51
|
Martín-González C, Fernández-Alonso P, Pérez-Hernández O, Abreu-González P, Espelosín-Ortega E, Fernández-Rodríguez CM, Martín-Ponce E, González-Reimers E. Sarcopenic Obesity in People with Alcoholic Use Disorder: Relation with Inflammation, Vascular Risk Factors and Serum Vitamin D Levels. Int J Mol Sci 2023; 24:9976. [PMID: 37373124 DOI: 10.3390/ijms24129976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the terms sarcopenia, sarcopenic obesity, and osteosarcopenic obesity (OSO) were coined to define a situation in elderly people strongly associated with frailty and increased mortality. Possibly, a complex interplay of several hormones and cytokines are involved in its development. Ongoing research detected that OSO may occur at any age and in several conditions. The prevalence of OSO in alcoholism was poorly analyzed. The aim of this study was to analyze the prevalence of OSO in alcoholism and its relationship with proinflammatory cytokines and/or common complications of alcoholism, such as cirrhosis, cancer, or vascular disease. We included 115 patients with alcoholic use disorder. Body composition analysis was performed by double X-ray absorptiometry. Handgrip strength was recorded using a dynamometer. We assessed liver function according to Child's classification, and determined serum levels of proinflammatory cytokines (TNF-α, IL-6, IL-8), routine laboratory variables, and vitamin D. People with alcoholic use disorder showed a high prevalence of OSO, especially regarding OSO obesity (60%), OSO osteopenia (55.65%), and OSO lean mass (60.17%). OSO handgrip was closely, independently, related to the presence of vascular calcification (χ2 = 17.00; p < 0.001). OSO handgrip was related to several proinflammatory cytokines and vitamin D. Vitamin D deficiency kept a close correlation with OSO handgrip (rho = -0.54, p < 0.001). Therefore, among people with alcohol use disorder, OSO prevalence was high. OSO handgrip is related to serum proinflammatory cytokine levels supporting the possible pathogenetic role of these cytokines on OSO development. Vitamin D deficiency is related to OSO handgrip suggesting its pathogenetic involvement in sarcopenia in patients with alcohol use disorder. The close association between OSO handgrip and vascular calcification is clinically relevant and suggests that OSO handgrip may constitute a prognostic tool in these patients.
Collapse
Affiliation(s)
- Candelaria Martín-González
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Paula Fernández-Alonso
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Onán Pérez-Hernández
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Pedro Abreu-González
- Departamento de Ciencias Médicas Básicas, Unidad de Fisiología, Universidad de la Laguna, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Elisa Espelosín-Ortega
- Servicio de Laboratorio, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Camino María Fernández-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Esther Martín-Ponce
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Emilio González-Reimers
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| |
Collapse
|
52
|
Yang X, Cheng K, Wang LY, Jiang JG. The role of endothelial cell in cardiac hypertrophy: Focusing on angiogenesis and intercellular crosstalk. Biomed Pharmacother 2023; 163:114799. [PMID: 37121147 DOI: 10.1016/j.biopha.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China
| | - Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Lu-Yun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| |
Collapse
|
53
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
54
|
Watabe T, Takahashi K, Pietras K, Yoshimatsu Y. Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system. Semin Cancer Biol 2023; 92:130-138. [PMID: 37068553 DOI: 10.1016/j.semcancer.2023.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-β (TGF-β), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Kristian Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, 223 81 Lund, Sweden.
| | - Yasuhiro Yoshimatsu
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
55
|
Zheng Z, Hao R, Yang C, Jiao Y, Wang Q, Huang R, Liao Y, Jian J, Ming Y, Yin L, He W, Wang Z, Li C, He Q, Chen K, Deng Y, Du X. Genome-wide association study analysis to resolve the key regulatory mechanism of biomineralization in Pinctada fucata martensii. Mol Ecol Resour 2023; 23:680-693. [PMID: 36458936 DOI: 10.1111/1755-0998.13743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Biomineralization-controlled exo-/endoskeleton growth contributes to body growth and body size diversity. Molluscan shells undergo ectopic biomineralization to form the exoskeleton and biocalcified "pearl" involved in invading defence. Notably, exo-/endoskeletons have a common ancestral origin, but their regulation and body growth are largely unknown. This study employed the pearl oyster, Pinctada fucata marntensii, a widely used experimental model for biomineralization in invertebrates, to perform whole-genome resequencing of 878 individuals from wild and breeding populations. This study characterized the genetic architecture of biomineralization-controlled growth and ectopic biomineralization. The insulin-like growth factor (IGF) endocrine signal interacted with ancient single-copy transcription factors to form the regulatory network. Moreover, the "cross-phylum" regulation of key long noncoding RNA (lncRNA) in bivalves and mammals indicated the conserved genetic and epigenetic regulation in exo-/endoskeleton growth. Thyroid hormone signal and apoptosis regulation in pearl oysters affected ectopic biomineralization in pearl oyster. These findings provide insights into the mechanism underlying the evolution and regulation of biomineralization in exo-/endoskeleton animals and ectopic biomineralization.
Collapse
Affiliation(s)
- Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yu Jiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yongshan Liao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Yao Ming
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lixin Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Weiming He
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ziman Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chuyi Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Qi He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Kun Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
56
|
Liu A, Luo P, Huang H. New insight of complement system in the process of vascular calcification. J Cell Mol Med 2023; 27:1168-1178. [PMID: 37002701 PMCID: PMC10148053 DOI: 10.1111/jcmm.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
The complement system defences against pathogenic microbes and modulates immune homeostasis by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement system contributes to the pathogenesis of some autoimmune diseases and cardiovascular diseases (CVD). Vascular calcification is the pivotal pathological basis of CVD, and contributes to the high morbidity and mortality of CVD. Increasing evidences indicate that the complement system plays a key role in chronic kidney diseases, atherosclerosis, diabetes mellitus and aging-related diseases, which are closely related with vascular calcification. However, the effect of complement system on vascular calcification is still unclear. In this review, we summarize current evidences about the activation of complement system in vascular calcification. We also describe the complex network of complement system and vascular smooth muscle cells osteogenic transdifferentiation, systemic inflammation, endoplasmic reticulum stress, extracellular matrix remodelling, oxidative stress, apoptosis in vascular calcification. Hence, providing a better understanding of the potential relationship between complement system and vascular calcification, so as to provide a direction for slowing the progression of this burgeoning health concern.
Collapse
Affiliation(s)
- Aiting Liu
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines Macau University of Science and Technology Macau China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| |
Collapse
|
57
|
Karras FS, Schreier J, Körber-Ferl K, Ullmann SR, Franke S, Roessner A, Jechorek D. Comparative analysis of miRNA expression in dedifferentiated and well-differentiated components of dedifferentiated chondrosarcoma. Pathol Res Pract 2023; 244:154414. [PMID: 36963273 DOI: 10.1016/j.prp.2023.154414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a rare malignant cartilage tumor arising out of a low-grade chondrosarcoma, whereby the well-differentiated and the dedifferentiated components coexist in the same localization. DDCS has a massively increased metastatic potential in comparison to low-grade chondrosarcoma. So far, the underlying mechanisms of DDCS development and the increased malignancy are widely unknown. Targeted DNA sequencing revealed no genetic differences between both tissue components. Besides genetic events, alterations in epigenetic control may play a role in DDCS development. In this preliminary study, we have analyzed the differential miRNA expression in paired samples of both components of four primary DDCS cases and a rare lung metastasis with both components using the nCounter MAX analysis system from NanoString technologies. We identified 21 upregulated and two downregulated miRNAs in the dedifferentiated components of the primary cases. Moreover, three miRNAs were also significantly deregulated in the dedifferentiated component of the lung metastasis, supporting their possible role in DDCS development. Additionally, validated targets of the 23 deregulated miRNAs are involved in signaling pathways, like PI3K/Akt, Wnt/β-catenin, and TGF-β, as well as in cellular processes, like cell cycle regulation, apoptosis, and dedifferentiation. Further investigations are necessary to confirm and understand the role of the identified miRNAs in DDCS development.
Collapse
Affiliation(s)
- Franziska S Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Julian Schreier
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Kerstin Körber-Ferl
- Institute of Human Genetics, Martin-Luther University Halle, Magdeburger Str. 2, 06112 Halle, Germany
| | - Sarah R Ullmann
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sabine Franke
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Albert Roessner
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
58
|
Single-cell discovery of the scene and potential immunotherapeutic target in hypopharyngeal tumor environment. Cancer Gene Ther 2023; 30:462-471. [PMID: 36460803 PMCID: PMC10014576 DOI: 10.1038/s41417-022-00567-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Hypopharyngeal carcinoma is a cancer with the worst prognosis. We constructed the first single-cell transcriptome map for hypopharyngeal carcinoma and explored its underlying mechanisms. We systematically studied single-cell transcriptome data of 17,599 cells from hypopharyngeal carcinoma and paracancerous tissues. We identified categories of cells by dimensionality reduction and performed further subgroup analysis. Focusing on the potential mechanism in the cellular communication of hypopharyngeal carcinoma, we predicted ligand-receptor interactions and verified them via immunohistochemical and cellular experiments. In total, seven cell types were identified, including epithelial and myeloid cells. Subsequently, subgroup analysis showed significant tumor heterogeneity. Based on the pathological type of squamous cell carcinoma, we focused on intercellular communication between epithelial cells and various cells. We predicted the crosstalk and inferred the regulatory effect of cellular active ligands on the surface receptor of epithelial cells. From the top potential pairs, we focused on the BMPR2 receptor for further research, as it showed significantly higher expression in epithelial cancer tissue than in adjacent tissue. Further bioinformatics analysis, immunohistochemical staining, and cell experiments also confirmed its cancer-promoting effects. Overall, the single-cell perspective revealed complex crosstalk in hypopharyngeal cancer, in which BMPR2 promotes its proliferation and migration, providing a rationale for further study and treatment of this carcinoma.
Collapse
|
59
|
Abstract
The endothelium is one of the largest organ systems in the body, and data continue to emerge regarding the importance of endothelial cell (EC) dysfunction in vascular aging and a range of cardiovascular diseases (CVDs). Over the last two decades and as a process intimately related to EC dysfunction, an increasing number of studies have also implicated endothelial to mesenchymal transition (EndMT) as a potentially disease-causal pathobiologic process that is involved in a multitude of differing CVDs. However, EndMT is also involved in physiologic processes (e.g., cardiac development), and transient EndMT may contribute to vascular regeneration in certain contexts. Given that EndMT involves a major alteration in the EC-specific molecular program, and that it potentially contributes to CVD pathobiology, the clinical translation opportunities are significant, but further molecular and translational research is needed to see these opportunities realized.
Collapse
Affiliation(s)
- Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; .,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
60
|
Zhang Q, Liu Y, Li J, Wang J, Liu C. Recapitulation of growth factor-enriched microenvironment via BMP receptor activating hydrogel. Bioact Mater 2023; 20:638-650. [PMID: 35846838 PMCID: PMC9270210 DOI: 10.1016/j.bioactmat.2022.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to a growth factor abundant milieu has remarkable regenerative and rejuvenating effects on organ diseases, tissue damage, and regeneration, including skeletal system defects and bone regeneration. Although the introduction of candidate growth factors into relevant fields has been reported, their regenerative effects remain unsatisfactory, mainly because of the experimental challenges with limited types of growth factors, elusive dosage adjustment, and asynchronous stem cell activation with cytokine secretion. Here, an innovative hydrogel recapitulating a growth factor-enriched microenvironment (GEM) for regenerative advantage, is reported. This sulfated hydrogel includes bone morphogenetic protein-2 (BMP-2), an essential growth factor in osteogenesis, to direct mesenchymal stem cell (MSC) differentiation, stimulate cell proliferation, and improve bone formation. The semi-synthetic hydrogel, sulfonated gelatin (S-Gelatin), can amplify BMP-2 signaling in mouse MSCs by enhancing the binding between BMP-2 and BMP-2 type II receptors (BMPR2), which are located on MSC nuclei and activated by the hydrogel. Importantly, the dramatically improved cytokine secretion of MSCs throughout regeneration confirms the growth factor-acquiring potential of S-Gelatin/rhBMP-2 hydrogel, leading to the vascularization enhancement. These findings provide a new strategy to achieve an in situ GEM and accelerated bone regeneration by amplifying the regenerative capacity of rhBMP-2 and capturing endogenous growth factors.
Collapse
Affiliation(s)
- Qinghao Zhang
- Material Science and Engineering School, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Yuanda Liu
- Material Science and Engineering School, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Jie Li
- Material Science and Engineering School, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Jing Wang
- Material Science and Engineering School, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Material Science and Engineering School, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| |
Collapse
|
61
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
62
|
Eelderink C, Kremer D, Riphagen IJ, Knobbe TJ, Schurgers LJ, Pasch A, Mulder DJ, Corpeleijn E, Navis G, Bakker SJL, de Borst MH, Te Velde-Keyzer CA. Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial. Am J Transplant 2023; 23:520-530. [PMID: 36695702 DOI: 10.1016/j.ajt.2022.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023]
Abstract
Vitamin K deficiency is common among kidney transplant recipients (KTRs) and likely contributes to progressive vascular calcification and stiffness. In this single-center, randomized, double-blind, placebo-controlled trial, we aimed to investigate the effects of vitamin K supplementation on the primary end point, serum calcification propensity (calciprotein particle maturation time, T50), and secondary end points arterial stiffness (pulse wave velocity [PWV]) and vitamin K status in 40 vitamin K-deficient KTRs (plasma dephosphorylated uncarboxylated matrix Gla protein [dp-ucMGP] ≥500 pmol/L). Participants (35% female; age, 57 ± 13 years) were randomized 1:1 to vitamin K2 (menaquinone-7, 360 μg/day) or placebo for 12 weeks. Vitamin K supplementation had no effect on calcification propensity (change in T50 vs baseline +2.3 ± 27.4 minutes) compared with placebo (+0.8 ± 34.4 minutes; Pbetween group = .88) but prevented progression of PWV (change vs baseline -0.06 ± 0.26 m/s) compared with placebo (+0.27 ± 0.43 m/s; Pbetween group = .010). Vitamin K supplementation strongly improved vitamin K status (change in dp-ucMGP vs baseline -385 [-631 to -269] pmol/L) compared with placebo (+39 [-188 to +183] pmol/L; Pbetween group < .001), although most patients remained vitamin K-deficient. In conclusion, vitamin K supplementation did not alter serum calcification propensity but prevented progression of arterial stiffness, suggesting that vitamin K has vascular effects independent of calciprotein particles. These results set the stage for longer-term intervention studies with vitamin K supplementation in KTRs. TRIAL REGISTRY: EU Clinical Trials Register (EudraCT Number: 2019-004906-88) and the Dutch Trial Register (NTR number: NL7687).
Collapse
Affiliation(s)
- Coby Eelderink
- Department of Internal Medicine, Division of Nephrology, University of Groningen and University Medical Center, Groningen, Groningen, the Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University of Groningen and University Medical Center, Groningen, Groningen, the Netherlands.
| | - Ineke J Riphagen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tim J Knobbe
- Department of Internal Medicine, Division of Nephrology, University of Groningen and University Medical Center, Groningen, Groningen, the Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, the Netherlands
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland; Department of Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - D J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen and University Medical Center, Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen and University Medical Center, Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen and University Medical Center, Groningen, Groningen, the Netherlands
| | - Charlotte A Te Velde-Keyzer
- Department of Internal Medicine, Division of Nephrology, University of Groningen and University Medical Center, Groningen, Groningen, the Netherlands
| |
Collapse
|
63
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
64
|
González-Carnicero Z, Hernanz R, Martínez-Casales M, Barrús MT, Martín Á, Alonso MJ. Regulation by Nrf2 of IL-1β-induced inflammatory and oxidative response in VSMC and its relationship with TLR4. Front Pharmacol 2023; 14:1058488. [PMID: 36937865 PMCID: PMC10018188 DOI: 10.3389/fphar.2023.1058488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Vascular oxidative stress and inflammation play an important role in the pathogenesis of cardiovascular diseases (CVDs). The proinflammatory cytokine Interleukin-1β (IL-1β) participates in the vascular inflammatory and oxidative responses and influences vascular smooth muscle cells (VSMC) phenotype and function, as well as vascular remodelling in cardiovascular diseases. The Toll-like receptor 4 (TLR4) is also involved in the inflammatory response in cardiovascular diseases. A relationship between Interleukin-1β and Toll-like receptor 4 pathway has been described, although the exact mechanism of this interaction remains still unknown. Moreover, the oxidative stress sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) promotes the transcription of several antioxidant and anti-inflammatory genes. Nuclear factor-erythroid 2-related factor 2 activators have shown to possess beneficial effects in cardiovascular diseases in which oxidative stress and inflammation are involved, such as hypertension and atherosclerosis; however, the molecular mechanisms are not fully understood. Here, we analysed the role of Toll-like receptor 4 in the oxidative and inflammatory effects of Interleukin-1β as well as whether nuclear factor-erythroid 2-related factor 2 activation contributes to vascular alterations by modulating these effects. Materials: For this purpose, vascular smooth muscle cells and mice aortic segments stimulated with Interleukin-1β were used. Results: Interleukin-1β induces MyD88 expression while the Toll-like receptor 4 inhibitor CLI-095 reduces the Interleukin-1β-elicited COX-2 protein expression, reactive oxygen species (ROS) production, vascular smooth muscle cells migration and endothelial dysfunction. Additionally, Interleukin-1β increases nuclear factor-erythroid 2-related factor 2 nuclear translocation and expression of its downstream proteins heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and superoxide dismutase-2, by an oxidative stress-dependent mechanism; moreover, Interleukin-1β reduces the expression of the nuclear factor-erythroid 2-related factor 2 inhibitor Keap1. The nuclear factor-erythroid 2-related factor 2 activator tert-butylhydroquinone (tBHQ) reduces the effects of Interleukin-1β on the increased reactive oxygen species production and the expression of the proinflammatory markers (p-p38, p-JNK, p-c-Jun, COX-2), the increased cell proliferation and migration and prevents the Interleukin-1β-induced endothelial dysfunction in mice aortas. Additionally, tert-butylhydroquinone also reduces the increased MyD88 expression, NADPHoxidase activity and cell migration induced by lipopolysaccharide. Conclusions: In summary, this study reveals that Toll-like receptor 4 pathway contributes to the prooxidant and proinflammatory Interleukin-1β-induced effects. Moreover, activation of nuclear factor-erythroid 2-related factor 2 prevents the deleterious effects of Interleukin-1β, likely by reducing Toll-like receptor 4-dependent pathway. Although further research is needed, the results are promising as they suggest that nuclear factor-erythroid 2-related factor 2 activators might protect against the oxidative stress and inflammation characteristic of cardiovascular diseases.
Collapse
Affiliation(s)
- Zoe González-Carnicero
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Raquel Hernanz
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Marta Martínez-Casales
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - María Teresa Barrús
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Ángela Martín
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- *Correspondence: Ángela Martín, ; María Jesús Alonso,
| | - María Jesús Alonso
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- *Correspondence: Ángela Martín, ; María Jesús Alonso,
| |
Collapse
|
65
|
Wang D, Mo Y, Zhang D, Bai Y. Analysis of m 7G methylation modification patterns and pulmonary vascular immune microenvironment in pulmonary arterial hypertension. Front Immunol 2022; 13:1014509. [PMID: 36544768 PMCID: PMC9762157 DOI: 10.3389/fimmu.2022.1014509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background M7G methylation modification plays an important role in cardiovascular disease development. Dysregulation of the immune microenvironment is closely related to the pathogenesis of PAH. However, it is unclear whether m7G methylation is involved in the progress of PAH by affecting the immune microenvironment. Methods The gene expression profile of PAH was obtained from the GEO database, and the m7G regulatory factors were analyzed for differences. Machine learning algorithms were used to screen characteristic genes, including the least absolute shrinkage and selection operator, random forest, and support vector machine recursive feature elimination analysis. Constructed a nomogram model, and receiver operating characteristic was used to evaluate the diagnosis of disease characteristic genes value. Next, we used an unsupervised clustering method to perform consistent clustering analysis on m7G differential genes. Used the ssGSEA algorithm to estimate the relationship between the m7G regulator in PAH and immune cell infiltration and analyze the correlation with disease-characteristic genes. Finally, the listed drugs were evaluated through the screened signature genes. Results We identified 15 kinds of m7G differential genes. CYFIP1, EIF4E, and IFIT5 were identified as signature genes by the machine learning algorithm. Meanwhile, two m7G molecular subtypes were identified by consensus clustering (cluster A/B). In addition, immune cell infiltration analysis showed that activated CD4 T cells, regulatory T cells, and type 2 T helper cells were upregulated in m7G cluster B, CD56 dim natural killer cells, MDSC, and monocyte were upregulated in the m7G cluster A. It might be helpful to select Calpain inhibitor I and Everolimus for the treatment of PAH. Conclusion Our study identified CYFIP1, EIF4E, and IFIT5 as novel diagnostic biomarkers in PAH. Furthermore, their association with immune cell infiltration may facilitate the development of immune therapy in PAH.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yanfei Mo
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, Liaoning, China,*Correspondence: Yang Bai, ; Dongfang Zhang,
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China,*Correspondence: Yang Bai, ; Dongfang Zhang,
| |
Collapse
|
66
|
Lin S, Lin R, Zhang H, Xu Q, He Y. Peripheral vascular remodeling during ischemia. Front Pharmacol 2022; 13:1078047. [PMID: 36532724 PMCID: PMC9751613 DOI: 10.3389/fphar.2022.1078047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 05/04/2025] Open
Abstract
About 230 million people worldwide suffer from peripheral arterial disease (PAD), and the prevalence is increasing year by year. Multiple risk factors, including smoking, dyslipidemia, diabetes, and hypertension, can contribute to the development of PAD. PAD is typically characterized by intermittent claudication and resting pain, and there is a risk of severe limb ischemia, leading to major adverse limb events, such as amputation. Currently, a major progress in the research field of the pathogenesis of vascular remodeling, including atherosclerosis and neointima hyperplasia has been made. For example, the molecular mechanisms of endothelial dysfunction and smooth muscle phenotype switching have been described. Interestingly, a series of focused studies on fibroblasts of the vessel wall has demonstrated their impact on smooth muscle proliferation and even endothelial function via cell-cell communications. In this review, we aim to focus on the functional changes of peripheral arterial cells and the mechanisms of the pathogenesis of PAD. At the same time, we summarize the progress of the current clinical treatment and potential therapeutic methods for PAD and shine a light on future perspectives.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoran Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
67
|
Teng Y, He J, Zhong Q, Zhang Y, Lu Z, Guan T, Pan Y, Luo X, Feng W, Ou C. Grape exosome-like nanoparticles: A potential therapeutic strategy for vascular calcification. Front Pharmacol 2022; 13:1025768. [PMID: 36339605 PMCID: PMC9634175 DOI: 10.3389/fphar.2022.1025768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 02/12/2024] Open
Abstract
Vascular calcification (VC) is prevalent in hypertension, diabetes mellitus, chronic kidney disease, and aging and has been identified as an important predictor of adverse cardiovascular events. With the complicated mechanisms involved in VC, there is no effective therapy. Thus, a strategy for attenuating the development of VC is of clinical importance. Recent studies suggest that grape exosome-like nanoparticles (GENs) are involved in cell-cell communication as a means of regulating oxidative stress, inflammation, and apoptosis, which are known to modulate VC development. In this review, we discuss the roles of GENs and their potential mechanisms in the development of VC.
Collapse
Affiliation(s)
- Yintong Teng
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi He
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Zhong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yangmei Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenxing Lu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Pan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodi Luo
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Weijing Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiwen Ou
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| |
Collapse
|
68
|
Liu SF, Nambiar Veetil N, Li Q, Kucherenko MM, Knosalla C, Kuebler WM. Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front Immunol 2022; 13:959209. [PMID: 36275740 PMCID: PMC9579293 DOI: 10.3389/fimmu.2022.959209] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease that arises from multiple etiologies and ultimately leads to right heart failure as the predominant cause of morbidity and mortality. In patients, distinct inflammatory responses are a prominent feature in different types of PH, and various immunomodulatory interventions have been shown to modulate disease development and progression in animal models. Specifically, PH-associated inflammation comprises infiltration of both innate and adaptive immune cells into the vascular wall of the pulmonary vasculature—specifically in pulmonary vascular lesions—as well as increased levels of cytokines and chemokines in circulating blood and in the perivascular tissue of pulmonary arteries (PAs). Previous studies suggest that altered hemodynamic forces cause lung endothelial dysfunction and, in turn, adherence of immune cells and release of inflammatory mediators, while the resulting perivascular inflammation, in turn, promotes vascular remodeling and the progression of PH. As such, a vicious cycle of endothelial activation, inflammation, and vascular remodeling may develop and drive the disease process. PA stiffening constitutes an emerging research area in PH, with relevance in PH diagnostics, prognostics, and as a therapeutic target. With respect to its prognostic value, PA stiffness rivals the well-established measurement of pulmonary vascular resistance as a predictor of disease outcome. Vascular remodeling of the arterial extracellular matrix (ECM) as well as vascular calcification, smooth muscle cell stiffening, vascular wall thickening, and tissue fibrosis contribute to PA stiffening. While associations between inflammation and vascular stiffening are well-established in systemic vascular diseases such as atherosclerosis or the vascular manifestations of systemic sclerosis, a similar connection between inflammatory processes and PA stiffening has so far not been addressed in the context of PH. In this review, we discuss potential links between inflammation and PA stiffening with a specific focus on vascular calcification and ECM remodeling in PH.
Collapse
Affiliation(s)
- Shao-Fei Liu
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Netra Nambiar Veetil
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
| | - Qiuhua Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Mariya M. Kucherenko
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- *Correspondence: Mariya M. Kucherenko,
| | - Christoph Knosalla
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Lung Research (DZL), Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
69
|
RARγ: The Bone of Contention for Endothelial Cells in Prostate Cancer Metastasis. Cancer Res 2022; 82:2975-2976. [DOI: 10.1158/0008-5472.can-22-2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Excessive bone deposition associated with prostate cancer bone metastases is believed to aid in metastatic progression. One mechanism of osteoblast expansion is the transdifferentiation of bone marrow endothelial cells. Prostate cancer cells contribute several secreted factors, including bone morphogenetic protein 4 (BMP4), to the microenvironment that support osteoblastic transdifferentiation. In this issue of Cancer Research, Yu and colleagues share their findings of how BMP-mediated endothelial conversion can be inhibited by treatment with retinoic acid receptor (RAR) agonists. Using agonists like the all-trans retinoic acid or palovarotene, the authors demonstrated the role of the interaction of BMP-activated SMAD1 with RARγ for osteoblastic differentiation. RARγ agonists potentiated the proteasomal degradation of the Smad1–RARγ complex, blocking BMP signaling. Because palovarotene is clinically effective in the treatment of aberrant bone formation found in fibrodysplasia ossificans progressiva, its repurposing for the treatment of osteoblastic cancer metastasis is promising. However, patient selection and dose-finding studies will be critical for the translation of these findings to complement standard of care for patients with bone metastatic prostate cancer.
See related article by Yu et al., p. 3158
Collapse
|
70
|
The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond) 2022; 136:1157-1178. [PMID: 35946958 PMCID: PMC9366862 DOI: 10.1042/cs20210994] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.
Collapse
|
71
|
Lan Z, Chen A, Li L, Ye Y, Liang Q, Dong Q, Wang S, Fu M, Li Y, Liu X, Zhu Z, Ou JS, Qiu X, Lu L, Yan J. Downregulation of HDAC9 by the ketone metabolite β-hydroxybutyrate suppresses vascular calcification. J Pathol 2022; 258:213-226. [PMID: 35894849 DOI: 10.1002/path.5992] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Vascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, effective therapy for vascular calcification is still lacking. The ketone body β-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects. However, whether BHB protects against vascular calcification in CKD remains unclear. In this study, Alizarin Red staining and calcium content assay showed that BHB reduced calcification of vascular smooth muscle cells (VSMCs) and arterial rings. Of note, compared with CKD patients without thoracic calcification, serum BHB levels were lower in CKD patients with thoracic calcification. Supplementation with 1,3-butanediol (1,3-B), the precursor of BHB, attenuated aortic calcification in CKD rats and VitD3-overloaded mice. Furthermore, RNA-Seq analysis revealed that BHB downregulated HDAC9, which was further confirmed by RT-qPCR and western blot analysis. Both pharmacological inhibition and knockdown of HDAC9 attenuated calcification of human VSMCs, while overexpression of HDAC9 exacerbated calcification of VSMCs and aortic rings, indicating that HDAC9 promotes vascular calcification under CKD conditions. Of note, BHB treatment antagonized HDAC9-induced vascular calcification. In addition, HDAC9 overexpression activated NF-κB signaling pathway and inhibition of NF-κB attenuated HDAC9-induced VSMC calcification, suggesting that HDAC9 promotes vascular calcification via activation of NF-κB. In conclusion, our study demonstrates that BHB supplementation inhibits vascular calcification in CKD via modulation of the HDAC9-dependent NF-κB signaling pathway. Moreover, we unveil a crucial mechanistic role of HDAC9 in vascular calcification under CKD conditions, thus nutritional intervention or pharmacological approaches to enhance BHB levels could act as promising therapeutic strategies to target HDAC9 for the treatment of vascular calcification in CKD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, PR China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, PR China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Zhenyu Zhu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| |
Collapse
|
72
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
73
|
Li H, Li X, Hao Y, Wu C, Fu Y, Su N, Chen H, Ying B, Wang H, Su L, Cai H, He Q, Cai M, Sun J, Lin J, Scott A, Smith F, Huang X, Jin S. Maresin 1 intervention Reverses Experimental Pulmonary Arterial Hypertension in mice. Br J Pharmacol 2022; 179:5132-5147. [PMID: 35764296 DOI: 10.1111/bph.15906] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure (SuHx). After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by hemodynamic measurement and echocardiography, respectively. Vascular remodeling was evaluated by histological staining. Confocal and western blot were used to test related protein expression. In vitro, cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated the right ventricular dysfunction (RVD) in murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodeling, attenuating endothelial to mesenchymal transformation (EndoMT) and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS Maresin 1 improved abnormal pulmonary vascular remodeling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Fu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nana Su
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Houlin Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binyu Ying
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haixing Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihuang Su
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Haijian Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Qinlian He
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Mengsi Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Junwei Sun
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Jing Lin
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aaron Scott
- The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Fanggao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
74
|
Rao Z, Zheng Y, Xu L, Wang Z, Zhou Y, Chen M, Dong N, Cai Z, Li F. Endoplasmic Reticulum Stress and Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2022; 9:918056. [PMID: 35783850 PMCID: PMC9243238 DOI: 10.3389/fcvm.2022.918056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular calcification (VC) is characterized by calcium phosphate deposition in blood vessel walls and is associated with many diseases, as well as increased cardiovascular morbidity and mortality. However, the molecular mechanisms underlying of VC development and pathogenesis are not fully understood, thus impeding the design of molecular-targeted therapy for VC. Recently, several studies have shown that endoplasmic reticulum (ER) stress can exacerbate VC. The ER is an intracellular membranous organelle involved in the synthesis, folding, maturation, and post-translational modification of secretory and transmembrane proteins. ER stress (ERS) occurs when unfolded/misfolded proteins accumulate after a disturbance in the ER environment. Therefore, downregulation of pathological ERS may attenuate VC. This review summarizes the relationship between ERS and VC, focusing on how ERS regulates the development of VC by promoting osteogenic transformation, inflammation, autophagy, and apoptosis, with particular interest in the molecular mechanisms occurring in various vascular cells. We also discuss, the therapeutic effects of ERS inhibition on the progress of diseases associated with VC are detailed.
Collapse
Affiliation(s)
- Zhenqi Rao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
75
|
Arase H, Yamada S, Torisu K, Tokumoto M, Taniguchi M, Tsuruya K, Nakano T, Kitazono T. Protective Roles of Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1) in Uremic Vascular Calcification. Calcif Tissue Int 2022; 110:685-697. [PMID: 35112184 DOI: 10.1007/s00223-022-00947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
Abstract
Cellular phosphate transporters play critical roles in the pathogenesis of vascular calcification (VC) in chronic kidney disease (CKD). However, the mechanistic link between VC and xenotropic and polytropic receptor 1 (XPR1), a newly identified phosphate exporter, remains unknown. We developed a new mouse model with rapidly progressive uremic VC in C57BL/6 mice and examined the roles of XPR1. The combination of surgical heminephrectomy and 8 weeks of feeding a customized warfarin and adenine-based diet induced extensive aortic VC in almost all mice. The XPR1 mRNA level in the aorta of CKD mice was significantly lower than those in control mice as early as week 2, when there was no apparent VC, which progressively declined thereafter. Dietary phosphate restriction increased XPR1 mRNA expression in the aorta but reduced aortic VC in CKD mice. In cultured vascular smooth muscle cells (VSMCs), a calcifying medium supplemented with high phosphate and calcium did not affect XPR1 mRNA expression. The XPR1 mRNA expression in cultured VCMCs was also unaffected by administration of indoxyl sulfate or calcitriol deficiency but was decreased by 1-34 parathyroid hormone or fibroblast growth factor 23 supplementation. Furthermore, XPR1 deletion in the cultured VSMCs exacerbated calcification of the extracellular matrix as well as the osteogenic phenotypic switch under the condition of calcifying medium. Our data suggest that XPR1 plays protective roles in the pathogenesis of VC and its decrease in the aorta may contribute to the progression of VC in CKD.
Collapse
Affiliation(s)
- Hokuto Arase
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Kumiko Torisu
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-Ku, Fukuoka, 8140193, Japan
| | - Masatomo Taniguchi
- Fukuoka Renal Clinic, 4-6-20 Watanabe-Dori, Chuo-Ku, Fukuoka, 8100004, Japan
| | - Kazuhiko Tsuruya
- Department of Nephrology, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 6348521, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| |
Collapse
|
76
|
Epigallocatechin-3-Gallate (EGCG) Mitigates Endothelial and Circulating Cells Alterations Following PLLA Electrospun Mat Placement. Biomedicines 2022; 10:biomedicines10061276. [PMID: 35740298 PMCID: PMC9220276 DOI: 10.3390/biomedicines10061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Background. Synthetic vascular graft calcification is a serious complication of graft placement. Here, we analysed migration and osteogenic genes of human umbilical vein endothelial cells (HUVEC) cultured with a poly-L-lactic acid (PLLA) electrospun mat. The role of epigallo-catechin-3-gallate (EGCG) in pathogenic processes involving HUVEC and peripheral blood mononuclear cells (PBMCs) was also tested. Methods. HUVEC were cultured in indirect contact with PLLA for 48 h, with or without EGCG, and processed for mRNA expression. HUVEC proliferation, migration and osteogenic differentiation were evaluated after EGCG treatment. EGCG was also administrated to human PBMCs, to analyse proliferation and migration toward HUVEC cultured with PLLA. Results. HUVEC cultured with PLLA exhibited increased expression of SLUG, VIMENTIN, MMP-9 (migration, vascular remodelling) and RUNX-2 (osteogenic transcription factor). EGCG at 25 μM significantly reduced HUVEC migration, osteogenic differentiation, without affecting cell viability, and mitigated PLLA influence on SLUG, MMP-9, VIMENTIN and RUNX-2 expression. EGCG affected PBMC proliferation and migration toward PLLA in a transwell co-culture system with HUVEC. Conclusion. Our study suggests the pro-calcific effect of PLLA, proposing EGCG as an anti-inflammatory modulatory approach. Research efforts need to deepen PLLA-vascular wall interactions for preventing vascular graft failure.
Collapse
|
77
|
Pan X, Pi C, Ruan X, Zheng H, Zhang D, Liu X. Mammalian Sirtuins and Their Relevance in Vascular Calcification. Front Pharmacol 2022; 13:907835. [PMID: 35677446 PMCID: PMC9168231 DOI: 10.3389/fphar.2022.907835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are a group of diseases with high morbidity and mortality that affect millions of people each year. Vascular calcification (VC) is an active process that involves the mineral deposition of calcium-phosphate complexes. VC is closely related to cardiovascular diseases, such as hypertension, heart failure, and calcific aortic stenosis, and is a type of ectopic calcification that occurs in the vessel walls. The sirtuins (silent mating-type information regulation 2; SIRTs), are a family of histone deacetylases whose function relies on nicotinamide adenine dinucleotide (NAD+). They have non-negligible functions in the regulation of energy metabolism, senescence, apoptosis, and other biological processes. Sirtuins have important effects on bone homeostasis and VC processes that share many similarities with bone formation. Sirtuins have been confirmed to deacetylate a variety of target proteins related to the occurrence and development of VC, thereby affecting the process of VC and providing new possibilities for the prevention and treatment of cardiovascular diseases. To facilitate the understanding of vascular calcification and accelerate the development of cardiovascular drugs, we reviewed and summarized recent research progress on the relationship between different types of sirtuins and VC.
Collapse
Affiliation(s)
- Xinyue Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hanhua Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
78
|
Xia W, Zhao D, Li C, Xu L, Yao X, Hu H. Prognostic significance of albumin to alkaline phosphatase ratio in critically ill patients with acute kidney injury. Clin Exp Nephrol 2022; 26:917-924. [PMID: 35579723 DOI: 10.1007/s10157-022-02234-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE No epidemiological evidence has investigated the effect of albumin to alkaline phosphatase ratio (AAPR) on the prognosis among critically ill patients with acute kidney injury (AKI). We aimed to explore the prognostic value of AAPR in these patients. METHODS We extracted all clinical data from MIMIC III. ROC curve analysis was used to evaluate the discrimination of AAPR for predicting in-hospital mortality. A generalized additive model was applied to identify a nonlinear association between AAPR and in-hospital mortality. The Cox proportional hazards models were used to determine the association between AAPR and in-hospital and 30-day mortality. RESULTS A total of 6894 eligible subjects were enrolled in this study. The relationship between AAPR and in-hospital mortality was nonlinear. Multivariate analysis demonstrated that lower AAPR (AAPR < 0.35) was an independent predictor of in-hospital and 30-day mortality after adjusting for potential confounders (HR 1.74, 95% CI 1.72-2.20, P < 0.001; HR 1.89, 95% CI 1.66-2.14, P < 0.001, respectively). CONCLUSIONS AAPR may serve as a potential prognostic biomarker in critically ill patients with AKI and lower AAPR was associated with increased risk of in-hospital and 30-day mortality among these patients.
Collapse
Affiliation(s)
- Wenkai Xia
- Department of Nephrology, Jiangyin People's Hospital Affiliated to Nantong University, 3 Yinrui Road, Jiangyin, 214400, Jiangsu, China
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Danyang Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lingyu Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiajuan Yao
- Department of Nephrology, Jiangyin People's Hospital Affiliated to Nantong University, 3 Yinrui Road, Jiangyin, 214400, Jiangsu, China
| | - Hong Hu
- Department of Nephrology, Jiangyin People's Hospital Affiliated to Nantong University, 3 Yinrui Road, Jiangyin, 214400, Jiangsu, China.
| |
Collapse
|
79
|
Chen Y, Zou H, Lu H, Xiang H, Chen S. Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med 2022; 26:3313-3322. [PMID: 35560773 PMCID: PMC9189345 DOI: 10.1111/jcmm.17356] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Renal fibrosis is an important pathological feature of diabetic kidney disease (DKD), manifested as tubular interstitial fibrosis, tubular atrophy, glomerulosclerosis and damage to the normal structure of the kidney. Renal fibrosis can eventually develop into renal failure. A better understanding of renal fibrosis in DKD is needed due to clinical limitations of current anti‐fibrotic drugs in terms of effectiveness, cost‐effectiveness and side effects. Fibrosis is characterized by local excessive deposition of extracellular matrix, which is derived from activated myofibroblasts to increase its production or specific tissue inhibitors of metalloproteinases to reduce its degradation. In recent years, endothelial‐mesenchymal transition (EndMT) has gradually integrated into the pathogenesis of fibrosis. In animal models of diabetic kidney disease, it has been found that EndMT is involved in the formation of renal fibrosis and multiple signalling pathways such as TGF‐β signalling pathway, Wnt signalling pathway and non‐coding RNA network participate in the regulation of EndMT during fibrosis. Here, we mainly review EndMT regulation and targeted therapy of renal fibrosis in DKD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hang Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
80
|
Sun Y, Zhang H, Tian W. Dietary fiber and prevalence of abdominal aortic calcification in the United States (from the national health and nutrition examination survey data [2013-2014]). Nutr J 2022; 21:25. [PMID: 35524312 PMCID: PMC9074363 DOI: 10.1186/s12937-022-00782-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Abdominal aortic calcification (AAC) is recognized as a valuable predictor of cardiovascular diseases (CVDs). Dietary fiber is strongly correlated with CVDs. However, the effect of dietary fiber on AAC in the population is not well understood. Objective To assess the relationship between dietary fiber intake and AAC in the US adult population. Methods A total of 2671 individuals with both dietary fiber intake and AAC score data were enrolled from the 2013–2014 National Health and Nutrition Examination Survey (NHANES), a cross-sectional health examination in the US. Multinomial logistic regression was used to calculate the odds ratio (OR), with 95% confidence interval (CI). To reveal the relationship between dietary fiber intake and AAC, restricted cubic spline was also applied. Results Out of the total participants, 241 (9%) had severe AAC and 550 (20%) had mild-moderate AAC. Multinomial logistic regression indicated that higher intake of dietary fiber was associated with lower risk of severe AAC, but not with lower risk of mild-moderate AAC. For every one standard deviation increase (9.4 g/day) in dietary fiber intake, the odds of severe AAC were reduced by 28% [OR 0.72 (95% CI, 0.57–0.90), p = 0.004], after adjusting for confounding factors. Dose–response relationship revealed that dietary fiber intake was negatively correlated with severe AAC (p for linear < 0.001, p for nonlinear = 0.695). Conclusions Dietary fiber intake was negatively associated with severe AAC, and showed a dose–response relationship in US adults.
Collapse
Affiliation(s)
- YuJiao Sun
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, 110001, China
| | - HuanRui Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, 110001, China
| | - Wen Tian
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
81
|
Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood–Brain Barrier Modeling. J EVOL BIOCHEM PHYS+ 2022; 58:781-806. [PMID: 35789679 PMCID: PMC9243926 DOI: 10.1134/s0022093022030139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
Here, we discuss pathophysiological approaches to the defining
of endothelial dysfunction criteria (i.e., endothelial activation,
impaired endothelial mechanotransduction, endothelial-to-mesenchymal
transition, reduced nitric oxide release, compromised endothelial
integrity, and loss of anti-thrombogenic properties) in different
in vitro and in vivo models. The canonical definition of endothelial
dysfunction includes insufficient production of vasodilators, pro-thrombotic
and pro-inflammatory activation of endothelial cells, and pathologically
increased endothelial permeability. Among the clinical consequences
of endothelial dysfunction are arterial hypertension, macro- and
microangiopathy, and microalbuminuria. We propose to extend the definition
of endothelial dysfunction by adding altered endothelial mechanotransduction
and endothelial-to-mesenchymal transition to its criteria. Albeit
interleukin-6, interleukin-8, and MCP-1/CCL2 dictate the pathogenic
paracrine effects of dysfunctional endothelial cells and are therefore
reliable endothelial dysfunction biomarkers in vitro, they are non-specific
for endothelial cells and cannot be used for the diagnostics of
endothelial dysfunction in vivo. Conceptual improvements in the
existing methods to model endothelial dysfunction, specifically,
in relation to the blood–brain barrier, include endothelial cell
culturing under pulsatile flow, collagen IV coating of flow chambers,
and endothelial lysate collection from the blood vessels of laboratory
animals in situ for the subsequent gene and protein expression profiling.
Combined with the simulation of paracrine effects by using conditioned
medium from dysfunctional endothelial cells, these flow-sensitive
models have a high physiological relevance, bringing the experimental
conditions to the physiological scenario.
Collapse
Affiliation(s)
- A. G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - D. K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - E. A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M. Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A. V. Sinitskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - V. E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
82
|
Zeng ZL, Yuan Q, Zu X, Liu J. Insights Into the Role of Mitochondria in Vascular Calcification. Front Cardiovasc Med 2022; 9:879752. [PMID: 35571215 PMCID: PMC9099050 DOI: 10.3389/fcvm.2022.879752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a growing burden in aging societies worldwide, and with a significant increase in all-cause mortality and atherosclerotic plaque rupture, it is frequently found in patients with aging, diabetes, atherosclerosis, or chronic kidney disease. However, the mechanism of VC is still not yet fully understood, and there are still no effective therapies for VC. Regarding energy metabolism factories, mitochondria play a crucial role in maintaining vascular physiology. Discoveries in past decades signifying the role of mitochondrial homeostasis in normal physiology and pathological conditions led to tremendous advances in the field of VC. Therapies targeting basic mitochondrial processes, such as energy metabolism, damage in mitochondrial DNA, or free-radical generation, hold great promise. The remarkably unexplored field of the mitochondrial process has the potential to shed light on several VC-related diseases. This review focuses on current knowledge of mitochondrial dysfunction, dynamics anomalies, oxidative stress, and how it may relate to VC onset and progression and discusses the main challenges and prerequisites for their therapeutic applications.
Collapse
Affiliation(s)
- ZL Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuyu Zu
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Jianghua Liu
| |
Collapse
|
83
|
Van den Bergh G, Van den Branden A, Opdebeeck B, Fransen P, Neven E, De Meyer G, D’Haese PC, Verhulst A. Endothelial dysfunction aggravates arterial media calcification in warfarin administered rats. FASEB J 2022; 36:e22315. [DOI: 10.1096/fj.202101919r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Geoffrey Van den Bergh
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Astrid Van den Branden
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Britt Opdebeeck
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology Department of Pharmaceutical Sciences University of Antwerp Wilrijk Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Guido De Meyer
- Laboratory of Physiopharmacology Department of Pharmaceutical Sciences University of Antwerp Wilrijk Belgium
| | - Patrick C. D’Haese
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| |
Collapse
|
84
|
Niu Z, Su G, Li T, Yu H, Shen Y, Zhang D, Liu X. Vascular Calcification: New Insights Into BMP Type I Receptor A. Front Pharmacol 2022; 13:887253. [PMID: 35462911 PMCID: PMC9019578 DOI: 10.3389/fphar.2022.887253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a complex ectopic calcification process and an important indicator of increased risk for diabetes, atherosclerosis, chronic kidney disease, and other diseases. Therefore, clarifying the pathogenesis of VC is of great clinical significance. Numerous studies have shown that the onset and progression of VC are similar to bone formation. Members of the bone morphogenetic protein (BMP) family of proteins are considered key molecules in the progression of vascular calcification. BMP type I receptor A (BMPR1A) is a key receptor of BMP factors acting on the cell membrane, is widely expressed in various tissues and cells, and is an important “portal” for BMP to enter cells and exert their biological effect. In recent years, many discoveries have been made regarding the occurrence and treatment of ectopic ossification-related diseases involving BMP signaling targets. Studies have confirmed that BMPR1A is involved in osteogenic differentiation and that its high expression in vascular endothelial cells and smooth muscle cells can lead to vascular calcification. This article reviews the role of BMPR1A in vascular calcification and the possible underlying molecular mechanisms to provide clues for the clinical treatment of such diseases.
Collapse
Affiliation(s)
- Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyue Su
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tiantian Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
85
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
86
|
Goumans MJ, Quax PHA. R-SMAD in control of the R-smooth muscle cell. NATURE CARDIOVASCULAR RESEARCH 2022; 1:289-290. [PMID: 39196133 DOI: 10.1038/s44161-022-00050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Marie Jose Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
87
|
Wang FF, Zhang JL, Ji Y, Yan XJ, Sun L, Zhu Y, Jin H. KLF2 mediates the suppressive effect of BDNF on diabetic intimal calcification by inhibiting HK1 induced endothelial-to-mesenchymal transition. Cell Signal 2022; 94:110324. [PMID: 35364229 DOI: 10.1016/j.cellsig.2022.110324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
Abstract
Diabetic vascular calcification in the arterial intima is closely associated with endothelial-to-mesenchymal transition (EndMT). Glucose metabolism reprogramming is involved in EndMT. Although brain-derived neurotrophic factor (BDNF) and Krüppel-like family of transcription factor 2 (KLF2) play protective roles in the physiological activity of the vascular endothelium, the underlying mechanisms are unclear. Human umbilical vein endothelial cells (HUVECs) were incubated with diabetic osteogenic medium (DOM) to induce EndMT and accelerate osteogenic differentiation. Glycolysis in HUVECs was assessed by monitoring glucose uptake, lactate production, extracellular acidification rate and expression of key glycolytic enzymes. DOM induced EndMT and accelerated osteo-induction in HUVECs, which was alleviated by BDNF/tropomyosin receptor kinase B (TrkB) pathway. Mechanistically, DOM caused hyperactivation of glycolysis in HUVECs and inhibition of the BDNF/TrkB pathway. BDNF preserved KLF2 and downregulated hexokinase 1 (HK1) in HUVECs after DOM treatment. Furthermore, KLF2 interacted with HK1. Increased KLF2 alleviated HK1-mediated glucose metabolism abnormality. HK1 knockdown or a targeted glycolysis inhibitor suppressed EndMT, apoptosis, inflammation and vascular calcification of HUVECs after DOM exposure. This study suggests that KLF2 mediates the suppressive effect of BDNF on diabetic intimal calcification by inhibiting HK1-induced glucose metabolism reprogramming and the EndMT process.
Collapse
Affiliation(s)
- Fang-Fang Wang
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Jia-Li Zhang
- Department of Gastroenterology Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Yuan Ji
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Xue-Jiao Yan
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Ling Sun
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Yi Zhu
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China.
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
88
|
Kim DW, Lee M, Lee KJ, Lee YH, Kim D, Shin SJ, Yoon HE. The combined clinical impact of red blood cell distribution width and vascular calcification on cardiovascular events and mortality in patients with end-stage kidney disease. Kidney Res Clin Pract 2022; 41:351-362. [PMID: 35286792 PMCID: PMC9184841 DOI: 10.23876/j.krcp.21.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/30/2021] [Indexed: 11/12/2022] Open
Abstract
Background Little is known about how the interaction between red blood cell distribution width (RDW) and vascular calcification (VC) affects cardiovascular (CV) events and mortality in end-stage kidney disease (ESKD) patients. This study investigated the combined prognostic effect of RDW and VC in ESKD patients starting dialysis. Methods A retrospective single-center study of 582 ESKD patients was conducted. VC was assessed by calculating the aortic calcification index (ACI) using computed tomography. Patients were divided into low ACI-low RDW, low ACI-high RDW, high ACI-low RDW, and high ACI-high RDW groups based on median ACI (17.12) and RDW (14.3) values. The association between RDW and VC and the composite endpoint of CV events and death was analyzed. Results During a median follow-up of 3.1 years (range, 1.5–5.5 years), 165 CV events (28.4%) and 124 deaths (21.4%) occurred. Cox regression showed that the low ACI-high RDW (adjusted hazard ratio [HR], 1.66; 95% confidence interval [CI], 1.04–2.66; p = 0.03) and high ACI-low RDW (adjusted HR, 1.95; 95% CI, 1.21–3.14; p = 0.006) groups had a greater risk of CV events and death than the low ACI-low RDW group. The high ACI-high RDW group had the greatest risk (adjusted HR, 2.23; 95% CI, 1.42–3.52; p = 0.001). The effect of the interaction between ACI and RDW on CV events and mortality was statistically significant (p = 0.005). Conclusion High RDW and VC interact to increase the risk of CV events and death in ESKD patients.
Collapse
Affiliation(s)
- Da Won Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Munpyo Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwon Jae Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Hee Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dongryul Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Correspondence: Hye Eun Yoon Division of Nephrology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 56 Dongsu-ro, Bupyung-gu, Incheon 21431, Republic of Korea. E-mail:
| |
Collapse
|
89
|
You M, Liu Y, Wang B, Li L, Zhang H, He H, Zhou Q, Cao T, Wang L, Zhao Z, Zhu Z, Gao P, Yan Z. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol 2022; 21:25. [PMID: 35168605 PMCID: PMC8848671 DOI: 10.1186/s12933-022-01457-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Altered adipokine secretion in dysfunctional adipose tissue facilitates the development of atherosclerotic diseases including lower extremity peripheral artery disease (PAD). Asprosin is a recently identified adipokine and displays potent regulatory role in metabolism, but the relationship between asprosin and lower extremity PAD remains uninvestigated. Methods 33 type 2 diabetes mellitus (T2DM) patients (DM), 51 T2DM patients with PAD (DM + PAD) and 30 healthy normal control (NC) volunteers were recruited and the blood samples were collected for detecting the circulatory asprosin level and metabolomic screening. RNA sequencing was performed using the aorta tissues from the type 2 diabetic db/db mice and human umbilical vein endothelial cells (HUVECs) were treated with asprosin to determine its impact on the endothelial-to-mesenchymal transition (EndMT). Results The circulating levels of asprosin in DM + PAD group were significantly higher than that of NC group and the DM group. Circulating asprosin level was remarkably negatively correlated with ankle-brachial index (ABI), even after adjusting for age, sex, body mass index (BMI) and other traditional risk factors of PAD. Logistic regression analysis revealed that asprosin is an independent risk factor for PAD and receiver-operator characteristic (ROC) curve determined a good sensitivity (74.5%) and specificity (74.6%) of asprosin to distinguish PAD. Data from metabolomics displayed a typical characteristics of de novo amino acid synthesis in collagen protein production by myofibroblasts in patients with PAD and activation of TGF-β signaling pathway appeared in the aortic tissue of db/db mice. Asprosin directly induces EndMT in HUVECs in a TGF-β-dependent manner as TGF-β signaling pathway inhibitor SB431542 erased the promotional effect of asprosin on EndMT. Conclusions Elevated circulatory asprosin level is an independent risk factor of lower extremity PAD and might serve as a diagnostic marker. Mechanistically, asprosin directly induces EndMT that participates in vascular injury via activation of TGF-β signaling pathway. Trial registration This trial was registered at clinicaltrials.gov as NCT05068895 Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01457-0.
Collapse
Affiliation(s)
- Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Yushuang Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Bowen Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Hexuan Zhang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Hongbo He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Zhigang Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China.
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China.
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, 10 Chang Jiang Zhi Lu, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
90
|
Yoshimatsu Y, Watabe T. Emerging roles of inflammation-mediated endothelial–mesenchymal transition in health and disease. Inflamm Regen 2022; 42:9. [PMID: 35130955 PMCID: PMC8818500 DOI: 10.1186/s41232-021-00186-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Endothelial–mesenchymal transition (EndoMT), a cellular differentiation process in which endothelial cells (ECs) lose their properties and differentiate into mesenchymal cells, has been observed not only during development but also in various pathological states in adults, including cancer progression and organ/tissue fibrosis. Transforming growth factor-β (TGF-β), an inflammation-related cytokine, has been shown to play central roles in the induction of EndoMT. TGF-β induces EndoMT by regulating the expression of various transcription factors, signaling molecules, and cellular components that confer ECs with mesenchymal characteristics. However, TGF-β by itself is not necessarily sufficient to induce EndoMT to promote the progression of EndoMT-related diseases to a refractory extent. In addition to TGF-β, additional activation by other inflammatory factors is often required to stabilize the progression of EndoMT. Since recent lines of evidence indicate that inflammatory signaling molecules act as enhancers of EndoMT, we summarize the roles of inflammatory factors in the induction of EndoMT and related diseases. We hope that this review will help to develop therapeutic strategies for EndoMT-related diseases by targeting inflammation-mediated EndoMT.
Collapse
|
91
|
Zhao L, Yang N, Song Y, Si H, Qin Q, Guo Z. Effect of iron overload on endothelial cell calcification and its mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1658. [PMID: 34988167 PMCID: PMC8667128 DOI: 10.21037/atm-21-5666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
Background Vascular calcification is related to many diseases. Iron has a certain relationship with endothelial cells and vascular calcification. The purpose of this study was to assess the effect of iron overload on endothelial cell calcification and related mechanisms through cell experiments. Methods Human umbilical vein endothelial cells were treated with different concentrations of FeSO4 (50, 100, 150, and 200 µM), and deferoxamine (DFO) and ferrostatin. Alkaline phosphatase activity, malondialdehyde (MDA) level, reactive oxygen species (ROS) level, and lipid superoxidation after FeSO4 treatment were assessed. Alizarin red staining was used to observe calcium deposition. Quantitative polymerase chain reaction (qPCR) and western blot were adopted to examine the expression of calcification markers, iron metabolism-related factors, apoptosis pathway-related factors and ferroptosis markers. The TUNEL method was employed to detect cell apoptosis. Results FeSO4 of 100 µM significantly promoted the occurrence of cell ferroptosis, increased the levels of MDA and ROS, and decreased the ratio of glutathione (GSH) or glutathione disulfide (GSSG) and the expression level of glutathione peroxidase (GPX4). The addition of DFO and ferrostatin significantly modified the effects of FeSO4. Calcium deposition was most obvious in the cells treated with 100 µM FeSO4. FeSO4 significantly upregulated Runt-related transcription factor 2 (RUNX2) and Bone morphogenetic protein 2 (BMP2), ferritin heavy chain (FTH) and ferritin light chain (FTL), and downregulated Matrix Gla Protein (MGP) and divalent metal transporter 1 (DMT1). The results also showed that FeSO4 induced cell apoptosis by TUNEL method. The elevated Bcl2-associated death protein (Bad) and Bcl2-associated X protein (Bax) and the reduction in Bcl-2, p-Bad, p-AKT, and t-AKT were found. DFO and ferrostatin significantly reduced the iron-induced calcification and apoptosis of endothelial cells. DFO significantly increased the expression level of Bcl-2, and reduced the expression level of Bad. Conclusions Iron overload contributes to the process of endothelial cell calcification by inducing apoptosis and ferroptosis. Iron chelators and ferroptosis inhibitors alleviate endothelial cell apoptosis, ferroptosis, and calcification induced by iron overload.
Collapse
Affiliation(s)
- Lili Zhao
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Ning Yang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Hailong Si
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
92
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
93
|
Shen J, Zhao M, Zhang C, Sun X. IL-1β in atherosclerotic vascular calcification: From bench to bedside. Int J Biol Sci 2021; 17:4353-4364. [PMID: 34803503 PMCID: PMC8579452 DOI: 10.7150/ijbs.66537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ming Zhao
- Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
94
|
Huang Q, Gan Y, Yu Z, Wu H, Zhong Z. Endothelial to Mesenchymal Transition: An Insight in Atherosclerosis. Front Cardiovasc Med 2021; 8:734550. [PMID: 34604359 PMCID: PMC8484517 DOI: 10.3389/fcvm.2021.734550] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is a fundamental disease of the cardiovascular system that leads to high morbidity and mortality worldwide. The endothelium is the first protective barrier in atherosclerosis. Endothelial cells have the potential to be transformed into mesenchymal cells, in a process termed endothelial to mesenchymal transition (EndMT). On the one hand, EndMT is known to contribute to atherosclerosis by inducing a number of phenotypes ranging from endothelial cell dysfunction to plaque formation. On the other hand, risk factors for atherosclerosis can lead to EndMT. A substantial body of evidence has suggested that EndMT induces the development of atherosclerosis; therefore, a deeper understanding of the molecular mechanisms underlying EndMT in atherosclerosis might provide insights to reverse this condition.
Collapse
Affiliation(s)
- Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Yuhong Gan
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
95
|
Islam S, Boström KI, Di Carlo D, Simmons CA, Tintut Y, Yao Y, Hsu JJ. The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Front Physiol 2021; 12:734215. [PMID: 34566697 PMCID: PMC8458763 DOI: 10.3389/fphys.2021.734215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) lining the cardiovascular system are subjected to a highly dynamic microenvironment resulting from pulsatile pressure and circulating blood flow. Endothelial cells are remarkably sensitive to these forces, which are transduced to activate signaling pathways to maintain endothelial homeostasis and respond to changes in the environment. Aberrations in these biomechanical stresses, however, can trigger changes in endothelial cell phenotype and function. One process involved in this cellular plasticity is endothelial-to-mesenchymal transition (EndMT). As a result of EndMT, ECs lose cell-cell adhesion, alter their cytoskeletal organization, and gain increased migratory and invasive capabilities. EndMT has long been known to occur during cardiovascular development, but there is now a growing body of evidence also implicating it in many cardiovascular diseases (CVD), often associated with alterations in the cellular mechanical environment. In this review, we highlight the emerging role of shear stress, cyclic strain, matrix stiffness, and composition associated with EndMT in CVD. We first provide an overview of EndMT and context for how ECs sense, transduce, and respond to certain mechanical stimuli. We then describe the biomechanical features of EndMT and the role of mechanically driven EndMT in CVD. Finally, we indicate areas of open investigation to further elucidate the complexity of EndMT in the cardiovascular system. Understanding the mechanistic underpinnings of the mechanobiology of EndMT in CVD can provide insight into new opportunities for identification of novel diagnostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Shahrin Islam
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kristina I Boström
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,UCLA Molecular Biology Institute, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yin Tintut
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yucheng Yao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
96
|
Waring OJ, Skenteris NT, Biessen EAL, Donners MMPC. Two-faced Janus: The dual role of macrophages in atherosclerotic calcification. Cardiovasc Res 2021; 118:2768-2777. [PMID: 34550346 PMCID: PMC9586561 DOI: 10.1093/cvr/cvab301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Calcification is an independent predictor of atherosclerosis-related cardiovascular events. Microcalcification is linked to inflamed, unstable lesions, in comparison to the fibrotic stable plaque phenotype generally associated with advanced calcification. This paradox relates to recognition that calcification presents in a wide spectrum of manifestations that differentially impact plaque’s fate. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a multifaceted role in disease progression. They crucially control the mineralization process, from microcalcification to the osteoid metaplasia of bone-like tissue. It is a bilateral interaction that weighs heavily on the overall plaque fate but remains rather unexplored. This review highlights current knowledge about macrophage phenotypic changes in relation to and interaction with the calcifying environment. On the one hand, macrophage-led inflammation kickstarts microcalcification through a multitude of interlinked mechanisms, which in turn stimulates phenotypic changes in vascular cell types to drive microcalcification. Macrophages may also modulate the expression/activity of calcification inhibitors and inducers, or eliminate hydroxyapatite nucleation points. Contrarily, direct exposure of macrophages to an early calcifying milieu impacts macrophage phenotype, with repercussions for plaque progression and/or stability. Macrophages surrounding macrocalcification deposits show a more reparative phenotype, modulating extracellular matrix, and expressing osteoclast genes. This phenotypic shift favours gradual displacement of the pro-inflammatory hubs; the lipid necrotic core, by macrocalcification. Parallels to bone metabolism may explain many of these changes to macrophage phenotype, with advanced calcification able to show homeostatic osteoid metaplasia. As the targeted treatment of vascular calcification developing in atherosclerosis is thus far severely lacking, it is crucial to better understand its mechanisms of development.
Collapse
Affiliation(s)
- O J Waring
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - N T Skenteris
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.,Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - E A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, German
| | - M M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
97
|
Qin Z, Chang K, Liao R, Jiang L, Yang Q, Su B. Greater Dietary Inflammatory Potential Is Associated With Higher Likelihood of Abdominal Aortic Calcification. Front Cardiovasc Med 2021; 8:720834. [PMID: 34485417 PMCID: PMC8414543 DOI: 10.3389/fcvm.2021.720834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
Aims: We aimed to assess the association between dietary inflammation index (DII) and abdominal aortic calcification (AAC) in US adults aged ≥40 years. Methods: Data were obtained from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Participants who were <40 years old and missing the data of DII and AAC were excluded. DII was calculated based on a 24-h dietary recall interview for each participant. AAC score was quantified by assessing lateral spine images and severe AAC was defined as AAC score >6. Weighted multivariable regression analysis and subgroup analysis were preformed to estimate the independent relationship between DII with AAC score and severe AAC. Results: A total of 2,897 participants were included with the mean DII of -0.17 ± 2.80 and the mean AAC score of 1.462 ± 3.290. The prevalence of severe AAC was 7.68% overall, and participants in higher DII quartile tended to have higher rates of severe AAC (Quartile 1: 5.03%, Quartile 2: 7.44%, Quartile 3: 8.38%, Quartile 4: 10.46%, p = 0.0016). A positive association between DII and AAC score was observed (β = 0.055, 95% CI: 0.010, 0.101, p = 0.01649), and higher DII was associated with an increased risk of severe AAC (OR = 1.067, 95% CI: 1.004, 1.134, p = 0.03746). Subgroup analysis indicated that this positive association between DII and AAC was similar in population with differences in gender, age, BMI, hypertension status, and diabetes status and could be appropriate for different population settings. Conclusion: Higher pro-inflammatory diet was associated with higher AAC score and increased risk of severe AAC. Anti-inflammatory dietary management maybe beneficial to reduce the risk of AAC.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Kaixi Chang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Qinbo Yang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
98
|
Tang H, Zhang X, Xue G, Xu F, Wang Q, Yang P, Hong B, Xu Y, Huang Q, Liu J, Zuo Q. The biology of bone morphogenetic protein signaling pathway in cerebrovascular system. Chin Neurosurg J 2021; 7:36. [PMID: 34465399 PMCID: PMC8408949 DOI: 10.1186/s41016-021-00254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Bone morphogenetic protein belongs to transcription growth factor superfamily β; bone morphogenetic protein signal pathway regulates cell proliferation, differentiation, and apoptosis among different tissues. Cerebrovascular system supplies sufficient oxygen and blood into brain to maintain its normal function. The disorder of cerebrovascular system will result into serious cerebrovascular diseases, which is gradually becoming a major threat to human health in modern society. In recent decades, many studies have revealed the underlying biology and mechanism of bone morphogenetic protein signal pathway played in cerebrovascular system. This review will discuss the relationship between the two aspects, aiming to provide new perspective for non-invasive treatment and basic research of cerebrovascular diseases.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.,Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Xiaoxi Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Gaici Xue
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Fengfeng Xu
- Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Qingsong Wang
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Pengfei Yang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Bo Hong
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Qiao Zuo
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
99
|
Yang X, Chen A, Liang Q, Dong Q, Fu M, Liu X, Wang S, Li Y, Ye Y, Lan Z, Ou JS, Lu L, Yan J. Up-regulation of heme oxygenase-1 by celastrol alleviates oxidative stress and vascular calcification in chronic kidney disease. Free Radic Biol Med 2021; 172:530-540. [PMID: 34174395 DOI: 10.1016/j.freeradbiomed.2021.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Vascular calcification is very commonly observed in patients with chronic kidney disease (CKD), but there is no efficient therapy available. Oxidative stress plays critical roles in the progression of vascular calcification. Celastrol (Cel), a natural constituent derived from Chinese herbals, exhibits anti-oxidative stress activity. Here, we investigated the effect of celastrol on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings and CKD rats. Alizarin red staining and gene expression analysis showed that Cel dose-dependently inhibited rat VSMC calcification and osteogenic differentiation. Similarly, ex vivo study revealed that Cel inhibited calcification of rat and human arterial rings. In addition, micro-computed tomography, alizarin red staining and calcium content analysis confirmed that Cel inhibited aortic calcification in CKD rats. Interestingly, Cel treatment increased the mRNA and protein levels of heme oxygenase-1 (HMOX-1), and reduced the levels of reactive oxygen species (ROS) in VSMCs. Furthermore, both pharmacological inhibition of HMOX-1 and knockdown of HMOX-1 by siRNA independently counteracted the inhibitory effect of Cel on vascular calcification. Moreover, knockdown of HMOX-1 prevented Cel treatment-mediated reduction in ROS levels. Finally, Cel treatment reduced Vitamin D3-induced aortic calcification in mice and this effect was blocked by HMOX-1 inhibitor ZnPP9. Collectively, our results suggest that up-regulation of HMOX-1 is required for the inhibitory effect of Cel on vascular calcification. Modulation of HMOX-1 may provide a novel strategy for the treatment of vascular calcification in CKD.
Collapse
Affiliation(s)
- Xiulin Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China.
| |
Collapse
|
100
|
Zhang S, Fan Y, Qin L, Fang X, Zhang C, Yue J, Bai W, Wang G, Chen Z, Renz H, Skevaki C, Liu X, Xie M. IL-1β augments TGF-β inducing epithelial-mesenchymal transition of epithelial cells and associates with poor pulmonary function improvement in neutrophilic asthmatics. Respir Res 2021; 22:216. [PMID: 34344357 PMCID: PMC8336269 DOI: 10.1186/s12931-021-01808-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Neutrophilic asthmatics (NA) have less response to inhaled corticosteroids. We aimed to find out the predictor of treatment response in NA. Methods Asthmatics (n = 115) and healthy controls (n = 28) underwent clinical assessment during 6-month follow-up with standardized therapy. Asthmatics were categorized by sputum differential cell count. The mRNA expressions were measured by RT-qPCR for sputum cytokines (IFN-γ, IL-1β, IL-27, FOXP3, IL-17A, and IL-5). The protein of IL-1β in sputum supernatant was detected by ELISA. Reticular basement membranes (RBM) were measured in the biopsy samples. The role and signaling pathways of IL-1β mediating the epithelial-mesenchymal transition (EMT) process were explored through A549 cells. Results NA had increased baseline sputum cell IL-1β expression compared to eosinophilic asthmatics (EA). After follow-up, NA had less improvement in FEV1 compared to EA. For all asthmatics, sputum IL-1β mRNA was positively correlated with protein expression. Sputum IL-1β mRNA and protein levels were negatively correlated to FEV1 improvement. After subgrouping, the correlation between IL-1β mRNA and FEV1 improvement was significant in NA but not in EA. Thickness of RBM in asthmatics was greater than that of healthy controls and positively correlated with neutrophil percentage in bronchoalveolar lavage fluid. In vitro experiments, the process of IL-1β augmenting TGF-β1-induced EMT cannot be abrogated by glucocorticoid or montelukast sodium, but can be reversed by MAPK inhibitors. Conclusions IL-1β level in baseline sputum predicts the poor lung function improvement in NA. The potential mechanism may be related to IL-1β augmenting TGF-β1-induced steroid-resistant EMT through MAPK signaling pathways. Trial registration: This study was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (IRB ID: 20150406). Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01808-7.
Collapse
Affiliation(s)
- Shengding Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Yu Fan
- Department of Respiratory and Critical Care Medicine, Qiandongnanzhou People's Hospital, Kaili, China
| | - Lu Qin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiaoyu Fang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Cong Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Junqing Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Wenxue Bai
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Harld Renz
- Institute of Laboratory Medicine, Philipps Universität Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), and the German Center for Lung Research (DZL), Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps Universität Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), and the German Center for Lung Research (DZL), Marburg, Germany
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China.
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China.
| |
Collapse
|