51
|
Towle R, Tsui IFL, Zhu Y, MacLellan S, Poh CF, Garnis C. Recurring DNA copy number gain at chromosome 9p13 plays a role in the activation of multiple candidate oncogenes in progressing oral premalignant lesions. Cancer Med 2014; 3:1170-84. [PMID: 25060540 PMCID: PMC4302668 DOI: 10.1002/cam4.307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/26/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Genomic alteration at chromosome 9p has been previously reported as a frequent and critical event in oral premalignancy. While this alteration is typically reported as a loss driven by selection for CDKN2A deactivation (at 9p21.3), we detect a recurrent DNA copy number gain of ∼2.49 Mbp at chromosome 9p13 in oral premalignant lesions (OPLs) that later progressed to invasive lesions. This recurrent alteration event has been validated using fluorescence in situ hybridization in an independent set of OPLs. Analysis of publicly available gene expression datasets aided in identifying three oncogene candidates that may have driven selection for DNA copy number increases in this region (VCP, DCTN3, and STOML2). We performed in vitro silencing and activation experiments for each of these genes in oral cancer cell lines and found that each gene is independently capable of upregulating proliferation and anchorage-independent growth. We next analyzed the activity of each of these genes in biopsies of varying histological grades that were obtained from a diseased oral tissue field in a single patient, finding further molecular evidence of parallel activation of VCP, DCTN3, and STOML2 during progression from normal healthy tissue to invasive oral carcinoma. Our results support the conclusion that DNA gain at 9p13 is important to the earliest stages of oral tumorigenesis and that this alteration event likely contributes to the activation of multiple oncogene candidates capable of governing oral cancer phenotypes.
Collapse
Affiliation(s)
- Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
52
|
Granato DC, Zanetti MR, Kawahara R, Yokoo S, Domingues RR, Aragão AZ, Agostini M, Carazzolle MF, Vidal RO, Flores IL, Korvala J, Cervigne NK, Silva ARS, Coletta RD, Graner E, Sherman NE, Leme AFP. Integrated proteomics identified up-regulated focal adhesion-mediated proteins in human squamous cell carcinoma in an orthotopic murine model. PLoS One 2014; 9:e98208. [PMID: 24858105 PMCID: PMC4032327 DOI: 10.1371/journal.pone.0098208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/30/2014] [Indexed: 01/20/2023] Open
Abstract
Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.
Collapse
Affiliation(s)
- Daniela C. Granato
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Mariana R. Zanetti
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Rebeca Kawahara
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Sami Yokoo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Romênia R. Domingues
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Annelize Z. Aragão
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Michelle Agostini
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
- Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Marcelo F. Carazzolle
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Ramon O. Vidal
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Isadora L. Flores
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | | | - Nilva K. Cervigne
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Alan R. S. Silva
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Ricardo D. Coletta
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Edgard Graner
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, Brazil
| | - Nicholas E. Sherman
- W. M. Keck Biomedical Mass Spectrometry Lab. University of Virginia, Charlottesville, Virginia, United States of America
| | - Adriana F. Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
- * E-mail:
| |
Collapse
|
53
|
Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene 2014; 34:1811-21. [PMID: 24793790 PMCID: PMC4221586 DOI: 10.1038/onc.2014.116] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/17/2022]
Abstract
Talins are adaptor proteins that regulate focal adhesion signaling by conjugating integrins to the cytoskeleton. Talins directly bind integrins and are essential for integrin activation. We previously showed that β1 integrins are activated in metastatic prostate cancer (PCa) cells, increasing PCa metastasis to lymph nodes and bone. However, how β1 integrins are activated in PCa cells is unknown. In this study, we identified a novel mechanism of β1 integrin activation. Using knockdown experiments, we first demonstrated talin1, but not talin2, is important in β1 integrin activation. We next showed that talin1 S425 phosphorylation, but not total talin1 expression, correlates with metastatic potential of PCa cells. Expressing a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 and C4-2B4 PCa cells, decreased activation of β1 integrins, integrin-mediated adhesion, motility, and increased the sensitivity of the cells to anoikis. In contrast, re-expression of the phosphorylation-mimicking mutant talin1S425D led to increased β1 integrin activation and generated biologic effects opposite to talin1S425A expression. In the highly metastatic PC3-MM2 cells, expression of a non-phosphorylatable mutant, talin1S425A, in talin1-silenced PC3-MM2 cells, abolished their ability to colonize in the bone following intracardiac injection, while re-expression of phosphorylation-mimicking mutant talin1S425D restored their ability to metastasize to bone. Immunohistochemical staining demonstrated that talin S425 phosphorylation is significantly increased in human bone metastases when compared to normal tissues, primary tumors, or lymph node metastases. We further showed that p35 expression, an activator of Cdk5, and Cdk5 activity were increased in metastatic tumor cells, and that Cdk5 kinase activity is responsible for talin1 phosphorylation and subsequent β1 integrin activation. Together, our study reveals Cdk5-mediated phosphorylation of talin1 leading to β1 integrin activation is a novel mechanism that increases metastatic potential of PCa cells.
Collapse
|
54
|
Fang KP, Zhang JL, Ren YH, Qian YB. Talin-1 Correlates with Reduced Invasion and Migration in Human Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev 2014; 15:2655-61. [DOI: 10.7314/apjcp.2014.15.6.2655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
55
|
Genomic DNA copy number alterations from precursor oral lesions to oral squamous cell carcinoma. Oral Oncol 2014; 50:404-12. [PMID: 24613650 DOI: 10.1016/j.oraloncology.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/16/2022]
Abstract
Oral cancer is a multifactorial disease in which both environmental and genetic factors contribute to the aetiopathogenesis. Oral cancer is the sixth most common cancer worldwide with a higher incidence among Melanesian and South Asian countries. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). The present study aimed to determine common genomic copy number alterations (CNAs) and their frequency by including 12 studies that have been conducted on OSCCs using array comparative genomic hybridization (aCGH). In addition, we reviewed the literature dealing with CNAs that drive oral precursor lesions to the invasive tumors. Results showed a sequential accumulation of genetic changes from oral precursor lesions to invasive tumors. With the disease progression, accumulation of genetic changes increases in terms of frequency, type and size of the abnormalities, even on different regions of the same chromosome. Gains in 3q (36.5%), 5p (23%), 7p (21%), 8q (47%), 11q (45%), 20q (31%) and losses in 3p (37%), 8p (18%), 9p (10%) and 18q (11%) were the most common observations among those studies. However, losses are less frequent than gains but it appears that they might be the primary clonal events in causing oral cancer.
Collapse
|
56
|
Thapa N, Choi S, Hedman A, Tan X, Anderson RA. Phosphatidylinositol phosphate 5-kinase Iγi2 in association with Src controls anchorage-independent growth of tumor cells. J Biol Chem 2013; 288:34707-18. [PMID: 24151076 DOI: 10.1074/jbc.m113.512848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling.
Collapse
Affiliation(s)
- Narendra Thapa
- From the School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | | | | | | |
Collapse
|
57
|
Cell to extracellular matrix interactions and their reciprocal nature in cancer. Exp Cell Res 2013; 319:1663-70. [DOI: 10.1016/j.yexcr.2013.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/07/2023]
|
58
|
Lee YC, Jin JK, Cheng CJ, Huang CF, Song JH, Huang M, Brown WS, Zhang S, Yu-Lee LY, Yeh ET, McIntyre BW, Logothetis CJ, Gallick GE, Lin SH. Targeting constitutively activated β1 integrins inhibits prostate cancer metastasis. Mol Cancer Res 2013; 11:405-17. [PMID: 23339185 PMCID: PMC3631285 DOI: 10.1158/1541-7786.mcr-12-0551] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Disseminated prostate cancer cells must survive in circulation for metastasis to occur. Mechanisms by which these cells survive are not well understood. By immunohistochemistry of human tissues, we found that levels of β1 integrins and integrin-induced autophosphorylation of FAK (pFAK-Y397) are increased in prostate cancer cells in primary prostate cancer and lymph node metastases, suggesting that β1 integrin activation occurs in metastatic progression of prostate cancer. A conformation-sensitive antibody, 9EG7, was used to examine β1 integrin activation. We found that β1 integrins are constitutively activated in highly metastatic PC3 and PC3-mm2 cells, with less activation in low metastatic LNCaP and C4-2B4 cells. Increased β1 integrin activation as well as the anoikis resistance in prostate cancer cells correlated with metastatic potential in vivo. Knockdown of β1 integrin abrogated anoikis resistance in PC3-mm2 cells. In agreement with β1 integrin activation, PC3-mm2 cells strongly adhered to type I collagen and fibronectin, a process inhibited by the β1 integrin-neutralizing antibody mAb 33B6. mAb 33B6 also inhibited the phosphorylation of β1 integrin downstream effectors, focal adhesion kinase (FAK) and AKT, leading to a 3-fold increase in PC3-mm2 apoptosis. Systemic delivery of mAb 33B6 suppressed spontaneous metastasis of PC3-mm2 from the prostate to distant lymph nodes following intraprostatic injection and suppressed metastasis of PC3-mm2 to multiple organs following intracardiac injection. Thus, constitutively activated β1 integrins play a role in survival of PC3-mm2 cells in circulation and represent a potential target for metastasis prevention.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jung-Kang Jin
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- The Program in Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Fen Huang
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- Department of Pharmacy at National Taiwan University Hospital, Taipei, Taiwan
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Miao Huang
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Wells S. Brown
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sui Zhang
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Edward T. Yeh
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Bradley W. McIntyre
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- The Program in Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston
| | - Sue-Hwa Lin
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
- The Program in Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston
| |
Collapse
|
59
|
Mukudai Y, Kondo S, Fujita A, Yoshihama Y, Shirota T, Shintani S. Tumor protein D54 is a negative regulator of extracellular matrix-dependent migration and attachment in oral squamous cell carcinoma-derived cell lines. Cell Oncol (Dordr) 2013; 36:233-45. [DOI: 10.1007/s13402-013-0131-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
|
60
|
Huang Y, Zhang X, Jiang W, Wang Y, Jin H, Liu X, Xu C. Discovery of serum biomarkers implicated in the onset and progression of serous ovarian cancer in a rat model using iTRAQ technique. Eur J Obstet Gynecol Reprod Biol 2012; 165:96-103. [DOI: 10.1016/j.ejogrb.2012.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/29/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
|
61
|
Bandla S, Pennathur A, Luketich JD, Beer DG, Lin L, Bass AJ, Godfrey TE, Litle VR. Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma. Ann Thorac Surg 2012; 93:1101-1106. [PMID: 22450065 PMCID: PMC3401935 DOI: 10.1016/j.athoracsur.2012.01.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Esophageal cancer consists of two major histologic types: esophageal squamous cell carcinoma (ESCC), predominant globally, and esophageal adenocarcinoma (EAC), which has a higher incidence in westernized countries. Five-year overall survival is 15%. Clinical trials frequently combine histologic types although they are different diseases with distinct origins. In the evolving era of personalized medicine and targeted therapies, we hypothesized that ESCC and EAC have genomic differences important for developing new therapeutic strategies for esophageal cancer. METHODS We explored DNA copy number abnormalities in 70 ESCCs with publicly available array data and 189 EACs from our group. All data was from single nucleotide polymorphism arrays. Analysis was performed using a segmentation algorithm. Log ratio thresholds for copy number gain and loss were set at ±0.2 (approximately 2.3 and 1.7 copies, respectively). RESULTS The ESCC and EAC genomes showed some copy number abnormalities with similar frequencies (eg, CDKN2A, EGFR, KRAS, MYC, CDK6, MET) but also many copy number abnormalities with different frequencies between histologic types, most of which were amplification events. Some of these regions harbor genes for which targeted therapies are currently available (VEGFA, ERBB2) or for which agents are in clinical trials (PIK3CA, FGFR1). Other regions contain putative oncogenes that may be targeted in the future. CONCLUSIONS Using single nucleotide polymorphism arrays we compared genomic abnormalities in a large cohort of EACs and ESCCs. We report here the similar and different frequencies of copy number abnormalities in ESCC and EAC. These results may allow development of histology-specific therapeutic agents for esophageal cancer.
Collapse
Affiliation(s)
- Santhoshi Bandla
- Department of Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA
| | - James D. Luketich
- Department of Cardiothoracic Surgery, Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA
| | - David G. Beer
- Thoracic Surgery, University of Michigan, Ann Arbor, MI
| | - Lin Lin
- Thoracic Surgery, University of Michigan, Ann Arbor, MI
| | | | - Tony E. Godfrey
- Department of Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Virginia R. Litle
- Department of Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
62
|
Sen S, Ng WP, Kumar S. Contributions of talin-1 to glioma cell-matrix tensional homeostasis. J R Soc Interface 2011; 9:1311-7. [PMID: 22158841 DOI: 10.1098/rsif.2011.0567] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ability of cells to adapt their mechanical properties to those of the surrounding microenvironment (tensional homeostasis) has been implicated in the progression of a variety of solid tumours, including the brain tumour glioblastoma multiforme (GBM). GBM tumour cells are highly sensitive to extracellular matrix (ECM) stiffness and overexpress a variety of focal adhesion proteins, such as talin. While talin has been shown to play critical early roles in integrin-based force-sensing in non-tumour cells, it remains unclear whether this protein contributes to tensional homeostasis in GBM cells. Here, we investigate the role of the talin isoform talin-1 in enabling human GBM cells to adapt to ECM stiffness. We show that human GBM cells express talin-1, and we use RNA interference to suppress talin-1 expression without affecting levels of talin-2, vinculin or phosphorylated focal adhesion kinase. Knockdown of talin-1 strongly reduces both cell spreading area and random migration speed but does not significantly affect overall focal adhesion size distributions. Most strikingly, atomic force microscopy indentation reveals that talin-1 suppression compromises adaptation of cell stiffness to changes in ECM stiffness. Together, these data support a role for talin-1 in the maintenance of tensional homeostasis in GBM and suggest a functional role for enriched talin expression in this tumour.
Collapse
Affiliation(s)
- Shamik Sen
- Department of Bioengineering, University of California, 274A Stanley Hall no. 1762, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
63
|
Lemeer S, Bluwstein A, Wu Z, Leberfinger J, Müller K, Kramer K, Kuster B. Phosphotyrosine mediated protein interactions of the discoidin domain receptor 1. J Proteomics 2011; 75:3465-77. [PMID: 22057045 DOI: 10.1016/j.jprot.2011.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/30/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
The receptor tyrosine kinase DDR1 has been implicated in multiple human cancers and fibrosis and is targeted by the leukemia drug Gleevec. This suggests that DDR1 might be a new therapeutic target. However, further insight into the DDR1 signaling pathway is required in order to support its further development. Here, we investigated DDR1 proximal signaling by the analysis of protein-protein interactions using proteomic approaches. All known interactors of DDR1 were identified and localized to specific phosphotyrosine residues on the receptor. In addition, we identified numerous signaling proteins as new putative phosphotyrosine mediated interactors including RasGAP, SHIP1, SHIP2, STATs, PI3K and the SRC family kinases. Most of the new proteins contain SH2 and PTB domains and for all interactors we could directly point the site of interaction to specific phosphotyrosine residues on the receptor. The identified proteins have roles in the early steps of the signaling cascade, propagating the signal from the DDR1 receptor into the cell. The map of phosphotyrosine mediated interactors of DDR1 created in this study will serve as a starting point for functional investigations which will enhance our knowledge on the role of the DDR1 receptor in health and disease. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Simone Lemeer
- Chair of Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
64
|
Eberle KE, Sansing HA, Szaniszlo P, Resto VA, Berrier AL. Carcinoma matrix controls resistance to cisplatin through talin regulation of NF-kB. PLoS One 2011; 6:e21496. [PMID: 21720550 PMCID: PMC3123362 DOI: 10.1371/journal.pone.0021496] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/30/2011] [Indexed: 12/31/2022] Open
Abstract
Extracellular matrix factors within the tumor microenvironment that control resistance to chemotherapeutics are poorly understood. This study focused on understanding matrix adhesion pathways that control the oral carcinoma response to cisplatin. Our studies revealed that adhesion of HN12 and JHU012 oral carcinomas to carcinoma matrix supported tumor cell proliferation in response to treatment with cisplatin. Proliferation in response to 30 µM cisplatin was not observed in HN12 cells adherent to other purified extracellular matrices such as Matrigel, collagen I, fibronectin or laminin I. Integrin β1 was important for adhesion to carcinoma matrix to trigger proliferation after treatment with cisplatin. Disruption of talin expression in HN12 cells adherent to carcinoma matrix increased cisplatin induced proliferation. Pharmacological inhibitors were used to determine signaling events required for talin deficiency to regulate cisplatin induced proliferation. Pharmacological inhibition of NF-kB reduced proliferation of talin-deficient HN12 cells treated with 30 µM cisplatin. Nuclear NF-kB activity was assayed in HN12 cells using a luciferase reporter of NF-kB transcriptional activity. Nuclear NF-kB activity was similar in HN12 cells adherent to carcinoma matrix and collagen I when treated with vehicle DMSO. Following treatment with 30 µM cisplatin, NF-kB activity is maintained in cells adherent to carcinoma matrix whereas NF-kB activity is reduced in collagen I adherent cells. Expression of talin was sufficient to trigger proliferation of HN12 cells adherent to collagen I following treatment with 1 and 30 µM cisplatin. Talin overexpression was sufficient to trigger NF-kB activity following treatment with cisplatin in carcinoma matrix adherent HN12 cells in a process disrupted by FAK siRNA. Thus, adhesions within the carcinoma matrix create a matrix environment in which exposure to cisplatin induces proliferation through the function of integrin β1, talin and FAK pathways that regulate NF-kB nuclear activity.
Collapse
Affiliation(s)
- Karen E. Eberle
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana, United States of America
| | - Hope A. Sansing
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana, United States of America
| | - Peter Szaniszlo
- Department of Otolaryngology, University of Texas Medical Branch Cancer Center, University of Texas Medical Branch Health, Galveston, Texas, United States of America
| | - Vicente A. Resto
- Department of Otolaryngology, University of Texas Medical Branch Cancer Center, University of Texas Medical Branch Health, Galveston, Texas, United States of America
| | - Allison L. Berrier
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|