51
|
Abstract
Peroxiredoxins are abundant cellular antioxidant proteins that help to control intracellular peroxide levels. These proteins may also function, in part, through an evolved sensitivity of some peroxiredoxins towards peroxide-mediated inactivation in hydrogen peroxide signaling in eukaryotes. This review summarizes recent progress in our understanding of the catalytic and regulatory mechanisms of 'typical 2-Cys' peroxiredoxins and of the biological roles played by these important enzymes in oxidative stress and nonstress-related cellular signaling. New evidence suggests localized peroxide buildup plays a role in nonstress-related signaling.
Collapse
Affiliation(s)
- Andrea Hall
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
52
|
Kalinina EV, Chernov NN, Saprin AN. Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2009; 73:1493-510. [DOI: 10.1134/s0006297908130099] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A 2008; 105:9633-8. [PMID: 18606987 DOI: 10.1073/pnas.0803749105] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eighteen histone deacetylases (HDACs) are present in humans, categorized into two groups: zinc-dependent enzymes (HDAC1-11) and NAD(+)-dependent enzymes (sirtuins 1-7). Among zinc-dependent HDACs, HDAC6 is unique. It has a cytoplasmic localization, two catalytic sites, a ubiquitin-binding site, and it selectively deacetylases alpha-tubulin and Hsp90. Here, we report the discovery that the redox regulatory proteins, peroxiredoxin (Prx) I and Prx II are specific targets of HDAC6. Prx are antioxidants enzymes whose main function is H(2)O(2) reduction. Prx are elevated in many cancers and neurodegenerative diseases. The acetylated form of Prx accumulates in the absence of an active HDAC6. Acetylation of Prx increases its reducing activity, its resistance to superoxidation, and its resistance to transition to high-molecular-mass complexes. Thus, HDAC6 and Prx are targets for modulating intracellular redox status in therapeutic strategies for disorders as disparate as cancers and neurodegenerative diseases.
Collapse
|
54
|
Jara M, Vivancos AP, Hidalgo E. C-terminal truncation of the peroxiredoxin Tpx1 decreases its sensitivity for hydrogen peroxide without compromising its role in signal transduction. Genes Cells 2008; 13:171-9. [DOI: 10.1111/j.1365-2443.2007.01160.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
55
|
Yamamoto Y, Ritz D, Planson AG, Jönsson TJ, Faulkner MJ, Boyd D, Beckwith J, Poole LB. Mutant AhpC peroxiredoxins suppress thiol-disulfide redox deficiencies and acquire deglutathionylating activity. Mol Cell 2008; 29:36-45. [PMID: 18206967 PMCID: PMC2239235 DOI: 10.1016/j.molcel.2007.11.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/25/2007] [Accepted: 11/16/2007] [Indexed: 11/25/2022]
Abstract
The bacterial peroxiredoxin AhpC, a cysteine-dependent peroxidase, can be converted through a single amino acid insertion to a disulfide reductase, AhpC*, active in the glutathione and glutaredoxin pathway. Here we show that, whereas AhpC* is inactive as a peroxidase, other point mutants in AhpC can confer the in vivo disulfide reductase activity without abrogating peroxidase activity. Moreover, AhpC* and several point mutants tested in vitro exhibit an enhanced reductase activity toward mixed disulfides between glutathione and glutaredoxin (Grx-S-SG), consistent with the in vivo requirements for these components. Remarkably, this Grx-S-SG reductase activity relies not on the peroxidatic cysteine but rather on the resolving cysteine that plays only a secondary role in the peroxidase mechanism. Furthermore, putative conformational changes, which impart this unusual Grx-S-SG reductase activity, are transmissible across subunits. Thus, AhpC and potentially other peroxiredoxins in this widespread family can elaborate a new reductase function that alleviates disulfide stress.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 USA
| | - Dani Ritz
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Anne-Gaëlle Planson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Thomas J. Jönsson
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 USA
| | - Melinda J. Faulkner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Dana Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Jon Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 USA
| |
Collapse
|
56
|
Jönsson TJ, Johnson LC, Lowther WT. Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 2008; 451:98-101. [PMID: 18172504 PMCID: PMC2646140 DOI: 10.1038/nature06415] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/24/2007] [Indexed: 11/09/2022]
Abstract
Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 A crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.
Collapse
Affiliation(s)
- Thomas J Jönsson
- Center for Structural Biology and Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
57
|
Matsumura T, Okamoto K, Iwahara SI, Hori H, Takahashi Y, Nishino T, Abe Y. Dimer-oligomer interconversion of wild-type and mutant rat 2-Cys peroxiredoxin: disulfide formation at dimer-dimer interfaces is not essential for decamerization. J Biol Chem 2007; 283:284-293. [PMID: 17974571 DOI: 10.1074/jbc.m705753200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat heme-binding protein 23 (HBP23)/peroxiredoxin (Prx I) belongs to the 2-Cys peroxiredoxin type I family and exhibits peroxidase activity coupled with reduced thioredoxin (Trx) as an electron donor. We analyzed the dimer-oligomer interconversion of wild-type and mutant HBP23/Prx I by gel filtration and found that the C52S and C173S mutants existed mostly as decamers, whereas the wild type was a mixture of various forms, favoring the decamer at higher protein concentration and lower ionic salt concentration and in the presence of dithiothreitol. The C83S mutant was predominantly dimeric, in agreement with a previous crystallographic analysis (Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T., and Hakoshima, T. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12333-12338). X-ray diffraction analysis of the decameric C52S mutant revealed a toroidal structure (diameter, approximately 130A; inside diameter, approximately 55A; thickness, approximately 45A). In contrast to human Prx I, which was recently reported to exist predominantly as the decamer with Cys(83)-Cys(83) disulfide bonds at all dimer-dimer interfaces, rat HBP23/Prx I has a Cys(83)-Cys(83) disulfide bond at only one dimer-dimer interface (S-S separation of approximately 2.1A), whereas the interactions at the other interfaces (mean S-S separation of 3.6A) appear to involve hydrophobic and van der Waals forces. This finding is consistent with gel filtration analyses showing that the protein readily interconverts between dimer and oligomeric forms. The C83S mutant exhibited similar peroxidase activity to the wild type, which is exclusively dimeric, in the Trx/Trx reductase system. At higher concentrations, where the protein was mostly decameric, less efficient attack of reduced Trx was observed in a [(14)C]iodoacetamide incorporation experiment. We suggest that the dimerdecamer interconversion may have a regulatory role.
Collapse
Affiliation(s)
- Tomohiro Matsumura
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shin-Ichiro Iwahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hiroyuki Hori
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yuriko Takahashi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yasuko Abe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan.
| |
Collapse
|
58
|
Rhee SG, Jeong W, Chang TS, Woo HA. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int 2007:S3-8. [PMID: 17653208 DOI: 10.1038/sj.ki.5002380] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peroxiredoxin (Prx) is a family of bifunctional proteins that exhibit peroxidase and chaperone activities. Prx proteins contain a conserved Cys residue that undergoes a redox change between thiol and disulfide states. 2-Cys Prx enzymes, a subgroup of Prx family, are intrinsically susceptible to reversible hyperoxidation to cysteine sulfinic acid during catalysis. Cysteine hyperoxidation of Prx was shown to result in loss of peroxidase activity and a concomitant gain of chaperone activity. Reduction of sulfinic Prx enzymes, the first known biological example of such a reaction, is catalyzed by sulfiredoxin (Srx) in the presence of ATP. Srx appears to exist solely to support the reversible sulfinic modification of 2-Cys Prx enzymes. Srx specifically binds to 2-Cys Prx enzymes by recognizing several critical surface-exposed residues of the Prxs, and transfer the gamma-phosphate of ATP to their sulfinic moiety, using its conserved cysteine as the phosphate carrier. The resulting sulfinic phosphoryl ester is reduced to cysteine after oxidation of four thiol equivalents.
Collapse
Affiliation(s)
- S G Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| | | | | | | |
Collapse
|
59
|
Abstract
It is well established that oxidative stress is an important cause of cell damage associated with the initiation and progression of many diseases. Consequently, all air-living organisms contain antioxidant enzymes that limit oxidative stress by detoxifying reactive oxygen species, including hydrogen peroxide. However, in eukaryotes, hydrogen peroxide also has important roles as a signaling molecule in the regulation of a variety of biological processes. Here, we will discuss the molecular mechanisms by which hydrogen peroxide is sensed and the increasing evidence that antioxidant enzymes play multiple, key roles as sensors and regulators of signal transduction in response to hydrogen peroxide.
Collapse
Affiliation(s)
- Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, Tyne and Wear, UK.
| | | | | |
Collapse
|
60
|
Jara M, Vivancos AP, Calvo IA, Moldón A, Sansó M, Hidalgo E. The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast. Mol Biol Cell 2007; 18:2288-95. [PMID: 17409354 PMCID: PMC1877099 DOI: 10.1091/mbc.e06-11-1039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peroxiredoxins are known to interact with hydrogen peroxide (H(2)O(2)) and to participate in oxidant scavenging, redox signal transduction, and heat-shock responses. The two-cysteine peroxiredoxin Tpx1 of Schizosaccharomyces pombe has been characterized as the H(2)O(2) sensor that transduces the redox signal to the transcription factor Pap1. Here, we show that Tpx1 is essential for aerobic, but not anaerobic, growth. We demonstrate that Tpx1 has an exquisite sensitivity for its substrate, which explains its participation in maintaining low steady-state levels of H(2)O(2). We also show in vitro and in vivo that inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid is always preceded by a sulfinic acid form in a covalently linked dimer, which may be important for understanding the kinetics of Tpx1 inactivation. Furthermore, we provide evidence that a strain expressing Tpx1.C169S, lacking the resolving cysteine, can sustain aerobic growth, and we show that small reductants can modulate the activity of the mutant protein in vitro, probably by supplying a thiol group to substitute for cysteine 169.
Collapse
Affiliation(s)
- Mónica Jara
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Ana P. Vivancos
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Isabel A. Calvo
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Alberto Moldón
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Miriam Sansó
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| |
Collapse
|
61
|
Abstract
Peroxiredoxins carry out the efficient reduction of a typically broad range of peroxide substrates through an absolutely conserved, activated cysteine residue within a highly conserved active site pocket structure. Though details of reductive recycling after cysteine sulfenic acid formation at the active site vary among members of different Prx classes, local unfolding around the active site cysteine is likely generally required in these proteins for disulfide bond formation with a second resolving cysteine and/or for access of the reductant to the oxidized active site. The conformational change associated with the catalytic cycle and the redox-dependent decamer formation occurring in at least some typical 2-Cys Prxs have interesting implications in the interplay between active site loop dynamics, oligomerization state, catalytic efficiency and propensity toward inactivation during turnover in these important antioxidant enzymes.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Center for Structural Biology, BGTC, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
62
|
Abstract
Sulfiredoxin and sestrin are cysteine sulfinic acid reductases that selectively reduce or repair the hyperoxidized forms of typical 2-Cys peroxiredoxins within eukaryotes. As such these enzymes play key roles in the modulation of peroxide-mediated cell signaling and cellular defense mechanisms. The unique structure of sulfiredoxin facilitates access to the peroxiredoxin active site and novel sulfur chemistry.
Collapse
Affiliation(s)
- Thomas J Jönsson
- Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
63
|
Abstract
Peroxiredoxins are ubiquitous proteins that are found from bacteria to humans. Until recently they were thought to solely act as antioxidants catalysing the reduction of peroxides through their associated thioredoxin peroxidase activity. However, recent work has begun to uncover hitherto unsuspected roles for one group of these proteins, the typical 2-Cys peroxiredoxins (2-Cys Prx). For example, typical 2-Cys Prxs have been found to have roles in the model organisms Schizosaccharomvces pombe and Saccharomyces cerevisiae in regulating signal transduction, in DNA damage responses and as molecular chaperones. There is increasing evidence that H2O2 is utilised as a signalling molecule to regulate a range of important cellular processes. As abundant and ubiquitous peroxidase enzymes the peroxidase activity of typical 2-Cys Prxs is important in the regulation of these functions. Significantly, studies in yeast suggest that the regulation of the thioredoxin peroxidase and chaperone activities of these multifunction enzymes is an important aspect of H2O2-mediated signal transduction and consequently have provided important insight into the roles of these proteins in higher eukaryotes.
Collapse
Affiliation(s)
- Brian A Morgan
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
64
|
Phalen TJ, Weirather K, Deming PB, Anathy V, Howe AK, van der Vliet A, Jönsson TJ, Poole LB, Heintz NH. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J Cell Biol 2006; 175:779-89. [PMID: 17145963 PMCID: PMC2064677 DOI: 10.1083/jcb.200606005] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 10/30/2006] [Indexed: 01/06/2023] Open
Abstract
Inactivation of eukaryotic 2-Cys peroxiredoxins (Prxs) by hyperoxidation has been proposed to promote accumulation of hydrogen peroxide (H2O2) for redox-dependent signaling events. We examined the oxidation and oligomeric states of PrxI and -II in epithelial cells during mitogenic signaling and in response to fluxes of H2O2. During normal mitogenic signaling, hyperoxidation of PrxI and -II was not detected. In contrast, H2O2-dependent cell cycle arrest was correlated with hyperoxidation of PrxII, which resulted in quantitative recruitment of approximately 66- and approximately 140-kD PrxII complexes into large filamentous oligomers. Expression of cyclin D1 and cell proliferation did not resume until PrxII-SO2H was reduced and native PrxII complexes were regenerated. Ectopic expression of PrxI or -II increased Prx-SO2H levels in response to oxidant exposure and failed to protect cells from arrest. We propose a model in which Prxs function as peroxide dosimeters in subcellular processes that involve redox cycling, with hyperoxidation controlling structural transitions that alert cells of perturbations in peroxide homeostasis.
Collapse
Affiliation(s)
- Timothy J Phalen
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Noguera-Mazon V, Krimm I, Walker O, Lancelin JM. Protein-protein interactions within peroxiredoxin systems. PHOTOSYNTHESIS RESEARCH 2006; 89:277-90. [PMID: 17089212 DOI: 10.1007/s11120-006-9106-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/11/2006] [Indexed: 05/12/2023]
Abstract
Peroxiredoxin systems in plants were demonstrated involved in crucial roles related to reactive oxygenated species (ROS) metabolism and the linked cell signalling to ROS. Peroxiredoxins function as peroxidasic systems that combine at least a reactivating reductant agent like thioredoxins, and sometimes glutaredoxins and glutathion. In the past three years a number of peroxiredoxin structures were solved by crystallography in different experimental crystallisation conditions. The structures have revealed a significant propensity of peroxiredoxins for oligomerism that was confirmed by biophysical studies in solution using NMR and other methods as analytical ultra-centrifugation. These studies showed that quaternary structures of peroxiredoxins involve specific protein-protein interaction interfaces that rely upon the peroxiredoxin types and/or their redox conditions. The protein-protein interactions with the reactivating redoxins essentially lead to transient unstable complexes. We review herein the different protein-protein interactions characterized or deduced from those reports.
Collapse
Affiliation(s)
- Valérie Noguera-Mazon
- Sciences Analytiques, ANABIO - RMN et Spectrométrie de Masse Biomoléculaires, CNRS UMR 5180, Université Claude Bernard - Lyon 1, Domaine Scientifique de La Doua, Ecole Supérieure de Chimie Physique Electronique de Lyon, F-69622, Villeurbanne, France
| | | | | | | |
Collapse
|
66
|
|
67
|
Park JH, Kim YS, Lee HL, Shim JY, Lee KS, Oh YJ, Shin SS, Choi YH, Park KJ, Park RW, Hwang SC. Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung. Respirology 2006; 11:269-75. [PMID: 16635084 DOI: 10.1111/j.1440-1843.2006.00849.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Peroxiredoxins (Prxs) have been implicated in regulating many cellular processes including cell proliferation, differentiation and apoptosis. However, the pathophysiological significance of Prx proteins, especially in lung disease, has not been defined. Therefore, the authors investigated the distribution and expression of various Prx isoforms in lung cancer and compared this with normal lung from human and mouse. METHODS Patients diagnosed with lung cancer who underwent surgery at Ajou Medical Center were enrolled. Expression of Prxs, thioredoxin and thioredoxin reductase was analysed by proteomic techniques. Immunohistochemistry was performed to localize Prx proteins. RESULTS Immunohistochemical staining showed that the isoforms of Prx I, II, III and V were predominantly expressed in bronchial and alveolar epithelium as well as in alveolar macrophages of the normal mouse lung. The isoforms I, III and thioredoxin were overexpressed in lung cancer tissues compared with normal lungs. There was also an increased amount of oxidized form of Prx I and a putative truncated form of Prx III in lung cancer samples when analysed on two-dimensional electrophoresis. In addition, a 40-kDa intermediate MW protein band and high MW bands of over 20 kDa, recognized by anti-Prx (a-Prx) I antibody, were present in tissue extracts of lung cancer patients on one-dimensional electrophoresis. CONCLUSION The upregulation of Prx I, Prx III and thioredoxin in lung cancer tissue may represent an attempt by tumour cells to adjust to the microenvironment in a manner that is advantageous to survival and proliferation.
Collapse
Affiliation(s)
- Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells. ACTA ACUST UNITED AC 2006. [DOI: 10.5010/jpb.2006.33.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Kato S, Kato M, Abe Y, Matsumura T, Nishino T, Aoki M, Itoyama Y, Asayama K, Awaya A, Hirano A, Ohama E. Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models. Acta Neuropathol 2005; 110:101-12. [PMID: 15983830 DOI: 10.1007/s00401-005-1019-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Peroxiredoxin-ll (Prxll) and glutathione peroxidase-l (GPxl) are regulators of the redox system that is one of the most crucial supporting systems in neurons. This system is an antioxidant enzyme defense system and is synchronously linked to other important cell supporting systems. To clarify the common self-survival mechanism of the residual motor neurons affected by amyotrophic lateral sclerosis (ALS), we examined motor neurons from 40 patients with sporadic ALS (SALS) and 5 patients with superoxide dismutase 1 (SOD1)-mutated familial ALS (FALS) from two different families (frame-shift 126 mutation and A4 V) as well as four different strains of the SOD1-mutated ALS models (H46R/G93A rats and G1H/G1L-G93A mice). We investigated the immunohistochemical expression of Prxll/GPxl in motor neurons from the viewpoint of the redox system. In normal subjects, Prxll/GPxl immunoreactivity in the anterior horns of the normal spinal cords of humans, rats and mice was primarily identified in the neurons: cytoplasmic staining was observed in almost all of the motor neurons. Histologically, the number of spinal motor neurons in ALS decreased with disease progression. Immunohistochemically, the number of neurons negative for Prxll/GPxl increased with ALS disease progression. Some residual motor neurons coexpressing Prxll/GPxl were, however, observed throughout the clinical courses in some cases of SALS patients, SOD1-mutated FALS patients, and ALS animal models. In particular, motor neurons overexpressing Prxll/GPxl, i.e., neurons showing redox system up-regulation, were commonly evident during the clinical courses in ALS. For patients with SALS, motor neurons overexpressing Prxll/GPxl were present mainly within approximately 3 years after disease onset, and these overexpressing neurons thereafter decreased in number dramatically as the disease progressed. For SOD1-mutated FALS patients, like in SALS patients, certain residual motor neurons without inclusions also overexpressed Prxll/GPxl in the short-term-surviving FALS patients. In the ALS animal models, as in the human diseases, certain residual motor neurons showed overexpression of Prxll/GPxl during their clinical courses. At the terminal stage of ALS, however, a disruption of this common Prxll/GPxl-overexpression mechanism in neurons was observed. These findings lead us to the conclusion that the residual ALS neurons showing redox system up-regulation would be less susceptible to ALS stress and protect themselves from ALS neuronal death, whereas the breakdown of this redox system at the advanced disease stage accelerates neuronal degeneration and/or the process of neuronal death.
Collapse
Affiliation(s)
- Shinsuke Kato
- Department of Neuropathology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Nishi-cho 36-1, 683-8504, Yonago, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, Kim SY, Lee YM, Jeon MG, Kim CW, Cho MJ, Lee SY. Oxidative Stress-dependent Structural and Functional Switching of a Human 2-Cys Peroxiredoxin Isotype II That Enhances HeLa Cell Resistance to H2O2-induced Cell Death. J Biol Chem 2005; 280:28775-84. [PMID: 15941719 DOI: 10.1074/jbc.m505362200] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although biochemical properties of 2-Cys peroxiredoxins (Prxs) have been extensively studied, their real physiological functions in higher eukaryotic cells remain obscure and certainly warrant further study. Here we demonstrated that human (h) PrxII, a cytosolic isotype of human 2-Cys Prx, has dual functions as a peroxidase and a molecular chaperone, and that these different functions are closely associated with its adoption of distinct protein structures. Upon exposure to oxidative stress, hPrxII assumes a high molecular weight complex structure that has a highly efficient chaperone function. However, the subsequent removal of stressors induces the dissociation of this protein structure into low molecular weight proteins and triggers a chaperone-to-peroxidase functional switch. The formation of a high molecular weight hPrxII complex depends on the hyperoxidation of its N-terminal peroxidatic Cys residue as well as on its C-terminal domain, which contains a "YF motif" that is exclusively found in eukaryotic 2-Cys Prxs. A C-terminally truncated hPrxII exists as low and oligomeric protein species and does not respond to oxidative stress. Moreover, this C-terminal deletion of hPrxII converted it from an oxidation-sensitive to a hyperoxidation-resistant form of peroxidase. When functioning as a chaperone, hPrxII protects HeLa cells from H(2)O(2)-induced cell death, as measured by a terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay and fluorescence-activated cell sorting analysis.
Collapse
Affiliation(s)
- Jeong Chan Moon
- Environmental Biotechnology National Core Research Center, Division of Applied Life Sciences (BK21 Program), Department of Biochemistry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005; 38:1543-52. [PMID: 15917183 DOI: 10.1016/j.freeradbiomed.2005.02.026] [Citation(s) in RCA: 1053] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 12/20/2022]
Abstract
The observation that purified yeast glutamine synthetase is rapidly inactivated in a thiol-containing buffer yet retains activity in crude extracts containing the same thiol led to our discovery of an enzyme that protects against oxidation in a thiol-containing system. This novel antioxidant enzyme was shown to reduce hydroperoxides and, more recently, peroxynitrite with the use of electrons provided by a physiological thiol like thioredoxin. It defined a family of proteins, present in organisms from all kingdoms, that was named peroxiredoxin (Prx). All Prx enzymes contain a conserved Cys residue that undergoes a cycle of peroxide-dependent oxidation and thiol-dependent reduction during catalysis. Mammalian cells express six isoforms of Prx (Prx I to VI), which are classified into three subgroups (2-Cys, atypical 2-Cys, and 1-Cys) based on the number and position of Cys residues that participate in catalysis. The relative abundance of Prx enzymes in mammalian cells appears to protect cellular components by removing the low levels of peroxides produced as a result of normal cellular metabolism. During catalysis, the active site cysteine is occasionally overoxidized to cysteine sulfinic acid. Contrary to the general belief that oxidation to the sulfinic state is an irreversible process in cells, studies on the fate of the overoxidized Prx species revealed a mechanism by which the catalytically active thiol form is recovered. This sulfinic reduction is a slow, ATP-dependent process that is specific to 2-Cys Prx isoforms. This reversible overoxidation may represent an adaptation unique to eukaryotic cells that accommodates the intracellular messenger function of H(2)O(2), but experimental validation of such speculation is yet to come.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
72
|
Vivancos AP, Castillo EA, Biteau B, Nicot C, Ayté J, Toledano MB, Hidalgo E. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc Natl Acad Sci U S A 2005; 102:8875-80. [PMID: 15956211 PMCID: PMC1157045 DOI: 10.1073/pnas.0503251102] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Schizosaccharomyces pombe transcription factor Pap1 regulates antioxidant-gene transcription in response to H2O2. Pap1 activation occurs only at low, but not elevated, H2O2 concentrations that instead strongly trigger the mitogen-activated protein kinase Sty1 pathway. Here, we identify the peroxiredoxin Tpx1 as the upstream activator of Pap1. We show that, at low H2O2 concentrations, this oxidant scavenger can transfer a redox signal to Pap1, whereas higher concentrations of the oxidant inhibit the Tpx1-Pap1 redox relay through the temporal inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid. This cysteine modification can be reversed by the sulfiredoxin Srx1, its expression in response to high doses of H2O2 strictly depending on active Sty1. Thus, Tpx1 oxidation to the cysteine-sulfinic acid and its reversion by Srx1 constitutes a previously uncharacterized redox switch in H2O2 signaling, restricting Pap1 activation within a narrow range of H2O2 concentrations.
Collapse
Affiliation(s)
- Ana P Vivancos
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 80, E-08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Peroxiredoxins (Prxs) are a family of multifunctional antioxidant thioredoxin-dependent peroxidases that have been identified in a large variety of organisms. The major functions of Prxs comprise cellular protection against oxidative stress, modulation of intracellular signaling cascades that apply hydrogen peroxide as a second messenger molecule, and regulation of cell proliferation. In the present review, we discuss pertinent findings on the protein structure, the cell- and tissue-specific distribution, as well as the subcellular localization of Prxs. A particular emphasis is put on Prx I, which is the most abundant and ubiquitously distributed member of the mammalian Prxs. Major transcriptional and posttranslational regulatory mechanisms and signaling pathways that control Prx gene expression and activity are summarized. The interaction of Prx I with the oncogene products c-Abl and c-Myc and the regulatory role of Prx I for cell proliferation and apoptosis are highlighted. Recent findings on phenotypical alterations of mouse models with targeted disruptions of Prx genes are discussed, confirming the physiological functions of Prxs for antioxidant cell and tissue protection along with an important role as tumor suppressors.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany.
| | | |
Collapse
|
74
|
Bozonet SM, Findlay VJ, Day AM, Cameron J, Veal EA, Morgan BA. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J Biol Chem 2005; 280:23319-27. [PMID: 15824112 DOI: 10.1074/jbc.m502757200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although activation of the AP-1-like transcription factor Pap1 in Schizosaccharomyces pombe is important for oxidative stress-induced gene expression, this activation is delayed at higher concentrations of peroxide. Here, we reveal that the 2-Cys peroxiredoxin (2-Cys Prx) Tpx1 is required for the peroxide-induced activation of Pap1. Tpx1, like other eukaryotic 2-Cys Prxs, is highly sensitive to oxidation, which inactivates its thioredoxin peroxidase activity. Our data suggest that the reduced thioredoxin peroxidase-active form of Tpx1 is required for the peroxide-induced oxidation and nuclear accumulation of Pap1. Indeed, in contrast to the previously described role for Tpx1 in the activation of the Sty1 stress-activated protein kinase by peroxide, we find that both catalytic cysteines of Tpx1 are required for Pap1 activation. Moreover, overexpression of the conserved sulfiredoxin Srx1, which interacts with and reduces Tpx1, allows rapid activation of Pap1 at higher concentrations of H(2)O(2). Conversely, loss of Srx1 prevents the reduction of oxidized Tpx1 and prolongs the inhibition of Pap1 activation. Collectively, these data suggest that redox regulation of the thioredoxin peroxidase activity of Tpx1 acts as a molecular switch controlling the transcriptional response to H(2)O(2). Furthermore, they reveal that a single eukaryotic 2-Cys Prx regulates peroxide signaling by multiple independent mechanisms.
Collapse
Affiliation(s)
- Stephanie M Bozonet
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
75
|
Yano K, Komaki-Yasuda K, Kobayashi T, Takemae H, Kita K, Kano S, Kawazu SI. Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocytic stage. Parasitol Int 2005; 54:35-41. [PMID: 15710548 DOI: 10.1016/j.parint.2004.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 08/31/2004] [Indexed: 11/22/2022]
Abstract
mRNA and protein expression profiles for three peroxiredoxins (PfTPx-1, PfTPx-2 and Pf1-Cys-Prx) and a thioredoxin (PfTrx-1) of Plasmodium falciparum during the erythrocytic stage were examined by real-time quantitative reverse transcription-PCR (RT-PCR), Western blotting and confocal laser scanning microscopy. PfTPx-1 was expressed constitutively in the parasite cytoplasm throughout the erythrocytic stage, suggesting a housekeeping role of this enzyme for control of intercellular reactive oxygen species (ROS) in the parasite. Pf1-Cys-Prx showed elevated expression during the trophozoite and early schizont stages in the parasite cytoplasm, and this profile suggested that this peroxiredoxin (Prx) detoxifies metabolism-derived ROS such as those released from heme iron. The other 2-Cys Prx, PfTPx-2, was detected in mitochondria and was expressed in both the trophozoite and schizont stages. Detection of the Prx in mitochondria is consistent with recent reports of the existence of a respiratory chain, which produces ROS, in the mitochondria of P. falciparum. PfTrx-1 showed elevated expression during the trophozoite and schizont stages in the parasite cytoplasm. Finally, expression of these antioxidant protein genes is most likely regulated at the transcriptional level because their mRNA and protein expression profiles overlapped.
Collapse
Affiliation(s)
- Kazuhiko Yano
- Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
76
|
Poole LB. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 2005; 433:240-54. [PMID: 15581580 DOI: 10.1016/j.abb.2004.09.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/08/2004] [Indexed: 10/26/2022]
Abstract
Antioxidant defenses include a group of ubiquitous, non-heme peroxidases, designated the peroxiredoxins, which rely on an activated cysteine residue at their active site to catalyze the reduction of hydrogen peroxide, organic hydroperoxides, and peroxynitrite. In the typical 2-Cys peroxiredoxins, a second cysteinyl residue, termed the resolving cysteine, is also involved in intersubunit disulfide bond formation during the course of catalysis by these enzymes. Many bacteria also express a flavoprotein, AhpF, which acts as a dedicated disulfide reductase to recycle the bacterial peroxiredoxin, AhpC, during catalysis. Mechanistic and structural studies of these bacterial proteins have shed light on the linkage between redox state, oligomeric state, and peroxidase activity for the peroxiredoxins, and on the conformational changes accompanying catalysis by both proteins. In addition, these studies have highlighted the dual roles that the oxidized cysteinyl species, cysteine sulfenic acid, can play in eukaryotic peroxiredoxins, acting as a catalytic intermediate in the peroxidase activity, and as a redox sensor in regulating hydrogen peroxide-mediated cell signaling.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Blvd., BGTC, Winston-Salem, NC 27157, USA.
| |
Collapse
|
77
|
Veal EA, Findlay VJ, Day AM, Bozonet SM, Evans JM, Quinn J, Morgan BA. A 2-Cys Peroxiredoxin Regulates Peroxide-Induced Oxidation and Activation of a Stress-Activated MAP Kinase. Mol Cell 2004; 15:129-39. [PMID: 15225554 DOI: 10.1016/j.molcel.2004.06.021] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 03/18/2004] [Accepted: 05/04/2004] [Indexed: 01/27/2023]
Abstract
Oxidative stress-induced cell damage is an important component of many diseases and ageing. In eukaryotes, activation of JNK/p38 stress-activated protein kinase (SAPK) signaling pathways is critical for the cellular response to stress. 2-Cys peroxiredoxins (2-Cys Prx) are highly conserved, extremely abundant antioxidant enzymes that catalyze the breakdown of peroxides to protect cells from oxidative stress. Here we reveal that Tpx1, the single 2-Cys Prx in Schizosaccharomyces pombe, is required for the peroxide-induced activation of the p38/JNK homolog, Sty1. Tpx1 activates Sty1, downstream of previously identified redox sensors, by a mechanism that involves formation of a peroxide-induced disulphide complex between Tpx1 and Sty1. We have identified conserved cysteines in Tpx1 and Sty1 that are essential for normal peroxide-induced Tpx1-Sty1 disulphide formation and Tpx1-dependent regulation of peroxide-induced Sty1 activation. Thus we provide new insight into the response of SAPKs to diverse stimuli by revealing a mechanism for SAPK activation specifically by oxidative stress.
Collapse
Affiliation(s)
- Elizabeth A Veal
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
78
|
Jones AME, Thomas V, Truman B, Lilley K, Mansfield J, Grant M. Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. PHYTOCHEMISTRY 2004; 65:1805-16. [PMID: 15276439 DOI: 10.1016/j.phytochem.2004.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/30/2004] [Indexed: 05/20/2023]
Abstract
Alterations in the proteome of Arabidopsis thaliana leaves during early responses to challenge by Pseudomonas syringae pv. tomato DC3000 (DC3000) were analysed using two-dimensional (2D) gel electrophoresis. Protein changes characteristic of the establishment of basal resistance and R-gene mediated resistance were examined by comparing responses to DC3000, a hrp mutant and DC3000 expressing avrRpm1 respectively. The abundance of selected transcripts was also analysed in GeneChip experiments. Here we present data from the soluble fraction of leaf protein, highlighting changes in two antioxidant enzyme groups; the glutathione S-transferases (GSTs F2, F6, F7 and F8) and peroxiredoxins (PrxA, B and IIE). Members of both enzyme groups showed signs of specific post-translational modifications, represented by multiple spots on gels. We suggest that oxidation of specific residues is responsible for some of the spot shifts. All forms of the GST proteins identified here increased following inoculation with bacteria. GSTF8 showed particularly dynamic responses to pathogen challenge, the corresponding transcript was significantly up-regulated by 2 h after inoculation, and the protein showed post-translational modifications specific to an incompatible interaction. Differential changes were observed with the peroxiredoxin proteins; PrxIIE and to a lesser extent PrxB, no change was observed with PrxA, but a truncated form PrxA-L was greatly reduced in abundance following bacterial challenges. Our data suggest that bacterial challenge generally induces Prxs and the antioxidants GSTs, however individual members of these families may be specifically modified dependent upon the virulence of the DC3000 strain and outcome of the interaction. Finally, proteomic and transcriptomic data derived from the same inoculation system are compared and the advantages offered by 2D gel analysis discussed in light of our results.
Collapse
Affiliation(s)
- Alexandra M E Jones
- Department of Agricultural Science, Imperial College London, Wye Campus, High Street, Wye TN25 5AH, UK.
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Reactive (low pKa) cysteine residues in proteins are critical components in redox signaling. A particularly reactive and versatile reversibly oxidized form of cysteine, the sulfenic acid (Cys-SOH), has important roles as a catalytic center in enzymes and as a sensor of oxidative and nitrosative stress in enzymes and transcriptional regulators. Depending on environment, sometimes the sulfenic acid provides a metastable oxidized form, and other times it is a fleeting intermediate giving rise to more stable disulfide, sulfinic acid, or sulfenyl-amide forms.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
80
|
Sayed AA, Williams DL. Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni. J Biol Chem 2004; 279:26159-66. [PMID: 15075328 DOI: 10.1074/jbc.m401748200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins are a large family of peroxidases that have important antioxidant and cell signaling functions. Genes encoding two novel 2-cysteine peroxiredoxin proteins were identified in the expressed sequence tag data base of the helminth parasite Schistosoma mansoni, a causative agent of schistosomiasis. The recombinant proteins showed peroxidase activity in vitro with a variety of hydroperoxides and used both the thioredoxin and the glutathione systems as electron donors. Steady-state kinetic analysis indicated that the new peroxiredoxins had saturable kinetics, whereas a previously identified schistosome peroxiredoxin was found to function with more typical unsaturable (ping-pong) kinetics. The catalytic efficiencies S. mansoni peroxiredoxins were similar to those for other peroxiredoxins studied (10(4)-10(5) m(-1) s(-1)). Mutagenesis of S. mansoni peroxiredoxins indicated that glutathione dependence and kinetic differences were conferred by the C-terminal alpha-helix forming 22 amino acids. This is the first report of 2-cysteine peroxiredoxins efficiently utilizing reducing equivalents from both the thioredoxin and glutathione systems. Studies to determine the resistance to oxidative inactivation, important in regulating cell signaling pathways, showed that S. mansoni possess both bacterial-like resistant and mammalian-like sensitive peroxiredoxins. The susceptibility to oxidative inactivation was conferred by the C-terminal tail containing a tyrosine-phenylalanine motif. S. mansoni is the first organism shown to possess both robust and sensitive peroxiredoxins. The ability of schistosome peroxiredoxins to use alternative electron donors, and their variable resistance to overoxidation may reflect their presence in different cellular sites and emphasizes the significant differences in overall redox balance mechanisms between the parasite and its mammalian host.
Collapse
Affiliation(s)
- Ahmed A Sayed
- Department of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120, USA
| | | |
Collapse
|
81
|
Ding M, Kwok LY, Schlüter D, Clayton C, Soldati D. The antioxidant systems in Toxoplasma gondii and the role of cytosolic catalase in defence against oxidative injury. Mol Microbiol 2004; 51:47-61. [PMID: 14651610 DOI: 10.1046/j.1365-2958.2003.03823.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Superoxide dismutase, catalase, glutathione peroxidase and peroxiredoxins form an antioxidant network protecting cells against reactive oxygen species (ROS). Catalase is a potent H2O2-detoxifying enzyme, which is unexpectedly absent in some members of the Kinetoplastida and Apicomplexa, but present in Toxoplasma gondii. In T. gondii, catalase appears to be cytosolic. In addition, T. gondii also possesses genes coding for other types of peroxidases, including glutathione/thioredoxin-like peroxidases and peroxiredoxins. This study presents a detailed analysis of the role of catalase in the parasite and reports the existence of antioxidant enzymes localized in the cytosol and the mitochondrion of T. gondii. The catalase gene was disrupted and, in addition, T. gondii cell lines overexpressing either catalase or a cytosolic 1-cys peroxiredoxin, TgPrx2, under the control of a strong promoter were created. Analysis of these mutants confirmed that the catalase activity is cytosolic and is encoded by a unique gene in T. gondii. Furthermore, the catalase confers protection against H2O2 exposure and contributes to virulence in mice. The overexpression of Prx2 also increases protection against H2O2 treatment, suggesting that catalase and other peroxidases function as a defence mechanism against endogenously produced reactive oxygen intermediates and the oxidative stress imposed by the host.
Collapse
Affiliation(s)
- Martina Ding
- Zentrum für Molekulare Biologie der Universität, Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany [corrected]
| | | | | | | | | |
Collapse
|
82
|
Hess A, Wijayanti N, Neuschäfer-Rube AP, Katz N, Kietzmann T, Immenschuh S. Phorbol ester-dependent activation of peroxiredoxin I gene expression via a protein kinase C, Ras, p38 mitogen-activated protein kinase signaling pathway. J Biol Chem 2003; 278:45419-34. [PMID: 12960165 DOI: 10.1074/jbc.m307871200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antioxidant protein peroxiredoxin (Prx) I is a thioredoxin peroxidase that is involved in the regulation of proliferation and differentiation of mammalian cells. Here, it is shown that Prx I gene expression was induced transcriptionally by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) in cultured rat liver tissue macrophages and RAW264.7 monocytic cells. TPA-dependent induction of Prx I gene expression was mediated by two proximal activator protein-1 sites of the rat Prx I promoter region that were nuclear targets of c-Jun as determined by transfection studies with luciferase reporter gene constructs and electrophoretic mobility shift assays. The transcription factor Nrf2, however, was not involved in the regulation of Prx I promoter activity. Prx I gene induction by TPA was decreased by protein kinase C inhibitors and overexpressed dominant negative forms of Ras and MEKK1, but not Raf-1. The p38 MAPK inhibitor SB202190 and overexpression of dominant negative mutants of MAPK kinase 4 (MKK4), MKK6, and p38 inhibited the TPA-dependent induction of Prx I gene transcription. In contrast, inhibitors of the JNK, SP600125, and the NF-kappaB signaling pathway, caffeic acid phenethyl ester, respectively, as well as overexpressed dominant negative MKK7 and IkappaB, had no effect on the up-regulation of Prx I reporter gene activity by TPA. Cotransfection of wild-type p38alpha and p38beta, but not that of p38gamma and p38delta, increased Prx I promoter activity. The data indicate that a protein kinase C, Ras, MEKK1, p38 MAPK signaling pathway plays a major role for the transcriptional up-regulation of Prx I gene expression.
Collapse
Affiliation(s)
- Alexander Hess
- Institut für Klinische Chemie und Pathobiochemie, Justus-Liebig-Universität Giessen, Giessen D-35392, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Eukaryotic 2-Cys peroxiredoxins (2-Cys Prxs) not only act as antioxidants, but also appear to regulate hydrogen peroxide-mediated signal transduction. We show that bacterial 2-Cys Prxs are much less sensitive to oxidative inactivation than are eukaryotic 2-Cys Prxs. By identifying two sequence motifs unique to the sensitive 2-Cys Prxs and comparing the crystal structure of a bacterial 2-Cys Prx at 2.2 angstrom resolution with other Prx structures, we define the structural origins of sensitivity. We suggest this adaptation allows 2-Cys Prxs to act as floodgates, keeping resting levels of hydrogen peroxide low, while permitting higher levels during signal transduction.
Collapse
Affiliation(s)
- Zachary A Wood
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA
| | | | | |
Collapse
|
84
|
Budde H, Flohé L, Hecht HJ, Hofmann B, Stehr M, Wissing J, Lünsdorf H. Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei. Biol Chem 2003; 384:619-33. [PMID: 12751791 DOI: 10.1515/bc.2003.069] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tryparedoxin peroxidases (TXNPx) are peroxiredoxin-type enzymes that detoxify hydroperoxides in trypanosomatids. Reduction equivalents are provided by trypanothione [T(SH)2] via tryparedoxin (TXN). The T(SH)2-dependent peroxidase system was reconstituted from TXNPx and TXN of T. brucei brucei (TbTXN-Px and TbTXN). TbTXNPx efficiently reduces organic hydroperoxides and is specifically reduced by TbTXN, less efficiently by thioredoxin, but not by glutathione (GSH) or T(SH)2. The kinetic pattern does not comply with a simple rate equation but suggests negative co-operativity of reaction centers. Gel permeation of oxidized TbTXNPx yields peaks corresponding to a decamer and higher aggregates. Electron microscopy shows regular ring structures in the decamer peak. Upon reduction, the rings tend to depolymerise forming open-chain oligomers. Co-oxidation of TbTXNPx with TbTXNC43S yields a dead-end intermediate mimicking the catalytic intermediate. Its size complies with a stoichiometry of one TXN per subunit of TXNPx. Electron microscopy of the intermediate displays pentangular structures that are compatible with a model of a decameric TbTXNPx ring with ten bound TbTXN molecules. The redox-dependent changes in shape and aggregation state, the kinetic pattern and molecular models support the view that, upon oxidation of a reaction center, other subunits adopt a conformation that has lower reactivity with the hydroperoxide.
Collapse
Affiliation(s)
- Heike Budde
- Department of Biochemistry, Technical University of Braunschweig, Mascheroder Weg 1, D-38124 Braunschweig
| | | | | | | | | | | | | |
Collapse
|
85
|
Baker LMS, Poole LB. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J Biol Chem 2003; 278:9203-11. [PMID: 12514184 PMCID: PMC3845838 DOI: 10.1074/jbc.m209888200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli thiol peroxidase (Tpx, p20, scavengase) is part of an oxidative stress defense system that uses reducing equivalents from thioredoxin (Trx1) and thioredoxin reductase to reduce alkyl hydroperoxides. Tpx contains three Cys residues, Cys(95), Cys(82), and Cys(61), and the latter residue aligns with the N-terminal active site Cys of other peroxidases in the peroxiredoxin family. To identify the catalytically important Cys, we have cloned and purified Tpx and four mutants (C61S, C82S, C95S, and C82S,C95S). In rapid reaction kinetic experiments measuring steady-state turnover, C61S is inactive, C95S retains partial activity, and the C82S mutation only slightly affects reaction rates. Furthermore, a sulfenic acid intermediate at Cys(61) generated by cumene hydroperoxide (CHP) treatment was detected in UV-visible spectra of 4-nitrobenzo-2-oxa-1,3-diazole-labeled C82S,C95S, confirming the identity of Cys(61) as the peroxidatic center. In stopped-flow kinetic studies, Tpx and Trx1 form a Michaelis complex during turnover with a catalytic efficiency of 3.0 x 10(6) m(-1) s(-1), and the low K(m) (9.0 microm) of Tpx for CHP demonstrates substrate specificity toward alkyl hydroperoxides over H(2)O(2) (K(m) > 1.7 mm). Rapid inactivation of Tpx due to Cys(61) overoxidation is observed during turnover with CHP and a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid, but not H(2)O(2). Unlike most other 2-Cys peroxiredoxins, which operate by an intersubunit disulfide mechanism, Tpx contains a redox-active intrasubunit disulfide bond yet is homodimeric in solution.
Collapse
Affiliation(s)
| | - Leslie B. Poole
- To whom correspondence should be addressed: Dept. of Biochemistry, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157. Tel.: 336-716-6711; Fax: 336-716-7671;
| |
Collapse
|
86
|
Abstract
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three classes: typical 2-Cys Prxs; atypical 2-Cys Prxs; and 1-Cys Prxs. All Prxs share the same basic catalytic mechanism, in which an active-site cysteine (the peroxidatic cysteine) is oxidized to a sulfenic acid by the peroxide substrate. The recycling of the sulfenic acid back to a thiol is what distinguishes the three enzyme classes. Using crystal structures, a detailed catalytic cycle has been derived for typical 2-Cys Prxs, including a model for the redox-regulated oligomeric state proposed to control enzyme activity.
Collapse
Affiliation(s)
- Zachary A Wood
- Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|