51
|
Abstract
Blood vessels nourish organs with vital nutrients and oxygen and, thus, new vessels form when the embryo needs to grow or wounds are to heal. However, forming new blood vessels is a complex and delicate process, which, unfortunately, is often derailed. Thus, when insufficient vessels form, the tissue becomes ischaemic and stops to function adequately. Conversely, when vessels grow excessively, malignant and inflamed tissues grow faster. It is now becoming increasingly evident that abnormal vessel growth contributes to the pathogenesis of numerous malignant, ischaemic, inflammatory, infectious and immune disorders. With an in-depth molecular understanding, we should be better armamented to combat such angiogenic disorders in the future. That such therapeutic strategies might change the face of medicine is witnessed by initial evidence of success in the clinic.
Collapse
Affiliation(s)
- Peter Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversitary Institute for Biotechnology, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
52
|
Affiliation(s)
- Lisa D Urness
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
53
|
Affiliation(s)
- Michelle Haynes Pauling
- Department of Medicine and Lung Biology Center, University of California, San Francisco 94143, USA
| | | |
Collapse
|
54
|
le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Bréant C, Fleury V, Eichmann A. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 2003; 131:361-75. [PMID: 14681188 DOI: 10.1242/dev.00929] [Citation(s) in RCA: 340] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1.
Collapse
Affiliation(s)
- Ferdinand le Noble
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are membrane-bound proteins that mediate bidirectional signals between adjacent cells. By modulating cytoskeleton dynamics affecting cell motility and adhesion, Ephs and ephrins orchestrate cell movements during multiple morphogenetic processes, including gastrulation, segmentation, angiogenesis, axonal pathfinding, and neural crest cell migration. The full repertoire of developmental Eph/ephrin functions remains uncertain, however, because coexpression of multiple receptor and ligand family members, and promiscuous interactions between them, can result in functional redundancy. A complete understanding of expression patterns, therefore, is a necessary prerequisite to understanding function. Here, we present a comprehensive expression overview for 10 Eph and ephrin genes during the first 48 hr of chick embryo development. First, dynamic expression domains are described for each gene between Hamburger and Hamilton stages 4 and 12; second, comparative analyses are presented of Eph/ephrin expression patterns in the primitive streak, the somites, the vasculature, and the brain. Complex spatially and temporally dynamic expression patterns are revealed that suggest novel functions for Eph and ephrin family members in both known and previously unrecognized processes. This study will provide a valuable resource for further experimental investigations of Eph and ephrin functions during early embryonic development.
Collapse
Affiliation(s)
- Robert K Baker
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85724, USA
| | | |
Collapse
|
56
|
Abstract
Both blood vessels and nerves are vital channels to and from tissues. Recent genetic insights show that they have much more in common than was originally anticipated. They use similar signals and principles to differentiate, grow and navigate towards their targets. Moreover, the vascular and nervous systems cross-talk and, when dysregulated, this contributes to medically important diseases. The realization that both systems use common genetic pathways should not only form links between vascular biology and neuroscience, but also promises to accelerate the discovery of new mechanistic insights and therapeutic opportunities.
Collapse
Affiliation(s)
- Peter Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
57
|
Jilani SM, Murphy TJ, Thai SNM, Eichmann A, Alva JA, Iruela-Arispe ML. Selective binding of lectins to embryonic chicken vasculature. J Histochem Cytochem 2003; 51:597-604. [PMID: 12704207 DOI: 10.1177/002215540305100505] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chicken embryos are an excellent model system for studies related to vascular morphogenesis. Development in ovo allows manipulations otherwise difficult in mammals, and the use of chicken-quail chimeras offers an additional advantage to this experimental system. Furthermore, the chicken chorioallantoic membrane has been extensively used for in vivo assays of angiogenesis. Surprisingly, few markers are available for a comprehensive visualization of the vasculature. Here we report the use of lectins for identification of embryonic chicken blood vessels. Nine lectins were evaluated using intravascular perfusion and directly on sections. Our results indicate that Lens culinaris agglutinin, concanavalin A, and wheat germ agglutinin can be used effectively for visualization of vessels of early chicken embryos (E2.5-E4). At later developmental stages, Lens culinaris agglutinin is a better choice because it displays equal affinity for the endothelia of arteries, veins, and capillaries. The findings presented here expand our understanding of lectin specificity in the endothelium of avian species and provide information as to the use of these reagents to obtain comprehensive labeling of the embryonic and chorioallantoic membrane vasculature.
Collapse
Affiliation(s)
- Shahla M Jilani
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Recent research has demonstrated that not only haemodynamic factors but also genetic programmes control arterial-venous cell fate and blood vessel identity. The identification of arteries and veins was previously based solely on morphological criteria and is now greatly facilitated by specific molecular markers. Moreover, signalling pathways controlling the arterial-venous decision during embryonic development have been outlined for the first time. This review gives an up-to-date overview of differentially expressed genes and the regulatory processes leading to the differentiation of arteries and veins.
Collapse
Affiliation(s)
- Ralf H Adams
- Cancer Research UK-London Research Institute, Vascular Development Laboratory, London, UK.
| |
Collapse
|
59
|
Abstract
Arteries and veins are structurally different and have long been functionally defined by the direction of blood flow that they carry. However, a growing body of evidence indicates that the identity of the endothelial cells that line these vessels is determined in the developing embryo, before circulation begins. Recent work on the zebrafish has led to the identification of signals that are responsible for arterial and venous differentiation of endothelial cells, and highlights the unique benefits of this model organism in the study of vascular development.
Collapse
Affiliation(s)
- Nathan D Lawson
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Building 6B, Room 309, 6 Center Drive, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
60
|
Djonov VG, Kurz H, Burri PH. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 2002; 224:391-402. [PMID: 12203731 DOI: 10.1002/dvdy.10119] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The theory of bifurcating vascular systems predicts vessel diameters that are related to optimality criteria like minimization of pumping energy or of building material. However, mechanisms for producing the postulated optimality have not been described so far, and quantitative data on bifurcation diameters during development are scarce. We used an embryonic vascular bed that rapidly grows and adapts to changing hemodynamic conditions, the chicken chorioallantoic membrane (CAM), and correlated vascular cast and tissue section morphology with in vivo time-lapse video monitoring. The bifurcation exponent delta and associated parameters were quantitatively assessed in arterial and venous microvessels ranging in diameter from 30 to 100 microm. We observed emergence of optimality by means of intussusception, i.e., formation of transvascular tissue pillars. In addition to intussusceptive microvascular growth (IMG = expansion of capillary networks) and intussusceptive arborization (IAR = formation of feeding vessels from capillaries) the observed intussusception at bifurcations represents a third variant of nonsprouting angiogenesis. We call it intussusceptive branching remodeling (IBR). IBR occurred in vessels of considerable diameter by means of two alternative mechanisms: either through pillars arising close to a bifurcation, which increased in girth until they merged with the connective tissue in the bifurcation angle; or through pillars arising at some distance from the bifurcation point, which then expanded by formation of ingrowing tissue folds until they became connected to the tissue of the bifurcation angle. Morphologic evidence suggests that IBR is a wide-spread phenomenon, taking place also in lung, intestinal, kidney, eye, etc., vasculature. Irrespective of the mode followed, IBR led to a branching pattern close to the predicted optimum, delta = 3.0. Significant differences were observed between delta at arterial bifurcations (2.70 to 2.90) and delta at venous bifurcations (2.93 to 3.75). IBR, by means of eccentric pillar formation and fusion, was also involved in vascular pruning. Experimental changes in CAM hemodynamics (by locally increasing blood flow) induced onset of IBR within less than 1 hr. Our study provides morphologic and quantitative evidence that a similar cellular machinery is used for all three variants of vascular intussusception, IMG, IAR, and IBR. It thus provides a mechanism of efficiently generating complex blood transport systems from limited genetic information. Differential quantitative outcome of IBR in arteries and veins, and the experimental induction of IBR strongly suggest that hemodynamic factors can instruct embryonic vascular remodeling toward optimality.
Collapse
|
61
|
Abstract
During vertebrate development, morphologically and functionally very different tissue types and organ systems need to be generated and organised in close coordination with each other. Blood vessels, which become critically required during early embryogenesis and remain indispensable throughout life, need to integrate into a great diversity of tissue types and adapt to both local and systemic requirements of the organism. Far from being randomly placed and uniformly shaped tubes, blood vessels form, with some degree of flexibility, a highly organised and precisely arranged network. Their differentiation, ultrastructure and physiology are well adapted to the requirements and functions of the surrounding tissues. How coordinated development and differentiation are achieved at a molecular level remains to be characterised. This review highlights the large family of Eph receptor tyrosine kinases and their ligands, called ephrins, which, because of their versatile functions in many cell and tissue types and their molecular complexity, might well provide one example of a control system integrating blood vessel and tissue morphogenesis.
Collapse
Affiliation(s)
- Ralf H Adams
- Vascular Development Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| |
Collapse
|