezza T, Jiménez R, Gálvez J, Romero M, Redondo JM, Duarte J. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. Br J Pharmacol 2020; 177:2006-2023. [PMID: 31883108 DOI: 10.1111/bph.14965] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypertension is associated with gut dysbiosis. Here we have evaluated the effects of the angiotensin receptor antagonist losartan on gut microbiota in spontaneously hypertensive rats (SHR) to assess their contribution to its antihypertensive effects. EXPERIMENTAL APPROACH Twenty-week-old Wistar Kyoto rats (WKY) and SHR were treated with losartan for 5 weeks (SHR-losartan). Faecal microbiota transplantation (FMT) was performed from donor SHR-losartan group to recipient untreated-SHR. Blood pressure (BP) was measured using tail-cuff plethysmography. Composition of the gut microbiota was assessed by amplification of the V3-V4 region of 16S rRNA gene. T cells were analysed in gut/aorta by flow cytometry. KEY RESULTS Faeces from SHR showed gut dysbiosis, characterised by higher Firmicutes/Bacteroidetes ratios, lower acetate- and higher lactate-producing bacteria, and lower levels of strict anaerobic bacteria, effects which were restored to normal by losartan. Improvement of gut dysbiosis was linked to higher colonic integrity and lower sympathetic drive in the gut. In contrast, hydralazine reduced BP, but it neither restored gut dysbiosis nor colonic integrity. FMT from SHR-losartan to SHR reduced BP, improved the aortic endothelium-dependent relaxation to ACh, and reduced NADPH oxidase activity. These vascular changes were accompanied by both increased Treg and decreased Th17 cell populations in the vascular wall. CONCLUSION AND IMPLICATIONS In SHR, losartan treatment reduced gut dysbiosis and sympathetic drive in the gut, thus improving gut integrity. The changes induced by losartan in gut microbiota contributed, in part, to protecting the vasculature and reducing BP, possibly by modulating the immune system in the gut.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Raquel Muñoz
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Teresa Vezza
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs. GRANADA, Granada, Spain
| |
Collapse
|
71
|
O'Morain VL, Ramji DP. The Potential of Probiotics in the Prevention and Treatment of Atherosclerosis. Mol Nutr Food Res 2019; 64:e1900797. [PMID: 31697015 DOI: 10.1002/mnfr.201900797] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Atherosclerosis, the underlying cause of cardiovascular diseases such as myocardial infarction, cerebrovascular accident, and peripheral vascular disease, is the leading cause of global mortality. Current therapies against atherosclerosis, which mostly target the dyslipidemia associated with the disease, have considerable residual risk for cardiovascular disease together with various side effects. In addition, the outcomes from clinical trials on many promising pharmaceutical agents against atherosclerosis (e.g., low-dose methotrexate, inhibitors against cholesteryl ester transfer protein) have been disappointing. Nutraceuticals such as probiotic bacteria have, therefore, generated substantial recent interest for the prevention of atherosclerosis and potentially as add-ons with current pharmaceutical drugs. This review will discuss the current understanding of the anti-atherogenic actions of probiotics from preclinical and clinical studies together with their potential underlying mechanisms of action.
Collapse
Affiliation(s)
- Victoria L O'Morain
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
72
|
Toral M, Robles-Vera I, de la Visitación N, Romero M, Sánchez M, Gómez-Guzmán M, Rodriguez-Nogales A, Yang T, Jiménez R, Algieri F, Gálvez J, Raizada MK, Duarte J. Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiol (Oxf) 2019; 227:e13285. [PMID: 31004464 DOI: 10.1111/apha.13285] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
AIM High blood pressure (BP) is associated with gut microbiota dysbiosis. The aim of this study was to investigate whether changes in gut microbiota induced by exchanging the gut microbiota between spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) alter the gut-immune system interaction inducing changes in vascular function and BP. METHODS Twenty-week-old recipient WKY and SHR were orally gavaged with donor faecal contents from WKY or SHR. In additional experiments, we used a design to determine whether blockade of B7-dependent costimulation with CTLA4-Ig or blockade of IL-17 with IL-17-neutralizing antibody could prevent hypertension caused by faecal microbiota transplantation (FMT) from SHR to WKY. RESULTS Correlation analyses identified the bacterial abundance of Turicibacter and S24-7_g that, respectively, positively and negatively correlated with systolic BP. FMT from WKY rats to SHR rats reduced basal systolic BP, restored the imbalance between Th17/Treg in mesenteric lymph nodes (MLNs) and aorta, and improved endothelial dysfunction and vascular oxidative status found in SHR transplanted with SHR faeces. FMT from SHR to WKY increased CD80 and CD86 mRNA levels and T cells activation in MLNs, circulating T cells, aortic T cell infiltration, impaired endothelial function and increased basal SBP. These effects were abolished by blockade of B7-dependent costimulation with CTLA4-Ig. IL-17a neutralizing antibody reduced SBP and improved endothelial dysfunction induced by FMT from SHR to WKY. CONCLUSION Gut microbiota is an important factor involved in the control of BP, as a consequence of its effect in T-cell activation in gut immune system and vascular T-cells accumulation.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Alba Rodriguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Tao Yang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- CIBERCV, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- CIBER-EHD, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- CIBERCV, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
73
|
Functional Microbiomics in Liver Transplantation: Identifying Novel Targets for Improving Allograft Outcomes. Transplantation 2019; 103:668-678. [PMID: 30507741 DOI: 10.1097/tp.0000000000002568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut dysbiosis, defined as a maladaptive gut microbial imbalance, has been demonstrated in patients with end-stage liver disease, defined as a contributor to disease progression, and associated clinically with severity of disease and liver-related morbidity and mortality. Despite this well-recognized phenomena in patients with end-stage liver disease, the impact of gut dysbiosis and its rate of recovery following liver transplantation (LT) remains incompletely understood. The mechanisms by which alterations in the gut microbiota impact allograft metabolism and immunity, both directly and indirectly, are multifactorial and reflect the complexity of the gut-liver axis. Importantly, while research has largely focused on quantitative and qualitative changes in gut microbial composition, changes in microbial functionality (in the presence or absence of compositional changes) are of critical importance. Therefore, to translate functional microbiomics into clinical practice, one must understand not only the compositional but also the functional changes associated with gut dysbiosis and its resolution post-LT. In this review, we will summarize critical advances in functional microbiomics in LT recipients as they apply to immune-mediated allograft injury, posttransplant complications, and disease recurrence, while highlighting potential areas for microbial-based therapeutics in LT recipients.
Collapse
|
74
|
Shin YK, Han AY, Hsieh YS, Kwon S, Kim J, Lee KW, Seol GH. Lancemaside A from Codonopsis lanceolata prevents hypertension by inhibiting NADPH oxidase 2-mediated MAPK signalling and improving NO bioavailability in rats. ACTA ACUST UNITED AC 2019; 71:1458-1468. [PMID: 31350796 DOI: 10.1111/jphp.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study investigated whether lancemaside A (LMA) can prevent hypertension and assessed the mechanisms of action of LMA in rats. METHODS Hypertension was induced by chronic immobilization stress and nicotine administration. Hypertensive vehicle rats were treated with LMA (1, 20, or 40 mg/kg) or nifedipine (10 mg/kg) as a positive control daily for 3 weeks. KEY FINDINGS In hypertensive vehicle rats, LMA dose-dependently reduced systolic blood pressure. LMA doses of 20 and 40 mg/kg reduced the aortic expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)2 (both P < 0.01), and 40 mg/kg LMA reduced serum malondialdehyde (P < 0.01). Serum nitrite levels were significantly higher in LMA treated rats than in hypertensive vehicle rats, with LMA doses of 20 and 40 mg/kg reducing the expression of endothelial nitric oxide synthase in rat aortas (P < 0.001 and P < 0.01, respectively). LMA also reduced the aortic levels of nuclear factor kappa B and the activation of the three isoforms of mitogen-activated protein kinase (MAPK). CONCLUSIONS Lancemaside A prevents hypertension in rats by inhibiting the activation of MAPK signalling and the impairment in nitric oxide bioavailability due to NOX2-mediated oxidative stress. Thus, LMA may act as a preventive agent for hypertension.
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - A Young Han
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Jinhye Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
75
|
Toral M, Robles-Vera I, Romero M, de la Visitación N, Sánchez M, O'Valle F, Rodriguez-Nogales A, Gálvez J, Duarte J, Jiménez R. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. FASEB J 2019; 33:10005-10018. [PMID: 31173526 DOI: 10.1096/fj.201900545rr] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of the present study was to examine whether the immune-modulatory bacteria Lactobacillus fermentum CECT5716 (LC40) ameliorates disease activity and cardiovascular complications in a female mouse model of lupus. Eighteen-week-old NZBWF1 [systemic lupus erythematosus (SLE)] and NZW/LacJ (control) mice were treated with vehicle or LC40 (5 × 108 colony-forming units/d) for 15 wk. LC40 treatment reduced lupus disease activity, blood pressure, cardiac and renal hypertrophy, and splenomegaly in SLE mice. LC40 reduced the elevated T, B, regulatory T cells (Treg), and T helper (Th)-1 cells in mesenteric lymph nodes of lupus mice. LC40 lowered the higher plasma concentration of proinflammatory cytokines observed in lupus mice. Aortas from SLE mice showed reduced endothelium-dependent vasodilator responses to acetylcholine. Endothelial dysfunction found in SLE is related to an increase of both NADPH oxidase-driven superoxide production and eNOS phosphorylation at the inhibitory Thr495. These activities returned to normal values after a treatment with LC40. Probiotic administration to SLE mice reduced plasma LPS levels, which might be related to an improvement of the gut barrier integrity. LC40 treatment increases the Bifidobacterium count in gut microbiota of SLE mice. In conclusion, our findings identify the gut microbiota manipulation with LC40 as an alternative approach to the prevention of SLE and its associated vascular damage.-Toral, M., Robles-Vera, I., Romero, M., de la Visitación, N., Sánchez, M., O'Valle, F., Rodriguez-Nogales, A., Gálvez, J., Duarte, J., Jiménez, R. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | | | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Francisco O'Valle
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Alba Rodriguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBER-EHD), University of Granada, Granada, Spain.,Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Granada, Spain
| |
Collapse
|
76
|
|
77
|
Liao JF, Hsu CC, Chou GT, Hsu JS, Liong MT, Tsai YC. Lactobacillus paracasei PS23 reduced early-life stress abnormalities in maternal separation mouse model. Benef Microbes 2019; 10:425-436. [PMID: 30882243 DOI: 10.3920/bm2018.0077] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maternal separation (MS) has been developed as a model for inducing stress and depression in studies using rodents. The concept of the gut-brain axis suggests that gut health is essential for brain health. Here, we present the effects of administration of a probiotic, Lactobacillus paracasei PS23 (PS23), to MS mice against psychological traits including anxiety and depression. The administration of live and heat-killed PS23 cells showed positive behavioural effects on MS animals, where exploratory tendencies and mobility were increased in behavioural tests, indicating reduced anxiety and depression compared to the negative control mice (P<0.05). Mice administered with both live and heat-killed PS23 cells also showed lower serum corticosterone levels accompanied by higher serum anti-inflammatory interleukin 10 (IL-10) levels, compared to MS separated mice (P<0.05), indicating a stress-elicited response affiliated with increased immunomodulatory properties. Assessment of neurotransmitters in the brain hippocampal region revealed that PS23 affected the concentrations of dopaminergic metabolites differently than the control, suggesting that PS23 may have improved MS-induced stress levels via neurotransmitter pathways, such as dopamine or other mechanisms not addressed in the current study. Our study illustrates the potential of a probiotic in reversing abnormalities induced by early life stress and could be an alternative for brain health along the gut-brain axis.
Collapse
Affiliation(s)
- J F Liao
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Beitou Dist., Taipei 11221, Taiwan ROC
| | - C C Hsu
- 2 Bened Biomedical Co., Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei 10448, Taiwan ROC
| | - G T Chou
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Beitou Dist., Taipei 11221, Taiwan ROC
| | - J S Hsu
- 2 Bened Biomedical Co., Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei 10448, Taiwan ROC
| | - M T Liong
- 3 School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Y C Tsai
- 4 Microbiome Research Center, National Yang-Ming University, No.155, Sec.2, Linong Street, Beitou Dist., Taipei 11221, Taiwan ROC
| |
Collapse
|
78
|
Toral M, Robles-Vera I, de la Visitación N, Romero M, Yang T, Sánchez M, Gómez-Guzmán M, Jiménez R, Raizada MK, Duarte J. Critical Role of the Interaction Gut Microbiota - Sympathetic Nervous System in the Regulation of Blood Pressure. Front Physiol 2019; 10:231. [PMID: 30930793 PMCID: PMC6423906 DOI: 10.3389/fphys.2019.00231] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Association between gut dysbiosis and neurogenic diseases, such as hypertension, has been described. The aim of this study was to investigate whether changes in the gut microbiota alter gut-brain interactions inducing changes in blood pressure (BP). Recipient normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were orally gavaged with donor fecal contents from SHR and WKY. We divided the animals into four groups: WKY transplanted with WKY microbiota (W-W), SHR with SHR (S-S), WKY with SHR (W-S) and SHR with WKY (S-W). Basal systolic BP (SBP) and diastolic BP (DBP) were reduced with no change in heart rate as a result of fecal microbiota transplantation (FMT) from WKY rats to SHR. Similarly, FMT from SHR to WKY increased basal SBP and DBP. Increases in both NADPH oxidase-driven reactive oxygen species production and proinflammatory cytokines in brain paraventricular nucleus linked to higher BP drop with pentolinium and plasmatic noradrenaline (NA) levels were found in the S-S group as compared to the W-W group. These parameters were reduced by FMT from WKY to SHR. Increased levels of pro-inflammatory cytokines, tyrosine hydroxylase mRNA levels and NA content in the proximal colon, whereas reduced mRNA levels of gap junction proteins, were found in the S-S group as compared to the W-W group. These changes were inhibited by FMT from WKY to SHR. According to our correlation analyses, the abundance of Blautia and Odoribacter showed a negative correlation with high SBP. In conclusion, in SHR gut microbiota is an important factor involved in BP control, at least in part, as consequence of its effect on neuroinflammation and the sympathetic nervous system activity.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Tao Yang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBERCV, University of Granada, Granada, Spain
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, Centro de Investigación Biomédica, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain.,CIBERCV, University of Granada, Granada, Spain
| |
Collapse
|
79
|
The Beneficial Effects of Lactobacillus plantarum PS128 on High-Intensity, Exercise-Induced Oxidative Stress, Inflammation, and Performance in Triathletes. Nutrients 2019; 11:nu11020353. [PMID: 30736479 PMCID: PMC6412901 DOI: 10.3390/nu11020353] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
A triathlon, which consists of swimming, bicycling, and running, is a high-intensity and long-term form of exercise that can cause injuries such as muscular damage, inflammation, oxidative stress, and energy imbalance. Probiotics are thought to play an important role in disease incidence, health promotion, and nutrient metabolism, but only a few studies have focused on physiological adaptations to exercise in sports science. Previous studies indicated that Lactobacillus supplementation could improve oxidative stress and inflammatory responses. We investigate the effects of Lactobacillus plantarum PS128 supplementation on triathletes for possible physiological adaptation. The triathletes were assigned to one of two groups with different exercise intensity stimulations with different time-points to investigate the effects of body compositions, inflammation, oxidative stress, performance, fatigue, and injury-related biochemical indices. L. plantarum PS128 supplementation, combined with training, can significantly alleviate oxidative stress (such as creatine kinase, Thioredoxin, and Myeloperoxidase indices) after a triathlon (p < 0.05). This effect is possibly regulated by a 6–13% decrease of indicated pro-inflammation (TNF-α, IL-6, and IL-8) cytokines (p < 0.05) and 55% increase of anti-inflammation (IL-10) cytokines (p < 0.05) after intensive exercise stimulation. In addition, L. plantarum PS128 can also substantially increase 24–69% of plasma-branched amino acids (p < 0.05) and elevate exercise performance, as compared to the placebo group (p < 0.05). In conclusion, L. plantarum PS128 may be a potential ergogenic aid for better training management, physiological adaptations to exercise, and health promotion.
Collapse
|