51
|
Cale JM, Greer K, Fletcher S, Wilton SD. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52. Int J Mol Sci 2021; 22:ijms22073479. [PMID: 33801742 PMCID: PMC8037683 DOI: 10.3390/ijms22073479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
Collapse
Affiliation(s)
- Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9360-2305
| |
Collapse
|
52
|
Kumar B, Pandey M, Pottoo FH, Fayaz F, Sharma A, Sahoo PK. Liposomes: Novel Drug Delivery Approach for Targeting Parkinson's Disease. Curr Pharm Des 2021; 26:4721-4737. [PMID: 32003666 DOI: 10.2174/1381612826666200128145124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson's disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson's disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson's disease.
Collapse
Affiliation(s)
- Bhumika Kumar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Faizana Fayaz
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Anjali Sharma
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - P K Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| |
Collapse
|
53
|
Pisignano G, Ladomery M. Epigenetic Regulation of Alternative Splicing: How LncRNAs Tailor the Message. Noncoding RNA 2021; 7:ncrna7010021. [PMID: 33799493 PMCID: PMC8005942 DOI: 10.3390/ncrna7010021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing is a highly fine-tuned regulated process and one of the main drivers of proteomic diversity across eukaryotes. The vast majority of human multi-exon genes is alternatively spliced in a cell type- and tissue-specific manner, and defects in alternative splicing can dramatically alter RNA and protein functions and lead to disease. The eukaryotic genome is also intensively transcribed into long and short non-coding RNAs which account for up to 90% of the entire transcriptome. Over the years, lncRNAs have received considerable attention as important players in the regulation of cellular processes including alternative splicing. In this review, we focus on recent discoveries that show how lncRNAs contribute significantly to the regulation of alternative splicing and explore how they are able to shape the expression of a diverse set of splice isoforms through several mechanisms. With the increasing number of lncRNAs being discovered and characterized, the contribution of lncRNAs to the regulation of alternative splicing is likely to grow significantly.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence: (G.P.); (M.L.)
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
- Correspondence: (G.P.); (M.L.)
| |
Collapse
|
54
|
Wood KA, Eadsforth MA, Newman WG, O'Keefe RT. The Role of the U5 snRNP in Genetic Disorders and Cancer. Front Genet 2021; 12:636620. [PMID: 33584830 PMCID: PMC7876476 DOI: 10.3389/fgene.2021.636620] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is performed by the spliceosome, a dynamic macromolecular complex consisting of five small uridine-rich ribonucleoprotein complexes (the U1, U2, U4, U5, and U6 snRNPs) and numerous auxiliary splicing factors. A plethora of human disorders are caused by genetic variants affecting the function and/or expression of splicing factors, including the core snRNP proteins. Variants in the genes encoding proteins of the U5 snRNP cause two distinct and tissue-specific human disease phenotypes – variants in PRPF6, PRPF8, and SNRP200 are associated with retinitis pigmentosa (RP), while variants in EFTUD2 and TXNL4A cause the craniofacial disorders mandibulofacial dysostosis Guion-Almeida type (MFDGA) and Burn-McKeown syndrome (BMKS), respectively. Furthermore, recurrent somatic mutations or changes in the expression levels of a number of U5 snRNP proteins (PRPF6, PRPF8, EFTUD2, DDX23, and SNRNP40) have been associated with human cancers. How and why variants in ubiquitously expressed spliceosome proteins required for pre-mRNA splicing in all human cells result in tissue-restricted disease phenotypes is not clear. Additionally, why variants in different, yet interacting, proteins making up the same core spliceosome snRNP result in completely distinct disease outcomes – RP, craniofacial defects or cancer – is unclear. In this review, we define the roles of different U5 snRNP proteins in RP, craniofacial disorders and cancer, including how disease-associated genetic variants affect pre-mRNA splicing and the proposed disease mechanisms. We then propose potential hypotheses for how U5 snRNP variants cause tissue specificity resulting in the restricted and distinct human disorders.
Collapse
Affiliation(s)
- Katherine A Wood
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Megan A Eadsforth
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - William G Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Raymond T O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
55
|
Identification of Sortilin Alternatively Spliced Variants in Mouse 3T3L1 Adipocytes. Int J Mol Sci 2021; 22:ijms22030983. [PMID: 33498179 PMCID: PMC7863940 DOI: 10.3390/ijms22030983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder defined by systemic insulin resistance. Insulin resistance in adipocytes, an important regulator of glucose metabolism, results in impaired glucose uptake. The trafficking protein, sortilin, regulates major glucose transporter 4 (Glut4) movement, thereby promoting glucose uptake in adipocytes. Here, we demonstrate the presence of an alternatively spliced sortilin variant (Sort17b), whose levels increase with insulin resistance in mouse 3T3L1 adipocytes. Using a splicing minigene, we show that inclusion of alternative exon 17b results in the expression of Sort17b splice variant. Bioinformatic analysis indicated a novel intrinsic disorder region (IDR) encoded by exon 17b of Sort17b. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) measurements using molecular dynamics demonstrated increased flexibility of the protein backbone within the IDR. Using protein–protein docking and co-immunoprecipitation assays, we show robust binding of Glut4 to Sort17b. Further, results demonstrate that over-expression of Sort17b correlates with reduced Glut4 translocation and decreased glucose uptake in adipocytes. The study demonstrates that insulin resistance in 3T3L1 adipocytes promotes expression of a novel sortilin splice variant with thus far unknown implications in glucose metabolism. This knowledge may be used to develop therapeutics targeting sortilin variants in the management of type 2 diabetes and metabolic syndrome.
Collapse
|
56
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
57
|
Effect of Expression of Human Glucosylceramidase 2 Isoforms on Lipid Profiles in COS-7 Cells. Metabolites 2020; 10:metabo10120488. [PMID: 33261081 PMCID: PMC7761373 DOI: 10.3390/metabo10120488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023] Open
Abstract
Glucosylceramide (GlcCer) is a major membrane lipid and the precursor of gangliosides. GlcCer is mainly degraded by two enzymes, lysosomal acid β-glucosidase (GBA) and nonlysosomal β-glucosidase (GBA2), which may have different isoforms because of alternative splicing. To understand which GBA2 isoforms are active and how they affect glycosphingolipid levels in cells, we expressed nine human GBA2 isoforms in COS-7 cells, confirmed their expression by qRT-PCR and Western blotting, and assayed their activity to hydrolyze 4-methylumbelliferyl-β-D-glucopyranoside (4MUG) in cell extracts. Human GBA2 isoform 1 showed high activity, while the other isoforms had activity similar to the background. Comparison of sphingolipid levels by ultra-high resolution/accurate mass spectrometry (UHRAMS) analysis showed that isoform 1 overexpression increased ceramide and decreased hexosylceramide levels. Comparison of ratios of glucosylceramides to the corresponding ceramides in the extracts indicated that GBA2 isoform 1 has broad specificity for the lipid component of glucosylceramide, suggesting that only one GBA2 isoform 1 is active and affects sphingolipid levels in the cell. Our study provides new insights into how increased breakdown of GlcCer affects cellular lipid metabolic networks.
Collapse
|
58
|
Fazeli S, Motovali-Bashi M, Peymani M, Hashemi MS, Etemadifar M, Nasr-Esfahani MH, Ghaedi K. A compound downregulation of SRRM2 and miR-27a-3p with upregulation of miR-27b-3p in PBMCs of Parkinson's patients is associated with the early stage onset of disease. PLoS One 2020; 15:e0240855. [PMID: 33171483 PMCID: PMC7654768 DOI: 10.1371/journal.pone.0240855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is diagnosed when motor symptoms emerges, which almost 70% of dopamine neurons are lost. Therefore, early diagnosis of PD is crucial to prevent the progress of disease. Blood-based biomarkers, which are minimally invasive, potentially used for diagnosis of PD, including miRNAs. The aim of this study was to assess whether SRRM2 and miR-27a/b-3p could act as early diagnostic biomarkers for PD. Total RNAs from PBMCs of 30 PD’s patients and 14 healthy age and gender matched subjects was extracted. The expression levels of respective genes were assessed. Data were presented applying a two-tailed unpaired t-test and one-way ANOVA. We observed significant down-regulation of SRRM2 (p = 0.0002) and miR-27a-3p (p = 0.0001), and up-regulation of miR-27b-3p (p = 0.02) in PBMCs of Parkinson's patients. Down-regulation of miR-27a-3p is associated with increasing disease severity, whereas the up-regulation of miR-27b-3p was observed mostly at HY-1 and disease duration between 3–5 years. There was a negative correlation between SRRM2 and miR-27b-3p expressions, and miR-27a-3p positively was correlated with miR-27b-3p. Based on functional enrichment analysis, SRRM2 and miR-27a/b-3p acted on common functional pathways. miR-27a/b-3p could potentially predict the progression and severity of PD. Although both miRs had no similarity on expression, a positive correlation between both miRs was identified, supporting their potential role as biomarkers in clinical PD stages. Of note that SRRM2 and miR-27a-3p were able to distinguish PD patients from healthy individuals. Functional analysis of the similarity between genes associated with SRRM2 and miR-27a/b-3p indicates common functional pathways and their dysfunction correlates with molecular etiopathology mechanisms of PD onset.
Collapse
Affiliation(s)
- Soudabeh Fazeli
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Motovali-Bashi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- * E-mail: (MMB); , (KG); (MP)
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (MMB); , (KG); (MP)
| | - Motahare-Sadat Hashemi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology and Isfahan Neurosurgery Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (MMB); , (KG); (MP)
| |
Collapse
|
59
|
Oldt RF, Bussey KJ, Settles ML, Fass JN, Roberts JA, Reader JR, Komandoor S, Abrich VA, Kanthaswamy S. MYBPC3 Haplotype Linked to Hypertrophic Cardiomyopathy in Rhesus Macaques ( Macaca mulatta). Comp Med 2020; 70:358-367. [PMID: 32753092 PMCID: PMC7574221 DOI: 10.30802/aalas-cm-19-000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 11/05/2022]
Abstract
In humans, abnormal thickening of the left ventricle of the heart clinically defines hypertrophic cardiomyopathy (HCM), a common inherited cardiovascular disorder that can precede a sudden cardiac death event. The wide range of clinical presentations in HCM obscures genetic variants that may influence an individual's susceptibility to sudden cardiac death. Although exon sequencing of major sarcomere genes can be used to detect high-impact causal mutations, this strategy is successful in only half of patient cases. The incidence of left ventricular hypertrophy (LVH) in a managed research colony of rhesus macaques provides an excellent comparative model in which to explore the genomic etiology of severe HCM and sudden cardiac death. Because no rhesus HCM-associated mutations have been reported, we used a next-generation genotyping assay that targets 7 sarcomeric rhesus genes within 63 genomic sites that are orthologous to human genomic regions known to harbor HCM disease variants. Amplicon sequencing was performed on 52 macaques with confirmed LVH and 42 unrelated, unaffected animals representing both the Indian and Chinese rhesus macaque subspecies. Bias-reduced logistic regression uncovered a risk haplotype in the rhesus MYBPC3 gene, which is frequently disrupted in both human and feline HCM; this haplotype implicates an intronic variant strongly associated with disease in either homozygous or carrier form. Our results highlight that leveraging evolutionary genomic data provides a unique, practical strategy for minimizing population bias in complex disease studies.
Collapse
Affiliation(s)
- Robert F Oldt
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona;,
| | - Kimberly J Bussey
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; BEYOND Center for Fundamental Concepts in Science, Arizona State University at the West Campus, Glendale, Arizona
| | - Matthew L Settles
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Joseph N Fass
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Jeffrey A Roberts
- California National Primate Research Center, University of California, Davis, California
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, California
| | | | - Victor A Abrich
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona; California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
60
|
Yang X, Zhan P, Feng S, Ji H, Tian W, Wang M, Cheng C, Song B. SRSF6 regulates alternative splicing of genes involved in DNA damage response and DNA repair in HeLa cells. Oncol Rep 2020; 44:1851-1862. [PMID: 32901876 PMCID: PMC7551351 DOI: 10.3892/or.2020.7750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) occurs in nearly all human genes and abnormal AS has a close association with cancer. Serine and arginine-rich splicing factor 6 (SRSF6), a canonical member of the serine/arginine-rich protein family, has been characterized as an important regulator of AS. However, the role of SRSF6 in regulating AS in cancers has remained to be fully elucidated. In the present study, the median expression of SRSF6 in tumors was determined to be higher compared with that in matched normal tissues in 13 out of 16 cancer types from The Cancer Genome Atlas. To investigate the biological effects of SRSF6 overexpression, an SRSF6-overexpression model of HeLa cells was constructed and it was revealed that SRSF6 overexpression resulted in significantly higher apoptosis and lower proliferation compared to control cells. Transcriptome analysis indicated that overexpression of SRSF6 in cancer cells induced large-scale changes in transcriptional expression levels and AS. Two groups of cervical cancer tumor samples in which SRSF6 was differentially expressed were then selected to analyze potential SRSF6-regulated AS. It was determined that the pattern of SRSF6-regulated AS in clinical samples was similar to that in cancer cells and AS genes were enriched in DNA damage response (DDR) pathways, including DNA repair and double-strand break repair via homologous recombination. Furthermore, AS events regulated by SRSF6 were validated using reverse transcription-quantitative PCR. The present results highlighted that SRSF6 is able to trigger the activation of DDR pathways via regulation of AS to influence cancer progression. These results markedly expand the current understanding of the mechanisms underlying SRSF6-mediated gene regulation and suggest the potential use of SRSF6 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peng Zhan
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuqiang Feng
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - He Ji
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wenjie Tian
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mengdi Wang
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Bin Song
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
61
|
Zhang X, Qiu W, Liu H, Ye X, Sun Y, Fan Y, Yu Y. RT-PCR analysis of mRNA revealed the splice-altering effect of rare intronic variants in monogenic disorders. Ann Hum Genet 2020; 84:456-462. [PMID: 32776513 DOI: 10.1111/ahg.12400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Variants perturbing the normal splicing of pre-mRNA can lead to human diseases. The splice-altering effect and eventual consequence on gene function was sometimes uncertain and hinders a definitive molecular diagnosis. METHODS The impact of four rare intronic variants on splicing was analyzed through reverse transcription - polymerase chain reaction (RT-PCR) analysis of mRNA derived from the peripheral blood of patients. The results were compared with in-silico prediction. Potential implication on molecular diagnosis was discussed. RESULTS Four rare intronic variants of SLC9A6, DLG3, GAA, and OCRL were identified in patients with suspected disorders, respectively. Although these four variants were all predicted to alter splicing by in-silico tools, RT-PCR analysis of mRNA derived from peripheral blood showed these variants affected splicing in different ways: c.899+3_899+6del of SLC9A6 resulted in one-exon skipping and an out-of-frame transcript; c.905-2A > G of DLG3 resulted in a mix of in-frame transcripts; c.1195-11T > A of GAA resulted in the in-frame insertion of nine nucleotides; c.723-2A > C of OCRL resulted in one-exon skipping and in-frame deletion of 102 nucleotides. The consequence revealed by mRNA analysis is essential for accurate interpretation of pathogenicity. CONCLUSION Four intronic variants all caused aberrant mRNA splicing. For intronic variants with uncertain impact on splicing, mRNA analysis is helpful for ascertainment of alternative splicing and accurate interpretation of pathogenicity.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Huili Liu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xiantao Ye
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yu Sun
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
62
|
Rational Design of an Activatable Reporter for Quantitative Imaging of RNA Aberrant Splicing In Vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:904-911. [PMID: 32405512 PMCID: PMC7210378 DOI: 10.1016/j.omtm.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
Pre-mRNA splicing, the process of removing introns from pre-mRNA and the arrangement of exons to produce mature transcripts, is a crucial step in the expression of most eukaryote genes. However, the splicing kinetics remain poorly characterized in living cells, mainly because current methods cannot provide the dynamic information of splicing events. Here, we developed a genetically encoded bioluminescence reporter for real-time imaging of the pre-mRNA splicing process in living subjects. We showed that the bioluminescence reporter is able to visualize the pre-mRNA aberrant splicing process in living cells in a dose- and time-dependent manner. Moreover, this reporter could provide quantitative and longitudinal information of splicing activity in response to exogenous splicing inhibitors in living animals. Our data suggest that this activatable reporter could serve as a promising tool for the high-throughput screening of splicing modulators, which would facilitate the drug development for human diseases caused by the abnormal splicing of mRNA.
Collapse
|
63
|
Reixachs-Solé M, Ruiz-Orera J, Albà MM, Eyras E. Ribosome profiling at isoform level reveals evolutionary conserved impacts of differential splicing on the proteome. Nat Commun 2020; 11:1768. [PMID: 32286305 PMCID: PMC7156646 DOI: 10.1038/s41467-020-15634-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
The differential production of transcript isoforms from gene loci is a key cellular mechanism. Yet, its impact in protein production remains an open question. Here, we describe ORQAS (ORF quantification pipeline for alternative splicing), a pipeline for the translation quantification of individual transcript isoforms using ribosome-protected mRNA fragments (ribosome profiling). We find evidence of translation for 40-50% of the expressed isoforms in human and mouse, with 53% of the expressed genes having more than one translated isoform in human, and 33% in mouse. Differential splicing analysis revealed that about 40% of the splicing changes at RNA level are concordant with changes in translation. Furthermore, orthologous cassette exons between human and mouse preserve the directionality of the change, and are enriched in microexons in a comparison between glia and glioma. ORQAS leverages ribosome profiling to uncover a widespread and evolutionarily conserved impact of differential splicing on translation, particularly of microexon-containing isoforms.
Collapse
Affiliation(s)
- Marina Reixachs-Solé
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - M Mar Albà
- IMIM - Hospital del Mar Medical Research Institute, E08003, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia.
- IMIM - Hospital del Mar Medical Research Institute, E08003, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain.
| |
Collapse
|
64
|
Zecevic N, Arsenijevic V, Manolakos E, Papoulidis I, Theocharis G, Sartsidis A, Tsagas T, Tziotis I, Dagklis T, Kalogeros G, Tsakiridis I, Filipovic Stankovic M, Eleftheriades M. New Compound Heterozygous Splice Site Mutations of the Skeletal Muscle Ryanodine Receptor ( RYR1) Gene Manifest Fetal Akinesia: A Linkage with Congenital Myopathies. Mol Syndromol 2020; 11:104-109. [PMID: 32655342 DOI: 10.1159/000507034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been linked to malignant hyperthermia susceptibility, central core disease, and minicore myopathy with external ophthalmoplegia. RYR1 is an intracellular calcium release channel and plays a crucial role in the sarcoplasmic reticulum and transverse tubule connection. Here, we report 2 fetuses from the same parents with compound heterozygous mutations in the RYR1 gene (c.10347+1G>A and c.10456-2Α>G) who presented with fetal akinesia and polyhydramnios at 27 and 19 weeks of gestation with intrauterine growth restriction in the third pregnancy. The prospective parents of the fetuses were heterozygous carriers for c.10456-2Α>G (mother) and c.10347+1G>A (father). Both mutations affect splice sites resulting in dysfunctional protein forms probably missing crucial domains of the C-terminus. Our findings reveal a new RYR1 splice site mutation (c.10456-2Α>G) that may be associated with the clinical features of myopathies, expanding the RYR1 spectrum related to these pathologies.
Collapse
Affiliation(s)
- Nebojsa Zecevic
- Obstetric and Gynecological Clinic Narodni Front, Belgrade, Serbia
| | | | | | | | | | | | - Tryfon Tsagas
- Department of Obstetrics and Gynecology, IASO Maternity Hospital, Athens, Greece
| | - Ioannis Tziotis
- Department of Obstetrics and Gynecology, IASO Maternity Hospital, Athens, Greece
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kalogeros
- Department of Obstetrics and Gynecology, IASO Thessaly Maternity Hospital, Larissa, Greece
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Makarios Eleftheriades
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
65
|
Cardamone G, Paraboschi EM, Soldà G, Cantoni C, Supino D, Piccio L, Duga S, Asselta R. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet 2020; 28:1414-1428. [PMID: 30566690 DOI: 10.1093/hmg/ddy438] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are post-transcriptional and epigenetic regulators, whose implication in neurodegenerative and autoimmune diseases remains poorly understood. We analyzed publicly available microarray data sets to identify dysregulated lncRNAs in multiple sclerosis (MS), a neuroinflammatory autoimmune disease. We found a consistent upregulation in MS of the lncRNA MALAT1 (2.7-fold increase; meta-analysis, P = 1.3 × 10-8; 190 cases, 182 controls), known to regulate alternative splicing (AS). We confirmed MALAT1 upregulation in two independent MS cohorts (1.5-fold increase; P < 0.01; 59 cases, 50 controls). We hence performed MALAT1 overexpression/knockdown in cell lines, demonstrating that its modulation impacts on endogenous expression of splicing factors (HNRNPF and HNRNPH1) and on AS of MS-associated genes (IL7R and SP140). Minigene-based splicing assays upon MALAT1 modulation recapitulated IL7R and SP140 isoform unbalances observed in patients. RNA-sequencing of MALAT1-knockdown Jurkat cells further highlighted MALAT1 role in splicing (approximately 1100 significantly-modulated AS events) and revealed its contribution to backsplicing (approximately 50 differentially expressed circular RNAs). Our study proposes a possible novel role for MALAT1 dysregulation and the consequent AS alteration in MS pathogenesis, based on anomalous splicing/backsplicing profiles of MS-relevant genes.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Domenico Supino
- Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| |
Collapse
|
66
|
Ait-Hamlat A, Zea DJ, Labeeuw A, Polit L, Richard H, Laine E. Transcripts' Evolutionary History and Structural Dynamics Give Mechanistic Insights into the Functional Diversity of the JNK Family. J Mol Biol 2020; 432:2121-2140. [PMID: 32067951 DOI: 10.1016/j.jmb.2020.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Alternative splicing and alternative initiation/termination transcription sites have the potential to greatly expand the proteome in eukaryotes by producing several transcript isoforms from the same gene. Although these mechanisms are well described at the genomic level, little is known about their contribution to protein evolution and their impact at the protein structure level. Here, we address both issues by reconstructing the evolutionary history of transcripts and by modeling the tertiary structures of the corresponding protein isoforms. We reconstruct phylogenetic forests relating 60 protein-coding transcripts from the c-Jun N-terminal kinase (JNK) family observed in seven species. We identify two alternative splicing events of ancient origin and show that they induce subtle changes in the protein's structural dynamics. We highlight a previously uncharacterized transcript whose predicted structure seems stable in solution. We further demonstrate that orphan transcripts, for which no phylogeny could be reconstructed, display peculiar sequence and structural properties. Our approach is implemented in PhyloSofS (Phylogenies of Splicing Isoforms Structures), a fully automated computational tool freely available at https://github.com/PhyloSofS-Team/PhyloSofS.
Collapse
Affiliation(s)
- Adel Ait-Hamlat
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Diego Javier Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Antoine Labeeuw
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Lélia Polit
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France
| | - Hugues Richard
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France.
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, 75005, France.
| |
Collapse
|
67
|
Lye JJ, Williams A, Baralle D. Exploring the RNA Gap for Improving Diagnostic Yield in Primary Immunodeficiencies. Front Genet 2019; 10:1204. [PMID: 31921280 PMCID: PMC6917654 DOI: 10.3389/fgene.2019.01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Challenges in diagnosing primary immunodeficiency are numerous and diverse, with current whole-exome and whole-genome sequencing approaches only able to reach a molecular diagnosis in 25–60% of cases. We assess these problems and discuss how RNA-focused analysis has expanded and improved in recent years and may now be utilized to gain an unparalleled insight into cellular immunology. We review how investigation into RNA biology can give information regarding the differential expression, monoallelic expression, and alternative splicing—which have important roles in immune regulation and function. We show how this information can inform bioinformatic analysis pipelines and aid in the variant filtering process, expediting the identification of causal variants—especially those affecting splicing—and enhance overall diagnostic ability. We also demonstrate the challenges, which remain in the design of this type of investigation, regarding technological limitation and biological considerations and suggest potential directions for the clinical applications.
Collapse
Affiliation(s)
- Jed J Lye
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom
| | - Anthony Williams
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom.,Wessex Investigational Sciences Hub Laboratory (WISH Lab), Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Diana Baralle
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom.,Faculty of Medicine, Highfield Campus, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
68
|
Rowlands CF, Baralle D, Ellingford JM. Machine Learning Approaches for the Prioritization of Genomic Variants Impacting Pre-mRNA Splicing. Cells 2019; 8:E1513. [PMID: 31779139 PMCID: PMC6953098 DOI: 10.3390/cells8121513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in pre-mRNA splicing are frequently a cause of Mendelian disease. Despite the advent of next-generation sequencing, allowing a deeper insight into a patient's variant landscape, the ability to characterize variants causing splicing defects has not progressed with the same speed. To address this, recent years have seen a sharp spike in the number of splice prediction tools leveraging machine learning approaches, leaving clinical geneticists with a plethora of choices for in silico analysis. In this review, some basic principles of machine learning are introduced in the context of genomics and splicing analysis. A critical comparative approach is then used to describe seven recent machine learning-based splice prediction tools, revealing highly diverse approaches and common caveats. We find that, although great progress has been made in producing specific and sensitive tools, there is still much scope for personalized approaches to prediction of variant impact on splicing. Such approaches may increase diagnostic yields and underpin improvements to patient care.
Collapse
Affiliation(s)
- Charlie F Rowlands
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WJ, UK;
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, MP808, Tremona Road, Southampton SO16 6YD, UK
| | - Jamie M Ellingford
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WJ, UK;
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| |
Collapse
|
69
|
Wood KA, Rowlands CF, Qureshi WMS, Thomas HB, Buczek WA, Briggs TA, Hubbard SJ, Hentges KE, Newman WG, O’Keefe RT. Disease modeling of core pre-mRNA splicing factor haploinsufficiency. Hum Mol Genet 2019; 28:3704-3723. [PMID: 31304552 PMCID: PMC6935387 DOI: 10.1093/hmg/ddz169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
The craniofacial disorder mandibulofacial dysostosis Guion-Almeida type is caused by haploinsufficiency of the U5 snRNP gene EFTUD2/SNU114. However, it is unclear how reduced expression of this core pre-mRNA splicing factor leads to craniofacial defects. Here we use a CRISPR-Cas9 nickase strategy to generate a human EFTUD2-knockdown cell line and show that reduced expression of EFTUD2 leads to diminished proliferative ability of these cells, increased sensitivity to endoplasmic reticulum (ER) stress and the mis-expression of several genes involved in the ER stress response. RNA-Seq analysis of the EFTUD2-knockdown cell line revealed transcriptome-wide changes in gene expression, with an enrichment for genes associated with processes involved in craniofacial development. Additionally, our RNA-Seq data identified widespread mis-splicing in EFTUD2-knockdown cells. Analysis of the functional and physical characteristics of mis-spliced pre-mRNAs highlighted conserved properties, including length and splice site strengths, of retained introns and skipped exons in our disease model. We also identified enriched processes associated with the affected genes, including cell death, cell and organ morphology and embryonic development. Together, these data support a model in which EFTUD2 haploinsufficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on gene expression, including altering the expression of ER stress response genes and genes involved in the development of the craniofacial region. The increased burden of unfolded proteins in the ER resulting from mis-splicing would exceed the capacity of the defective ER stress response, inducing apoptosis in cranial neural crest cells that would result in craniofacial abnormalities during development.
Collapse
Affiliation(s)
- Katherine A Wood
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Charlie F Rowlands
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Huw B Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Weronika A Buczek
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Kathryn E Hentges
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
- Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK
| | - Raymond T O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester
| |
Collapse
|
70
|
Angiotensin II Influences Pre-mRNA Splicing Regulation by Enhancing RBM20 Transcription Through Activation of the MAPK/ELK1 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20205059. [PMID: 31614708 PMCID: PMC6829565 DOI: 10.3390/ijms20205059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
RNA binding motif 20 (RBM20) is a key regulator of pre-mRNA splicing of titin and other genes that are associated with cardiac diseases. Hormones, like insulin, triiodothyronine (T3), and angiotensin II (Ang II), can regulate gene-splicing through RBM20, but the detailed mechanism remains unclear. This study was aimed at investigating the signaling mechanism by which hormones regulate pre-mRNA splicing through RBM20. We first examined the role of RBM20 in Z-, I-, and M-band titin splicing at different ages in wild type (WT) and RBM20 knockout (KO) rats using RT-PCR; we found that RBM20 is the predominant regulator of I-band titin splicing at all ages. Then we treated rats with propylthiouracil (PTU), T3, streptozotocin (STZ), and Ang II and evaluated the impact of these hormones on the splicing of titin, LIM domain binding 3 (Ldb3), calcium/calmodulin-dependent protein kinase II gamma (Camk2g), and triadin (Trdn). We determined the activation of mitogen-activated protein kinase (MAPK) signaling in primary cardiomyocytes treated with insulin, T3, and Ang II using western blotting; MAPK signaling was activated and RBM20 expression increased after treatment. Two downstream transcriptional factors c-jun and ETS Transcription Factor (ELK1) can bind the promoter of RBM20. A dual-luciferase activity assay revealed that Ang II, but not insulin and T3, can trigger ELK1 and thus promote transcription of RBM20. This study revealed that Ang II can trigger ELK1 through activation of MAPK signaling by enhancing RBM20 expression which regulates pre-mRNA splicing. Our study provides a potential therapeutic target for the treatment of cardiac diseases in RBM20-mediated pre-mRNA splicing.
Collapse
|
71
|
Garcia-Solaesa V, Serrano-Lorenzo P, Ramos-Arroyo MA, Blázquez A, Pagola-Lorz I, Artigas-López M, Arenas J, Martín MA, Jericó-Pascual I. A Novel Missense Variant Associated with A Splicing Defect in A Myopathic Form of PGK1 Deficiency in The Spanish Population. Genes (Basel) 2019; 10:genes10100785. [PMID: 31658606 PMCID: PMC6826351 DOI: 10.3390/genes10100785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
Phosphoglycerate kinase (PGK)1 deficiency is an X-linked inherited disease associated with different clinical presentations, sometimes as myopathic affectation without hemolytic anemia. We present a 40-year-old male with a mild psychomotor delay and mild mental retardation, who developed progressive exercise intolerance, cramps and sporadic episodes of rhabdomyolysis but no hematological features. A genetic study was carried out by a next-generation sequencing (NGS) panel of 32 genes associated with inherited metabolic myopathies. We identified a missense variant in the PGK1 gene c.1114G > A (p.Gly372Ser) located in the last nucleotide of exon 9. cDNA studies demonstrated abnormalities in mRNA splicing because this change abolishes the exon 9 donor site. This novel variant is the first variant associated with a myopathic form of PGK1 deficiency in the Spanish population.
Collapse
Affiliation(s)
- Virginia Garcia-Solaesa
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain, (M.A.R.-A.).
| | - Pablo Serrano-Lorenzo
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
| | - Maria Antonia Ramos-Arroyo
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain, (M.A.R.-A.).
| | - Alberto Blázquez
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28041 Madrid, Spain.
| | - Inmaculada Pagola-Lorz
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain, (I.P.-L.).
| | - Mercè Artigas-López
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain, (M.A.R.-A.).
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28041 Madrid, Spain.
| | - Miguel A Martín
- Laboratorio de Enfermedades Mitocondriales y Neurometabólicas. Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain, (P.S.-L.).
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28041 Madrid, Spain.
| | - Ivonne Jericó-Pascual
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain, (I.P.-L.).
| |
Collapse
|
72
|
Barbosa ÉDAA, Seraphim TV, Gandin CA, Teixeira LF, da Silva RAG, Righetto GL, Goncalves KDA, Vasconcellos RDS, Almeida MR, Silva Júnior A, Fietto JLR, Kobarg J, Gileadi C, Massirer KB, Borges JC, de Oliveira Neto M, Bressan GC. Insights into the full-length SRPK2 structure and its hydrodynamic behavior. Int J Biol Macromol 2019; 137:205-214. [PMID: 31229549 DOI: 10.1016/j.ijbiomac.2019.06.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022]
Abstract
The serine/arginine-rich protein kinase 2 (SRPK2) has been reported as upregulated in several cancer types, with roles in hallmarks such as cell migration, growth, and apoptosis. These findings have indicated that SRPK2 is a promising emerging target in drug discovery initiatives. Although high-resolution models are available for SRPK2 (PDB 2X7G), they have been obtained with a heavily truncated recombinant protein version (~50% of the primary structure), due to the presence of long intrinsically unstructured regions. In the present work, we sought to characterize the structure of a full-length recombinant version of SRPK2 in solution. Low-resolution Small-Angle X-ray Scattering data were obtained for both versions of SRPK2. The truncated ΔNΔS-SRPK2 presented a propensity to dimerize at higher concentrations whereas the full-length SRPK2 was mainly found as dimers. The hydrodynamic behavior of the full-length SRPK2 was further investigated by analytical size exclusion chromatography and sedimentation velocity analytical ultracentrifugation experiments. SRPK2 behaved as a monomer-dimer equilibrium and both forms have an elongated shape in solution, pointing to a stretched-to-closed tendency among the conformational plasticity observed. Taken together, these findings allowed us to define unique structural features of the SRPK2 within SRPK family, characterized by its flexible regions outside the bipartite kinase domain.
Collapse
Affiliation(s)
| | | | - César Augusto Gandin
- Departamento de Física e Biofísica, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | | | - Germanna L Righetto
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Kaliandra De Almeida Goncalves
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Márcia Rogéria Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Jörg Kobarg
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual e Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carina Gileadi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, Brazil; Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Katlin B Massirer
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering, CBMEG, Universidade Estadual de Campinas, Campinas, SPUniversidade Estadual de Campinas, Campinas, Brazil
| | - Julio César Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Mario de Oliveira Neto
- Departamento de Física e Biofísica, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
73
|
Hybrid Sequencing of Full-Length cDNA Transcripts of the Medicinal Plant Scutellaria baicalensis. Int J Mol Sci 2019; 20:ijms20184426. [PMID: 31505762 PMCID: PMC6770217 DOI: 10.3390/ijms20184426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
Scutellaria baicalensis is a well-known medicinal plant that produces biologically active flavonoids, such as baicalin, baicalein, and wogonin. Pharmacological studies have shown that these compounds have anti-inflammatory, anti-bacterial, and anti-cancer activities. Therefore, it is of great significance to investigate the genetic information of S. baicalensis, particularly the genes related to the biosynthetic pathways of these compounds. Here, we constructed the full-length transcriptome of S. baicalensis using a hybrid sequencing strategy and acquired 338,136 full-length sequences, accounting for 93.3% of the total reads. After the removal of redundancy and correction with Illumina short reads, 75,785 nonredundant transcripts were generated, among which approximately 98% were annotated with significant hits in the protein databases, and 11,135 sequences were classified as lncRNAs. Differentially expressed gene (DEG) analysis showed that most of the genes related to flavonoid biosynthesis were highly expressed in the roots, consistent with previous reports that the flavonoids were mainly synthesized and accumulated in the roots of S. baicalensis. By constructing unique transcription models, a total of 44,071 alternative splicing (AS) events were identified, with intron retention (IR) accounting for the highest proportion (44.5%). A total of 94 AS events were present in five key genes related to flavonoid biosynthesis, suggesting that AS may play important roles in the regulation of flavonoid biosynthesis in S. baicalensis. This study provided a large number of highly accurate full-length transcripts, which represents a valuable genetic resource for further research of the molecular biology of S. baicalensis, such as the development, breeding, and biosynthesis of active ingredients.
Collapse
|
74
|
Wu CW, Wimberly K, Pietras A, Dodd W, Atlas MB, Choe KP. RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress. BMC Biol 2019; 17:56. [PMID: 31311534 PMCID: PMC6631800 DOI: 10.1186/s12915-019-0675-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada.
| | - Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Adele Pietras
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - William Dodd
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - M Blake Atlas
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
75
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
76
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
77
|
Taladriz-Sender A, Campbell E, Burley GA. Splice-switching small molecules: A new therapeutic approach to modulate gene expression. Methods 2019; 167:134-142. [PMID: 31203161 DOI: 10.1016/j.ymeth.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Manipulating alternative RNA splicing events with small molecules is emerging as a viable mechanism for the development of therapeutics. A salient challenge in the field is understanding the molecular determinants defining the selectivity of splice-switching events and their mechanisms of action. In this review, the current state-of-the-art in splice-switching small molecules is described. Three examples of splice-switching small molecules are presented, and the differences in their modes of action compared.
Collapse
Affiliation(s)
- Andrea Taladriz-Sender
- Department of Pure and Applied Chemistry, University of Strathclyde. Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Emma Campbell
- Department of Pure and Applied Chemistry, University of Strathclyde. Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde. Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.
| |
Collapse
|
78
|
Yang X, Huang P, Tan Y, Xiao Q. A Novel Splicing Mutation in the CSF1R Gene in a Family With Hereditary Diffuse Leukoencephalopathy With Axonal Spheroids. Front Genet 2019; 10:491. [PMID: 31191609 PMCID: PMC6541038 DOI: 10.3389/fgene.2019.00491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is a rare autosomal dominant disorder that typically presents with early-onset cognitive decline or personality change. The disease is associated with heterozygous mutations in the colony stimulating factor-1 receptor (CSF1R) gene. CSF1R activation regulates microglial survival, proliferation, and differentiation. The different gene mutations may be related to the various clinical phenotypes. Here, we described comprehensive clinical, neuroimaging, neuropathological, and genetic analyses of a family with HDLS. A novel splicing mutation in intron 13 (c.1858+1G>T) of CSF1R was found in this family. It is located at the splice site of intron 13, resulting in a splice donor site leading to exon 13 skipping from the CSF1R mRNA. The mother and two elderly siblings of the proband had the same CSF1R mutation as the proband but showed very mild neuroimaging abnormalities and mild memory loss, which did not affect daily life, indicating very uneven penetrance and distinctly different disease progression among family members. This report provides diverse neuroimaging and clinical characteristics of a novel CSF1R mutation with different disease penetrance. The large clinical heterogeneity in the same family who all had the same mutation indicates that modifying genes and environmental factors may play a role in the pathogenesis of HDLS.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
79
|
Ebbert MTW, Jensen TD, Jansen-West K, Sens JP, Reddy JS, Ridge PG, Kauwe JSK, Belzil V, Pregent L, Carrasquillo MM, Keene D, Larson E, Crane P, Asmann YW, Ertekin-Taner N, Younkin SG, Ross OA, Rademakers R, Petrucelli L, Fryer JD. Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol 2019; 20:97. [PMID: 31104630 PMCID: PMC6526621 DOI: 10.1186/s13059-019-1707-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/06/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The human genome contains "dark" gene regions that cannot be adequately assembled or aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations within these gene regions that may be relevant to human disease. Here, we identify regions with few mappable reads that we call dark by depth, and others that have ambiguous alignment, called camouflaged. We assess how well long-read or linked-read technologies resolve these regions. RESULTS Based on standard whole-genome Illumina sequencing data, we identify 36,794 dark regions in 6054 gene bodies from pathways important to human health, development, and reproduction. Of these gene bodies, 8.7% are completely dark and 35.2% are ≥ 5% dark. We identify dark regions that are present in protein-coding exons across 748 genes. Linked-read or long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies reduce dark protein-coding regions to approximately 50.5%, 35.6%, and 9.6%, respectively. We present an algorithm to resolve most camouflaged regions and apply it to the Alzheimer's Disease Sequencing Project. We rescue a rare ten-nucleotide frameshift deletion in CR1, a top Alzheimer's disease gene, found in disease cases but not in controls. CONCLUSIONS While we could not formally assess the association of the CR1 frameshift mutation with Alzheimer's disease due to insufficient sample-size, we believe it merits investigating in a larger cohort. There remain thousands of potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-read technologies.
Collapse
Affiliation(s)
- Mark T. W. Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| | - Tanner D. Jensen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Joseph S. Reddy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602 USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602 USA
| | - Veronique Belzil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Luc Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Eric Larson
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Paul Crane
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Yan W. Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| |
Collapse
|
80
|
Li S, Shen L, Huang L, Lei S, Cai X, Breitzig M, Zhang B, Yang A, Ji W, Huang M, Zheng Q, Sun H, Wang F. PTBP1 enhances exon11a skipping in Mena pre-mRNA to promote migration and invasion in lung carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:858-869. [PMID: 31075540 DOI: 10.1016/j.bbagrm.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Alternative splicing (AS) events occur in the majority of human genes. AS in a single gene can give rise to different functions among multiple isoforms. Human ortholog of mammalian enabled (Mena) is a conserved regulator of actin dynamics that plays an important role in metastasis. Mena has been shown to have multiple splice variants in human tumor cells due to AS. However, the mechanism mediated Mena AS has not been elucidated. Here we showed that polypyrimidine tract-binding protein 1 (PTBP1) could modulate Mena AS. First, PTBP1 levels were elevated in metastatic lung cancer cells as well as during epithelial-mesenchymal transition (EMT) process. Then, knockdown of PTBP1 using shRNA inhibited migration and invasion of lung carcinoma cells and decreased the Mena exon11a skipping, whereas overexpression of PTBP1 had the opposite effects. The results of RNA pull-down assays and mutation analyses demonstrated that PTBP1 functionally targeted and physically interacted with polypyrimidine sequences on both upstream intron11 (TTTTCCCCTT) and downstream intron11a (TTTTTTTTTCTTT). In addition, the results of migration and invasion assays as well as detection of filopodia revealed that the effect of PTBP1 was reversed by knockdown of Mena but not Mena11a+. Overexpressed MenaΔ11a also rescued the PTBP1-induced migration and invasion. Taken together, our study provides a novel mechanism that PTBP1 modulates Mena exon11a skipping, and indicates that PTBP1 depends on the level of Mena11a- to promote lung cancer cells migration and invasion. The regulation of Mena AS may be a potential prognostic marker and a promising target for treatment of lung carcinoma.
Collapse
Affiliation(s)
- Shuaiguang Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Lianghua Shen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Luyuan Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sijia Lei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Xingdong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mason Breitzig
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 19, Tampa, FL 33612, USA
| | - Bin Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Annan Yang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenzuo Ji
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Meiyan Huang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Qing Zheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
81
|
Arjmand F, Afsan Z, Sharma S, Parveen S, Yousuf I, Sartaj S, Siddique HR, Tabassum S. Recent advances in metallodrug-like molecules targeting non-coding RNAs in cancer chemotherapy. Coord Chem Rev 2019; 387:47-59. [DOI: 10.1016/j.ccr.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
82
|
Schaller A, Myers A, Khan S, Joshi A, Rodriguez V, Maher G. Case 4: Thrombocytopenia and Hematochezia in an Infant. Pediatr Rev 2019; 40:254-255. [PMID: 31043446 DOI: 10.1542/pir.2016-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Alexandra Schaller
- Division of Pediatric Critical Care, University of Tennessee Health Sciences Center, Memphis, TN
| | - Angela Myers
- Department of Medical Genetics, University of California Irvine, Orange, CA
| | - Shakila Khan
- Division of Pediatric Blood and Bone Marrow Transplantation, Mayo Clinic, Rochester, MN
| | - Avni Joshi
- Division of Pediatric Allergy and Immunology, Mayo Clinic, Rochester, MN
| | | | - George Maher
- Division of Pediatric Hematology/Oncology, Sanford Children's Hospital, Sioux Falls, SD
| |
Collapse
|
83
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Goina E, Acedo A, Buratti E, Velasco EA. Mis-splicing in breast cancer: identification of pathogenic BRCA2 variants by systematic minigene assays. J Pathol 2019; 248:409-420. [PMID: 30883759 DOI: 10.1002/path.5268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Splicing disruption is a common mechanism of gene inactivation associated with germline variants of susceptibility genes. To study the role of BRCA2 mis-splicing in hereditary breast/ovarian cancer (HBOC), we performed a comprehensive analysis of variants from BRCA2 exons 2-9, as well as the initial characterization of the regulatory mechanisms of such exons. A pSAD-based minigene with exons 2-9 was constructed and validated in MCF-7 cells, producing the expected transcript (1016-nt/V1-BRCA2_exons_2-9-V2). DNA variants from mutational databases were analyzed by NNSplice and Human Splicing Finder softwares. To refine ESE-variant prediction, we mapped the regulatory regions through a functional strategy whereby 26 exonic microdeletions were introduced into the minigene and tested in MCF-7 cells. Thus, we identified nine spliceogenic ESE-rich intervals where ESE-variants may be located. Combining bioinformatics and microdeletion assays, 83 variants were selected and genetically engineered in the minigene. Fifty-three changes impaired splicing: 28 variants disrupted the canonical sites, four created new ones, 10 abrogated enhancers, eight created silencers and three caused a double-effect. Notably, nine spliceogenic-ESE variants were located within ESE-containing intervals. Capillary electrophoresis and sequencing revealed more than 23 aberrant transcripts, where exon skipping was the most common event. Interestingly, variant c.67G>A triggered the usage of a noncanonical GC-donor 4-nt upstream. Thirty-six variants that induced severe anomalies (>60% aberrant transcripts) were analyzed according to the ACMG guidelines. Thus, 28 variants were classified as pathogenic, five as likely pathogenic and three as variants of uncertain significance. Interestingly, 13 VUS were reclassified as pathogenic or likely pathogenic variants. In conclusion, a large fraction of BRCA2 variants (∼64%) provoked splicing anomalies lending further support to the high prevalence of this disease-mechanism. The low accuracy of ESE-prediction algorithms may be circumvented by functional ESE-mapping that represents an optimal strategy to identify spliceogenic ESE-variants. Finally, systematic functional assays by minigenes depict a valuable tool for the initial characterization of splicing anomalies and the clinical interpretation of variants. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Elisa Goina
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
84
|
Ashktorab H, Azimi H, Varma S, Lee EL, Laiyemo AO, Nickerson ML, Brim H. Driver genes exome sequencing reveals distinct variants in African Americans with colorectal neoplasia. Oncotarget 2019; 10:2607-2624. [PMID: 31080553 PMCID: PMC6498998 DOI: 10.18632/oncotarget.26721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. African Americans are disproportionately affected by CRC. Our hypothesis is that driver genes with known and novel mutations have an impact on CRC outcome in this population. Therefore, we investigated the variants' profiles in a panel of 15 CRC genes. PATIENTS & METHODS Colorectal specimens (n=140) were analyzed by targeted exome sequencing using an Ion Torrent platform. Detected variants were validated in 36 samples by Illumina sequencing. The novel status of the validated variants was determined by comparison to publicly available databases. Annotated using ANNOVAR and in-silico functional analysis of these variants were performed to determine likely pathogenic variants. RESULTS Overall, 121 known and novel variants were validated: APC (27%), AMER1 (3%), ARID1 (7%), MSH3 (12%), MSH6 (10%), BRAF (4%), KRAS (6%), FBXW7 (4%), PIK3CA (6%), SMAD4 (5%), SOX9 (2%), TCF7L2 (2%), TGFBR2 (5%), TP53 (7%). From these validated variants, 12% were novel in 8 genes (AMER1, APC, ARID1A, BRAF, MSH6, PIK3CA, SMAD4, and TCF7L2). Of the validated variants, 23% were non-synonymous, 14% were stopgains, 24% were synonymous and 39% were intronic variants. CONCLUSION We here report the specifics of variants' profiles of African Americans with colorectal lesions. Validated variants showed that Tumor Suppressor Genes (TSGs) APC and ARID1 and DNA Mismatch repair (MMR) genes MSH3 and MSH6 are the genes with the highest numbers of validated variants. Oncogenes KRAS and PIK3CA are also altered and likely participate in the increased proliferative potential of the mutated colonic epithelial cells in this population.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine, Cancer Center, Howard University, Washington, DC, USA
| | - Hamed Azimi
- Department of Medicine, Cancer Center, Howard University, Washington, DC, USA
| | | | - Edward L. Lee
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| | - Adeyinka O. Laiyemo
- Department of Medicine, Cancer Center, Howard University, Washington, DC, USA
| | - Michael L. Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
85
|
Ye Y, Zeng Y. Whole exome sequencing identifies a novel intron heterozygous mutation in TSC2 responsible for tuberous sclerosis complex. Sci Rep 2019; 9:4456. [PMID: 30872599 PMCID: PMC6418313 DOI: 10.1038/s41598-019-38898-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022] Open
Abstract
This study was aimed to identify the potentially pathogenic gene variants that contribute to the etiology of the tuberous sclerosis complex. A Chinese pedigree with tuberous sclerosis complex was collected and the exomes of two affected individuals were sequenced using the whole exome sequencing technology. The resulting variants from whole exome sequencing were filtered by basic and advanced biological information analysis and the candidate mutation was verified as heterozygous by sanger sequencing. After basic and advanced biological information analysis, a total of 9 single nucleotide variants were identified, which were all follow the dominant inheritance pattern. Among which, the intron heterozygous mutation c.600-145 C > T transition in TSC2 was identified and validated in the two affected individuals. In silico analysis with human splicing finder (HSF) predicted the effect of the c.600-145 C > T mutations on TSC2 mRNA splicing, and detected the creation of a new exonic cryptic donor site, which would result in a frame-shift, and finally premature termination codon. Our results reported the novel intron heterozygous mutation c.600-145 C > T in TSC2 may contribute to TSC, expanding our understanding of the causally relevant genes for this disorder.
Collapse
Affiliation(s)
- Yicong Ye
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Department of Cardiology, Chinese Academy of Medical College and Peking Union Medical College Hospital; Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yong Zeng
- Department of Cardiology, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Department of Cardiology, Chinese Academy of Medical College and Peking Union Medical College Hospital; Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
86
|
Adamopoulos PG, Mavrogiannis AV, Kontos CK, Scorilas A. Novel alternative splice variants of the human protein arginine methyltransferase 1 (PRMT1) gene, discovered using next-generation sequencing. Gene 2019; 699:135-144. [PMID: 30849541 DOI: 10.1016/j.gene.2019.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technology is highly expected to help researchers disclose the complexity of alternative splicing and understand its association with carcinogenesis. Alternative splicing alterations are firmly associated with multiple malignancies, in terms of functional roles in malignant transformation, motility, and/or metastasis of cancer cells. One perfect example illustrating the connection between alternative splicing and cancer is the human protein arginine methyltransferase 1 (PRMT1) gene, previously cloned from members of our research group and involved in a variety of processes including transcription, DNA repair, and signal transduction. Two splice variants of PRMT1 (variants v.1 and v.2) are downregulated in breast cancer. In addition, PRMT1 v.2 promotes the survival and invasiveness of breast cancer cells, while it could serve as a biomarker of unfavorable prognosis in colon cancer patients. The aim of this study was the molecular cloning of novel alternative splice variants of PRMT1 with the use of 3' RACE coupled with NGS technology. Extensive bioinformatics and computational analysis revealed a significant number of 19 novel alternative splicing events between annotated exons of PRMT1 as well as one novel exon, resulting in the discovery of multiple PRMT1 transcripts. In order to validate the full sequence of the novel transcripts, RT-PCR was carried out with the use of variant-specific primers. As a result, 58 novel PRMT1 transcripts were identified, 34 of which are mRNAs encoding new protein isoforms, whereas the rest 24 transcripts are candidates for nonsense-mediated mRNA decay (NMD).
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Adamantios V Mavrogiannis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
87
|
Jayaram S, Balakrishnan L, Singh M, Zabihi A, Ganesh RA, Mangalaparthi KK, Sonpatki P, Gupta MK, Amaresha CB, Prasad K, Mariswamappa K, Pillai S, Lakshmikantha A, Shah N, Sirdeshmukh R. Identification of a Novel Splice Variant of Neural Cell Adhesion Molecule in Glioblastoma Through Proteogenomics Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:437-448. [PMID: 29927716 DOI: 10.1089/omi.2017.0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Splice variants are known to be important in the pathophysiology of tumors, including the brain cancers. We applied a proteogenomics pipeline to identify splice variants in glioblastoma (GBM, grade IV glioma), a highly malignant brain tumor, using in-house generated mass spectrometric proteomic data and public domain RNASeq dataset. Our analysis led to the identification of a novel exon that maps to the long isoform of Neural cell adhesion molecule 1 (NCAM1), expressed on the surface of glial cells and neurons, important for cell adhesion and cell signaling. The presence of the novel exon is supported with the identification of five peptides spanning it. Additional peptides were also detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel separated proteins from GBM patient tissue, underscoring the presence of the novel peptides in the intact brain protein. The novel exon was detected in the RNASeq dataset in 18 of 25 GBM samples and separately validated in additional 10 GBM tumor tissues using quantitative real-time-polymerase chain reaction (qRT-PCR). Both transcriptomic and proteomic data indicate downregulation of NCAM1, including the novel variant, in GBM. Domain analysis of the novel NCAM1 sequence indicates that the insertion of the novel exon contributes extra low-complexity region in the protein that may be important for protein-protein interactions and hence for cell signaling associated with tumor development. Taken together, the novel NCAM1 variant reported in this study exemplifies the importance of future multiomics research and systems biology applications in GBM.
Collapse
Affiliation(s)
- Savita Jayaram
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,2 Manipal Academy of Higher Education , Manipal, India
| | - Lavanya Balakrishnan
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Manika Singh
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,4 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Azin Zabihi
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Raksha A Ganesh
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Kiran K Mangalaparthi
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,4 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Pranali Sonpatki
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Manoj Kumar Gupta
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,2 Manipal Academy of Higher Education , Manipal, India
| | - Chaitra B Amaresha
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Komal Prasad
- 5 Mazumdar Shaw Medical Center , Narayana Health City, Bangalore, India
| | | | - Shibu Pillai
- 5 Mazumdar Shaw Medical Center , Narayana Health City, Bangalore, India
| | | | - Nameeta Shah
- 3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| | - Ravi Sirdeshmukh
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India .,2 Manipal Academy of Higher Education , Manipal, India .,3 Mazumdar Shaw Center for Translational Research , Narayana Hrudayalaya Health City, Bangalore, India
| |
Collapse
|
88
|
Dlamini Z, Hull R, Makhafola TJ, Mbele M. Regulation of alternative splicing in obesity-induced hypertension. Diabetes Metab Syndr Obes 2019; 12:1597-1615. [PMID: 31695458 PMCID: PMC6718130 DOI: 10.2147/dmso.s188680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity is the result of genetics which predisposes an individual to obesity and environmental factors, resulting in excessive weight gain. A well-established linear relationship exists between hypertension and obesity. The combined burden of hypertension and obesity poses significant health and economic challenges. Many environmental factors and genetic traits interact to contribute to obesity-linked hypertension. These include excess sodium re-absorption or secretion by the kidneys, a hypertensive shift of renal-pressure and activation of the sympathetic nervous system. Most individuals suffering from hypertension need drugs in order to treat their raised blood pressure, and while a number of antihypertensive therapeutic agents are currently available, 50% of cases remain uncontrolled. In order to develop new and effective therapeutic agents combating obesity-induced hypertension, a thorough understanding of the molecular events leading to adipogenesis is critical. With the advent of whole genome and exome sequencing techniques, new genes and variants which can be used as markers for obesity and hypertension are being identified. This review examines the role played by alternative splicing (AS) as a contributing factor to the metabolic regulation of obesity-induced hypertension. Splicing mutations constitute at least 14% of the disease-causing mutations, thus implicating polymorphisms that effect splicing as indicators of disease susceptibility. The unique transcripts resulting from the alternate splicing of mRNA encoding proteins that play a key role in contributing to obesity would be vital to gain a proper understanding of the genetic causes of obesity. A greater knowledge of the genetic basis for obesity-linked hypertension will assist in the development of appropriate diagnostic tests as well as the identification of new personalized therapeutic targets against obesity-induced hypertension.
Collapse
Affiliation(s)
- Zodwa Dlamini
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
- Correspondence: Zodwa Dlamini South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, South AfricaTel +27 3 18 199 334/5Email
| | - Rodney Hull
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Tshepiso J Makhafola
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Mzwandile Mbele
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| |
Collapse
|
89
|
Scalet D, Maestri I, Branchini A, Bernardi F, Pinotti M, Balestra D. Disease-causing variants of the conserved +2T of 5' splice sites can be rescued by engineered U1snRNAs. Hum Mutat 2018; 40:48-52. [PMID: 30408273 DOI: 10.1002/humu.23680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The ability of variants of the spliceosomal U1snRNA to rescue splicing has been proven in several human disease models, but not for nucleotide changes at the conserved GT nucleotide of 5' splice sites (5'ss), frequent and associated with severe phenotypes. Here, we focused on variants at the 5'ss of F9 intron 3, leading to factor IX (FIX) deficiency (hemophilia B). Through minigene expression, we demonstrated that all changes induce complete exon 3 skipping, which explains the associated hemophilia B phenotype. Interestingly, engineered U1snRNAs remarkably increased the proportion of correct transcripts in the presence of the c.277+4A>G (∼60%) and also c.277+2T>C mutation (∼20%). Expression of splicing-competent cDNA constructs indicated that the splicing rescue produces an appreciable increase of secreted FIX protein levels. These data provide the first experimental evidence that even part of variants at the conserved 5'ss +2T nucleotide can be rescued, thus expanding the applicability of this U1snRNA-based approach.
Collapse
Affiliation(s)
- Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Iva Maestri
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
90
|
Ma L, Luo Y, Jiang L, Shen D, Li J, Xu W, Mei C, Zhou X, Ren Y, Ye L, Lu C, Jie J, Tong H. The relation of SF3B1 mutation and intracellular iron in myelodysplastic syndrome with less than 5% bone marrow blasts. Leuk Lymphoma 2018; 60:1179-1186. [PMID: 30409066 DOI: 10.1080/10428194.2018.1520990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
According to 2008 WHO classification RARS is regarded as less than 5% blasts and more than 15% ring sideroblasts in the bone marrow. In 2016 WHO classification MDS-RS is revised as more than 15% ring sideroblasts or more than 5% ring sideroblasts in the presence of the SF3B1 mutation. In our study, we classified intracellular iron in bone marrow into four types according to the size and quantity of iron granules. We found that there was a significant difference between SF3B1-mutant and SF3B1-wild-type MDS patients in intracellular iron III, intracellular iron IV and ring sideroblasts. We defined intracellular iron (III + IV + RS)%×100 as 'Iron score'. We suggest that the patients carrying SF3B1 mutation with Iron score ≥10 will extend the subtype of MDS-RS, in addition to the current WHO classification criteria. This study gives us a new insight into the relation of SF3B1 mutation and intracellular iron in lower-risk MDS.
Collapse
Affiliation(s)
- Liya Ma
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Yingwan Luo
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Lingxu Jiang
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Dan Shen
- b Bone Marrow Cell Morphological Examination Laboratory, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jianhu Li
- b Bone Marrow Cell Morphological Examination Laboratory, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Weilai Xu
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Chen Mei
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Xinping Zhou
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Yanlin Ren
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Li Ye
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Chenxi Lu
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Jin Jie
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| | - Hongyan Tong
- a MDS Center, Department of Hematology, the First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
91
|
Pecanka J, van der Vaart AW, Jonker MA. Modeling association between multivariate correlated outcomes and high-dimensional sparse covariates: the adaptive SVS method. J Appl Stat 2018. [DOI: 10.1080/02664763.2018.1523377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- J. Pecanka
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, Netherlands
| | - A. W. van der Vaart
- Mathematical Institute, Faculty of Science, Leiden University, Leiden, Netherlands
| | - M. A. Jonker
- Department for Health Evidence – Biostatistics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
92
|
Tantzer S, Sperle K, Kenaley K, Taube J, Hobson GM. Morpholino Antisense Oligomers as a Potential Therapeutic Option for the Correction of Alternative Splicing in PMD, SPG2, and HEMS. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:420-432. [PMID: 30195779 PMCID: PMC6036941 DOI: 10.1016/j.omtn.2018.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
Abstract
DNA variants of the proteolipid protein 1 gene (PLP1) that shift PLP1/DM20 alternative splicing away from the PLP1 form toward DM20 cause the allelic X-linked leukodystrophies Pelizaeus-Merzbacher disease (PMD), spastic paraplegia 2 (SPG2), and hypomyelination of early myelinating structures (HEMS). We designed a morpholino oligomer (MO-PLP) to block use of the DM20 5' splice donor site, thereby shifting alternative splicing toward the PLP1 5' splice site. Treatment of an immature oligodendrocyte cell line with MO-PLP significantly shifted alternative splicing toward PLP1 expression from the endogenous gene and from transfected human minigene splicing constructs harboring patient variants known to reduce the amount of the PLP1 spliced product. Additionally, a single intracerebroventricular injection of MO-PLP into the brains of neonatal mice, carrying a deletion of an intronic splicing enhancer identified in a PMD patient that reduces the Plp1 spliced form, corrected alternative splicing at both RNA and protein levels in the CNS. The effect lasted to post-natal day 90, well beyond the early post-natal spike in myelination and PLP production. Further, the single injection produced a sustained reduction of inflammatory markers in the brains of the mice. Our results suggest that morpholino oligomers have therapeutic potential for the treatment of PMD, SPG2, and HEMS.
Collapse
Affiliation(s)
- Stephanie Tantzer
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kaitlin Kenaley
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Pediatrics/Neonatology, Christiana Care Health System, Newark, DE 19713, USA
| | - Jennifer Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
93
|
Ahmadi Moghaddam P, Singh R, Mahmoodi M, Mehrotra M, Benaim G, Luthra R, Paniz-Mondolfi A. Poorly differentiated osteoclast-like giant cell variant of cutaneous squamous cell carcinoma: Uncovering its mutational landscape through massive parallel sequencing. Pathol Res Pract 2018; 214:1898-1903. [PMID: 30146254 DOI: 10.1016/j.prp.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/11/2018] [Accepted: 08/18/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Parnian Ahmadi Moghaddam
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Rajesh Singh
- Molecular Diagnostics Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mandana Mahmoodi
- Department of Dermatopathology, Miraca Life Sciences Research Institute & Tufts University School of Medicine, Boston, MA, USA
| | - Meenakshi Mehrotra
- Molecular Diagnostics Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gustavo Benaim
- Laboratorio de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Rajyalakshmi Luthra
- Molecular Diagnostics Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alberto Paniz-Mondolfi
- Laboratorio de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela; Instituto de Investigaciones Biomédicas IDB, Cabudare, Venezuela; Dirección de Salud, Docencia e Investigación, Instituto Venezolano de los Seguros Sociales (IVSS), Venezuela.
| |
Collapse
|
94
|
Wang Y, Jiang D, Zhao Q, Huang H, Zhang X, Cui Y, Liu J, Wu J, Lin K, Chen W, Xiang J, Jin H, Peng Z, Banerjee S. Identification of a novel breast cancer-causing mutation in the BRCA1 gene by targeted next generation sequencing: A case report. Oncol Lett 2018; 16:3913-3916. [PMID: 30128007 DOI: 10.3892/ol.2018.9139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/17/2018] [Indexed: 12/28/2022] Open
Abstract
Hereditary breast cancer is an autosomal dominant syndrome caused by germ-line mutations in the human breast cancer genes, BRCA1 and BRCA2. Mutations in either BRCA1 or BRCA2 are the major causes of familial and early-onset breast cancer. The present study investigated a 33-year-old Chinese female patient with breast cancer using targeted next generation sequencing. A novel heterozygous deletion-insertion was also identified in the BRCA1 gene, c.311_312delinsAGGTTTGCA, which causes the formation of a truncated BRCA1 protein of 109 amino acids instead of a wild-type BRCA1 protein of 1,863 amino acids. These results could potentially expand the mutational spectra of BRCA1-associated breast cancer. In addition, these findings may be valuable for the mutation-based screening and genetic diagnosis of breast cancer.
Collapse
Affiliation(s)
- Yanyan Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Da Jiang
- Department of Internal Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qiang Zhao
- Department of Obstetrics and Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong 529030, P.R. China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Xue Zhang
- Department of Internal Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanzhi Cui
- Department of Internal Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jiayin Liu
- Department of Internal Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Keke Lin
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Weixi Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jiale Xiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Hui Jin
- Department of Internal Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | | |
Collapse
|
95
|
Caridi G, de Abreu IBR, Alves JA, Lugani F, Campagnoli M, Galliano M, Minchiotti L. A novel splicing mutation in the ALB gene causing analbuminaemia in a Portuguese woman. Pathology 2018; 50:679-682. [PMID: 30143345 DOI: 10.1016/j.pathol.2018.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Gianluca Caridi
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini, IRCCS, Genoa, Italy
| | - Ilidio B R de Abreu
- Hospital Dr Nélio Mendonça, Clinical Pathology Department, Serviço de Saúde da Região Autónoma da Madeira EPE, Funchal, Portugal
| | - José A Alves
- Hospital Dr Nélio Mendonça, Clinical Pathology Department, Serviço de Saúde da Região Autónoma da Madeira EPE, Funchal, Portugal
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini, IRCCS, Genoa, Italy
| | | | - Monica Galliano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | |
Collapse
|
96
|
Liu X, MacLeod JN, Liu J. iMapSplice: Alleviating reference bias through personalized RNA-seq alignment. PLoS One 2018; 13:e0201554. [PMID: 30096157 PMCID: PMC6086400 DOI: 10.1371/journal.pone.0201554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022] Open
Abstract
Genomic variants in both coding and non-coding sequences can have functionally important and sometimes deleterious effects on exon splicing of gene transcripts. For transcriptome profiling using RNA-seq, the accurate alignment of reads across exon junctions is a critical step. Existing algorithms that utilize a standard reference genome as a template sometimes have difficulty in mapping reads that carry genomic variants. These problems can lead to allelic ratio biases and the failure to detect splice variants created by splice site polymorphisms. To improve RNA-seq read alignment, we have developed a novel approach called iMapSplice that enables personalized mRNA transcriptome profiling. The algorithm makes use of personal genomic information and performs an unbiased alignment towards genome indices carrying both reference and alternative bases. Importantly, this breaks the dependency on reference genome splice site dinucleotide motifs and enables iMapSplice to discover personal splice junctions created through splice site polymorphisms. We report comparative analyses using a number of simulated and real datasets. Besides general improvements in read alignment and splice junction discovery, iMapSplice greatly alleviates allelic ratio biases and unravels many previously uncharacterized splice junctions created by splice site polymorphisms, with minimal overhead in computation time and storage. Software download URL: https://github.com/LiuBioinfo/iMapSplice.
Collapse
Affiliation(s)
- Xinan Liu
- Department of Computer Science, University of Kentucky, Lexington, KY, United States of America
| | - James N. MacLeod
- Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY, United States of America
- * E-mail:
| |
Collapse
|
97
|
Wu G, Fan L, Edmonson MN, Shaw T, Boggs K, Easton J, Rusch MC, Webb TR, Zhang J, Potter PM. Inhibition of SF3B1 by molecules targeting the spliceosome results in massive aberrant exon skipping. RNA (NEW YORK, N.Y.) 2018; 24:1056-1066. [PMID: 29844105 PMCID: PMC6049506 DOI: 10.1261/rna.065383.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 05/22/2023]
Abstract
The recent identification of compounds that interact with the spliceosome (sudemycins, spliceostatin A, and meayamycin) indicates that these molecules modulate aberrant splicing via SF3B1 inhibition. Through whole transcriptome sequencing, we have demonstrated that treatment of Rh18 cells with sudemycin leads to exon skipping as the predominant aberrant splicing event. This was also observed following reanalysis of published RNA-seq data sets derived from HeLa cells after spliceostatin A exposure. These results are in contrast to previous reports that indicate that intron retention was the major consequence of SF3B1 inhibition. Analysis of the exon junctions up-regulated by these small molecules indicated that these sequences were absent in annotated human genes, suggesting that aberrant splicing events yielded novel RNA transcripts. Interestingly, the length of preferred downstream exons was significantly longer than the skipped exons, although there was no difference between the lengths of introns flanking skipped exons. The reading frame of the aberrantly skipped exons maintained a ratio of 2:1:1, close to that of the cassette exons (3:1:1) present in naturally occurring isoforms, suggesting negative selection by the nonsense-mediated decay (NMD) machinery for out-of-frame transcripts. Accordingly, genes involved in NMD and RNAs encoding proteins involved in the splicing process were enriched in both data sets. Our findings, therefore, further elucidate the mechanisms by which SF3B1 inhibition modulates pre-mRNA splicing.
Collapse
Affiliation(s)
- Gang Wu
- Department of Computational Biology
| | - Liying Fan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | - Thomas R Webb
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
98
|
Hartlerode AJ, Regal JA, Ferguson DO. Reversible mislocalization of a disease-associated MRE11 splice variant product. Sci Rep 2018; 8:10121. [PMID: 29973640 PMCID: PMC6031676 DOI: 10.1038/s41598-018-28370-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023] Open
Abstract
Ataxia-telangiectasia (AT) and related disorders feature cancer predisposition, neurodegeneration, and immunodeficiency resulting from failure to respond to DNA damage. Hypomorphic mutations in MRE11 cause an AT-like disorder (ATLD) with variable clinical presentation. We have sought to understand how diverse MRE11 mutations may provide unique therapeutic opportunities, and potentially correlate with clinical variability. Here we have undertaken studies of an MRE11 splice site mutation that was found in two ATLD siblings that died of pulmonary adenocarcinoma at the young ages of 9 and 16. The mutation, termed MRE11 alternative splice mutation (MRE11ASM), causes skipping of a highly conserved exon while preserving the protein's open reading frame. A new mouse model expressing Mre11ASM from the endogenous locus demonstrates that the protein is present at very low levels, a feature in common with the MRE11ATLD1 mutant found in other patients. However, the mechanisms causing low protein levels are distinct. MRE11ASM is mislocalized to the cytoplasm, in contrast to MRE11ATLD1, which remains nuclear. Strikingly, MRE11ASM mislocalization is corrected by inhibition of the proteasome, implying that the protein undergoes strict protein quality control in the nucleus. These findings raise the prospect that inhibition of poorly understood nuclear protein quality control mechanisms might have therapeutic benefit in genetic disorders causing cytoplasmic mislocalization.
Collapse
Affiliation(s)
- Andrea J Hartlerode
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, 48109-2200, USA
| | - Joshua A Regal
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, 48109-2200, USA
- Molecular and Cellular Pathology Graduate Program, The University of Michigan Medical School, Ann Arbor, MI, 48109-2200, USA
| | - David O Ferguson
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
99
|
A novel LRAT mutation affecting splicing in a family with early onset retinitis pigmentosa. Hum Genomics 2018; 12:35. [PMID: 29973277 PMCID: PMC6033202 DOI: 10.1186/s40246-018-0165-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background and purpose Retinitis pigmentosa is an important cause of severe visual dysfunction. This study reports a novel splicing mutation in the lecithin retinol acyltransferase (LRAT) gene associated with early onset retinitis pigmentosa and characterizes the effects of this mutation on mRNA splicing and structure. Methods Genome-wide linkage analysis followed by dideoxy sequencing of the linked candidate gene LRAT was performed in a consanguineous Pakistani family with autosomal recessive retinitis pigmentosa. In silico prediction and minigene assays were used to investigate the effects of the presumptive splicing mutation. Results ARRP in this family was linked to chromosome 4q31.21-q32.1 with a maximum LOD score of 5.40. A novel homozygous intronic mutation (NM_004744.4: c.541-15T>G) was detected in LRAT. In silico tools predicted that the AG-creating mutation would activate an intronic cryptic acceptor site, but cloning fragments of wild-type and mutant sequences of LRAT into Exontrap Cloning Vector pET01 and Expression Cloning Vector pCMV-(DYKD4K)-C showed that the primary effect of the sequence change was to weaken the nearby authentic acceptor site and cause exon skipping, with only a small fraction of transcripts utilizing the acceptor site producing the reference transcript. Conclusions The c.541-15T>G mutation in LRAT results in aberrant splicing and is therefore predicted to be causal for the early onset retinitis pigmentosa in this family. In addition, this work suggests that minigenes adapted to the specific gene and exon may need to be designed for variants in the first and last exon and intron to mimic the authentic splicing mechanism in vivo. Electronic supplementary material The online version of this article (10.1186/s40246-018-0165-3) contains supplementary material, which is available to authorized users.
Collapse
|
100
|
Szlavicz E, Olah P, Szabo K, Pagani F, Bata-Csorgo Z, Kemeny L, Szell M. Analysis of psoriasis-relevant gene expression and exon usage alterations after silencing of SR-rich splicing regulators. Exp Dermatol 2018. [DOI: 10.1111/exd.13530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eszter Szlavicz
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
| | - Peter Olah
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
- Department of Dermatology; University Hospital Düsseldorf; Düsseldorf Germany
| | - Kornélia Szabo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology; Trieste Italy
| | - Zsuzsanna Bata-Csorgo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Lajos Kemeny
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Márta Szell
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Medical Genetics; University of Szeged; Szeged Hungary
| |
Collapse
|