51
|
Cho YB, Hong HK, Choi YL, Oh E, Joo KM, Jin J, Nam DH, Ko YH, Lee WY. Colorectal cancer patient-derived xenografted tumors maintain characteristic features of the original tumors. J Surg Res 2013; 187:502-9. [PMID: 24332554 DOI: 10.1016/j.jss.2013.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite significant improvements in colon cancer outcomes over the past few decades, preclinical development of more effective therapeutic strategies is still limited by the availability of clinically relevant animal models. To meet those clinical unmet needs, we generated a well-characterized in vivo preclinical platform for colorectal cancer using fresh surgical samples. METHODS Primary and metastatic colorectal tumor tissues (1-2 mm(3)) that originate from surgery were implanted into the subcutaneous space of nude mice and serially passaged in vivo. Mutation status, hematoxylin and eosin staining, short tandem repeat profiling, and array comparative genomic hybridization were used to validate the similarity of molecular characteristics between the patient tumors and tumors obtained from xenografts. RESULTS From surgical specimens of 143 patients, 97 xenograft models were obtained in immunodeficient mice (establish rate = 67%). Thirty-nine xenograft models were serially expanded further in mice with a mean time to reach a size of 1000-1500 mm(3) of 90 ± 20 d. Histologic and immunohistochemical analyses revealed a high degree of pathologic similarity including histologic architecture and expression of CEA, CK7, and CD20 between the patient and xenograft tumors. Molecular analysis showed that genetic mutations, genomic alterations, and gene expression patterns of each patient tumor were also well conserved in the corresponding xenograft tumor. CONCLUSIONS Xenograft animal models derived from fresh surgical sample maintained the key characteristic features of the original tumors, suggesting that this in vivo platform can be useful for preclinical development of novel therapeutic approaches to colorectal cancers.
Collapse
Affiliation(s)
- Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ensel Oh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Juyoun Jin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
52
|
Schmitt C, Voegelin M, Marin A, Schmitt M, Schegg F, Hénon P, Guenot D, Tarnus C. Selective aminopeptidase-N (CD13) inhibitors with relevance to cancer chemotherapy. Bioorg Med Chem 2013; 21:2135-44. [PMID: 23428964 DOI: 10.1016/j.bmc.2012.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/15/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
Aminopeptidase-N (APN/CD13) is highly expressed on the surface of numerous types of cancer cells and particularly on the endothelial cells of neoangiogenic vessels during tumourigenesis. This metallo-aminopeptidase has been identified as a potential target for cancer chemotherapy. In this work, we evaluated the efficacy of a novel series of benzosuberone analogues, which were previously reported to be highly potent, selective APN inhibitors with Ki values in the micromolar to sub-nanomolar range. Endothelial cell morphogenesis as well as cell motility were inhibited in vitro in a dose-dependent manner at concentrations that correlated with the potency of the compounds, thus confirming the key role of APN in these established models of angiogenesis. We report toxicity studies in mice showing that these compounds are well tolerated. We report the effects of the compounds, used alone or in combination with rapamycin, on the growth of a select panel of tumours that were subcutaneously xenografted onto Swiss nude mice. Our data indicate that the in vivo efficacy of these new APN inhibitors during the initial phase of tumour growth can be ascribed to their anti-angiogenic activities. However, we also provide evidence that these compounds are effective against established solid tumours. For colonic tumours, the anti-tumour effect depends on the level of APN expression in epithelial cells, and APN expression is associated with down-regulation of the transcription factor HIF-1α. These effects seem to be distinct from those of rapamycin. Our finding that the anti-tumour effect of the inhibitors in the colon requires APN expression strongly suggests that APN plays a crucial function in tumour cells that is distinct from its known role in neovascularisation.
Collapse
Affiliation(s)
- Céline Schmitt
- Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Chimie Organique et Bioorganique EA4566, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Progress in oncology drug development has been hampered by a lack of preclinical models that reliably predict clinical activity of novel compounds in cancer patients. In an effort to address these shortcomings, there has been a recent increase in the use of patient-derived tumour xenografts (PDTX) engrafted into immune-compromised rodents such as athymic nude or NOD/SCID mice for preclinical modelling. Numerous tumour-specific PDTX models have been established and, importantly, they are biologically stable when passaged in mice in terms of global gene-expression patterns, mutational status, metastatic potential, drug responsiveness and tumour architecture. These characteristics might provide significant improvements over standard cell-line xenograft models. This Review will discuss specific PDTX disease examples illustrating an overview of the opportunities and limitations of these models in cancer drug development, and describe concepts regarding predictive biomarker development and future applications.
Collapse
|
54
|
Guérin E, Raffelsberger W, Pencreach E, Maier A, Neuville A, Schneider A, Bachellier P, Rohr S, Petitprez A, Poch O, Moras D, Oudet P, Larsen AK, Gaub MP, Guenot D. In vivo topoisomerase I inhibition attenuates the expression of hypoxia-inducible factor 1α target genes and decreases tumor angiogenesis. Mol Med 2012; 18:83-94. [PMID: 22033674 DOI: 10.2119/molmed.2011.00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 10/10/2011] [Indexed: 02/04/2023] Open
Abstract
Topoisomerase I is a privileged target for widely used anticancer agents such as irinotecan. Although these drugs are classically considered to be DNA-damaging agents, increasing evidence suggests that they might also influence the tumor environment. This study evaluates in vivo cellular and molecular modifications induced by irinotecan, a topoisomerase I-directed agent, in patient-derived colon tumors subcutaneously implanted in athymic nude mice. Irinotecan was given intraperitoneally at 40 mg/kg five times every 5 d, and expression profiles were evaluated at d 25 in tumors from treated and untreated animals. Unexpectedly, the in vivo antitumor activity of irinotecan was closely linked to a downregulation of hypoxia-inducible factor-1α (HIF1A) target genes along with an inhibition of HIF1A protein accumulation. The consequence was a decrease in tumor angiogenesis leading to tumor size stabilization. These results highlight the molecular basis for the antitumor activity of a widely used anticancer agent, and the method used opens the way for mechanistic studies of the in vivo activity of other anticancer therapies.
Collapse
Affiliation(s)
- Eric Guérin
- EA 4438 Physiopathologie et Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Kresse SH, Meza-Zepeda LA, Machado I, Llombart-Bosch A, Myklebost O. Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations. Cancer 2011; 118:558-70. [PMID: 21713766 DOI: 10.1002/cncr.26276] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human tumors transplanted into immunodeficient mice (xenografts) are good preclinical models, and it is important to identify possible systematic changes during establishment and passaging in mice. METHODS High-resolution microarray-based comparative genomic hybridization (array CGH) was used to investigate how well a series of sarcoma xenografts, including 9 patient/xenograft pairs and 8 early versus late xenograft passage pairs, represented the patient tumor from which they originated. RESULTS In all analyses, the xenografts were more similar to their tumor of origin than other xenografts of the same type. Most changes in aberration patterns were toward a more normal genome complement, and the increased aberrations observed were mostly toward more loss. In general, the changes were scattered over the genome, but some changes were significant in osteosarcomas. These were rather focused and consistent with amplifications frequent in patient samples, involving the genes platelet-derived growth factor receptor A (PDGFRA), cysteine-rich hydrophobic domain 2 (CHIC2), FIP-like 1 (FIP1L1), ligand of numb-protein X1 (LNX1), RAS-like family 11 member B (RASL11B), and sec1 family domain containing 2 (SCFD2), probably a sign of continued tumor progression. Some changes that disappeared may have been involved in host-stroma interactions or chemotherapy resistance, possibly because of the absence of selection in the mouse. CONCLUSIONS Direct xenografts reflected well the genomic patterns of their tumors of origin. The few significant aberrations that were lost during passaging in immune-defective mice may have been caused by the lack of selection in the new host, whereas aberrations that were gained appeared to be the result of general tumor progression rather than model-specific artifacts.
Collapse
Affiliation(s)
- Stine H Kresse
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
56
|
Romain B, Neuville A, Meyer N, Brigand C, Rohr S, Schneider A, Gaub MP, Guenot D. Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without preoperative treatment. BMC Cancer 2010; 10:561. [PMID: 20955588 PMCID: PMC2973944 DOI: 10.1186/1471-2407-10-561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 10/18/2010] [Indexed: 12/27/2022] Open
Abstract
Background Numerous studies reported genomic alterations in colorectal human tumors but few focused on rectal tumors with the specification of preoperative-treated or untreated tumors. The goals of this study were to list chromosome allelic imbalances and correlate their frequency with tumor progression and to identify potential molecular markers of progression in rectal chromosomally unstable tumors without preoperative treatment. Methods Genomic alterations of 57 rectal tumors assessed by allelotyping targeting 33 chromosomal loci, were clusterised and compared to those of 151 left colon tumors. Results Clustering separated the rectal tumors without preoperative treatment into three subtypes according to the allelic imbalance frequency and genomic alteration associations. The tumors without preoperative treatment displayed a significantly higher allelic imbalance frequency (54%) than the tumors with preoperative treatment (33%), suggesting that treatment could target highly altered tumor clones. Interestingly, the survival analysis identified three potential prognostic molecular survival markers, D1S197, D5S430, and D14S65, for tumors without preoperative treatment. Conclusion Based on the genomic status of 33 chromosomal loci, we observed that rectal tumors without preoperative treatment segregate according to the global allelic imbalance frequency but without correlation to the tumor progression. Moreover, the detailed associations of alterations in rectal tumors are different from those described in colon tumors suggesting that rectal and left tumors should be considered as separate entities. Finally, potential prognostic genomic molecular markers for survival are proposed which status could specify the clinical course of the tumors.
Collapse
Affiliation(s)
- Benoît Romain
- Service de Chirurgie Générale et Digestive, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Avenue Molière, 67098 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Nicolet C, Guérin E, Neuville A, Kerckaert JP, Wicker N, Bergmann E, Brigand C, Kedinger M, Gaub MP, Guenot D. Evidence for various 20q status using allelotyping, CGH arrays, and quantitative PCR in distal CIN colon cancers. Cancer Lett 2009; 282:195-204. [PMID: 19394760 DOI: 10.1016/j.canlet.2009.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 02/13/2009] [Accepted: 03/09/2009] [Indexed: 01/08/2023]
Abstract
The genomic aberration profile of chromosome 20q in distal CIN colon carcinomas was analysed using allelotyping and CGH arrays. Allelotyping revealed carcinomas with allelic imbalance along the full long arm, and carcinomas with fully non-aberrant 20q. Oligonucleotide-based CGH showed that among the carcinomas without allelic imbalance, 47% had in fact a gain. In this subgroup, quantitative PCR for the TOPI gene (20q12) confirmed this gain, and fluorescence in situ hybridization showed that the chromosome 20q gain resulted from tetra/polysomy instead of aneusomy. The 20q gain correlated with a high frequency of aberrations, with allelic imbalance at TP53 locus but not at APC locus, and carcinomas with a disomic 20q showed low frequency of genomic aberrations and were significantly associated to mucinous phenotype. The prognostic value of 20q amplification was not demonstrated in this study. These results indicate that on the basis of aberration frequency, chromosome 20q and TP53/APC locus status, distal CIN carcinomas harbor a high degree of genetic heterogeneity suggesting several pathways for carcinogenesis. This study also indicates that allelotyping needs to be carried out with a complementary technique, such as quantitative PCR.
Collapse
Affiliation(s)
- Céline Nicolet
- Inserm, U682, 3 Avenue Motière Strasbourg, F-67200 France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen ML, Hare E, Peach RJ. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 2009; 124:1312-21. [PMID: 19072981 DOI: 10.1002/ijc.24061] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biology of the normal colonic mucosa suggests that colon cancer originates from normal colon stem cells. CD44 cancer stem cells have been identified in breast and prostate cancer, and we therefore examined whether CD44 similarly identified colon cancer stem cells. Initial assays found CD44(hi) colon tumor cells to have enhanced soft agar colony-forming ability. Subsequently, CD44(hi) cells isolated from 4 primary colon adenocarcinoma xenografts were found to be highly tumorigenic in immune deficient mice. CD44(hi) cells consistently formed tumors with 1,000 cells, and in multiple experiments, as few as 10 and 100 CD44(hi) cells formed tumors in 7/10 and 21/28 mice, respectively. In contrast, CD44(-) colon tumor cells were either nontumorigenic or 10-50-fold less tumorigenic. CD44(hi) cells could be serially passaged up to 4 times in vivo, suggesting self-renewal capacity, and formed tumors that recapitulated the heterogeneity of the original patient tumor. CD44(hi) cells were significantly enriched for nuclear activated beta-catenin, a key element in normal stem/progenitor cells and in early colon tumor progression. Bromodeoxyuridine (BrdU) labeling studies indicated that CD44(hi) cells divide slowly relative to the CD44(-) cells, suggesting their tumorigenicity is not simply due to faster proliferation. Aldehyde dehydrogenase (ALDH) sort further increased the tumorigenicity of CD44(hi) cells from 2/2 patient tumors, but CD133 tumor cells in our hands did not have increased tumorigenicity. Our observations indicate that CD44 is a marker of stem-like cells in colon cancer, and support the use of additional markers to further purify colon cancer stem cells.
Collapse
Affiliation(s)
- Peter Chu
- Department of Discovery Oncobiology, Biogen Idec, San Diego, CA 92122, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Glanz C, Rebetz J, Stewénius Y, Persson A, Englund E, Mandahl N, Mertens F, Salford LG, Widegren B, Fan X, Gisselsson D. Genetic intratumour heterogeneity in high-grade brain tumours is associated with telomere-dependent mitotic instability. Neuropathol Appl Neurobiol 2007; 33:440-54. [PMID: 17617873 DOI: 10.1111/j.1365-2990.2007.00832.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) and other high-grade brain tumours are typically characterized by complex chromosome abnormalities and extensive intratumour cytogenetic heterogeneity. The mechanisms behind this diversity have been little explored. In this study, we analysed the pattern of chromosome segregation at mitosis in 20 brain tumours. We found an abnormal segregation of chromatids at mitosis through anaphase bridging (10-25% of anaphase cells) in all 10 GBMs. Anaphase bridging was also found in two medulloblastomas (7-15%), one anaplastic astrocytoma (17%) and one oligodendroglioma (6%). These tumours showed a relatively high degree of cytogenetic complexity and heterogeneity. In contrast, cell division abnormalities were not found in low-grade brain tumours with less complex karyotypes, including two pilocytic astrocytomas and two ependymomas. Further analysis of two GBMs by fluorescence in situ hybridization with telomeric repeat probes revealed excessive shortening of TTAGGG repeats, indicating dysfunctional protection of chromosome ends. In xenografts established from these GBMs, there was a gradual reduction in cytogenetic heterogeneity through successive passages as the proportion of abnormally short telomeres was reduced and the frequency of anaphase bridges decreased from >25% to 0. However, bridging could be reintroduced in late-passage xenograft cells by pharmacological induction of telomere shortening, using a small-molecule telomerase inhibitor. Telomere-dependent abnormal segregation of chromosomes at mitosis is thus a common phenomenon in high-grade brain tumours and may be one important factor behind cytogenetic intratumour diversity in GBM.
Collapse
Affiliation(s)
- C Glanz
- The Rausing Laboratory, Division of Neurosurgery, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Benahmed F, Gross I, Guenot D, Jehan F, Martin E, Domon-Dell C, Brabletz T, Kedinger M, Freund JN, Duluc I. The microenvironment controls CDX2 homeobox gene expression in colorectal cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:733-44. [PMID: 17255339 PMCID: PMC1851857 DOI: 10.2353/ajpath.2007.060696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeobox gene CDX2 plays a major role in development, especially in the gut, and it also acts as a tumor suppressor in the adult colon. Using orthotopic and heterotopic xenografts of human primary colorectal tumor cells and cell lines in nude mice, we addressed the effect of the microenvironment on CDX2 expression. In cells expressing CDX2 at a high level in culture, this level was maintained in subcutaneous grafts but was reduced when implanted into the cecum wall. Reciprocally, in cells with low CDX2 expression in culture, the level remained low in grafts into the cecum wall but was stimulated subcutaneously. In vitro co-cultures showed that CDX2 expression was activated in cells grown on layers of skin fibroblasts but not on intestinal fibroblasts. The stimulation was transcriptional, as assessed by transfection experiments with reporter plasmids containing the murine Cdx2 promoter. Together, these data demonstrate experimentally that CDX2 expression is adaptable and strongly dependent on the microenvironment surrounding the tumor cells. We exclude a role of the Notch pathway in this regulation. The regulation of CDX2 by the microenvironment might be relevant during the process of metastatic dissemination when the gene is transiently turned down in invasive cells.
Collapse
|