51
|
Ravikumar S, Ganesh I, Yoo IK, Hong SH. Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
52
|
|
53
|
Wang D, Hosteen O, Fierke CA. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J Inorg Biochem 2012; 111:173-81. [PMID: 22459916 DOI: 10.1016/j.jinorgbio.2012.02.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/19/2022]
Abstract
In E. coli, ZitB and ZntA are important metal exporters that enhance cell viability under high environmental zinc. To understand their functions in maintaining zinc homeostasis, we applied a novel genetically-encoded fluorescent zinc sensor to monitor the intracellular free zinc changes in wild type, ∆zitB and ∆zntA E. coli cells upon sudden exposure to toxic levels of zinc ("zinc shock"). The intracellular readily exchangeable zinc concentration (or "free" zinc) increases transiently from picomolar to nanomolar levels, accelerating zinc-activated gene transcription. After zinc shock, the zitB mRNA level is constant while the zntA mRNA increases substantially in a zinc-dependent manner. In the ∆zitB E. coli strain the free zinc concentration rises more rapidly after zinc shock compared to wild type cells while a prolonged accumulation of free zinc is observed in the ∆zntA strain. Based on these results, we propose that ZitB functions as a constitutive, first-line defense against toxic zinc influx, while ZntA is up-regulated to efficiently lower the free zinc concentration. Furthermore, the ZntR-mediated transcription of zntA exhibits an apparent K(1/2) for zinc activation in the nanomolar range in vivo, significantly higher than the femtomolar affinity for zinc binding and transcription activation previously measured in vitro. A kinetically-controlled transcription model is sufficient to explain the observed regulation of intracellular free zinc concentration by ZntR and ZntA after zinc shock.
Collapse
Affiliation(s)
- Da Wang
- Program in Chemical Biology & Department of Chemistry, The University of Michigan, 930 N University Ave, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
54
|
ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR. Biochem J 2012; 442:85-93. [DOI: 10.1042/bj20111639] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bacterial envelope is the interface with the surrounding environment and is consequently subjected to a barrage of noxious agents including a range of compounds with antimicrobial activity. The ESR (envelope stress response) pathways of enteric bacteria are critical for maintenance of the envelope against these antimicrobial agents. In the present study, we demonstrate that the periplasmic protein ZraP contributes to envelope homoeostasis and assign both chaperone and regulatory function to ZraP from Salmonella Typhimurium. The ZraP chaperone mechanism is catalytic and independent of ATP; the chaperone activity is dependent on the presence of zinc, which is shown to be responsible for the stabilization of an oligomeric ZraP complex. Furthermore, ZraP can act to repress the two-component regulatory system ZraSR, which itself is responsive to zinc concentrations. Through structural homology, ZraP is a member of the bacterial CpxP family of periplasmic proteins, which also consists of CpxP and Spy. We demonstrate environmental co-expression of the CpxP family and identify an important role for these proteins in Salmonella's defence against the cationic antimicrobial peptide polymyxin B.
Collapse
|
55
|
Hermsen R, Erickson DW, Hwa T. Speed, sensitivity, and bistability in auto-activating signaling circuits. PLoS Comput Biol 2011; 7:e1002265. [PMID: 22125482 PMCID: PMC3219618 DOI: 10.1371/journal.pcbi.1002265] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Cells employ a myriad of signaling circuits to detect environmental signals and drive specific gene expression responses. A common motif in these circuits is inducible auto-activation: a transcription factor that activates its own transcription upon activation by a ligand or by post-transcriptional modification. Examples range from the two-component signaling systems in bacteria and plants to the genetic circuits of animal viruses such as HIV. We here present a theoretical study of such circuits, based on analytical calculations, numerical computations, and simulation. Our results reveal several surprising characteristics. They show that auto-activation can drastically enhance the sensitivity of the circuit's response to input signals: even without molecular cooperativity, an ultra-sensitive threshold response can be obtained. However, the increased sensitivity comes at a cost: auto-activation tends to severely slow down the speed of induction, a stochastic effect that was strongly underestimated by earlier deterministic models. This slow-induction effect again requires no molecular cooperativity and is intimately related to the bimodality recently observed in non-cooperative auto-activation circuits. These phenomena pose strong constraints on the use of auto-activation in signaling networks. To achieve both a high sensitivity and a rapid induction, an inducible auto-activation circuit is predicted to acquire low cooperativity and low fold-induction. Examples from Escherichia coli's two-component signaling systems support these predictions. Different times call for different measures. Therefore, cells adjust their protein levels depending on their environment. Upon the detection of certain environmental signals, transcription factors are activated, which activate or inhibit the production of specific sets of proteins. As it turns out, these transcription factors often also stimulate their own production. Indeed, such self-regulation is a common motif in signal–response systems of many organisms, including bacteria, animals, plants and viruses–but its function is not well understood. We have used mathematical models to study its benefits and drawbacks. On the one hand, calculations show that self-regulation can be a very useful tool if the cell needs to respond in a sensitive way to changes in its environment, or if it is supposed to respond only if the signal exceeds a threshold level. On the other hand, these benefits come at a cost: self-regulation severely slows down the cell's response to changes in the environment. We have analyzed how the cell can benefit from the advantages of self-regulation, while mitigating the drawbacks. This leads to strict design constraints that examples from the bacterium E. coli indeed seem to obey.
Collapse
Affiliation(s)
- Rutger Hermsen
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
56
|
Joly N, Zhang N, Buck M, Zhang X. Coupling AAA protein function to regulated gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:108-16. [PMID: 21906631 DOI: 10.1016/j.bbamcr.2011.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
AAA proteins (ATPases Associated with various cellular Activities) are involved in almost all essential cellular processes ranging from DNA replication, transcription regulation to protein degradation. One class of AAA proteins has evolved to adapt to the specific task of coupling ATPase activity to activating transcription. These upstream promoter DNA bound AAA activator proteins contact their target substrate, the σ(54)-RNA polymerase holoenzyme, through DNA looping, reminiscent of the eukaryotic enhance binding proteins. These specialised macromolecular machines remodel their substrates through ATP hydrolysis that ultimately leads to transcriptional activation. We will discuss how AAA proteins are specialised for this specific task.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
57
|
Amit R, Garcia HG, Phillips R, Fraser SE. Building enhancers from the ground up: a synthetic biology approach. Cell 2011; 146:105-18. [PMID: 21729783 PMCID: PMC3155781 DOI: 10.1016/j.cell.2011.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/25/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
A challenge of the synthetic biology approach is to use our understanding of a system to recreate a biological function with specific properties. We have applied this framework to bacterial enhancers, combining a driver, transcription factor binding sites, and a poised polymerase to create synthetic modular enhancers. Our findings suggest that enhancer-based transcriptional control depends critically and quantitatively on DNA looping, leading to complex regulatory effects when the enhancer cassettes contain additional transcription factor binding sites for TetR, a bacterial transcription factor. We show through a systematic interplay of experiment and thermodynamic modeling that the level of gene expression can be modulated to convert a variable inducer concentration input into discrete or step-like output expression levels. Finally, using a different DNA-binding protein (TraR), we show that the regulatory output is not a particular feature of the specific DNA-binding protein used for the enhancer but a general property of synthetic bacterial enhancers.
Collapse
Affiliation(s)
- Roee Amit
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
58
|
Nannenga BL, Baneyx F. Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli. Protein Sci 2011; 20:1411-20. [PMID: 21633988 DOI: 10.1002/pro.669] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/22/2011] [Indexed: 11/10/2022]
Abstract
Because membrane proteins are difficult to express, our understanding of their structure and function is lagging. In Escherichia coli, α-helical membrane protein biogenesis usually involves binding of a nascent transmembrane segment (TMS) by the signal recognition particle (SRP), delivery of the SRP-ribosome nascent chain complexes (RNC) to FtsY, a protein that serves as SRP receptor and docks to the SecYEG translocon, cotranslational insertion of the growing chain into the translocon, and lateral transfer, packing and folding of TMS in the lipid bilayer in a process that may involve chaperone YidC. Here, we explored the feasibility of reprogramming this pathway to improve the production of recombinant membrane proteins in exponentially growing E. coli with a focus on: (i) eliminating competition between SRP and chaperone trigger factor (TF) at the ribosome through gene deletion; (ii) improving RNC delivery to the inner membrane via SRP overexpression; and (iii) promoting substrate insertion and folding in the lipid bilayer by increasing YidC levels. Using a bitopic histidine kinase and two heptahelical rhodopsins as model systems, we show that the use of TF-deficient cells improves the yields of membrane-integrated material threefold to sevenfold relative to the wild type, and that whereas YidC coexpression is beneficial to the production of polytopic proteins, higher levels of SRP have the opposite effect. The implications of our results on the interplay of TF, SRP, YidC, and SecYEG in membrane protein biogenesis are discussed.
Collapse
Affiliation(s)
- Brent L Nannenga
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, USA
| | | |
Collapse
|
59
|
Ravikumar S, Yoo IK, Lee SY, Hong SH. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioprocess Biosyst Eng 2011; 34:1119-26. [PMID: 21674266 DOI: 10.1007/s00449-011-0562-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
Zinc ion plays essential roles in biological chemistry. Bacteria acquire Zn(2+) from the environment, and cellular concentration levels are controlled by zinc homeostasis systems. In comparison with other homeostatic systems, the ZraSR two-component system was found to be more efficient in responding to exogenous zinc concentrations. To understand the dynamic response of the bacterium ZraSR two-component system with respect to exogenous zinc concentrations, the genetic circuit of the ZraSR system was integrated with a reporter protein. This study was helpful in the construction of an E. coli system that can display selective metal binding peptides on the surface of the cell in response to exogenous zinc. The engineered bacterial system for monitoring exogenous zinc was successfully employed to detect levels of zinc as low as 0.001 mM, which directly activates the expression of chimeric ompC(t)--zinc binding peptide gene to remove zinc by adsorbing a maximum of 163.6 μmol of zinc per gram of dry cell weight. These results indicate that the engineered bacterial strain developed in the present study can sense the specific heavy metal and activates a cell surface display system that acts to remove the metal.
Collapse
Affiliation(s)
- Sambandam Ravikumar
- School of Chemical Engineering and Bioengineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan, 680-749, Republic of Korea
| | | | | | | |
Collapse
|
60
|
Thede GL, Arthur DC, Edwards RA, Buelow DR, Wong JL, Raivio TL, Glover JNM. Structure of the periplasmic stress response protein CpxP. J Bacteriol 2011; 193:2149-57. [PMID: 21317318 PMCID: PMC3133086 DOI: 10.1128/jb.01296-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/03/2011] [Indexed: 01/10/2023] Open
Abstract
CpxP is a novel bacterial periplasmic protein with no homologues of known function. In gram-negative enteric bacteria, CpxP is thought to interact with the two-component sensor kinase, CpxA, to inhibit induction of the Cpx envelope stress response in the absence of protein misfolding. CpxP has also been shown to facilitate DegP-mediated proteolysis of misfolded proteins. Six mutations that negate the ability of CpxP to function as a signaling protein are localized in or near two conserved LTXXQ motifs that define a class of proteins with similarity to CpxP, Pfam PF07813. To gain insight into how these mutations might affect CpxP signaling and/or proteolytic adaptor functions, the crystal structure of CpxP from Escherichia coli was determined to 2.85-Å resolution. The structure revealed an antiparallel dimer of intertwined α-helices with a highly basic concave surface. Each protomer consists of a long, hooked and bent hairpin fold, with the conserved LTXXQ motifs forming two diverging turns at one end. Biochemical studies demonstrated that CpxP maintains a dimeric state but may undergo a slight structural adjustment in response to the inducing cue, alkaline pH. Three of the six previously characterized cpxP loss-of-function mutations, M59T, Q55P, and Q128H, likely result from a destabilization of the protein fold, whereas the R60Q, D61E, and D61V mutations may alter intermolecular interactions.
Collapse
Affiliation(s)
- Gina L. Thede
- Department of Biochemistry, School of Molecular and Systems Medicine
| | - David C. Arthur
- Department of Biochemistry, School of Molecular and Systems Medicine
| | - Ross A. Edwards
- Department of Biochemistry, School of Molecular and Systems Medicine
| | - Daelynn R. Buelow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Julia L. Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tracy L. Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - J. N. Mark Glover
- Department of Biochemistry, School of Molecular and Systems Medicine
| |
Collapse
|
61
|
Pullinger GD, van Diemen PM, Dziva F, Stevens MP. Role of two-component sensory systems of Salmonella enterica serovar Dublin in the pathogenesis of systemic salmonellosis in cattle. MICROBIOLOGY (READING, ENGLAND) 2010; 156:3108-3122. [PMID: 20656781 DOI: 10.1099/mic.0.041830-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Salmonella enterica serovar Dublin (S. Dublin) is associated with enteritis, typhoid and abortion in cattle. Infections are acquired by the oral route, and the bacteria transit through varied anatomical and cellular niches to elicit systemic disease. S. Dublin must therefore sense and respond to diverse extrinsic stimuli to control gene expression in a spatial and temporal manner. Two-component systems (TCSs) play key roles in such processes, and typically contain a membrane-associated sensor kinase (SK) that modifies a cognate response regulator. Analysis of the genome sequence of S. Dublin identified 31 conserved SK genes. Each SK gene was separately disrupted by lambda Red recombinase-mediated insertion of transposons harbouring unique sequence tags. Calves were challenged with a pool of the mutants together with control strains of defined virulence by the oral and intravenous routes. Quantification of tagged mutants in output pools derived from various tissues and cannulated lymphatic vessels allowed the assignment of spatial roles for each SK following oral inoculation or when the intestinal barrier was bypassed by intravenous delivery. Mutant phenotypes were also assigned in cultured intestinal epithelial cells. Mutants with insertions in barA, envZ, phoQ, ssrA or qseC were significantly negatively selected at all enteric and systemic sites sampled after oral dosing. Mutants lacking baeS, dpiB or citA were negatively selected at some but not all sites. After intravenous inoculation, only barA and phoQ mutants were significantly under-represented at systemic sites. The novel role of baeS in intestinal colonization was confirmed by oral co-infection studies, with a mutant exhibiting modest but significant attenuation at a number of enteric sites. This is the first systematic analysis of the role of all Salmonella TCSs in a highly relevant model of enteric fever. Spatial roles were assigned to eight S. Dublin SKs, but most were not essential for intestinal or systemic infection of the target host.
Collapse
Affiliation(s)
- Gillian D Pullinger
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Pauline M van Diemen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Francis Dziva
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Mark P Stevens
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
62
|
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827. [PMID: 20636484 DOI: 10.1111/j.1574-6976.2010.00240.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Naville M, Gautheret D, Naville M, Gautheret D. Transcription attenuation in bacteria: theme and variations. Brief Funct Genomics 2010; 9:178-89. [DOI: 10.1093/bfgp/elq008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
64
|
Olivera BCL, Ugalde E, Martínez-Antonio A. Regulatory dynamics of standard two-component systems in bacteria. J Theor Biol 2010; 264:560-9. [PMID: 20219478 DOI: 10.1016/j.jtbi.2010.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
Complex cellular networks regulate metabolism, environmental adaptation, and phenotypic changes in biological systems. Among the elements forming regulatory networks in bacteria are regulatory proteins such as transcription factors, which respond to exogenous and endogenous conditions. To perceive their surroundings, bacteria have evolved sensory regulatory systems of two-components. The archetype of these systems is made up of two proteins--a signal sensor and a response regulator-whose genes are usually located together in a single transcription unit. These units switch transcriptional programs in response to environmental conditions. Here, we study 14 two-component systems in Escherichia coli, which have been experimentally characterized with respect to their transcriptional regulation and their perceived signal. Given that the activity of these sensory units is connected to the rest of the transcriptional network, we first classify them as autonomous, semiautonomous or dependent, according to whether or not they use additional regulators to be transcribed. Next, we use discrete-time models to simulate their qualitative regulatory dynamics in response to their transcriptional regulation and to the activation of these systems by their cognate signals. Compared to more traditional ordinary differential equations method, ours has the advantage of being computationally simple and mathematically tractable, while keeping the ability to reproduce the phenomenology described by non-linear models. The aim of the present work is not the study of all possible behaviors of these two-component systems, but to exemplify those behaviors reported in the literature. On the other hand, most of these systems are auto-activating switches, a property that distinguishes them from the other transcription factors in the regulatory network, which are mostly auto-repressing. Based on the data, our models show dynamic behaviors that explain how most of these sensory systems convey abilities for multistationarity, and these dynamic properties could explain the phenotypic heterogeneity observed in bacterial populations. Our results are likely to have an impact in the design of synthetic signaling modules.
Collapse
|
65
|
Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA, Goulhen-Chollet F, Hommais F, Lièvremont D, Arsène-Ploetze F, Coppée JY, Bertin PN. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 2010; 10:53. [PMID: 20167112 PMCID: PMC2848651 DOI: 10.1186/1471-2180-10-53] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. RESULTS In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (sigma54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 sigma54-dependent promoter motif was identified upstream of aoxAB coding sequences. CONCLUSION These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.
Collapse
Affiliation(s)
- Sandrine Koechler
- UMR7156 Génétique Moléculaire, Génomique et Microbiologie, CNRS Université de Strasbourg, 28 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Reichenbach B, Göpel Y, Görke B. Dual control by perfectly overlapping sigma 54- and sigma 70- promoters adjusts small RNA GlmY expression to different environmental signals. Mol Microbiol 2009; 74:1054-70. [PMID: 19843219 DOI: 10.1111/j.1365-2958.2009.06918.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Escherichia coli synthesis of glucosamine-6-phosphate synthase GlmS is feedback-controlled by a regulatory cascade composed of small RNAs GlmY and GlmZ. When GlcN6P becomes limiting, GlmY accumulates and inhibits processing of GlmZ. Full-length GlmZ base-pairs with the glmS transcript and activates synthesis of GlmS, which re-synthesizes GlcN6P. Here we show that glmY expression is controlled by two overlapping promoters with the same transcription start site. A sigma(70)-dependent promoter contributes to glmY transcription during exponential growth. Alternatively, glmY can be transcribed from a sigma(54)-dependent promoter, which requires the YfhK/YfhA two-component system for activity. YfhK is a sensor kinase and YfhA is a response regulator that contains a sigma(54) interaction domain. YfhA binds to a DNA region located more than 100 bp upstream of glmY. Three copies of the conserved sequence TGTCN(10)GACA contribute to binding, and the two sites next to glmY are essential for activation of the sigma(54)-dependent promoter by YfhA. YfhK and YfhA upregulate GlmY when cells enter the stationary growth phase, whereas regulation by glucosamine-6-phosphate occurs post GlmY transcription. Target genes regulated by YfhK and YfhA were unknown so far. We propose to rename these proteins to GlrK and GlrR, for glmY regulating kinase and response regulator respectively.
Collapse
Affiliation(s)
- Birte Reichenbach
- Georg-August - Universität Göttingen, Abteilung für Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
67
|
Marijuán PC, Navarro J, del Moral R. On prokaryotic intelligence: strategies for sensing the environment. Biosystems 2009; 99:94-103. [PMID: 19781596 DOI: 10.1016/j.biosystems.2009.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
The adaptive relationship with the environment is a sine qua non condition for any intelligent system. Discussions on the nature of cellular intelligence, however, have not systematically pursued yet the question of whether there is a fundamental way of sensing the environment, which may characterize prokaryotic cells, or not. The molecular systems found in bacterial signaling are extremely diverse, ranging from very simple transcription regulators (single proteins comprising just two domains) to the multi-component, multi-pathway signaling cascades that regulate crucial stages of the cell cycle, such as sporulation, biofilm formation, dormancy, pathogenesis or flagellar biosynthesis. The combined complexity of the environment and of the cellular way of life is reflected as a whole in the aggregate of signaling elements: an interesting power-law relationship emerges in that regard. In a basic taxonomy of bacterial signaling systems, the first level of complexity corresponds to the simplest regulators, the "one-component systems" (OCSs), which are defined as proteins that contain known or predicted input and output domains but lack histidine kinase and receiver domains. They are evolutionary precursors of the "two-component systems" (TCSs), which include histidine protein-kinase receptors and an independent response regulator, and are considered as the central signaling paradigm within prokaryotic organisms. The addition of independent receptors begets further functional complexity: thus, "three-component systems" (ThCSs) should be applied to those two-component systems that incorporate an extra non-kinase receptor to activate the protein-kinase. Further, the combined information processing functions (cross-talk) and integrative dynamics that OCS, TCS and ThCS may achieve together in the prokaryotic cell have to be depicted, as well as the relationship of these informational functions with the life cycle organization and its checkpoints. Finally, the extent to which formal models would capture the ongoing relationship of the living cell with its medium has to be gauged, in the light of both the complexity of molecular recognition events and the impredicative nature of living systems.
Collapse
Affiliation(s)
- Pedro C Marijuán
- Grupo de Bioinformación y Biología de Sistemas, Instituto Aragonés de Ciencias de la Salud (I+CS), Zaragoza, Spain.
| | | | | |
Collapse
|
68
|
Naville M, Gautheret D. Transcription attenuation in bacteria: theme and variations. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:482-92. [PMID: 19651704 DOI: 10.1093/bfgp/elp025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Premature termination of transcription, or attenuation, is an efficient RNA-based regulatory strategy that is commonly used in bacterial organisms. Attenuators are generally located in the 5' untranslated regions of genes or operons and combine a Rho-independent terminator, controlling transcription, with an RNA element that senses specific environmental signals. A striking diversity of sensing elements enable regulation of gene expression in response to multiple environmental conditions, including temperature changes, availability of small metabolites (such as ions, amino acids, nucleobases or vitamins), or availability of macromolecules such as tRNAs and regulatory proteins. The wide distribution of attenuators suggests an early emergence among bacteria. However, attenuators also display a great mobility and lability, illustrated by a multiplicity of recent horizontal transfers and duplications. For these reasons, attenuation systems are of high interest both from a fundamental evolutionary perspective and for possible biotechnological applications.
Collapse
Affiliation(s)
- Magali Naville
- Institut de Génétique et de Microbiologie, Paris-Sud University, Bâtiment 400, F-91405 Orsay Cedex, France
| | | |
Collapse
|
69
|
Rivas MG, Carepo MSP, Mota CS, Korbas M, Durand MC, Lopes AT, Brondino CD, Pereira AS, George GN, Dolla A, Moura JJG, Moura I. Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in Desulfovibrio alaskensis. Biochemistry 2009; 48:873-82. [DOI: 10.1021/bi801773t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maria G. Rivas
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Marta S. P. Carepo
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Cristiano S. Mota
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Malgorzata Korbas
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Marie-Claire Durand
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Ana T. Lopes
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Carlos D. Brondino
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Alice S. Pereira
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Graham N. George
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Alain Dolla
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Isabel Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada, Unité Interactions et Modulateurs de Réponses, IBSM−CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France, and Physics Department, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
70
|
Huang Y, Leming CL, Suyemoto M, Altier C. Genome-wide screen of Salmonella genes expressed during infection in pigs, using in vivo expression technology. Appl Environ Microbiol 2007; 73:7522-30. [PMID: 17921269 PMCID: PMC2168049 DOI: 10.1128/aem.01481-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022] Open
Abstract
Pigs are a food-producing species that readily carry Salmonella but, in the great majority of cases, do not show clinical signs of disease. Little is known about the functions required by Salmonella to be maintained in pigs. We have devised a recombinase-based promoter-trapping strategy to identify genes with elevated expression during pig infection with Salmonella enterica serovar Typhimurium. A total of 55 clones with in vivo-induced promoters were selected from a genomic library of approximately 10,000 random Salmonella DNA fragments fused to the recombinase cre, and the cloned DNA fragments were analyzed by sequencing. Thirty-one genes encoding proteins involved in bacterial adhesion and colonization (including bcfA, hscA, rffG, and yciR), virulence (metL), heat shock (hscA), and a sensor of a two-component regulator (hydH) were identified. Among the 55 clones, 19 were isolated from both the tonsils and the intestine, while 23 were identified only in the intestine and 13 only in tonsils. High temperature and increased osmolarity were identified as environmental signals that induced in vivo-expressed genes, suggesting possible signals for expression.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
71
|
Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment. BMC Microbiol 2007; 7:15. [PMID: 17343762 PMCID: PMC1852313 DOI: 10.1186/1471-2180-7-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 03/07/2007] [Indexed: 01/24/2023] Open
Abstract
Background Extra-cellular shear force is an important environmental parameter that is significant both medically and in the space environment. Escherichia coli cells grown in a low-shear modeled microgravity (LSMMG) environment produced in a high aspect rotating vessel (HARV) were subjected to transcriptional and physiological analysis. Results Aerobic LSMMG cultures were grown in rich (LB) and minimal (MOPS + glucose) medium with a normal gravity vector HARV control. Reproducible changes in transcription were seen, but no specific LSMMG responsive genes were identified. Instead, absence of shear and a randomized gravity vector appears to cause local extra-cellular environmental changes, which elicit reproducible cellular responses. In minimal media, the majority of the significantly up- or down-regulated genes of known function were associated with the cell envelope. In rich medium, most LSMMG down-regulated genes were involved in translation. No observable changes in post-culture stress responses and antibiotic sensitivity were seen in cells immediately after exposure to LSMMG. Comparison with earlier studies of Salmonella enterica serovar Typhimurium conducted under similar growth conditions, revealed essentially no similarity in the genes that were significantly up- or down-regulated. Conclusion Comparison of these results to previous studies suggests that different organisms may dramatically differ in their responses to medically significant low-shear and space environments. Depending on their specific response, some organisms, such as Salmonella, may become preadapted in a manner that predisposes them to increased virulence.
Collapse
|
72
|
Abstract
In transcription initiation, all RNA polymerase molecules bound to a promoter have been conventionally supposed to proceed into elongation of transcript. However, for Escherichia coli RNA polymerase, evidence has been accumulated for a view that only its fraction can proceed into elongation and the rest is retained at a promoter in non-productive form: a pathway branching in transcription initiation. Proteins such as GreA and GreB affect these fractions at several promoters in vitro. To reveal the ubiquitous existence of the branched mechanism in E. coli, we searched for candidate genes whose transcription decreased by disruption of greA and greB using a DNA array. Among the arbitrarily selected 11 genes from over 100, the atpC, cspA and rpsA passed the test by Northern blotting. The Gre factors activated transcription initiation from their promoters in vitro, and the results demonstrated that the branched mechanism is exploited in vivo regulation. Consistently, decrease in the level of the GreA in an anaerobic stationary condition accompanied a decrease in the levels of transcripts of these genes.
Collapse
Affiliation(s)
- Motoki Susa
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
| | - Tomoko Kubori
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
| | - Nobuo Shimamoto
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced StudiesMishima, Shizuoka 411-8540, Japan
- *For correspondence. E-mail ; Tel. (+81) 55 981 6843; Fax (+81) 55 981 6844
| |
Collapse
|
73
|
Méndez-Ortiz MM, Hyodo M, Hayakawa Y, Membrillo-Hernández J. Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3',5'-cyclic diguanylic acid. J Biol Chem 2006; 281:8090-9. [PMID: 16418169 DOI: 10.1074/jbc.m510701200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic diguanylic acid (c-di-GMP; cGpGp) is a global second messenger controlling motility and adhesion in bacterial cells. Intracellular concentrations of c-di-GMP depend on two opposite activities: diguanylate cyclase, recently assigned to the widespread GGDEF domain, and c-di-GMP-specific phosphodiesterase, associated with proteins harboring the EAL domain. To date, little is known about the targets of c-di-GMP in the cell or if it affects transcriptional regulation of certain genes. In order to expand our knowledge of the effect of this molecule on the bacterial metabolism, here we report on the Escherichia coli transcriptional profile under high levels of c-di-GMP. We show that an important number of genes encoding cell surface and membrane-bound proteins are altered in their transcriptional activity. On the other hand, genes encoding several transcriptional factors, such as Fur, RcsA, SoxS, and ZraR, are up-regulated, and others, such as GadE, GadX, GcvA, and MetR, are down-regulated. Transcription of motility and cell division genes were altered, and consistent with this was the physiological analysis of cells overexpressing yddV, a diguanylate cyclase; these cells displayed an abnormal cell division process when high levels of c-di-GMP were present. We also show evidence that the diguanylate cyclase gene yddV is co-transcribed with dos, a heme base oxygen sensor with c-di-GMP-specific phosphodiesterase activity. A delta dos::kan mutation rendered the cells unable to divide properly, suggesting that dos and yddV may be part of a fine-tuning mechanism for regulating the intracellular levels of c-di-GMP.
Collapse
MESH Headings
- Bacteriophages/metabolism
- Biofilms
- Cell Division
- Cell Movement
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA/chemistry
- DNA Primers/chemistry
- DNA, Complementary/metabolism
- Down-Regulation
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Guanosine Monophosphate/analogs & derivatives
- Guanosine Monophosphate/chemistry
- Guanosine Monophosphate/metabolism
- Kinetics
- Microscopy, Electron
- Models, Chemical
- Models, Genetic
- Mutagenesis
- Mutation
- Oligonucleotide Array Sequence Analysis
- Oxygen/metabolism
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Time Factors
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- M Marcela Méndez-Ortiz
- Laboratorio de Microbiología y Genética Molecular, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
74
|
Stohl EA, Criss AK, Seifert HS. The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol Microbiol 2005; 58:520-32. [PMID: 16194237 PMCID: PMC2612779 DOI: 10.1111/j.1365-2958.2005.04839.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Symptomatic gonococcal infection, caused by the pathogen Neisseria gonorrhoeae (Gc), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess several mechanisms of oxidative killing, intact Gc can be found associated with PMNs, suggesting that gonococcal defences against oxidative stress are crucial for its ability to evade killing by PMNs. We used microarrays to identify genes that were differentially expressed after transient exposure of Gc to hydrogen peroxide (H2O2). Of the 75 genes found to be upregulated after H2O2 treatment, over one-quarter, including two of the most highly upregulated genes (NGO1686 and NGO554), were predicted to encode proteins with unknown functions. Further characterization of a subset of these upregulated genes demonstrated that NGO1686, a putative zinc metalloprotease, protects against oxidative damage caused by both H2O2 and cumene hydroperoxide, and that NGO554, a Gc-specific protein, acts to protect against damage caused by high levels of H2O2. Our current study also ascribes a role in H2O2 damage protection to recN, a gene previously characterized for its role in DNA repair. A PMN survival assay demonstrated that the recN and NGO1686 mutants were more susceptible to killing than the parent strain FA1090. These results define for the first time the robust transcriptional response to H2O2 by this strict human pathogen and underscore the importance of this system for survival to host defences.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Northwestern University, Feinberg School of Medicine, Department of Microbiology-Immunology, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
75
|
John M, Kudva IT, Griffin RW, Dodson AW, McManus B, Krastins B, Sarracino D, Progulske-Fox A, Hillman JD, Handfield M, Tarr PI, Calderwood SB. Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect Immun 2005; 73:2665-79. [PMID: 15845468 PMCID: PMC1087376 DOI: 10.1128/iai.73.5.2665-2679.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using in vivo-induced antigen technology (IVIAT), a modified immunoscreening technique that circumvents the need for animal models, we directly identified immunogenic Escherichia coli O157:H7 (O157) proteins expressed either specifically during human infection but not during growth under standard laboratory conditions or at significantly higher levels in vivo than in vitro. IVIAT identified 223 O157 proteins expressed during human infection, several of which were unique to this study. These in vivo-induced (ivi) proteins, encoded by ivi genes, mapped to the backbone, O islands (OIs), and pO157. Lack of in vitro expression of O157-specific ivi proteins was confirmed by proteomic analysis of a mid-exponential-phase culture of E. coli O157 grown in LB broth. Because ivi proteins are expressed in response to specific cues during infection and might help pathogens adapt to and counter hostile in vivo environments, those identified in this study are potential targets for drug and vaccine development. Also, such proteins may be exploited as markers of O157 infection in stool specimens.
Collapse
Affiliation(s)
- Manohar John
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Lee LJ, Barrett JA, Poole RK. Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 2005; 187:1124-34. [PMID: 15659689 PMCID: PMC545701 DOI: 10.1128/jb.187.3.1124-1134.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace metal ion for growth, but an excess of Zn is toxic and microorganisms express diverse resistance mechanisms. To understand global bacterial responses to excess Zn, we conducted transcriptome profiling experiments comparing Escherichia coli MG1655 grown under control conditions and cells grown with a toxic, sublethal ZnSO4 concentration (0.2 mM). Cultures were grown in a defined medium lacking inorganic phosphate, permitting maximum Zn bioavailability, and in glycerol-limited chemostats at a constant growth rate and pH. Sixty-four genes were significantly up-regulated by Zn stress, including genes known to be involved in Zn tolerance, particularly zntA, zraP, and hydG. Microarray transcriptome profiling was confirmed by real-time PCR determinations of cusF (involved in Ag and Cu efflux), ais (an Al-inducible gene), asr (encoding an acid shock-inducible periplasmic protein), cpxP (a periplasmic chaperone gene), and basR. Five up-regulated genes, basR and basS [encoding a sensor-regulator implicated in Salmonella in Fe(III) sensing and antibiotic resistance], fliM (flagellar synthesis), and ycdM and yibD (both with unknown functions), are important for growth resistance to zinc, since mutants with mutations in these genes exhibited zinc sensitivity in liquid media and on metal gradient plates. Fifty-eight genes were significantly down-regulated by Zn stress; notably, several of these genes were involved in protection against acid stress. Since the mdt operon (encoding a multidrug resistance pump) was also up-regulated, these findings have important implications for understanding not only Zn homeostasis but also how bacterial antibiotic resistance is modulated by metal ions.
Collapse
Affiliation(s)
- Lucy J Lee
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
77
|
Abstract
The number of E. coli genes/operons regulated from sites distant from the gene, though limited, steadily increases. The regulation of the ula genes, in charge of L-ascorbate utilization, as well as the negative autoregulation of the non-related lambdaCI and 186CI repressors, for efficient switching of the corresponding phages from lysogeny to lysis, are recent examples. The interaction between the two GalR dimers, separated by 114 bp, undetectable in vitro, has been genetically mapped. lac repressor-operator loops might insulate a gene and its expression from the genomic environment. The genes in charge of nitrogen assimilation sequentially react to ammonia deprivation, via an increasing intracellular NRI concentration. Other sigma54-dependent genes are activated in response to various stimuli.
Collapse
Affiliation(s)
- Michèle Amouyal
- Interactions à distance, CNRS, 121, av. Philippe-Auguste, 75011 Paris, France.
| |
Collapse
|
78
|
Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A. Functional Characterization in Vitro of All Two-component Signal Transduction Systems from Escherichia coli. J Biol Chem 2005; 280:1448-56. [PMID: 15522865 DOI: 10.1074/jbc.m410104200] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria possess a signal transduction system, referred to as a two-component system, for adaptation to external stimuli. Each two-component system consists of a sensor protein-histidine kinase (HK) and a response regulator (RR), together forming a signal transduction pathway via histidyl-aspartyl phospho-relay. A total of 30 sensor HKs, including as yet uncharacterized putative HKs (BaeS, BasS, CreC, CusS, HydH, RstB, YedV, and YfhK), and a total of 34 RRs, including putative RRs (BaeR, BasR, CreB, CusR, HydG, RstA, YedW, YfhA, YgeK, and YhjB), have been suggested to exist in Escherichia coli. We have purified the carboxyl-terminal catalytic domain of 27 sensor HKs and the full-length protein of all 34 RRs to apparent homogeneity. Self-phosphorylation in vitro was detected for 25 HKs. The rate of self-phosphorylation differed among HKs, whereas the level of phosphorylation was generally co-related with the phosphorylation rate. However, the phosphorylation level was low for ArcB, HydH, NarQ, and NtrB even though the reaction rate was fast, whereas the level was high for the slow phosphorylation species BasS, CheA, and CreC. By using the phosphorylated HKs, we examined trans-phosphorylation in vitro of RRs for all possible combinations. Trans-phosphorylation of presumed cognate RRs by HKs was detected, for the first time, for eight pairs, BaeS-BaeR, BasS-BasR, CreC-CreB, CusS-CusR, HydH-HydG, RstB-RstA, YedV-YedW, and YfhK-YfhA. All trans-phosphorylation took place within less than 1/2 min, but the stability of phosphorylated RRs differed, indicating the involvement of de-phosphorylation control. In addition to the trans-phosphorylation between the cognate pairs, we detected trans-phosphorylation between about 3% of non-cognate HK-RR pairs, raising the possibility that the cross-talk in signal transduction takes place between two-component systems.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Department of Agricultural Chemistry, Kinki University, Nakamachi 3327-204, Nara 631-8505, Japan.
| | | | | | | | | | | |
Collapse
|
79
|
Lioliou EE, Kyriakidis DA. The role of bacterial antizyme: From an inhibitory protein to AtoC transcriptional regulator. Microb Cell Fact 2004; 3:8. [PMID: 15200682 PMCID: PMC441398 DOI: 10.1186/1475-2859-3-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/16/2004] [Indexed: 11/10/2022] Open
Abstract
This review considers the role of bacterial antizyme in the regulation of polyamine biosynthesis and gives new perspectives on the involvement of antizyme in other significant cellular mechanisms. Antizyme is a protein molecule induced by the end product of the enzymic reaction that it inhibits, in a non-competitive manner. The bacterial ornithine decarboxylase is regulated by nucleotides, phosphorylation and antizyme. The inhibition of ornithine decarboxylase by antizyme can be relieved to different degrees by DNA or by a variety of synthetic nucleic acid polymers, attributed to a specific interaction between nucleic acid and antizyme. Recently, this interplay between bacterial antizyme and nucleic acid was determined by discerning an additional function to antizyme that proved to be the atoC gene product, encoding the response regulator of the bacterial two-component system AtoS-AtoC. The gene located just upstream of atoC encodes the sensor kinase, named AtoS, that modulates AtoC activity. AtoC regulates expression of atoDAEB operon which is involved in short-chain fatty acid metabolism. Antizyme is thus referred to as AtoC, functioning both as a post-translational and transcriptional regulator. Also, the AtoS-AtoC signal transduction system in E. coli has a positive regulatory role on poly-(R)-3-hydroxybutyrate biosynthesis. The properties and gene structural similarities of antizymes from different organisms were compared. It was revealed that conserved domains are present mostly in the C-domain of all antizymes. BLAST analysis of the E. coli antizyme protein (AtoC) showed similarities around 69-58% among proteobacteria, g-proteobacteria, enterobacteria and the thermophilic bacterium Thermus thermophilus. A working hypothesis is proposed for the metabolic role of antizyme (AtoC) describing the significant biological implications of this protein molecule. Whether antizymes exist to other enzymes in different tissues, meeting the criteria discussed in the text remains to be elucidated.
Collapse
Affiliation(s)
- Efthimia E Lioliou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Dimitrios A Kyriakidis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
80
|
Binet MRB, Ma R, McLeod CW, Poole RK. Detection and characterization of zinc- and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem 2003; 318:30-8. [PMID: 12782028 DOI: 10.1016/s0003-2697(03)00190-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metals bound to proteins play key roles in structure stabilization, catalysis, and metal transport in cells, but metals may also be toxic. As a consequence, cells have developed mechanisms to control metal concentrations through binding to proteins. We have used a hyphenated strategy linking gel electrophoresis with laser ablation-inductively coupled plasma-mass spectrometry in order to detect, map, and quantify metal-binding proteins synthesized in Escherichia coli under zinc- and cadmium-stress conditions. We report the development of a powerful analytical method suitable for detection and characterization of metalloproteins in complex, unfractionated bacterial cell extracts. The approach was validated by using an E. coli strain overexpressing the cyanobacterial metallothionein protein SmtA. We observed induction of SmtA synthesis by zinc and binding of both zinc and cadmium cations by this protein. A profile of zinc- and cadmium-binding proteins was obtained from E. coli cytoplasmic fractions. Analysis of induction patterns and metal contents demonstrated the presence of proteins with high metal content which, on further study, should lead to the identification of novel metal-binding proteins.
Collapse
Affiliation(s)
- Marie R B Binet
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
81
|
Abstract
It is difficult to over-state the importance of Zn(II) in biology. It is a ubiquitous essential metal ion and plays a role in catalysis, protein structure and perhaps as a signal molecule, in organisms from all three kingdoms. Of necessity, organisms have evolved to optimise the intracellular availability of Zn(II) despite the extracellular milieu. To this end, prokaryotes contain a range of Zn(II) import, Zn(II) export and/or binding proteins, some of which utilise either ATP or the chemiosmotic potential to drive the movement of Zn(II) across the cytosolic membrane, together with proteins that facilitate the diffusion of this ion across either the outer or inner membranes of prokaryotes. This review seeks to give an overview of the systems currently classified as altering Zn(II) availability in prokaryotes.
Collapse
Affiliation(s)
- Dayle K Blencowe
- Cardiff School of Biosciences (2), Cardiff University, Museum Avenue, P.O. Box 911, Cardiff CF10 3US, Wales, UK
| | | |
Collapse
|
82
|
Abstract
The MerR family is a group of transcriptional activators with similar N-terminal helix-turn-helix DNA binding regions and C-terminal effector binding regions that are specific to the effector recognised. The signature of the family is amino acid similarity in the first 100 amino acids, including a helix-turn-helix motif followed by a coiled-coil region. With increasing recognition of members of this class over the last decade, particularly with the advent of rapid bacterial genome sequencing, MerR-like regulators have been found in a wide range of bacterial genera, but not yet in archaea or eukaryotes. The few MerR-like regulators that have been studied experimentally have been shown to activate suboptimal sigma(70)-dependent promoters, in which the spacing between the -35 and -10 elements recognised by the sigma factor is greater than the optimal 17+/-1 bp. Activation of transcription is through protein-dependent DNA distortion. The majority of regulators in the family respond to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. A subgroup of the family activates transcription in response to metal ions. This subgroup shows sequence similarity in the C-terminal effector binding region as well as in the N-terminal region, but it is not yet clear how metal discrimination occurs. This subgroup of MerR family regulators includes MerR itself and may have evolved to generate a variety of specific metal-responsive regulators by fine-tuning the sites of metal recognition.
Collapse
Affiliation(s)
- Nigel L Brown
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
83
|
De Vrind J, De Groot A, Brouwers GJ, Tommassen J, De Vrind-De Jong E. Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1. Mol Microbiol 2003; 47:993-1006. [PMID: 12581354 DOI: 10.1046/j.1365-2958.2003.03339.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The manganese-oxidizing factor of Pseudomonas putida strain GB-1 is associated with the outer membrane. One of the systems of protein transport across the outer membrane is the general secretory pathway (Gsp). The gsp genes are called xcp in Pseudomonas species. In a previous study, it was shown that mutation of the prepilin peptidase XcpA and of a homologue of the pseudopilin XcpT inhibited transport of the factor. In the present study, we describe the genomic region flanking the xcpT homologue (designated xcmT1). We show that xcmT1 is part of a two-gene operon that includes an xcpS homologue (designated xcmS). No other xcp-like genes are present in the regions flanking the xcmT1/xcmS cluster. We also characterized the site of transposon insertion of another transport mutant of P. putida GB-1. This insertion appeared to be located in a gene (designated xcmX) possibly encoding another pseudopilin-related protein. This xcmX is clustered with two other xcpT-related genes (designated xcmT2 and xcmT3) on one side and homologues of three csg genes (designated csmE, csmF and csmG) on the other side. The csg genes are involved in production of aggregative fibres in Escherichia coli and Salmonella typhimurium. A search for XcmX homologues revealed that the recently published genome of Ralstonia solanacearum and the unannotated genome of P. putida KT2440 contain comparable gene clusters with xcmX and xcp homologues that are different from the well-described 'regular'xcp/gsp clusters. They do contain xcpR and xcpQ homologues but, for example, homologues of xcpP, Y and Z are lacking. The results suggest a novel Xcp-related system for the transport of manganese-oxidizing enzymes to the cell surface.
Collapse
Affiliation(s)
- Johannes De Vrind
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
84
|
Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 2002; 46:281-91. [PMID: 12366850 DOI: 10.1046/j.1365-2958.2002.03170.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have systematically examined the mRNA profiles of 36 two-component deletion mutants, which include all two-component regulatory systems of Escherichia coli, under a single growth condition. DNA microarray results revealed that the mutants belong to one of three groups based on their gene expression profiles in Luria-Bertani broth under aerobic conditions: (i) those with no or little change; (ii) those with significant changes; and (iii) those with drastic changes. Under these conditions, the anaeroresponsive ArcB/ArcA system, the osmoresponsive EnvZ/OmpR system and the response regulator UvrY showed the most drastic changes. Cellular functions such as flagellar synthesis and expression of the RpoS regulon were affected by multiple two-component systems. A high correlation coefficient of expression profile was found between several two-component mutants. Together, these results support the view that a network of functional interactions, such as cross-regulation, exists between different two-component systems. The compiled data are avail-able at our website (http://ecoli.aist-nara.ac.jp/xp_analysis/ 2_components).
Collapse
Affiliation(s)
- Taku Oshima
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Verhamme DT, Arents JC, Postma PW, Crielaard W, Hellingwerf KJ. Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component regulatory system. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3345-52. [PMID: 11739766 DOI: 10.1099/00221287-147-12-3345] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of the UhpT sugar-phosphate transporter in Escherichia coli is regulated at the transcriptional level via the UhpABC signalling cascade. Sensing of extracellular glucose 6-phosphate (G6P), by membrane-bound UhpC, modulates a second membrane-bound protein, UhpB, resulting in autophosphorylation of a conserved histidine residue in the cytoplasmic (transmitter) domain of the latter. Subsequently, this phosphoryl group is transferred to a conserved aspartate residue in the response-regulator UhpA, which then initiates uhpT transcription, via binding to the uhpT promoter region. This study demonstrates the hypothesized transmembrane signal transfer in an ISO membrane set-up, i.e. in a suspension of UhpBC-enriched membrane vesicles, UhpB autophosphorylation is stimulated, in the presence of [gamma-(32)P]ATP, upon intra-vesicular sensing of G6P by UhpC. Subsequently, upon addition of UhpA, very rapid and transient UhpA phosphorylation takes place. When P approximately UhpA is added to G6P-induced UhpBC-enriched membrane vesicles, rapid UhpA dephosphorylation occurs. So, in the G6P-activated state, UhpB phosphatase activity dominates over kinase activity, even in the presence of saturating amounts of G6P. This may imply that maximal in vivo P approximately UhpA levels are low and/or that, to keep sufficient P approximately UhpA accumulated to induce uhpT transcription, the uhpT promoter DNA itself is involved in stabilization/sequestration of P approximately UhpA.
Collapse
Affiliation(s)
- D T Verhamme
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
86
|
Reitzer L, Schneider BL. Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 2001; 65:422-44, table of contents. [PMID: 11528004 PMCID: PMC99035 DOI: 10.1128/mmbr.65.3.422-444.2001] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sigma(54) has several features that distinguish it from other sigma factors in Escherichia coli: it is not homologous to other sigma subunits, sigma(54)-dependent expression absolutely requires an activator, and the activator binding sites can be far from the transcription start site. A rationale for these properties has not been readily apparent, in part because of an inability to assign a common physiological function for sigma(54)-dependent genes. Surveys of sigma(54)-dependent genes from a variety of organisms suggest that the products of these genes are often involved in nitrogen assimilation; however, many are not. Such broad surveys inevitably remove the sigma(54)-dependent genes from a potentially coherent metabolic context. To address this concern, we consider the function and metabolic context of sigma(54)-dependent genes primarily from a single organism, Escherichia coli, in which a reasonably complete list of sigma(54)-dependent genes has been identified by computer analysis combined with a DNA microarray analysis of nitrogen limitation-induced genes. E. coli appears to have approximately 30 sigma(54)-dependent operons, and about half are involved in nitrogen assimilation and metabolism. A possible physiological relationship between sigma(54)-dependent genes may be based on the fact that nitrogen assimilation consumes energy and intermediates of central metabolism. The products of the sigma(54)-dependent genes that are not involved in nitrogen metabolism may prevent depletion of metabolites and energy resources in certain environments or partially neutralize adverse conditions. Such a relationship may limit the number of physiological themes of sigma(54)-dependent genes within a single organism and may partially account for the unique features of sigma(54) and sigma(54)-dependent gene expression.
Collapse
Affiliation(s)
- L Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75083-0688, USA.
| | | |
Collapse
|