51
|
Dambal S, Baumann B, McCray T, Williams L, Richards Z, Deaton R, Prins GS, Nonn L. The miR-183 family cluster alters zinc homeostasis in benign prostate cells, organoids and prostate cancer xenografts. Sci Rep 2017; 7:7704. [PMID: 28794468 PMCID: PMC5550464 DOI: 10.1038/s41598-017-07979-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
The miR-183 cluster, which is comprised of paralogous miRs-183, -96 and -182, is overexpressed in many cancers, including prostate adenocarcinoma (PCa). Prior studies showed that overexpression of individual pre-miRs-182, -96 and -183 in prostate cells decreased zinc import, which is a characteristic feature of PCa tumours. Zinc is concentrated in healthy prostate 10-fold higher than any other tissue, and an >80% decrease in zinc is observed in PCa specimens. Here, we studied the effect of overexpression of the entire 4.8 kb miR-183 family cluster, including the intergenic region which contains highly conserved genomic regions, in prostate cells. This resulted in overexpression of mature miR-183 family miRs at levels that mimic cancer-related changes. Overexpression of the miR-183 cluster reduced zinc transporter and intracellular zinc levels in benign prostate cells, PCa xenografts and fresh prostate epithelial organoids. Microarray analysis of miR-183 family cluster overexpression in prostate cells showed an enrichment for cancer-related pathways including adhesion, migration and wound healing. An active secondary transcription start site was identified within the intergenic region of the miR-183 cluster, which may regulate expression of miR-182. Taken together, this study shows that physiologically relevant expression of the miR-183 family regulates zinc levels and carcinogenic pathways in prostate cells.
Collapse
Affiliation(s)
- Shweta Dambal
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bethany Baumann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tara McCray
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - LaTanya Williams
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zachary Richards
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ryan Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gail S Prins
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Department of Urology, University of Illinois at Chicago, Chicago, IL, 60612, USA.,University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA. .,University of Illinois Cancer Center, Chicago, IL, 60612, USA.
| |
Collapse
|
52
|
MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2398696. [PMID: 28593022 PMCID: PMC5448073 DOI: 10.1155/2017/2398696] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence.
Collapse
|
53
|
Palma Flores C, García-Vázquez R, Gallardo Rincón D, Ruiz-García E, Astudillo de la Vega H, Marchat LA, Salinas Vera YM, López-Camarillo C. MicroRNAs driving invasion and metastasis in ovarian cancer: Opportunities for translational medicine (Review). Int J Oncol 2017; 50:1461-1476. [PMID: 28393213 DOI: 10.3892/ijo.2017.3948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer is the fifth most frequent cause of cancer death in women. In spite of the advantages in early detection and treatment options, overall survival rates have improved only slightly in the last decades. Therefore, alternative therapeutic approaches need to overcome resistance and improve the patient survival and outcome. MicroRNAs are evolutionary conserved small non-coding RNAs that function as negative regulators of gene expression by inhibiting translation or inducing degradation of messenger RNAs. In cancer, microRNAs are aberrantly expressed thus representing potential prognostic biomarkers and novel therapeutic targets. The knowledge of novel and unexpected functions of microRNAs is rapidly evolving and the advance in the elucidation of potential clinical applications deserves attention. Recently, a specific set of microRNAs dubbed as metastamiRs have been shown to initiate invasion and metastasis in diverse types of cancer. We reviewed the current status of microRNAs in development and progression of ovarian cancer with a special emphasis on tumor cells invasion and metastasis. Also, we show an update of microRNA functions in oncogenic pathways and discuss the current scenario for potential applications in clinical and translational research in ovarian cancer.
Collapse
Affiliation(s)
| | - Raúl García-Vázquez
- Molecular Biomedicine Program and Biotechnology Network, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Erika Ruiz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, National Medical Center 'Siglo XXI', Mexico City, Mexico
| | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Yarely M Salinas Vera
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico
| | - César López-Camarillo
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico
| |
Collapse
|
54
|
Liu Y, Zhang B, Shi T, Qin H. miR-182 promotes tumor growth and increases chemoresistance of human anaplastic thyroid cancer by targeting tripartite motif 8. Onco Targets Ther 2017; 10:1115-1122. [PMID: 28280352 PMCID: PMC5338957 DOI: 10.2147/ott.s110468] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy is one of the most effective forms of cancer treatment and has been used in the treatment of various malignant tumors. We have gained significant insight into the mechanisms of chemoresistance but the details of the molecular mechanisms remain unclear. In the present study, we found that tripartite motif 8 (TRIM8) expression was downregulated in anaplastic thyroid cancer (ATC) tissues and cell lines. This downregulation of TRIM8 was significantly correlated with the upregulation of miR-182 in human ATC tissues. Bioinformatic analysis and luciferase reporter assays identified TRIM8 as a direct target of miR-182 in ATC. A functional assay using an MTT assay and colony formation showed that miR-182 induced cellular growth by repressing TRIM8 expression. Additionally, overexpressed miR-182 contributed to the chemoresistance of ATC cells by the repression of TRIM8 expression. In conclusion, these results demonstrate that miR-182/TRIM8 may be a therapeutic target for the treatment of chemoresistant human thyroid papillary cancer.
Collapse
Affiliation(s)
- Yao Liu
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Bing Zhang
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Tiefeng Shi
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Huadong Qin
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
55
|
Wang J, Wang W, Li J, Wu L, Song M, Meng Q. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. Onco Targets Ther 2017; 10:667-679. [PMID: 28223824 PMCID: PMC5308578 DOI: 10.2147/ott.s121864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The constitutive activation of the Ras–MEK–ERK signaling pathway in oral cavity squamous cell carcinoma (OSCC) has been found to be tightly controlled at multiple levels under physiological conditions. RASA1 and SPRED1 are two important negative regulators of this pathway, but the exact regulating mechanism remains unclear. In this study, we aimed to explore the potential regulating mechanisms involved in the Ras–MEK–ERK signaling pathway in OSCC. Materials and methods MicroRNA (miRNA) expression was detected by quantitative reverse-transcription polymerase chain reaction. The protein levels of RASA1, SPRED1, and signaling proteins were detected by Western blot. Cell growth was determined using CCK-8 reagent, colony formation was stained by crystal violet, and cell invasion was tested using transwell chambers. Cell apoptosis and the cell cycle were then analyzed by flow cytometry. The binding of miR182 with RASA1 or SPRED1 was evaluated by luciferase reporter assays on a dual-luciferase reporter system. Results The expression of miR182 was found to be upregulated significantly in malignant oral carcinoma tissues compared with the adjacent nonmalignant tissues, and was inversely correlated with protein levels of RASA1 and SPRED1. Overexpression of miR182 in OSCC cell lines sustained Ras–MEK–ERK signaling-pathway activation, and promoted cell proliferation, cell-cycle progression, colony formation, and invasion capacity, whereas miR182 downregulation alleviated these properties significantly in vitro. Furthermore, we demonstrated that miR182 exerted its oncogenic role in OSCC by directly targeting and suppressing RASA1 and SPRED1. Conclusion Our results bring new insights into the important role of miR182 in the activation of the Ras–MEK–ERK signaling pathway, and suggest that miR182 may be used as a potential target for treatment of OSCC, prompting further investigation into miRNA antisense oligonucleotides for cancer therapy.
Collapse
Affiliation(s)
- Jinhui Wang
- Department of Clinical Laboratory, Harbin First Hospital
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Jichen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Liji Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Mei Song
- Department of Clinical Laboratory, Harbin First Hospital
| | - Qinggang Meng
- Department of Osteological Surgery, Harbin First Hospital, Harbin, People's Republic of China
| |
Collapse
|
56
|
Pavlakis E, Tonchev AB, Kaprelyan A, Enchev Y, Stoykova A. Interaction between transcription factors PAX6/PAX6-5a and specific members of miR-183-96-182 cluster, may contribute to glioma progression in glioblastoma cell lines. Oncol Rep 2017; 37:1579-1592. [DOI: 10.3892/or.2017.5411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 11/06/2022] Open
|
57
|
Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, Segura MF, Zhang X, Hu G. MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 2016; 7:13884. [PMID: 27996004 PMCID: PMC5187443 DOI: 10.1038/ncomms13884] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor β (TGFβ) pathway plays critical roles during cancer cell epithelial-mesenchymal transition (EMT) and metastasis. SMAD7 is both a transcriptional target and a negative regulator of TGFβ signalling, thus mediating a negative feedback loop that may potentially restrain TGFβ responses of cancer cells. Here, however, we show that TGFβ treatment induces SMAD7 transcription but not its protein level in a panel of cancer cells. Mechanistic studies reveal that TGFβ activates the expression of microRNA-182 (miR-182), which suppresses SMAD7 protein. miR-182 silencing leads to SMAD7 upregulation on TGFβ treatment and prevents TGFβ-induced EMT and invasion of cancer cells. Overexpression of miR-182 promotes breast tumour invasion and TGFβ-induced osteoclastogenesis for bone metastasis. Furthermore, miR-182 expression inversely correlates with SMAD7 protein in human tumour samples. Therefore, our data reveal the miR-182-mediated disruption of TGFβ self-restraint and provide a mechanism to explain the unleashed TGFβ responses in metastatic cancer cells. SMAD7 is a transcriptional target and a negative regulator of TGFβ signalling forming a negative feedback loop. Here the authors show that in cancer cells TGFβ activates the expression of microRNA-182 that suppresses SMAD7 protein, promoting TGFβ-mediated breast tumour invasion and bone metastasis.
Collapse
Affiliation(s)
- Jingyi Yu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Lei
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueqian Zhuang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxun Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miguel F Segura
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Xue Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
58
|
Liu Y, Qiang W, Xu X, Dong R, Karst AM, Liu Z, Kong B, Drapkin RI, Wei JJ. Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget 2016; 6:38983-98. [PMID: 26472020 PMCID: PMC4770751 DOI: 10.18632/oncotarget.5493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
High grade serous ovarian carcinoma (HGSC) is a DNA instable tumor and its precursor is commonly found originating from the fimbriated end of the fallopian tube secretory epithelial (FTSE) cells. The local stresses via ovulation and related inflammation are risks for HGSC. In this study, we examined the cellular and molecular responses of FTSE cells to stress. We found that excess intracellular reactive oxygen species (ROS) in normal FTSE cells upregulated a subset of microRNA expression (defined as ROSmiRs). Most ROSmiRs' expression and function were influenced and regulated by p53, and together they drove the cells into stress-induced premature senescence (SIPS). However, ROS-induced miR-182 is regulated by β-catenin, not by p53. In normal FTSE cells, miR-182 overexpression triggers cellular senescence by p53-mediated upregulation of p21. Conversely, in cells with p53 mutations, miR-182 overexpression no longer enhances p21 but functions as an “Onco-miR”. p53 dysfunction is a prerequisite for miR-182-mediated tumorigenesis. In addition, we found that human follicular fluid could significantly induce intracellular ROS in normal FTSE cells. These findings suggest that ROS and p53 mutations may trigger a series of events, beginning with overexpressing miR-182 by ROS and β-catenin, impairing the DNA damage response, promoting DNA instability, bypassing senescence and eventually leading to DNA instable tumors in FTSE cells.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wenan Qiang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaofei Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ruifen Dong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alison M Karst
- The Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zhaojian Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ronny I Drapkin
- The Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
59
|
Martinez-Ruiz H, Illa-Bochaca I, Omene C, Hanniford D, Liu Q, Hernando E, Barcellos-Hoff MH. A TGFβ-miR-182-BRCA1 axis controls the mammary differentiation hierarchy. Sci Signal 2016; 9:ra118. [PMID: 27923913 DOI: 10.1126/scisignal.aaf5402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Maintenance of mammary functional capacity during cycles of proliferation and regression depends on appropriate cell fate decisions of mammary progenitor cells to populate an epithelium consisting of secretory luminal cells and contractile myoepithelial cells. It is well established that transforming growth factor-β (TGFβ) restricts mammary epithelial cell proliferation and that sensitivity to TGFβ is decreased in breast cancer. We show that TGFβ also exerts control of mammary progenitor self-renewal and lineage commitment decisions by stringent regulation of breast cancer associated 1 (BRCA1), which controls stem cell self-renewal and lineage commitment. Either genetic depletion of Tgfb1 or transient blockade of TGFβ increased self-renewal of mammary progenitor cells in mice, cultured primary mammary epithelial cells, and also skewed lineage commitment toward the myoepithelial fate. TGFβ stabilized the abundance of BRCA1 by reducing the abundance of microRNA-182 (miR-182). Ectopic expression of BRCA1 or antagonism of miR-182 in cultured TGFβ-deficient mammary epithelial cells restored luminal lineage commitment. These findings reveal that TGFβ modulation of BRCA1 directs mammary epithelial cell fate and, because stem or progenitor cells are thought to be the cell of origin for aggressive breast cancer subtypes, suggest that TGFβ dysregulation during tumorigenesis may promote distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Coral Omene
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Douglas Hanniford
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Qi Liu
- Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA. .,Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| |
Collapse
|
60
|
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17:719-732. [DOI: 10.1038/nrg.2016.134] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Zhao H, Xue J, Liu J, Liu Y, Cheng Y. Effect of metastasis suppressor 1 on H1299 cells and its clinical significance in non-small cell lung cancer. Oncol Rep 2016; 36:2814-2822. [PMID: 27634022 DOI: 10.3892/or.2016.5081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/19/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of metastasis suppressor 1 (MTSS1) on the proliferation, migration and invasion of human H1299 non-small cell lung cancer cells and its clinical significance in non‑small cell lung cancer. The target gene MTSS1-overexpressing lentivirus (LV-MTSS1) was transfected into H1299 cells and expression of MTSS1 was detected at the mRNA and protein levels. Cell Counting Kit-8, wound healing and Transwell assays revealed that the migration and invasion activities were significantly suppressed by MTSS1, but that it had no effect on cell proliferation. In addition, MTSS1 expression in tissue microarrays including samples from 223 cases of non-small cell lung cancer was tested by immunohistochemistry to explore the correlation between MTSS1 and clinicopathological characteristics and prognosis. MTSS1 suppressed H1299 cell migration and invasion, and its expression level can be used as a new independent factor for determining the prognosis of non-small cell lung cancer.
Collapse
Affiliation(s)
- Heyan Zhao
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhua Xue
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junhua Liu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yinan Cheng
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
62
|
Blaya D, Coll M, Rodrigo-Torres D, Vila-Casadesús M, Altamirano J, Llopis M, Graupera I, Perea L, Aguilar-Bravo B, Díaz A, Banales JM, Clària J, Lozano JJ, Bataller R, Caballería J, Ginès P, Sancho-Bru P. Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut 2016; 65:1535-45. [PMID: 27196584 DOI: 10.1136/gutjnl-2015-311314] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/17/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are well-known regulators of disease pathogenesis and have great potential as biomarkers and therapeutic targets. We aimed at profiling miRNAs in alcoholic hepatitis (AH) and identifying miRNAs potentially involved in liver injury. DESIGN MiRNA profiling was performed in liver samples from patients with AH, alcohol liver disease, non-alcoholic steatohepatitis, HCV disease and normal liver tissue. Expression of miRNAs was assessed in liver and serum from patients with AH and animal models. Mimic and decoy miR-182 were used in vitro and in vivo to evaluate miR-182's biological functions. RESULTS MiRNA expression profile in liver was highly altered in AH and distinctive from alcohol-induced cirrhotic livers. Moreover, we identified a set of 18 miRNAs predominantly expressed in AH as compared with other chronic liver conditions. Integrative miRNA-mRNA functional analysis revealed the association of AH-altered miRNAs with nuclear receptors, IGF-1 signalling and cholestasis. Interestingly, miR-182 was the most highly expressed miRNA in AH, which correlated with degree of ductular reaction, disease severity and short-term mortality. MiR-182 mimic induced an upregulation of inflammatory mediators in biliary cells. At experimental level, miR-182 was increased in biliary cells in mice fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet but not upregulated by alcohol intake or fibrosis. Inhibition of miR-182 in DDC-fed mice reduced liver damage, bile acid accumulation and inflammatory response. CONCLUSIONS AH is characterised by a deregulated miRNA profile, including miR-182, which is associated with disease severity and liver injury. These results highlight the potential of miRNAs as therapeutic targets and biomarkers in AH.
Collapse
Affiliation(s)
- Delia Blaya
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Daniel Rodrigo-Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria Vila-Casadesús
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - José Altamirano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Llopis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Isabel Graupera
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Luis Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Alba Díaz
- Department of Pathology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain
| | - Joan Clària
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Department of Biochemistry and Molecular Genetics, Hospital Clínic and Department of Physiological Sciences I, University of Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ramon Bataller
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juan Caballería
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Pere Ginès
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
63
|
Nymoen DA, Slipicevic A, Holth A, Emilsen E, Hetland Falkenthal TE, Tropé CG, Reich R, Flørenes VA, Davidson B. MiR-29a is a candidate biomarker of better survival in metastatic high-grade serous carcinoma. Hum Pathol 2016; 54:74-81. [DOI: 10.1016/j.humpath.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 12/27/2022]
|
64
|
Marzec-Kotarska B, Cybulski M, Kotarski JC, Ronowicz A, Tarkowski R, Polak G, Antosz H, Piotrowski A, Kotarski J. Molecular bases of aberrant miR-182 expression in ovarian cancer. Genes Chromosomes Cancer 2016; 55:877-89. [PMID: 27295517 DOI: 10.1002/gcc.22387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 01/14/2023] Open
Abstract
The molecular bases of miR-182 deregulation in epithelial ovarian cancers (EOCs) remain unknown and its diagnostic or prognostic role in EOCs is still unclear. We performed miR-182 expression analysis using a microarray approach and real-time PCR (qPCR). We also used array comparative genomic hybridization and methylated DNA immunoprecipitation to study copy number changes and methylation aberrations within coding locus/promoter sequences of miR-182 in EOC tissues, respectively. We have found that miR-182 expression is significantly increased in EOC (P < 0.00001) and that higher miR-182 expression in EOC is linked with significantly shorter overall survival (P = 0.026). The methylation of miR-182 promoter was significantly associated with lower miR-182 expression in EOC tissues (P = 0.045). miR-182 over-expression is connected with copy number (CN) gains of this miRNA coding sequences in EOC (P = 0.002), and the number of PRDM5 copies is significantly and inversely correlated with miR-182 expression evaluated by qPCR (R = -0.615, P = 0.009). We conclude that the aberrant miR-182 expression in EOC may be due to CN gains within its coding locus. The miR-182 promoter is rarely methylated in EOC, and its methylation status is associated with lower miR-182 expression. Deletion of the PRDM5 locus may play a supportive role in miR-182 overexpression in EOC. miR-182 is an unfavorable prognostic factor in EOC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Józef Czesław Kotarski
- Second Department of Gynecological Oncology, St. John's Cancer Oncology Center Lublin, Lublin, Poland
| | - Anna Ronowicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Tarkowski
- 1 st Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Polak
- 1 st Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Halina Antosz
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Kotarski
- 1 st Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
65
|
Brouwer J, Kluiver J, de Almeida RC, Modderman R, Terpstra MM, Kok K, Withoff S, Hollema H, Reitsma W, de Bock GH, Mourits MJE, van den Berg A. Small RNA sequencing reveals a comprehensive miRNA signature of BRCA1-associated high-grade serous ovarian cancer. J Clin Pathol 2016; 69:jclinpath-2016-203679. [PMID: 27048682 DOI: 10.1136/jclinpath-2016-203679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/09/2016] [Indexed: 12/29/2022]
Abstract
AIMS BRCA1 mutation carriers are at increased risk of developing high-grade serous ovarian cancer (HGSOC), a malignancy that originates from fallopian tube epithelium. We aimed to identify differentially expressed known and novel miRNAs in BRCA1-associated HGSOC. METHODS Small RNA sequencing was performed on eight normal tubal and five HGSOC samples of BRCA1 carriers. Differential expression of a subset of known and novel miRNAs was validated by qRT-PCR on the samples used for small RNA sequencing and a second sample cohort comprising normal and HGSOC tissue of matched BRCA1 and non-BRCA carriers. Data from The Cancer Genome Atlas were used to determine the clinical relevance of the validated differentially expressed miRNAs. RESULTS 59 known and 20 novel miRNAs showed a significant >fourfold expression difference between normal tubal tissue and HGSOC. qRT-PCR validation confirmed a significant difference in expression levels for 10 out of 11 known miRNAs. Upregulation of two novel miRNAs could not be confirmed. Interestingly, for seven miRNAs a significant increase in expression was observed when comparing normal tubal tissue of postmenopausal women with premenopausal women. Expression levels of miR-145-5p significantly increased with International Federation of Gynecology and Obstetrics stage, while the expression levels of the other nine validated miRNAs were not associated with clinical characteristics. CONCLUSIONS We report a comprehensive expression signature including both known and novel miRNAs of BRCA1-associated HGSOC. Comparison with previous profiling studies showed a good overlap and a large number of miRNAs not reported to be differentially expressed in HGSOC before underscoring the importance of this study.
Collapse
Affiliation(s)
- Jan Brouwer
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rodrigo C de Almeida
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miente Martijn Terpstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry Hollema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Welmoed Reitsma
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geertruida H de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marian J E Mourits
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
66
|
Xiao Y, Zhang L, Song Z, Guo C, Zhu J, Li Z, Zhu S. Potential Diagnostic and Prognostic Value of Plasma Circulating MicroRNA-182 in Human Glioma. Med Sci Monit 2016; 22:855-62. [PMID: 26978735 PMCID: PMC4795091 DOI: 10.12659/msm.897164] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Previous studies showed the aberrant expression of microRNA-182 (miR-182) in glioma tissue. However, the exact role of circulating miR-182 in glioma remains unclear. Here, we confirmed the expression of plasma circulating miR-182 in glioma patients, and further explored its potential diagnostic and prognostic value. Material/Methods Real-time quantitative PCR (RT-PCR) was used to measure circulating cell-free miR-182 from 112 glioma patients and 54 healthy controls. Results Our findings showed that the level of circulating miR-182 in glioma patients was higher than that in healthy controls (P<0.001), which was significantly associated with KPS score (P=0.025) and WHO grade (P<0.001). The area under the receiver operating characteristic (ROC) curve (AUC) was 0.778. The optimal cut-off value was 1.56, and the sensitivity and specificity were 58.5% and 85.2%, respectively. Interestingly, a high predictive value of circulating miR-182 was observed in high-grade glioma (AUC=0.815). However, the AUC was lower in low-grade glioma (AUC=0.621). Kaplan-Meier analysis demonstrated that the cumulative 5-year overall survival rate in the high miR-182 group was significantly lower than that in the low miR-182 group in both overall survival (OS) (P=0.003) and disease-free survival (DFS) (P=0.006). Moreover, multivariate Cox analysis revealed that circulating miR-182 was an independent prognostic indicator for OS (P=0.034) and DFS (P=0.013). Conclusions These results suggest that circulating miR-182 may be a potential noninvasive biomarker for the diagnosis and prognosis of human glioma.
Collapse
Affiliation(s)
- Yilei Xiao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lina Zhang
- Department of Intensive Care Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Zikun Song
- Department of Intensive Care Medicine, The People's Second Hospital of Liaocheng, Linqing, Shandong, China (mainland)
| | - Chuanjun Guo
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Jianxin Zhu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Zhongmin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Shugan Zhu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
67
|
Zhou L, Li J, Shao QQ, Guo JC, Liang ZY, Zhou WX, Zhang TP, You L, Zhao YP. Expression and Significances of MTSS1 in Pancreatic Cancer. Pathol Oncol Res 2016. [PMID: 26198729 DOI: 10.1007/s12253-015-9963-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thus far, expression of metastasis suppressor 1 (MTSS1), its clinicopathologic and prognostic significances in pancreatic cancer (PC) remain unknown. Expression of MTSS1 was detected by Western blotting in PC cell lines, and by tissue microarray-based immunohistochemical staining in paired tumor and non-tumor samples from 242 patients with PC. Furthermore, the correlations between MTSS1 expression and clinicopathologic variables as well as overall survival were evaluated. In PC cell lines, MTSS1 was differentially expressed. In addition, MTSS1 expression was significantly lower in tumor than in non-tumor tissues (P < 0.001 in both McNemar and Mann-Whitney U tests). High tumoral expression of MTSS1 was closely associated with absence of lymph node metastasis (P = 0.023). Univariate analysis found that high MTSS1 expression in tumor tissues was a strong predictor of favorable overall survival in the whole cohort (P < 0.001). Besides, its impacts on prognosis were also observed in nine out of fourteen subgroups. Finally, MTSS1 expression was identified as an independent prognostic marker in the whole cohort (P = 0.031) as well as in six subgroups (P < 0.05), as shown by multivariate Cox regression test. Down-regulation of MTSS1 expression is evident in PC, and is associated with lymph node metastasis and poor prognosis.
Collapse
Affiliation(s)
- Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jian Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Qian-Qian Shao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Jun-Chao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China.
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Wei-Xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Tai-Ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
68
|
Fu X, Cui Y, Yang S, Xu Y, Zhang Z. MicroRNA-613 inhibited ovarian cancer cell proliferation and invasion by regulating KRAS. Tumour Biol 2015; 37:6477-83. [PMID: 26631045 DOI: 10.1007/s13277-015-4507-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play several important roles in carcinogenesis, and the dysregulation of miRNAs is associated with cancer progression. Little is known about the role of miR-613 in ovarian cancer. In the present study, we demonstrate that miR-613 expression is downregulated in human ovarian cancer cell lines and tissues. Additionally, miR-613 overexpression suppressed ovarian cancer cell proliferation, colony formation, and invasion. Furthermore, KRAS was identified as a target of miR-613. Reintroducing KRAS rescued the inhibitory effects exerted by miR-613 on ovarian cancer cell proliferation and invasion. Taken together, our findings suggest that miR-613 functions as a candidate tumor suppressor miRNA in ovarian cancer by directly targeting KRAS. To the best of our knowledge, this is the first study to show that miR-613 affects the proliferation and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Yanfen Cui
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Shaobin Yang
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Xu
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zicheng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| |
Collapse
|
69
|
Nagaraj AB, Joseph P, DiFeo A. miRNAs as prognostic and therapeutic tools in epithelial ovarian cancer. Biomark Med 2015; 9:241-57. [PMID: 25731210 DOI: 10.2217/bmm.14.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and is the fifth leading cause of cancer deaths in women. Developing adjuvant therapy to circumvent drug resistance represents an important aspect of current initiatives to improve survival in women with advanced EOC. A regulatory molecule that can act on multiple genes associated with a chemoresistant phenotype will be the ideal target for the development of therapeutics to overcome resistance and miRNAs constitute promising tools in this regard. In this review, we discuss the emerging role of miRNAs in regulating EOC phenotype with a focus on prognostic and therapeutic importance of miRNAs and the possibility of miRNA modulation as a tool to improve efficacy of chemotherapy in EOC.
Collapse
Affiliation(s)
- Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
70
|
Dong R, Liu X, Zhang Q, Jiang Z, Li Y, Wei Y, Li Y, Yang Q, Liu J, Wei JJ, Shao C, Liu Z, Kong B. miR-145 inhibits tumor growth and metastasis by targeting metadherin in high-grade serous ovarian carcinoma. Oncotarget 2015; 5:10816-29. [PMID: 25333261 PMCID: PMC4279412 DOI: 10.18632/oncotarget.2522] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC), the most common and aggressive subtype of epithelial ovarian cancer, is characterized by TP53 mutations and genetic instability. Using miRNA profiling analysis, we found that miR-145, a p53 regulated miRNA, was frequently down-regulated in HGSOC. miR-145 down-regulation was further validated in a large cohort of HGSOCs by qPCR. Overexpression of miR-145 in ovarian cancer cells significantly suppressed proliferation, migration and invasion in vitro and inhibited tumor growth and metastasis in vivo. Metadherin (MTDH) was subsequently identified as a direct target of miR-145, and was found to be significantly up-regulated in HGSOC. Furthermore, overexpression of MTDH rescued the inhibitory effects of miR-145 in ovarian cancer cells. Finally, we found that high level of MTDH expression correlated with poor prognosis of HGSOC. Therefore, lack of suppression of MTDH by miR-145 when p53 is dysfunctional leads to increased tumor growth and metastasis of HGSOC. Our study established a new link between p53, miR-145 and MTDH in the regulation of tumor growth and metastasis in HGSOC.
Collapse
Affiliation(s)
- Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaolin Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhijun Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuyan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Changshun Shao
- Ministry of Education Key Laboratory of Experimental Teratology and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
71
|
LIU RONG, MARTIN TRACEYA, JORDAN NICOLAJ, RUGE FIONA, YE LIN, JIANG WENG. Metastasis suppressor 1 expression in human ovarian cancer: The impact on cellular migration and metastasis. Int J Oncol 2015; 47:1429-39. [DOI: 10.3892/ijo.2015.3121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 11/05/2022] Open
|
72
|
Abstract
Ovarian cancer, consisting predominantly of ovarian carcinoma, is the eighth most common cancer in women and the most lethal gynecologic malignancy. Efforts focus on identifying biomarkers which may aid in early diagnosis and reduce mortality, as well as on characterizing therapeutic targets with the aim of circumventing chemoresistance and prolonging survival at advanced-stage disease. MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression, and have been found to play an important role in ovarian carcinoma. Recent research has identified multiple miRNAs involved in the biology and progression of the disease, and supports a role for miRNAs as potential biomarkers, predictive markers and prognostic factors. Many of the studies published to date nevertheless suffer from critical weaknesses which affect data quality and reproducibility, including the comparison of normal ovaries to tumor tissue without compensation for the highly discrepant target cell fraction in these two specimen types and the inclusion of carcinomas of different histotypes, non-epithelial tumors or tumors of non-specified histology. These shortcomings highlight the critical role of pathologists as part of the team in the setting of such research. This review summarizes current knowledge in this area and discusses the potential clinical relevance of miRNAs in ovarian carcinoma, with focus on studies of clinical specimens in which tissue selection has been deemed adequate.
Collapse
Affiliation(s)
- Betina Katz
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - Claes G Tropé
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; David R. Bloom Center for Pharmacy and the Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway.
| |
Collapse
|
73
|
Davidson B, Tropé CG. Ovarian cancer: diagnostic, biological and prognostic aspects. ACTA ACUST UNITED AC 2015; 10:519-33. [PMID: 25335543 DOI: 10.2217/whe.14.37] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy, owing to late detection, intrinsic and acquired chemoresistance and remarkable heterogeneity. Despite optimization of surgical and chemotherapy protocols and initiation of clinical trials incorporating targeted therapy, only modest gains have been achieved in prolonging survival in this cancer. This review provides an update of recent developments in our understanding of the etiology, origin, diagnosis, progression and treatment of this malignancy, with emphasis on clinically relevant genetic classification approaches. In the authors' opinion, focused effort directed at understanding the molecular make-up of recurrent and metastatic ovarian cancer, while keeping in mind the unique molecular character of each of its histological types, is central to our effort to improve patient outcome in this cancer.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| | | |
Collapse
|
74
|
Sun Y, Guo F, Bagnoli M, Xue FX, Sun BC, Shmulevich I, Mezzanzanica D, Chen KX, Sood AK, Yang D, Zhang W. Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer. CHINESE JOURNAL OF CANCER 2015; 34:28-40. [PMID: 25556616 PMCID: PMC4302087 DOI: 10.5732/cjc.014.10284] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition (EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas (TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This “paradox” can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating mRNA and microRNA (miRNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major miRNAs and 214 mRNAs. Among the 8 miRNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 miRNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer.
Collapse
Affiliation(s)
- Yan Sun
- Departments of Pathology, The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P. R. China. ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Schemionek M, Kharabi Masouleh B, Klaile Y, Krug U, Hebestreit K, Schubert C, Dugas M, Büchner T, Wörmann B, Hiddemann W, Berdel WE, Brümmendorf TH, Müller-Tidow C, Koschmieder S. Identification of the Adapter Molecule MTSS1 as a Potential Oncogene-Specific Tumor Suppressor in Acute Myeloid Leukemia. PLoS One 2015; 10:e0125783. [PMID: 25996952 PMCID: PMC4440712 DOI: 10.1371/journal.pone.0125783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
The adapter protein metastasis suppressor 1 (MTSS1) is implicated as a tumor suppressor or tumor promoter, depending on the type of solid cancer. Here, we identified Mtss1 expression to be increased in AML subsets with favorable outcome, while suppressed in high risk AML patients. High expression of MTSS1 predicted better clinical outcome of patients with normal-karyotype AML. Mechanistically, MTSS1 expression was negatively regulated by FLT3-ITD signaling but enhanced by the AML1-ETO fusion protein. DNMT3B, a negative regulator of MTSS1, showed strong binding to the MTSS1 promoter in PML-RARA positive but not AML1-ETO positive cells, suggesting that AML1-ETO leads to derepression of MTSS1. Pharmacological treatment of AML cell lines carrying the FLT3-ITD mutation with the specific FLT3 inhibitor PKC-412 caused upregulation of MTSS1. Moreover, treatment of acute promyelocytic cells (APL) with all-trans retinoic acid (ATRA) increased MTSS1 mRNA levels. Taken together, our findings suggest that MTSS1 might have a context-dependent function and could act as a tumor suppressor, which is pharmacologically targetable in AML patients.
Collapse
Affiliation(s)
- Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yvonne Klaile
- Department of Urology, University of Muenster, Muenster, Germany
| | - Utz Krug
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Katja Hebestreit
- Institute for Medical Informatics, University of Muenster, Muenster, Germany
| | - Claudia Schubert
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Dugas
- Institute for Medical Informatics, University of Muenster, Muenster, Germany
| | - Thomas Büchner
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Bernhard Wörmann
- Membership of the German Society of Hematology and Oncology (DGHO), Berlin, Germany
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, University of Munich, Munich, Germany
- Clinical Cooperation Group Acute Myeloid Leukemia, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A, Hematology, Oncology, Pneumology, University of Muenster, Muenster, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
76
|
Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H, Zhang Y, Yuan X. The Downregulation of MiR-182 Is Associated with the Growth and Invasion of Osteosarcoma Cells through the Regulation of TIAM1 Expression. PLoS One 2015; 10:e0121175. [PMID: 25973950 PMCID: PMC4431740 DOI: 10.1371/journal.pone.0121175] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/28/2015] [Indexed: 01/28/2023] Open
Abstract
Background Osteosarcoma is the most common primary bone malignancy in children and young adults. Increasing results suggest that discovery of microRNAs (miRNAs) might provide a novel therapeutical target for osteosarcoma. Methods MiR-182 expression level in osteosarcoma cell lines and tissues were assayed by qRT-PCR. MiRNA mimics or inhibitor were transfected for up-regulation or down-regulation of miR-182 expression. Cell function was assayed by CCK8, migration assay and invasion assay. The target genes of miR-182 were predicated by bioinformatics algorithm (TargetScan Human). Results MiR-182 was down-regulated in osteosarcoma tissues and cell lines. Overexpression of miR-182 inhibited tumor growth, migration and invasion. Subsequent investigation revealed that TIAM1 was a direct and functional target of miR-182 in osteosarcoma cells. Overexpression of miR-182 impaired TIAM1-induced inhibition of proliferation and invasion in osteosarcoma cells. Conclusions Down-expression of miR-182 in osteosarcoma promoted tumor growth, migration and invasion by targeting TIAM1. MiR-182 might act as a tumor suppressor gene whose down-regulation contributes to the progression and metastasis of osteosarcoma, providing a potential therapy target for osteosarcoma patients.
Collapse
Affiliation(s)
- Jun Hu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Guohua Lv
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- * E-mail:
| | - Shuguang Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopedics, The Affiliated Hospital of Hunan University of Medicine and The Third People’s Hospital of Huaihua, Huaihua, Hunan, China
| | - Yucheng Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopedics, The People’s Hospital of Qingyuan, Qingyuan, Guangdong, China
| | - Bangxu Nie
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Hong Duan
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Yunfeng Zhang
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| | - Xiaofeng Yuan
- Department of Orthopedics, The First Hospital of Kunming, Kunming, Yunnan, China
| |
Collapse
|
77
|
Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015; 29:732-45. [PMID: 25838542 PMCID: PMC4387715 DOI: 10.1101/gad.257394.114] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Lisa A Hurley
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Emily S Day
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Youjia Hua
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Liangliang Hao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chian-Yu Peng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Timothy J Merkel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Markus A Queisser
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Carissa Ritner
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Hailei Zhang
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lynda Chin
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - John A Kessler
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Marcus E Peter
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA; Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA;
| |
Collapse
|
78
|
Kedmi M, Ben-Chetrit N, Körner C, Mancini M, Ben-Moshe NB, Lauriola M, Lavi S, Biagioni F, Carvalho S, Cohen-Dvashi H, Schmitt F, Wiemann S, Blandino G, Yarden Y. EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer. Sci Signal 2015; 8:ra29. [PMID: 25783158 DOI: 10.1126/scisignal.2005866] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth factors promote tumor growth and metastasis. We found that epidermal growth factor (EGF) induced a set of 22 microRNAs (miRNAs) before promoting the migration of mammary cells. These miRNAs were more abundant in human breast tumors relative to the surrounding tissue, and their abundance varied among breast cancer subtypes. One of these miRNAs, miR-15b, targeted the 3' untranslated region of MTSS1 (metastasis suppressor protein 1). Although xenografts in which MTSS1 was knocked down grew more slowly in mice initially, longer-term growth was unaffected. Knocking down MTSS1 increased migration and Matrigel invasion of nontransformed mammary epithelial cells. Overexpressing MTSS1 in an invasive cell line decreased cell migration and invasiveness, decreased the formation of invadopodia and actin stress fibers, and increased the formation of cellular junctions. In tissues from breast cancer patients with the aggressive basal subtype, an inverse correlation occurred with the high expression of miRNA-15b and the low expression of MTSS1. Furthermore, low abundance of MTSS1 correlated with poor patient prognosis. Thus, growth factor-inducible miRNAs mediate mechanisms underlying the progression of cancer.
Collapse
Affiliation(s)
- Merav Kedmi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Bossel Ben-Moshe
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sara Lavi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Francesca Biagioni
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena," Rome 00144, Italy
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Cohen-Dvashi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fernando Schmitt
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto and Department of Pathology, University Health Network, Toronto, Ontario M5C 2C4, Canada. IPATIMUP, University of Porto, Porto 4200-465, Portugal
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena," Rome 00144, Italy
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
79
|
Zhang Y, Wang X, Wang Z, Tang H, Fan H, Guo Q. miR-182 promotes cell growth and invasion by targeting forkhead box F2 transcription factor in colorectal cancer. Oncol Rep 2015; 33:2592-8. [PMID: 25738520 DOI: 10.3892/or.2015.3833] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/30/2015] [Indexed: 01/23/2023] Open
Abstract
Forkhead box F2 transcription factor (FoxF2) has been described to promote organ development, extracellular matrix (ECM) synthesis and epithelial-mesenchymal interaction. Although recent studies reported decreased FoxF2 expression in several types of cancers, indicating its potential role in carcinogenesis, the mechanistic role of FoxF2 is yet to be explored. MicroRNAs (miRNAs) are strongly implicated in carcinogenesis. The oncogenetic properties of miR-182 have been described in multiple cancers. In the present study, we aimed to investigate the role of miR-182 in colorectal cancer (CRC) and identify the regulation of FoxF2 by miR-182. Bioinformatic analyses on gene expression profiling datasets showed decreased FoxF2 expression in colorectal adenomas, primary tumors compared to normal colon epithelial and a negative association between FoxF2 and β-catenin expression. Restoration of FoxF2 in CRC cells suppressed β-catenin expression and simultaneously inhibited cell growth and invasion. Furthermore, we observed that miR-182 was aberrantly upregulated in CRC. Knockdown of miR-182 in CRC cells impeded cell growth and invasion. The direct binding of miR-182 to the 3' untranslated region (3'UTR) of FoxF2 mRNA was confirmed using a luciferase reporter gene assay. Importantly, elevated FoxF2 expression was observed in miR-182-knockdown cells with a simultaneous reduction in β-catenin. In conclusion, the present study describes a potential mechanism underlying an miR-182/FoxF2 link contributing to CRC development. miR-182-induced downregulation of FoxF2 partly accounts for increased activity of β-catenin signaling. Inhibition of miR-182 represents a potential strategy against CRC.
Collapse
Affiliation(s)
- Yu Zhang
- Yunnan Provincial Institute of Digestive Medicine, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Xinying Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhongqiu Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hui Tang
- Yunnan Provincial Institute of Digestive Medicine, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Hong Fan
- Yunnan Provincial Institute of Digestive Medicine, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Qiang Guo
- Yunnan Provincial Institute of Digestive Medicine, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| |
Collapse
|
80
|
Wang TH, Yeh CT, Ho JY, Ng KF, Chen TC. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol Carcinog 2015; 55:366-75. [PMID: 25663355 DOI: 10.1002/mc.22286] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
EphrinA5, a member of the ephrinA subclass, is downregulated in hepatocellular carcinoma (HCC) and acts as a tumor suppressor. However, the upstream regulation mechanism of ephrinA5 remains unclear. In this study, we tried to identify and characterize the roles of miR-96 and miR-182 in the regulation of ephrinA5 expression in HCC. The expression levels of miR-96 and miR-182 were examined in 47 paired HCC and para-tumoral liver tissues using quantitative real-time RT-PCR. The luciferase reporter assay and western blotting were employed to dissect the association between miR-96/182 and ephrinA5 expression. Moreover, cells were treated with synthetic miR-96/182 precursors and inhibitors to assess their effects on HCC cell growth and migration. It was found that both miR-96 and miR-182 were upregulated in HCC compared to para-tumoral normal tissues. The expression of miR-96 and miR-182 was inversely associated with ephrinA5 protein levels. Furthermore, both miR-96 and miR-182 directly targeted the 3'UTR of the ephrinA5 mRNA and suppressed protein translation. The suppression of miR-96 and miR-182 led to reduced HCC cell proliferation and migration by negatively regulating ephrinA5 expression. In conclusion, miR-96 and miR-182 may act as oncomiRs in HCC by suppressing the expression of ephrinA5 and may play important roles in hepatocarcinogenesis. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jar-Yi Ho
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Tse-Ching Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| |
Collapse
|
81
|
Wei Q, Lei R, Hu G. Roles of miR-182 in sensory organ development and cancer. Thorac Cancer 2015; 6:2-9. [PMID: 26273328 PMCID: PMC4448460 DOI: 10.1111/1759-7714.12164] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/03/2014] [Indexed: 01/21/2023] Open
Abstract
Micro ribonucleic acids (miRNAs) are a cluster of small non-coding RNA molecules predicted to regulate more than 30% of coding messenger (m)RNAs in the human genome and proven to be essential in developmental and pathological processes. The miR-182 gene was first found to be abundantly expressed in sensory organs and regulates the development of the retina and inner ear. Further studies revealed its roles in osteogenesis and T cell differentiation. In addition, the involvement of miR-182 in cancer initiation and progression has recently been uncovered by a growing body of evidence, the majority of which supports its promoting effects in cell proliferation, angiogenesis, and invasion, as well as distant metastasis of various cancer types. Clinical analyses demonstrated the link of miR-182 expression to poor prognosis in cancer patients. Mechanistically, multiple downstream genes including missing-in-metastasis, microphthalm-associated transcription factor, FoxO1, cylindromatiosis, and others, can be targeted by miR-182 and mediate its roles in cancer. miR-182 is also interconnected with prominent cancer-related signaling pathways, such as transforming growth factor beta and nuclear factor kappa beta. Interestingly, it was shown that in vivo targeting of miR-182 prevented liver metastasis of melanoma. miR-182 is emerging as an important regulator of malignancies, which warrants further study to establish the application potential of miR-182 in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai, China
| | - Rong Lei
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
82
|
Abstract
The special AT-rich sequence-binding proteins 1 and 2 (SATB1/2) are nuclear matrix associated proteins that are transcription factors involved in chromatin remodeling and gene regulation. Expression of the SATB2 gene is tissue-specific, and the only epithelial cells expressing SATB2 are the glandular cells of the lower gastrointestinal tract where its expression is regulated by microRNA-31 (miR-31) and miR-182. SATB2, along with its homolog SATB1, are thought to be involved in various cancers with their roles in this disease being specific to the type of cancer. Colorectal cancer (CRC) provides the largest association of SATB2 with cancer and the roles of SATB2 are better defined and more studied in CRC than in any other cancer type. SATB1 displays a negative association with SATB2 in CRC. The various studies that have investigated the involvement of SATB1 and 2 in CRC have produced consistent findings. Here, we form four major conclusions regarding the role of these proteins in CRC and their potential clinical value: (i) SATB2 is a sensitive marker to distinguish CRC from other cancer types, (ii) Reduced expression of SATB2 in CRC is associated with poor prognosis, (iii) High levels of SATB1 expression facilitate CRC and are associated with poor prognosis and (iv) Overexpression of miR-31 and -182 in CRC leads to more aggressive cancer. This review will describe several of the key investigations that established these conclusions and highlight results that offer opportunities for future research in the treatment and diagnosis of CRC.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| |
Collapse
|
83
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
84
|
Circulating microRNA-182 in plasma and its potential diagnostic and prognostic value for pancreatic cancer. Med Oncol 2014; 31:225. [PMID: 25326859 DOI: 10.1007/s12032-014-0225-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
MicroRNA-182 (miR-182) is overexpressed in several tumors and is found to be associated with adverse clinical characteristics. However, less information on the circulating miR-182 in pancreatic cancer (PCa) is available. The aim of this study was to detect the circulating miR-182 in plasma and to explore its potential diagnostic and prognostic value in PCa. Real-time quantitative PCR was employed to detect circulating miR-182 from 109 PCa and 38 chronic pancreatitis (CP) as well as 50 healthy controls. Our findings revealed that the level of circulating miR-182 in PCa patients was higher than that in CP patients and healthy controls (both at P < 0.05), which was significantly associated with clinical stages (P < 0.001) and lymph node metastasis (P = 0.018). The area under the receiver operating characteristic curve was 0.775, and the optimal cutoff value was 1.63, thus providing a sensitivity of 64.1 % and a specificity of 82.6 %. The diagnosis capability of circulating miR-182 was significantly higher than that of CA19-9, and the combination of two molecules had higher diagnosis capacity (sensitivity of 84.68 % and specificity of 86.77 %). Kaplan-Meier analysis demonstrated that the elevated circulating miR-182 was closely correlated with both shorten overall survival (OS) (P < 0.001) and disease-free survival (DFS) (P < 0.001). Cox analysis indicated that it was an independent prognostic factor for OS and DFS. Our data suggest that circulating miR-182 may be a potential and useful noninvasive tumor marker for diagnosis and prognosis of pancreatic cancer.
Collapse
|
85
|
Perilli L, Vicentini C, Agostini M, Pizzini S, Pizzi M, D'Angelo E, Bortoluzzi S, Mandruzzato S, Mammano E, Rugge M, Nitti D, Scarpa A, Fassan M, Zanovello P. Circulating miR-182 is a biomarker of colorectal adenocarcinoma progression. Oncotarget 2014; 5:6611-6619. [PMID: 25115394 PMCID: PMC4196150 DOI: 10.18632/oncotarget.2245] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/22/2014] [Indexed: 01/05/2023] Open
Abstract
MiR-182 expression was evaluated by qRT-PCR and in situ hybridization in 20 tubular adenomas, 50 colorectal carcinoma (CRC), and 40 CRC liver metastases. Control samples obtained from patients with irritable bowel syndrome, or tumor-matched normal colon mucosa were analyzed (n=50). MiR-182 expression increased progressively and significantly along with the colorectal carcinogenesis cascade, and in CRC liver metastases. The inverse relation between miR-182 and the expression of its target gene ENTPD5 was investigated by immunohistochemical analysis. We observed that normal colocytes featured a strong ENTPD5 cytoplasmic expression whereas a significantly and progressively lower expression was present along with dedifferentiation of the histologic phenotype. Plasma samples from 51 CRC patients and controls were tested for miR-182 expression. Plasma miR-182 concentrations were significantly higher in CRC patients than in healthy controls or patients with colon polyps at endoscopy. Moreover, miR-182 plasma levels were significantly reduced in post-operative samples after radical hepatic metastasectomy compared to preoperative samples. Our results strengthen the hypothesis of a central role of miR-182 dysregulation in colon mucosa transformation, demonstrate the concomitant progressive down-regulation of ENTPD5 levels during colon carcinogenesis, and indicate the potential of circulating miR-182 as blood based biomarker for screening and monitoring CRC during the follow-up.
Collapse
Affiliation(s)
- Lisa Perilli
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Marco Agostini
- Department of Surgery, Oncology and Gastroenterology, Surgery Section, University of Padua, Padua, Italy
- Istituto di Ricerca Pediatrica - Citta' della Speranza, Padua, Italy
| | - Silvia Pizzini
- Department of Biology, University of Padua, Padua, Italy
| | - Marco Pizzi
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | | | - Susanna Mandruzzato
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Istituto Oncologico Veneto (IOV), IRCCS, Padua, Italy
| | - Enzo Mammano
- Department of Surgery, Oncology and Gastroenterology, Surgery Section, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Donato Nitti
- Department of Surgery, Oncology and Gastroenterology, Surgery Section, University of Padua, Padua, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Verona, Italy
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Matteo Fassan
- ARC-NET Research Centre, University of Verona, Verona, Italy
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Paola Zanovello
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Istituto Oncologico Veneto (IOV), IRCCS, Padua, Italy
| |
Collapse
|
86
|
miRNAs in tumor radiation response: bystanders or participants? Trends Mol Med 2014; 20:529-39. [PMID: 25153824 DOI: 10.1016/j.molmed.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022]
Abstract
There is increasing interest in defining a functional association between miRNAs and tumor radiation response, with the double aim of rationally designing miRNA-based strategies to increase patient radiosensitivity and identifying novel biomarkers of treatment response. Although it has been demonstrated that several miRNAs directly regulate the expression of components of cell pathways relevant to radiosensitivity, and miRNA expression profiles change upon irradiation, understanding the causal role exerted by individual miRNAs in determining tumor radiation response is still at an early stage. Based on available experimental and clinical evidence, we discuss here the potential of miRNAs as targets and/or tools for modulating radioresponsivity at the clinical level, as well as possible predictive biomarkers, underlining present limits and future perspectives.
Collapse
|
87
|
Abstract
SIGNIFICANCE microRNAs (miRNA) have been characterized as master regulators of the genome. As such, miRNAs are responsible for regulating almost every cellular pathway, including the DNA damage response (DDR) after ionizing radiation (IR). IR is a therapeutic tool that is used for the treatment of several types of cancer, yet the mechanism behind radiation response is not fully understood. RECENT ADVANCES It has been demonstrated that IR can alter miRNA expression profiles, varying greatly from one cell type to the next. It is possible that this variation contributes to the range of tumor cell responsiveness that is observed after radiotherapy, especially considering the extensive role for miRNAs in regulating the DDR. In addition, individual miRNAs or miRNA families have been shown to play a multifaceted role in the DDR, regulating multiple members in a single pathway. CRITICAL ISSUES In this review, we will discuss the effects of radiation on miRNA expression as well as explore the function of miRNAs in regulating the cellular response to radiation-induced damage. We will discuss the importance of miRNA regulation at each stage of the DDR, including signal transduction, DNA damage sensing, cell cycle checkpoint activation, DNA double-strand break repair, and apoptosis. We will focus on emphasizing the importance of a single miRNA targeting several mediators within a pathway. FUTURE DIRECTIONS miRNAs will continue to emerge as critical regulators of the DDR. Understanding the role of miRNAs in the response to IR will provide insights for improving the current standard therapy.
Collapse
|
88
|
Zhu H, Fang J, Zhang J, Zhao Z, Liu L, Wang J, Xi Q, Gu M. miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma. Biochem Biophys Res Commun 2014; 450:857-62. [PMID: 24971532 DOI: 10.1016/j.bbrc.2014.06.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
In this study, we investigated the role and underlying mechanism of action of miR-182 in papillary thyroid carcinoma (PTC). Bioinformatics analysis revealed close homolog of LI (CHL1) as a potential target of miR-182. Upregulation of miR-182 was significantly correlated with CHL1 downregulation in human PTC tissues and cell lines. miR-182 suppressed the expression of CHL1 mRNA through direct targeting of the 3'-untranslated region (3'-UTR). Downregulation of miR-182 suppressed growth and invasion of PTC cells. Silencing of CHL1 counteracted the effects of miR-182 suppression, while its overexpression mimicked these effects. Our data collectively indicate that miR-182 in PTC promotes cell proliferation and invasion through direct suppression of CHL1, supporting the potential utility of miR-182 inhibition as a novel therapeutic strategy against PTC.
Collapse
Affiliation(s)
- Hongling Zhu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jin Fang
- Department of Endocrine, The 118th Hospital of Chinese PLA, Wenzhou, Zhejiang, China
| | - Jichen Zhang
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Zefei Zhao
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lianyong Liu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jingnan Wang
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qian Xi
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Mingjun Gu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China.
| |
Collapse
|
89
|
Wang Y, Kim S, Kim IM. Regulation of Metastasis by microRNAs in Ovarian Cancer. Front Oncol 2014; 4:143. [PMID: 24959422 PMCID: PMC4050529 DOI: 10.3389/fonc.2014.00143] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/27/2014] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OC) is the second most common and the most fatal gynecologic cancer in the United States. Over the last decade, various targeted therapeutics have been introduced but there has been no corresponding improvement in patient survival mainly because of the lack of effective early detection methods. microRNAs (miRs) are small, non-coding RNAs that regulate gene expression post-transcriptionally. Accumulating data suggest central regulatory roles of miRs in modulating OC initiation, progression, and metastasis. More recently, aberrant miR expression has been also associated with cancer stem cell (CSC) phenotypes and development of CSC chemo-resistance. Here, we review recent advances on miRs and OC metastasis and discuss the concept that miRs are involved in both CSC transformation and subsequent OC metastasis. Finally, we describe the prevalence of circulating miRs and assess their potential utilities as biomarkers for OC diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Yongchao Wang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | - Sangmi Kim
- Cancer Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| |
Collapse
|
90
|
Davidson B, Tropé CG, Reich R. The clinical and diagnostic role of microRNAs in ovarian carcinoma. Gynecol Oncol 2014; 133:640-6. [DOI: 10.1016/j.ygyno.2014.03.575] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/19/2022]
|
91
|
Xu X, Ayub B, Liu Z, Serna VA, Qiang W, Liu Y, Hernando E, Zabludoff S, Kurita T, Kong B, Wei JJ. Anti-miR182 reduces ovarian cancer burden, invasion, and metastasis: an in vivo study in orthotopic xenografts of nude mice. Mol Cancer Ther 2014; 13:1729-39. [PMID: 24825857 DOI: 10.1158/1535-7163.mct-13-0982] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a fatal disease, and its grave outcome is largely because of widespread metastasis at the time of diagnosis. Current chemotherapies reduce tumor burden, but they do not provide long-term benefits for patients with cancer. The aggressive tumor growth and metastatic behavior characteristic of these tumors demand novel treatment options such as anti-microRNA treatment, which is emerging as a potential modality for cancer therapy. MicroRNA-182 (miR182) overexpression contributes to aggressive ovarian cancer, largely by its negative regulation of multiple tumor suppressor genes involved in tumor growth, invasion, metastasis, and DNA instability. In this study, we examined the therapeutic potential of anti-miR182 utilizing the animal orthotopic model to mimic human ovarian cancer using ovarian cancer cells SKOV3 (intrabursal xenografts) and OVCAR3 (intraperitoneal injection). These models provide a valuable model system for the investigation of ovarian cancer therapy in vivo. Through a combination of imaging, histological, and molecular analyses, we found that anti-miR182 treatment can significantly reduce tumor burden (size), local invasion, and distant metastasis compared with its control in both models. The bases of anti-miR182 treatment are mainly through the restoration of miR182 target expression, including but not limited to BRCA1, FOXO3a, HMGA2, and MTSS1. Overall, our results strongly suggest that anti-miR182 can potentially be used as a therapeutic modality in treating HGSOC.
Collapse
Affiliation(s)
- Xiaofei Xu
- Authors' Affiliations: Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University; Pathology and
| | | | - Zhaojian Liu
- Institute of Genetics, Shandong University School of Medicine, Jinan, Shandong, China; Departments of Pathology and
| | | | - Wenan Qiang
- Pathology and Obstetrics and Gynecology; Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois
| | | | - Eva Hernando
- Department of Pathology, New York University, New York, New York; and
| | | | - Takeshi Kurita
- Obstetrics and Gynecology; Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois
| | - Beihua Kong
- Authors' Affiliations: Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University;
| | - Jian-Jun Wei
- Pathology and Obstetrics and Gynecology; Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois;
| |
Collapse
|
92
|
Wang L, Zhu MJ, Ren AM, Wu HF, Han WM, Tan RY, Tu RQ. A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. PLoS One 2014; 9:e96472. [PMID: 24816756 PMCID: PMC4015980 DOI: 10.1371/journal.pone.0096472] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common gynecologic malignancy. To identify the micro-ribonucleic acids (miRNAs) expression profile in EOC tissues that may serve as a novel diagnostic biomarker for EOC detection, the expression of 1722 miRNAs from 15 normal ovarian tissue samples and 48 ovarian cancer samples was profiled by using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. A ten-microRNA signature (hsa-miR-1271-5p, hsa-miR-574-3p, hsa-miR-182-5p, hsa-miR-183-5p, hsa-miR-96-5p, hsa-miR-15b-5p, hsa-miR-182-3p, hsa-miR-141-5p, hsa-miR-130b-5p, and hsa-miR-135b-3p) was identified to be able to distinguish human ovarian cancer tissues from normal tissues with 97% sensitivity and 92% specificity. Two miRNA clusters of miR183-96-183 (miR-96-5p, and miR-182, miR183) and miR200 (miR-141-5p, miR200a, b, c and miR429) are significantly up-regulated in ovarian cancer tissue samples compared to those of normal tissue samples, suggesting theses miRNAs may be involved in ovarian cancer development.
Collapse
Affiliation(s)
- Lin Wang
- Department of Obstetrics and Gynecology, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Ai-Min Ren
- Department of Obstetrics and Gynecology, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong-Fei Wu
- Biovue Technology (China) Ltd., Shanghai, China
| | - Wu-Mei Han
- Biovue Technology (China) Ltd., Shanghai, China
| | | | - Rui-Qin Tu
- Department of Obstetrics and Gynecology, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Calvano Filho CMC, Calvano-Mendes DC, Carvalho KC, Maciel GA, Ricci MD, Torres AP, Filassi JR, Baracat EC. Triple-negative and luminal A breast tumors: differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p. Tumour Biol 2014; 35:7733-41. [DOI: 10.1007/s13277-014-2025-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/28/2014] [Indexed: 01/21/2023] Open
|
94
|
Yang MH, Yu J, Jiang DM, Li WL, Wang S, Ding YQ. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J Transl Med 2014; 12:109. [PMID: 24884732 PMCID: PMC4020308 DOI: 10.1186/1479-5876-12-109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/25/2014] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has revealed that microRNAs (miRNA) played a pivotal role in regulating cancer cell proliferation and metastasis. The deregulation of miR-182 has been identified in colorectal cancer (CRC). However, the role and mechanism of miR-182 in CRC have not been completely understood yet. Methods The expression levels of miR-182 in CRC tissues and CRC cell lines were examined by performing stem-loop quantitative RT-PCR. The stable over-expression miR-182 cell lines and control cell lines were constructed by lentivirus infection. Subsequently, CCK-8 assay, plate colony formation assay, cell migration, invasion assay and experimental animal models were performed to detect the biological functions of miR-182 in vitro and in vivo. A luciferase reporter assay was conducted to confirm target associations. Western blot and immunohistochemical analysis were performed to examine the expression changes of molecular markers that are regulated by miR-182. Results We found that miR-182 expression is increased in CRC cells that originated from metastatic foci and human primary CRC tissues with lymph node metastases. The ectopic expression of miR-182 enhanced cell proliferation, invasion, and migration in vitro. Stable overexpression of miR-182 also facilitated tumor growth and metastasis in vivo too. Further research showed that miR-182 could directly target the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2, which we identified in previous studies as a CRC metastasis-associated protein. Restoring SATB2 expression could reverse the effects of miR-182 on CRC cell proliferation and migration. Investigations of possible mechanisms underlying these behaviors induced by miR-182 revealed that miR-182 induced epithelial-mesenchymal transition (EMT) by modulating the expression of key cellular molecules in EMT. Conclusions Our results illustrated that the up-regulation of miR-182 played a pivotal role in CRC tumorigenesis and metastasis, which suggesting a potential implication of miR-182 in the molecular therapy for CRC.
Collapse
Affiliation(s)
| | | | | | | | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | | |
Collapse
|
95
|
Xu X, Lu Z, Qiang W, Vidimar V, Kong B, Kim JJ, Wei JJ. Inactivation of AKT induces cellular senescence in uterine leiomyoma. Endocrinology 2014; 155:1510-9. [PMID: 24476133 PMCID: PMC3959594 DOI: 10.1210/en.2013-1929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Pathology (X.X., J.-J.W.) and Department of Obstetrics and Gynecology (Z.L., W.Q., J.J.K., J.-J.W., V.V.), Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Obstetrics and Gynecology (X.X., B.K.), Shandong University, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
96
|
Gadducci A, Sergiampietri C, Lanfredini N, Guiggi I. Micro-RNAs and ovarian cancer: the state of art and perspectives of clinical research. Gynecol Endocrinol 2014; 30:266-71. [PMID: 24479883 DOI: 10.3109/09513590.2013.871525] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dysregulation of microRNA (mi-RNA) expression plays a major role in the development and progression of most human malignancies. Members of the miR-200 family, miR-182, miR-214 and miR-221 are frequently up-regulated, whereas miR-100, let-7i, miR-199a, miR-125b, mir-145 and miR-335 are often down-regulated in ovarian cancer compared with normal ovarian tissue. Most mi-RNA signatures are overlapping in different tumor histotypes but some mi-RNAs seem to be histotype specific. For instance, the endometrioid type shares with the serous and clear cell types the up-regulation of miR-200 family members, but also presents over-expression of miR-21, miR-202 and miR-205. Clear cell carcinoma has a significantly higher expression of miR-30a and miR-30a*, whereas mucinous histotype has elevated levels of miR-192/194. In vitro and in vivo investigations have shown that several mi-RNAs can modulate the sensitivity of ovarian cancer to platinum and taxane, and clinical studies have suggested that mi-RNA profiling may predict the outcome of patients with this malignancy. Some mi-RNAs could be used as biomarkers to identify patients that might benefit from the addition of molecularly targeted agents (i.e. anti-angiogenic agents, MET inhibitors and poly(ADP-ribose) polymerase (PARP) inhibitors) to standard chemotherapy. Moreover, mi-RNAs could represent potential targets for the development of novel therapies.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa , Pisa , Italy
| | | | | | | |
Collapse
|
97
|
WANG YU, YAN SHI, LIU XIAOLIN, ZHANG WENJING, LI YINGWEI, DONG RUIFEN, ZHANG QING, YANG QIFENG, YUAN CUNZHONG, SHEN KENG, KONG BEIHUA. miR-1236-3p represses the cell migration and invasion abilities by targeting ZEB1 in high-grade serous ovarian carcinoma. Oncol Rep 2014; 31:1905-10. [DOI: 10.3892/or.2014.3046] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
|
98
|
Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A, Grimmond SM, Cloonan N. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA (NEW YORK, N.Y.) 2013; 19:1767-1780. [PMID: 24158791 PMCID: PMC3884652 DOI: 10.1261/rna.042143.113] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/12/2013] [Indexed: 05/29/2023]
Abstract
Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFβ, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Keerthana Krishnan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Anita L. Steptoe
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Hilary C. Martin
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | | | - Katia Nones
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Nic Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
| | - Mythily Mariasegaram
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
| | - Peter T. Simpson
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
| | - Sunil R. Lakhani
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, QLD, Australia 4029
- The University of Queensland, School of Medicine, Herston, QLD, Australia 4029
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia 4029
| | | | - Sean M. Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, United Kingdom
| | - Nicole Cloonan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia 4072
- QIMR Berghofer Medical Research Institute, Genomic Biology Laboratory, Herston, Australia 4006
| |
Collapse
|
99
|
Lee JY, Kim HS, Suh DH, Kim MK, Chung HH, Song YS. Ovarian cancer biomarker discovery based on genomic approaches. J Cancer Prev 2013; 18:298-312. [PMID: 25337559 PMCID: PMC4189448 DOI: 10.15430/jcp.2013.18.4.298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer presents at an advanced stage in more than 75% of patients. Early detection has great promise to improve clinical outcomes. Although the advancing proteomic technologies led to the discovery of numerous ovarian cancer biomarkers, no screening method has been recommended for early detection of ovarian cancer. Complexity and heterogeneity of ovarian carcinogenesis is a major obstacle to discover biomarkers. As cancer arises due to accumulation of genetic change, understanding the close connection between genetic changes and ovarian carcinogenesis would provide the opportunity to find novel gene-level ovarian cancer biomarkers. In this review, we summarize the various gene-based biomarkers by genomic technologies, including inherited gene mutations, epigenetic changes, and differential gene expression. In addition, we suggest the strategy to discover novel gene-based biomarkers with recently introduced next generation sequencing.
Collapse
Affiliation(s)
- Jung-Yun Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Mi-Kyung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
- Cancer Research Institute, Seoul National University College of Medicine
- Major in Biomodulation, World Class University, Seoul National University, Seoul, Korea
| |
Collapse
|
100
|
Molecular markers for prostate cancer in formalin-fixed paraffin-embedded tissues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283635. [PMID: 24371818 PMCID: PMC3859157 DOI: 10.1155/2013/283635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.
Collapse
|