51
|
Dai L, Liu P, Hu X, Zhao X, Shao G, Tian Y. DNA origami: an outstanding platform for functions in nanophotonics and cancer therapy. Analyst 2021; 146:1807-1819. [PMID: 33595553 DOI: 10.1039/d0an02160a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to the proposal and evolution of the DNA origami technique over the past decade, DNA molecules have been utilized as building blocks for the precise construction of nanoscale architectures. Benefiting from the superior programmability of DNA molecules, the sequence-dependent recognition mechanism and robust complementation among DNA strands make it possible to customize almost arbitrary structures. Such an assembly strategy bypasses some of the limits of conventional fabrication methods; the fabrication accuracy and complexity of the target product are unprecedentedly promoted as well. Furthermore, due to the spatial addressability of the final products, nanostructures assembled through the DNA origami technique can also serve as a versatile platform for the spatial positioning of functional elements, represented by colloidal nanoparticles (NPs). The subsequent fabrication of heterogeneous functional nanoarchitectures is realized via modifying colloidal NPs with DNA strands and manipulating them to anchor into DNA origami templates. This has given rise to investigations of their novel properties in nanophotonics and therapeutic effects towards some diseases. In this review, we survey the crucial progress in the development of DNA origami design, assembly and structural analysis and summarize available applications in nanophotonics and cancer therapy based on the object-dressed DNA origami complex. Moreover, we elucidate the development of this field and discuss the potential directions of this kind of application-oriented nanomanufacturing.
Collapse
Affiliation(s)
- Lizhi Dai
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China.
| | | | | | | | | | | |
Collapse
|
52
|
Smith DM, Keller A. DNA Nanostructures in the Fight Against Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000049. [PMID: 33615315 PMCID: PMC7883073 DOI: 10.1002/anbr.202000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Throughout history, humanity has been threatened by countless epidemic and pandemic outbreaks of infectious diseases, from the Justinianic Plague to the Spanish flu to COVID-19. While numerous antimicrobial and antiviral drugs have been developed over the last 200 years to face these threats, the globalized and highly connected world of the 21st century demands for an ever-increasing efficiency in the detection and treatment of infectious diseases. Consequently, the rapidly evolving field of nanomedicine has taken up the challenge and developed a plethora of strategies to fight infectious diseases with the help of various nanomaterials such as noble metal nanoparticles, liposomes, nanogels, and virus capsids. DNA nanotechnology represents a comparatively recent addition to the nanomedicine arsenal, which, over the past decade, has made great progress in the area of cancer diagnostics and therapy. However, the past few years have seen also an increasing number of DNA nanotechnology-related studies that particularly focus on the detection and inhibition of microbial and viral pathogens. Herein, a brief overview of this rather young research field is provided, successful concepts as well as potential challenges are identified, and promising directions for future research are highlighted.
Collapse
Affiliation(s)
- David M. Smith
- DNA Nanodevices UnitDepartment DiagnosticsFraunhofer Institute for Cell Therapy and Immunology IZI04103LeipzigGermany
- Peter Debye Institute for Soft Matter PhysicsFaculty of Physics and Earth SciencesUniversity of Leipzig04103LeipzigGermany
- Institute of Clinical ImmunologyUniversity of Leipzig Medical School04103LeipzigGermany
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar382 007India
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
53
|
Martinelli C. Smart Nanocarriers for Targeted Cancer Therapy. Anticancer Agents Med Chem 2021; 21:546-557. [PMID: 32560615 DOI: 10.2174/1871520620666200619181425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Cancer is considered one of the most threatening diseases worldwide. Although many therapeutic approaches have been developed and optimized for ameliorating patient's conditions and life expectancy, however, it frequently remains an incurable pathology. Notably, conventional treatments may reveal inefficient in the presence of metastasis development, multidrug resistance and inability to achieve targeted drug delivery. In the last decades, nanomedicine has gained a prominent role, due to many properties ascribable to nanomaterials. It is worth mentioning their small size, their ability to be loaded with small drugs and bioactive molecules and the possibility to be functionalized for tumor targeting. Natural vehicles have been exploited, such as exosomes, and designed, such as liposomes. Biomimetic nanomaterials have been engineered, by modification with biological membrane coating. Several nanoparticles have already entered clinical trials and some liposomal formulations have been approved for therapeutic applications. In this review, natural and synthetic nanocarriers functionalized for actively targeting cancer cells will be described, focusing on their advantages with respect to conventional treatments. Recent innovations related to biomimetic nanoparticles camouflaged with membranes isolated from different types of cells will be reported, together with their promising applications. Finally, a short overview on the latest advances in carrier-free nanomaterials will be provided.
Collapse
Affiliation(s)
- Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
54
|
|
55
|
Xiao D, Li Y, Tian T, Zhang T, Shi S, Lu B, Gao Y, Qin X, Zhang M, Wei W, Lin Y. Tetrahedral Framework Nucleic Acids Loaded with Aptamer AS1411 for siRNA Delivery and Gene Silencing in Malignant Melanoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6109-6118. [PMID: 33497198 DOI: 10.1021/acsami.0c23005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
siRNA is found to effectively knock down the target gene in cells, which is considered a promising strategy for gene therapy. However, the application of siRNA is limited due to its low efficiency of the cellular uptake. Tetrahedral framework nucleic acids (tFNAs) are synthesized by four single-stranded DNAs and show multiple biological functions in recent studies, especially suitable for drug delivery. More than 60% of malignant melanomas are associated with Braf gene mutation, an attractive therapeutic target for RNA interference. In this study, we modified anti-Braf siRNA (siBraf) with tFNAs to downregulate the target gene. Meanwhile, we directly incorporated AS1411 (a DNA aptamer) to our nanostructure, which assists tFNAs to improve the cellular uptake efficacy of siBraf significantly. The results indicated that tFNAs-AS1411-siBraf exhibited more potent activity to cleave Braf mRNA than free siBraf. This study may provide a new idea for the combination therapy of siRNA and aptamers via DNA nanomaterials to achieve gene silencing.
Collapse
Affiliation(s)
- Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Boyao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Wei Wei
- Department of Emergency, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
56
|
Raniolo S, Unida V, Vindigni G, Stolfi C, Iacovelli F, Desideri A, Biocca S. Combined and selective miR-21 silencing and doxorubicin delivery in cancer cells using tailored DNA nanostructures. Cell Death Dis 2021; 12:7. [PMID: 33414439 PMCID: PMC7791072 DOI: 10.1038/s41419-020-03339-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/21/2022]
Abstract
MicroRNAs play an important role in tumorigenesis and, among them, miR-21 is found to be aberrantly up-regulated in various tumors. The tumor-associated antigen, folate receptor alpha is a GPI-membrane protein overexpressed in many malignant tumors of epithelial origin, including ovarian and cervical cancers. Covalently bound octahedral DNA nanocages were functionalized with folate molecules and utilized as scaffolds to engineer four sequestering units with a miR-21 complementary sequence for obtaining biocompatible Fol-miR21-NC non-toxic nanostructures, to be able to selectively recognize folate receptor alpha-overexpressing cancer cells and sequester the oncogenic miR-21. qPCR assays showed that Fol-miR21-NCs reduce the miR-21 expression up to 80% in cancer cells in the first 2 days of treatment. Functional assays demonstrated that miR-21 sequestering leads to up-regulation of miR-21 tumor suppressor targets (i.e., PTEN and Pdcd4), reduction in cancer cell migration, reduction in proliferation, and increase in cell death. Fol-miR21-NCs can be efficiently loaded with the chemotherapeutic agent doxorubicin. Co-delivery of anti-miR-21 and doxorubicin showed additive cytotoxic effects on tumor cells, paving the way for their use as selective nucleic acid drugs.
Collapse
Affiliation(s)
- Sofia Raniolo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Valeria Unida
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giulia Vindigni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
57
|
Wang W, Arias DS, Deserno M, Ren X, Taylor RE. Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioeng 2020; 4:041507. [PMID: 33344875 PMCID: PMC7725538 DOI: 10.1063/5.0027022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications.
Collapse
Affiliation(s)
- Weitao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D. Sebastian Arias
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
58
|
Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co-Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem Int Ed Engl 2020; 60:1853-1860. [PMID: 33058467 DOI: 10.1002/anie.202011174] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Chemically modified DNA has been widely developed to fabricate various nucleic acid nanostructures for biomedical applications. Herein, we report a facile strategy for construction of branched antisense DNA and small interfering RNA (siRNA) co-assembled nanoplatform for combined gene silencing in vitro and in vivo. In our design, the branched antisense can efficiently capture siRNA with 3' overhangs through DNA-RNA hybridization. After being equipped with an active targeting group and an endosomal escape peptide by host-guest interaction, the tailored nucleic acid nanostructure functions efficiently as both delivery carrier and therapeutic cargo, which is released by endogenous RNase H digestion. The multifunctional nucleic acid nanosystem elicits an efficient inhibition of tumor growth based on the combined gene silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This biocompatible nucleic acid nanoplatform presents a new strategy for the development of gene therapy.
Collapse
Affiliation(s)
- Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
59
|
Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co‐Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
60
|
Zeng Y, Nixon RL, Liu W, Wang R. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials 2020; 268:120560. [PMID: 33285441 DOI: 10.1016/j.biomaterials.2020.120560] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Deoxyribonucleic acid (DNA) is a molecular carrier of genetic information that can be fabricated into functional nanomaterials in biochemistry and engineering fields. Those DNA nanostructures, synthesized via Watson-Crick base pairing, show a wide range of attributes along with excellent applicability, precise programmability, and extremely low cytotoxicity in vitro and in vivo. In this review, the applications of functionalized DNA nanostructures in bioimaging and tumor therapy are summarized. We focused on approaches involving DNA origami nanostructures due to their widespread use in previous and current reports. Non-DNA origami nanostructures such as DNA tetrahedrons are also covered. Finally, the remaining challenges and perspectives regarding DNA nanostructures in the biomedical arena are discussed.
Collapse
Affiliation(s)
- Yun Zeng
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
| | - Rachel L Nixon
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
61
|
Chen B, Mei L, Wang Y, Guo G. Advances in intelligent DNA nanomachines for targeted cancer therapy. Drug Discov Today 2020; 26:1018-1029. [PMID: 33217344 DOI: 10.1016/j.drudis.2020.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 02/05/2023]
Abstract
As an emerging field, DNA nanotechnology has been applied to the fabrication of drug delivery systems. Unprecedented spatial addressability and intrinsic sequence encoding enable DNA strands to self-assemble into well-defined 2D and 3D DNA nanostructures with specifically controlled sizes, shapes and surface charges. Multifunctional DNA nanostructures have been created and applied as promising platforms for drug delivery, imaging, and theranostics. Advantages of chemotherapy, gene therapy, and immunotherapy, among others, have been integrated into such functional nanodevices, showing potential in tumor-targeted therapy and diagnosis. In this review, we summarize general methods for the construction of DNA nanodevices and focus on targeting strategies favored by the compatibility of DNA nanotechnology. Additionally, we highlight the outlook and challenges facing the use of DNA nanotechnology in cancer therapy.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
62
|
Keller A, Linko V. Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angew Chem Int Ed Engl 2020; 59:15818-15833. [PMID: 32112664 PMCID: PMC7540699 DOI: 10.1002/anie.201916390] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Indexed: 01/12/2023]
Abstract
DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer-level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real-world applications of DNA-based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions.
Collapse
Affiliation(s)
- Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Veikko Linko
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityP. O. Box 1610000076AaltoFinland
- HYBER CentreDepartment of Applied PhysicsAalto UniversityP. O. Box 1510000076AaltoFinland
| |
Collapse
|
63
|
Wu T, Liu Q, Cao Y, Tian R, Liu J, Ding B. Multifunctional Double-Bundle DNA Tetrahedron for Efficient Regulation of Gene Expression. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32461-32467. [PMID: 32613824 DOI: 10.1021/acsami.0c08886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA nanostructures have garnered considerable interest as research tools in the field of cell biology and pathology. Herein, we develop an addressable double-bundle DNA tetrahedron with distinct modification sites to load multiple functional components for efficient regulation of gene expression. In our tailored nanoplatform, nucleic acid drugs (antisense for gene therapy) and protein drugs (KillerRed for photodynamic therapy) are precisely organized in the chemically well-defined DNA tetrahedron. With the attachment of active targeting groups, this functional DNA nanocarrier can efficiently penetrate into the cell membrane and subsequently transport drugs to the target subcellular organelles (mitochondrion and nucleus) for inducing synergistic cell behavior regulation to start the endogenous apoptotic process. This tailored DNA nanocarrier provides unprecedented opportunities for intelligent drug delivery and cell biology research.
Collapse
Affiliation(s)
- Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanwei Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
64
|
Hu Y, Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Peng D, Liu Z, Liu Y. Dynamic DNA Assemblies in Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000557. [PMID: 32714763 PMCID: PMC7375253 DOI: 10.1002/advs.202000557] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/07/2020] [Indexed: 05/13/2023]
Abstract
Deoxyribonucleic acid (DNA) has been widely used to construct homogeneous structures with increasing complexity for biological and biomedical applications due to their powerful functionalities. Especially, dynamic DNA assemblies (DDAs) have demonstrated the ability to simulate molecular motions and fluctuations in bionic systems. DDAs, including DNA robots, DNA probes, DNA nanochannels, DNA templates, etc., can perform structural transformations or predictable behaviors in response to corresponding stimuli and show potential in the fields of single molecule sensing, drug delivery, molecular assembly, etc. A wave of exploration of the principles in designing and usage of DDAs has occurred, however, knowledge on these concepts is still limited. Although some previous reviews have been reported, systematic and detailed reviews are rare. To achieve a better understanding of the mechanisms in DDAs, herein, the recent progress on the fundamental principles regarding DDAs and their applications are summarized. The relative assembly principles and computer-aided software for their designing are introduced. The advantages and disadvantages of each software are discussed. The motional mechanisms of the DDAs are classified into exogenous and endogenous stimuli-triggered responses. The special dynamic behaviors of DDAs in biomedical applications are also summarized. Moreover, the current challenges and future directions of DDAs are proposed.
Collapse
Affiliation(s)
- Yaqin Hu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Ying Wang
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Nachuan Wen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Shundong Cai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Qunye He
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Dongming Peng
- Department of Medicinal ChemistrySchool of PharmacyHunan University of Chinese MedicineChangshaHunan410013P. R. China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan410013P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| |
Collapse
|
65
|
Keller A, Linko V. Herausforderungen und Perspektiven von DNA‐Nanostrukturen in der Biomedizin. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adrian Keller
- Technische und Makromolekulare Chemie Universität Paderborn Warburger Straße 100 33098 Paderborn Deutschland
| | - Veikko Linko
- Biohybrid Materials Department of Bioproducts and Biosystems Aalto University P. O. Box 16100 00076 Aalto Finnland
- HYBER Centre Department of Applied Physics Aalto University P. O. Box 15100 00076 Aalto Finnland
| |
Collapse
|
66
|
|
67
|
McCluskey JB, Clark DS, Glover DJ. Functional Applications of Nucleic Acid-Protein Hybrid Nanostructures. Trends Biotechnol 2020; 38:976-989. [PMID: 32818445 DOI: 10.1016/j.tibtech.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/09/2023]
Abstract
Combining the diverse chemical functionality of proteins with the predictable structural assembly of nucleic acids has enabled the creation of hybrid nanostructures for a range of biotechnology applications. Through the attachment of proteins onto or within nucleic acid nanostructures, materials with dynamic capabilities can be created that include switchable enzyme activity, targeted drug delivery, and multienzyme cascades for biocatalysis. Investigations of difficult-to-study biological mechanisms have also been aided by using DNA-protein assemblies that mimic natural processes in a controllable manner. Furthermore, advances that enable the recombinant production and intracellular assembly of hybrid nanostructures have the potential to overcome the significant manufacturing cost that has limited the use of DNA and RNA nanotechnology.
Collapse
Affiliation(s)
- Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
68
|
Gang GW, Shin J, Kim YH, Ha TH, Ogawa T. Visualization of unstained homo/heterogeneous DNA nanostructures by low-voltage scanning transmission electron microscopy. Sci Rep 2020; 10:4868. [PMID: 32184416 PMCID: PMC7078320 DOI: 10.1038/s41598-020-61751-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/26/2020] [Indexed: 11/28/2022] Open
Abstract
Three-dimensional (3D) homo/heterogeneous DNA nanostructures were studied with low-voltage scanning transmission electron microscopy (LV-STEM). Four types of 3D DNA nanostructures were designed and fabricated by the origami method including newly proposed protocols. The low-energy electron probe and optimized dark-field STEM detector enabled individual unstained DNA nanostructures to be clearly imaged by the single acquisition without the averaging process. For the vertically stacked double structures, assembled through modified single-stranded domains, and the structures containing a square opening (i.e., a hole) in the center, the LV-STEM successfully reveals the vertical information of these 3D structures as the contrast differences compared to the reference. For the heterogeneous structures, the LV-STEM visualized both regions of the functionalized gold nanoparticles and the DNA base structure with distinct contrasts. This study introduces a straightforward method to fabricate stackable DNA nanostructures or nanoparticles by replacing a relatively small number of incumbent DNA strands, which could realize the simple and sophisticated fabrication of higher-order 3D DNA homo/hetero nanostructures. Together with these design techniques of DNA nanostructures, this study has demonstrated that the LV-STEM is the swift and simple method for visualizing the 3D DNA nanostructures and certifying the fabricated products as the specified design, which is applicable to various research fields on soft materials including DNA nanotechnology.
Collapse
Affiliation(s)
- Geun Won Gang
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Physics, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jihoon Shin
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young Heon Kim
- Division of Industrial Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tai Hwan Ha
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Takashi Ogawa
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
69
|
Taylor RE, Zahid M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020; 12:E225. [PMID: 32138146 PMCID: PMC7150854 DOI: 10.3390/pharmaceutics12030225] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first identified ~25 years ago, are small, 6-30 amino acid long, synthetic, or naturally occurring peptides, able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their initial description and characterization, the field of cell penetrating peptides as vectors has exploded. The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history, classification system, and mechanism of transduction followed by a summary of the existing literature on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids.
Collapse
Affiliation(s)
- Rebecca E. Taylor
- Mechanical Engineering, Biomedical Engineering and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| |
Collapse
|
70
|
Ryu Y, Hong CA, Song Y, Beak J, Seo BA, Lee JJ, Kim HS. Modular protein-DNA hybrid nanostructures as a drug delivery platform. NANOSCALE 2020; 12:4975-4981. [PMID: 32057052 DOI: 10.1039/c9nr08519j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing number of identified intracellular drug targets, cytosolic drug delivery has gained much attention. Despite advances in synthetic drug carriers, however, construction of homogeneous and biocompatible nanostructures in a controllable manner still remains a challenge in a translational medicine. Herein, we present the modular design and assembly of functional DNA nanostructures through sequence-specific interactions between zinc-finger proteins (ZnFs) and DNA as a cytosolic drug delivery platform. Three kinds of DNA-binding ZnF domains were genetically fused to various proteins with different biological roles, including targeting moiety, molecular probe, and therapeutic cargo. The engineered ZnFs were employed as distinct functional modules, and incorporated into a designed ZnF-binding sequence of a Y-shaped DNA origami (Y-DNA). The resulting functional Y-DNA nanostructures (FYDN) showed self-assembled superstructures with homogeneous morphology, strong resistance to exonuclease activity and multi-modality. We demonstrated the general utility of our approach by showing efficient cytosolic delivery of PTEN tumour suppressor protein to rescue unregulated kinase signaling in cancer cells with negligible nonspecific cytotoxicity.
Collapse
Affiliation(s)
- Yiseul Ryu
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Cheol Am Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Yunjin Song
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Jonghwi Beak
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Bo Am Seo
- Biomedical Science & Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
71
|
Sun X, Liu H. Nucleic Acid Nanostructure Assisted Immune Modulation. ACS APPLIED BIO MATERIALS 2020; 3:2765-2778. [DOI: 10.1021/acsabm.9b01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoli Sun
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
72
|
In Silico and In Cell Analysis of Openable DNA Nanocages for miRNA Silencing. Int J Mol Sci 2019; 21:ijms21010061. [PMID: 31861821 PMCID: PMC6981788 DOI: 10.3390/ijms21010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
A computational and experimental integrated approach was applied in order to study the effect of engineering four DNA hairpins into an octahedral truncated DNA nanocage, to obtain a nanostructure able to recognize and bind specific oligonucleotide sequences. Modeling and classical molecular dynamics simulations show that the new H4-DNA nanocage maintains a stable conformation with the closed hairpins and, when bound to complementary oligonucleotides produces an opened conformation that is even more stable due to the larger hydrogen bond number between the hairpins and the oligonucleotides. The internal volume of the open conformation is much larger than the closed one, switching from 370 to 650 nm3, and the predicted larger conformational change is experimentally detectable by gel electrophoresis. H4-DNA nanocages display high stability in serum, can efficiently enter the cells where they are stable and maintain the ability to bind, and sequester an intracellular-specific oligonucleotide. Moreover, H4-DNA nanocages, modified in order to recognize the oncogenic miR21, are able to seize miRNA molecules inside cells in a selective manner.
Collapse
|
73
|
|
74
|
Mishra S, Feng Y, Endo M, Sugiyama H. Advances in DNA Origami–Cell Interfaces. Chembiochem 2019; 21:33-44. [DOI: 10.1002/cbic.201900481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/19/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Shubham Mishra
- Department of ChemistryGraduate School of ScienceInstitute for Integrated Cell-Material SciencesKyoto University Kitashirakawa-Oiwakecho Kyoto 606-8502 Japan
| | - Yihong Feng
- Department of ChemistryGraduate School of ScienceInstitute for Integrated Cell-Material SciencesKyoto University Kitashirakawa-Oiwakecho Kyoto 606-8502 Japan
| | - Masayuki Endo
- Department of ChemistryGraduate School of ScienceInstitute for Integrated Cell-Material SciencesKyoto University Kitashirakawa-Oiwakecho Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceInstitute for Integrated Cell-Material SciencesKyoto University Kitashirakawa-Oiwakecho Kyoto 606-8502 Japan
| |
Collapse
|
75
|
Jiang Q, Liu S, Liu J, Wang ZG, Ding B. Rationally Designed DNA-Origami Nanomaterials for Drug Delivery In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804785. [PMID: 30285296 DOI: 10.1002/adma.201804785] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/17/2018] [Indexed: 05/10/2023]
Abstract
The recent decades have seen a surge of new nanomaterials designed for efficient drug delivery. DNA nanotechnology has been developed to construct sophisticated 3D nanostructures and artificial molecular devices that can be operated at the nanoscale, giving rise to a variety of programmable functions and fascinating applications. In particular, DNA-origami nanostructures feature rationally designed geometries and precise spatial addressability, as well as marked biocompatibility, thus providing a promising candidate for drug delivery. Here, the recent successful efforts to employ self-assembled DNA-origami nanostructures as drug-delivery vehicles are summarized. The remaining challenges and open opportunities are also discussed.
Collapse
Affiliation(s)
- Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
76
|
|
77
|
Jahanban-Esfahlan A, Seidi K, Jaymand M, Schmidt TL, Majdi H, Javaheri T, Jahanban-Esfahlan R, Zare P. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. J Control Release 2019; 315:166-185. [PMID: 31669209 DOI: 10.1016/j.jconrel.2019.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/16/2023]
Abstract
DNA composite materials are at the forefront, especially for biomedical science, as they can increase the efficacy and safety of current therapies and drug delivery systems. The specificity and predictability of the Watson-Crick base pairing make DNA an excellent building material for the production of programmable and multifunctional objects. In addition, the principle of nucleic acid hybridization can be applied to realize mobile nanostructures, such as those reflected in DNA walkers that sort and collect cargo on DNA tracks, DNA robots performing tasks within living cells and/or DNA tweezers as ultra-sensitive biosensors. In this review, we present the diversity of dynamic DNA nanostructures functionalized with different biomolecules/functional units, imaging smart biomaterials capable of sensing, interacting, delivery and performing complex tasks within living cells/organisms.
Collapse
Affiliation(s)
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thorsten L Schmidt
- Physics Department, 103 Smith Hall, Kent State University, Kent, OH, 44240, USA
| | - Hasan Majdi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
78
|
Wu T, Liu J, Liu M, Liu S, Zhao S, Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B. A Nanobody‐Conjugated DNA Nanoplatform for Targeted Platinum‐Drug Delivery. Angew Chem Int Ed Engl 2019; 58:14224-14228. [DOI: 10.1002/anie.201909345] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
| | - Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuai Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
79
|
Wu T, Liu J, Liu M, Liu S, Zhao S, Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B. A Nanobody‐Conjugated DNA Nanoplatform for Targeted Platinum‐Drug Delivery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
| | - Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuai Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
80
|
Skovsgaard MB, Mortensen MR, Palmfeldt J, Gothelf KV. Aptamer-Directed Conjugation of DNA to Therapeutic Antibodies. Bioconjug Chem 2019; 30:2127-2135. [PMID: 31247138 DOI: 10.1021/acs.bioconjchem.9b00363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A method for aptamer directed conjugation of DNA to therapeutic antibodies has been developed. In the method, an antibody selective aptamer binds to a specific site in the constant domain of human IgG1 antibodies and is used for both templated and direct conjugation to the antibodies. Through optimization of the design and reaction conditions, the antibody-DNA conjugates could be produced efficiently using equal stoichiometry of protein and DNA. Three different antibodies were evaluated, and the conjugates were characterized by anion exchange chromatography and SDS-PAGE. The conjugation sites for one of the antibodies were determined by MS/MS analysis of the digested conjugate. The antibody-DNA conjugate was also tested for receptor binding on cell surfaces showing retained binding.
Collapse
Affiliation(s)
- Mikkel B Skovsgaard
- iNANO, Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Michael R Mortensen
- iNANO, Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine , Aarhus University , Palle Juul-Jensens Boulevard 99 , DK-8200 Aarhus N, Denmark
| | - Kurt V Gothelf
- iNANO, Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| |
Collapse
|
81
|
Azéma L, Bonnet-Salomon S, Endo M, Takeuchi Y, Durand G, Emura T, Hidaka K, Dausse E, Sugiyama H, Toulmé JJ. Triggering nucleic acid nanostructure assembly by conditional kissing interactions. Nucleic Acids Res 2019; 46:1052-1058. [PMID: 29272518 PMCID: PMC5814900 DOI: 10.1093/nar/gkx1267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acids are biomolecules of amazing versatility. Beyond their function for information storage they can be used for building nano-objects. We took advantage of loop–loop or kissing interactions between hairpin building blocks displaying complementary loops for driving the assembly of nucleic acid nano-architectures. It is of interest to make the interaction between elementary units dependent on an external trigger, thus allowing the control of the scaffold formation. To this end we exploited the binding properties of structure-switching aptamers (aptaswitch). Aptaswitches are stem–loop structured oligonucleotides that engage a kissing complex with an RNA hairpin in response to ligand-induced aptaswitch folding. We demonstrated the potential of this approach by conditionally assembling oligonucleotide nanorods in response to the addition of adenosine.
Collapse
Affiliation(s)
- Laurent Azéma
- University of Bordeaux, CNRS UMR 5320, INSERM U1212, Bordeaux 33076, France
| | | | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science, Kyoto University, Kyoto 606-8501, Japan
| | - Yosuke Takeuchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Guillaume Durand
- University of Bordeaux, CNRS UMR 5320, INSERM U1212, Bordeaux 33076, France
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eric Dausse
- University of Bordeaux, CNRS UMR 5320, INSERM U1212, Bordeaux 33076, France
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
82
|
Jiang Q, Zhao S, Liu J, Song L, Wang ZG, Ding B. Rationally designed DNA-based nanocarriers. Adv Drug Deliv Rev 2019; 147:2-21. [PMID: 30769047 DOI: 10.1016/j.addr.2019.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/08/2019] [Accepted: 02/08/2019] [Indexed: 01/01/2023]
Abstract
Nanomaterials employed for enhanced drug delivery and therapeutic effects have been extensively investigated in the past decade. The outcome of current anticancer treatments based on conventional nanoparticles is suboptimal, due to the lack of biocompatibility, the deficient tumor targeting, the limited drug accumulation in the diseased region, etc. Alternatively, DNA-based nanocarriers have emerged as a novel and versatile platform to integrate the advantages of nanotechnologies and biological sciences, which shows great promise in addressing the key issues for biomedical studies. Rather than a genetic information carrier, DNA molecules can work as building blocks to fabricate programmable and bio-functional nanostructures based on Watson Crick base-pairing rules. The DNA-based materials have demonstrated unique properties, such as uniform sizes and shapes, pre-designable and programmable nanostructures, site-specific surface functionality and excellent biocompatibility. These intrigue features allow DNA nanostructures to carry functional moieties to realize precise tumor recognition, customized therapeutic functions and stimuli-responsive drug release, making them highly attractive in many aspects of cancer treatment. In this review, we focus on the recent progress in DNA-based self-assembled materials for the biomedical applications, such as molecular imaging, drug delivery for in vitro or in vivo cancer treatments. We introduce the general strategies and essential requirements for fabricating DNA-based nanocarriers. We summarize the advances of DNA-based nanocarriers according to their functionalities and structural properties for cancer diagnosis and therapy. Finally, we discuss the challenges and future perspectives regarding the detailed in vivo parameters of DNA materials and the design of intelligent DNA nanomedicine for individualized cancer therapy.
Collapse
|
83
|
Mortensen MR, Skovsgaard MB, Gothelf KV. Considerations on Probe Design for Affinity‐Guided Protein Conjugation. Chembiochem 2019; 20:2711-2728. [DOI: 10.1002/cbic.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
84
|
Lu X, Liu J, Wu X, Ding B. Multifunctional DNA Origami Nanoplatforms for Drug Delivery. Chem Asian J 2019; 14:2193-2202. [PMID: 31125182 DOI: 10.1002/asia.201900574] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 12/11/2022]
Abstract
DNA nanotechnology has been employed in the construction of self-assembled nano-biomaterials with uniform size and shape for various biological applications, such as bioimaging, diagnosis, or therapeutics. Herein, recent successful efforts to utilize multifunctional DNA origami nanoplatforms as drug-delivery vehicles are reviewed. Diagnostic and therapeutic strategies based on gold nanorods, chemotherapeutic drugs, cytosine-phosphate-guanine, functional proteins, gene drugs, and their combinations for optoacoustic imaging, photothermal therapy, chemotherapy, immunological therapy, gene therapy, and coagulation-based therapy are summarized. The challenges and opportunities for DNA-based nanocarriers for biological applications are also discussed.
Collapse
Affiliation(s)
- Xuehe Lu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P.R. China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, P.R. China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, P.R. China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Baoquan Ding
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P.R. China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
85
|
Raniolo S, Croce S, Thomsen RP, Okholm AH, Unida V, Iacovelli F, Manetto A, Kjems J, Desideri A, Biocca S. Cellular uptake of covalent and non-covalent DNA nanostructures with different sizes and geometries. NANOSCALE 2019; 11:10808-10818. [PMID: 31134260 DOI: 10.1039/c9nr02006c] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanostructures with different sizes and shapes, assembled through either covalent or non-covalent bonds, namely tetrahedral and octahedral nanocages, rod-shaped chainmails, square box and rectangular DNA origami structures, were compared for their stability in serum, cell surface binding, internalization efficiency, and intracellular degradation rate. For cell internalization a specific cell system, highly expressing the scavenger receptor LOX-1 was used. The results indicate that LOX-1 binds and internalizes a broad family of DNA structures of different sizes that, however, have a different fate and lifetime inside the cells. Covalently linked tetrahedra, octahedra or chainmails are intact inside cells for up to 18 hours whilst the same DNA nanostructures without covalent bonds along with square box and rectangular origami are rapidly degraded. These data suggest that non-covalently linked structures may be useful for fast drug release whilst the covalently-linked structures could be appropriate vehicles for slow release of molecules.
Collapse
Affiliation(s)
- Sofia Raniolo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Kizer ME, Linhardt RJ, Chandrasekaran AR, Wang X. A Molecular Hero Suit for In Vitro and In Vivo DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805386. [PMID: 30985074 DOI: 10.1002/smll.201805386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Precise control of DNA base pairing has rapidly developed into a field full of diverse nanoscale structures and devices that are capable of automation, performing molecular analyses, mimicking enzymatic cascades, biosensing, and delivering drugs. This DNA-based platform has shown the potential of offering novel therapeutics and biomolecular analysis but will ultimately require clever modification to enrich or achieve the needed "properties" and make it whole. These modifications total what are categorized as the molecular hero suit of DNA nanotechnology. Like a hero, DNA nanostructures have the ability to put on a suit equipped with honing mechanisms, molecular flares, encapsulated cargoes, a protective body armor, and an evasive stealth mode.
Collapse
Affiliation(s)
- Megan E Kizer
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | - Xing Wang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
87
|
Chiu YTE, Li H, Choi CHJ. Progress toward Understanding the Interactions between DNA Nanostructures and the Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805416. [PMID: 30786143 DOI: 10.1002/smll.201805416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/26/2019] [Indexed: 05/28/2023]
Abstract
Advances in DNA nanotechnology empower the programmable assembly of DNA building blocks (oligonucleotides and plasmids) into DNA nanostructures with precise architectural control. As DNA nanostructures are biocompatible and can naturally enter mammalian cells without the aid of transfection agents, they have found numerous biological or biomedical applications as delivery carriers of therapeutic and imaging cargoes into mammalian cells for at least a decade. Nevertheless, mechanistic studies on how DNA nanostructures interact with cells have remained limited and incomprehensive until 2-3 years ago. This Review presents the recent progress in elucidating the "cell-nano" interactions of DNA nanostructures, with an emphasis on three key classes of structures commonly utilized in intracellular applications: tile-based structures, origami-based structures, and nanoparticle-templated structures. Structural parameters of DNA nanostructures and strategies of biochemical modification for promoting intracellular delivery are discussed. Biological mechanisms for cellular uptake, including specific pathways and receptors involved, are outlined. Routes of intracellular trafficking and degradation, together with strategies for re-directing their trafficking, are delineated. This Review concludes with several aspects of the "bio-nano" interactions of DNA nanostructures that warrant future investigations.
Collapse
Affiliation(s)
- Yee Ting Elaine Chiu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Huize Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
88
|
Kopatz I, Zalk R, Levi-Kalisman Y, Zlotkin-Rivkin E, Frank GA, Kler S. Packaging of DNA origami in viral capsids. NANOSCALE 2019; 11:10160-10166. [PMID: 30994643 DOI: 10.1039/c8nr10113b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we show the encapsulation of 35 nm diameter, nearly-spherical, DNA origami by self-assembly of SV40-like (simian virus 40) particles. The self-assembly of this new type of nanoparticles is highly reproducible and efficient. The structure of these particles was determined by cryo-EM. The capsid forms a regular SV40 lattice of T = 7d icosahedral symmetry and the structural features of encapsulated DNA origami are fully visible. These particles are a promising biomaterial for use in various medical applications.
Collapse
|
89
|
Liu T, Song P, Märcher A, Kjems J, Yang C, Gothelf KV. Selective Delivery of Doxorubicin to EGFR
+
Cancer Cells by Cetuximab–DNA Conjugates. Chembiochem 2019; 20:1014-1018. [DOI: 10.1002/cbic.201800685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Tianqiang Liu
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Ping Song
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of Molecular Biology and GeneticsAarhus University C. F. Møllers Allé 3 8000 Aarhus C Denmark
| | - Chuanxu Yang
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of Molecular Biology and GeneticsAarhus University C. F. Møllers Allé 3 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
90
|
Abstract
The predictable nature of DNA interactions enables the programmable assembly of highly advanced 2D and 3D DNA structures of nanoscale dimensions. The access to ever larger and more complex structures has been achieved through decades of work on developing structural design principles. Concurrently, an increased focus has emerged on the applications of DNA nanostructures. In its nature, DNA is chemically inert and nanostructures based on unmodified DNA mostly lack function. However, functionality can be obtained through chemical modification of DNA nanostructures and the opportunities are endless. In this review, we discuss methodology for chemical functionalization of DNA nanostructures and provide examples of how this is being used to create functional nanodevices and make DNA nanostructures more applicable. We aim to encourage researchers to adopt chemical modifications as part of their work in DNA nanotechnology and inspire chemists to address current challenges and opportunities within the field.
Collapse
Affiliation(s)
- Mikael Madsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| |
Collapse
|
91
|
Madhanagopal BR, Zhang S, Demirel E, Wady H, Chandrasekaran AR. DNA Nanocarriers: Programmed to Deliver. Trends Biochem Sci 2018; 43:997-1013. [DOI: 10.1016/j.tibs.2018.09.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
|
92
|
Hu Q, Wang S, Wang L, Gu H, Fan C. DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Adv Healthc Mater 2018; 7:e1701153. [PMID: 29356400 DOI: 10.1002/adhm.201701153] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Indexed: 12/15/2022]
Abstract
In the beginning of the 21st century, therapeutic oligonucleotides have shown great potential for the treatment of many life-threatening diseases. However, effective delivery of therapeutic oligonucleotides to the targeted location in vivo remains a major issue. As an emerging field, DNA nanotechnology is applied in many aspects including bioimaging, biosensing, and drug delivery. With sequence programming and optimization, a series of DNA nanostructures can be precisely engineered with defined size, shape, surface chemistry, and function. Simply with hybridization, therapeutic oligonucleotides including unmethylated cytosine-phosphate-guanine dinucleotide oligos, small interfering RNA (siRNA) or antisense RNA, single guide RNA of the regularly interspaced short palindromic repeat-Cas9 system, and aptamers, are successfully loaded on DNA nanostructures for delivery. In this progress report, the development history of DNA nanotechnology is first introduced, and then the mechanisms and means for cellular uptake of DNA nanostructures are discussed. Next, current approaches to deliver therapeutic oligonucleotides with DNA nanovehicles are summarized. In the end, the challenges and opportunities for DNA nanostructure-based systems for the delivery of therapeutic oligonucleotides are discussed.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Sheng Wang
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
93
|
Raniolo S, Vindigni G, Unida V, Ottaviani A, Romano E, Desideri A, Biocca S. Entry, fate and degradation of DNA nanocages in mammalian cells: a matter of receptors. NANOSCALE 2018; 10:12078-12086. [PMID: 29911715 DOI: 10.1039/c8nr02411a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA has been used to build nanostructures with potential biomedical applications. However, their use is limited by the lack of information on the mechanism of entry, intracellular fate and degradation rate of nanostructures inside cells. We generated octahedral DNA nanocages functionalized with folic acid and investigated the cellular uptake mediated by two distinctive internalization pathways, using two cellular systems expressing the oxidized low-density lipoprotein receptor-1 (LOX-1) and the α isoform of the folate receptor (αFR), respectively. Here, we report that DNA nanocages are very efficiently and selectively internalized by both receptors with an efficiency at least 30 times higher than that observed in cells not expressing the receptors. When internalized by LOX-1, nanocages traffic to lysosomes within 4 hours and are rapidly degraded. When the uptake is mediated by αFR, DNA nanocages are highly stable (>48 hours) and accumulate inside cells in a time-dependent way. These data demonstrate that the selection of the cellular receptor is crucial for targeting specific sub-cellular compartments and for modulating the DNA nanocage intracellular half-life, indicating that vitamin-mediated uptake may constitute a protected pathway for intracellular drug delivery.
Collapse
Affiliation(s)
- Sofia Raniolo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
94
|
Liu J, Song L, Liu S, Jiang Q, Liu Q, Li N, Wang ZG, Ding B. A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. NANO LETTERS 2018; 18:3328-3334. [PMID: 29708760 DOI: 10.1021/acs.nanolett.7b04812] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The efficient delivery of a therapeutic gene into target tissues has remained a major obstacle in realizing a viable gene-based medicine. Herein, we introduce a facile and universal strategy to construct a DNA nanostructure-based codelivery system containing a linear tumor therapeutic gene (p53) and a chemotherapeutic drug (doxorubicin, DOX) for combined therapy of multidrug resistant tumor (MCF-7R). This novel codelivery system, which is structurally similar to a kite, is rationally designed to contain multiple functional groups for the targeted delivery and controlled release of the therapeutic cargoes. The self-assembled DNA nanokite achieves efficient gene delivery and exhibits effective inhibition of tumor growth in vitro and in vivo without apparent systemic toxicity. These structurally and chemically well-defined codelivery nanovectors provide a new platform for the development of gene therapeutics for not only cancer but also a wide range of diseases.
Collapse
Affiliation(s)
- Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Linlin Song
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
95
|
Abstract
A synthetic topology for everted viruses is reported. The topology is a single-stranded virion DNA assembled into a hollow cube with exterior decorated with HIV-Tat transduction domains. The cube incorporates a pH-responsive lid allowing for the controlled encapsulation of functional proteins and their transfer and release into live cells. Unlike viruses, which are protein shells with a [3,5]-fold rotational symmetry that encase nucleic acids, these cubes are [3, 4]-fold DNA boxes encapsulating proteins. Like viruses, such everted DNA-built viruses are monodisperse nanoscale assemblies that infect human cells with a specialist cargo. The design offers a bespoke bottom-up platform for engineering nonpolyhedral, nonprotein synthetic viruses.
Collapse
Affiliation(s)
- Jonathan R. Burns
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
- Department of Chemistry, University College London, London, WC1E 6BT, U.K
| | - Baptiste Lamarre
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - Alice L. B. Pyne
- London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K
| | - James E. Noble
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| |
Collapse
|
96
|
Wang P, Rahman MA, Zhao Z, Weiss K, Zhang C, Chen Z, Hurwitz SJ, Chen ZG, Shin DM, Ke Y. Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells. J Am Chem Soc 2018; 140:2478-2484. [PMID: 29406750 PMCID: PMC7261494 DOI: 10.1021/jacs.7b09024] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA origami is a promising molecular delivery system for a variety of therapeutic applications including cancer therapy, given its capability to fabricate homogeneous nanostructures whose physicochemical properties (size, shape, surface chemistry) can be precisely tailored. However, the correlation between DNA-origami design and internalization efficiency in different cancer cell lines remains elusive. We investigated the cellular uptake of four DNA-origami nanostructures (DONs) with programmed sizes and shapes in multiple human cancer cell lines. The cellular uptake efficiency of DONs was influenced by size, shape, and cell line. Scavenger receptors were responsible for the internalization of DONs into cancer cells. We observed distinct stages of the internalization process of a gold nanoparticle (AuNP)-tagged rod-shape DON, using high-resolution transmission electron microscopy. This study provides detailed understanding of cellular uptake and intracellular trafficking of DONs in cancer cells, and offers new insights for future optimization of DON-based drug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Pengfei Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhixiang Zhao
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China
| | - Kristin Weiss
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Chao Zhang
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia 30322, United States
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia 30322, United States
| | - Selwyn J. Hurwitz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhuo G. Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Dong M. Shin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
97
|
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018; 119:6459-6506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Citation(s) in RCA: 626] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China.,Research & Development Center, Shandong Buchang Pharmaceutical Company, Limited, Heze 274000 , China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China.,Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
98
|
Ora A, Järvihaavisto E, Zhang H, Auvinen H, Santos HA, Kostiainen MA, Linko V. Cellular delivery of enzyme-loaded DNA origami. Chem Commun (Camb) 2018; 52:14161-14164. [PMID: 27869278 DOI: 10.1039/c6cc08197e] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this communication, we show that active enzymes can be delivered into HEK293 cells in vitro when they are attached to tubular DNA origami nanostructures. We use bioluminescent enzymes as a cargo and monitor their activity from a cell lysate. The results show that the enzymes stay intact and retain their activity in the transfection process. The method is highly modular, which makes it a compelling candidate for a great variety of delivery applications.
Collapse
Affiliation(s)
- Ari Ora
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland.
| | - Erika Järvihaavisto
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland.
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - Henni Auvinen
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland.
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
99
|
Li D, Feng X, Chen L, Ding J, Chen X. One-Step Synthesis of Targeted Acid-Labile Polysaccharide Prodrug for Efficiently Intracellular Drug Delivery. ACS Biomater Sci Eng 2018; 4:539-546. [PMID: 33418743 DOI: 10.1021/acsbiomaterials.7b00856] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The therapeutic potential of the active targeting and acid-sensitive polysaccharide prodrug was investigated. The active targeting of polysaccharide prodrug was based on the specific interaction between cyclo(Arg-Gly-Asp-d-Phe-Lys) peptide (c(RGDfK)) and its receptor αvβ3 integrin overexpressed on the membrane of tumor cells. The cRGD-modified doxorubicin-conjugated hydroxyethyl starch (HES=DOX/cRGD) was synthesized via a one-step Schiff base reaction between oxidized HES, and DOX and c(RGDfK) that achieved an acid-accelerated drug release profile. The targeted polysaccharide prodrug self-assembled into micelle in aqueous environment with a moderate hydrodynamic diameter of 77.1 nm. All data in vitro indicated enhanced cell uptake and elevated cytotoxicity of HES=DOX/cRGD toward human malignant melanoma A375 cells compared with HES=DOX and DOX. Moreover, the smart prodrug also exhibited upregulated accumulation in the tumor, improved antitumor efficacy, and reduced systemic cytotoxicity in vivo. The cRGD-decorated acid-sensitive polysaccharide prodrug was advantageous in both antitumor efficacy and systemic security, showing great prospect in clinical application.
Collapse
Affiliation(s)
- Di Li
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Li Chen
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
100
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|