51
|
Makridakis NM, Reichardt JKV. Translesion DNA polymerases and cancer. Front Genet 2012; 3:174. [PMID: 22973298 PMCID: PMC3434439 DOI: 10.3389/fgene.2012.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022] Open
Abstract
DNA repair has been regarded as an important barrier to carcinogenesis. The newly discovered field of translesion synthesis (TLS) has made it apparent that mammalian cells need distinct polymerases to efficiently and accurately bypass DNA lesions. Perturbation of TLS polymerase activity by mutation, loss of expression, etc. is expected to result in the accumulation of mutations in cells exposed to specific carcinogens. Furthermore, several TLS polymerases can modulate cellular sensitivity to chemotherapeutic agents. TLS genes and TLS gene variations may thus be attractive pharmacologic and/or pharmacogenetic targets. We review herein current data with regards to the potential contribution of the primary TLS polymerase genes to cancer, their interaction with pharmacologic agents, and identify areas of interest for further research.
Collapse
Affiliation(s)
- Nick M Makridakis
- Tulane Cancer Center and Department of Epidemiology, Tulane University New Orleans, LA, USA
| | | |
Collapse
|
52
|
Saribasak H, Gearhart PJ. Does DNA repair occur during somatic hypermutation? Semin Immunol 2012; 24:287-92. [PMID: 22728014 DOI: 10.1016/j.smim.2012.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/18/2012] [Indexed: 11/25/2022]
Abstract
Activation-induced deaminase (AID) initiates a flood of DNA damage in the immunoglobulin loci, leading to abasic sites, single-strand breaks and mismatches. It is compelling that some proteins in the canonical base excision and mismatch repair pathways have been hijacked to increase mutagenesis during somatic hypermutation. Thus, the AID-induced mutagenic pathways involve a mix of DNA repair proteins and low fidelity DNA polymerases to create antibody diversity. In this review, we analyze the roles of base excision repair, mismatch repair, and mutagenesis during somatic hypermutation of rearranged variable genes. The emerging view is that faithful base excision repair occurs simultaneously with mutagenesis, whereas faithful mismatch repair is mostly absent.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | | |
Collapse
|
53
|
AIDing antibody diversity by error-prone mismatch repair. Semin Immunol 2012; 24:293-300. [PMID: 22703640 DOI: 10.1016/j.smim.2012.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022]
Abstract
The creation of a highly diverse antibody repertoire requires the synergistic activity of a DNA mutator, known as activation-induced deaminase (AID), coupled with an error-prone repair process that recognizes the DNA mismatch catalyzed by AID. Instead of facilitating the canonical error-free response, which generally occurs throughout the genome, DNA mismatch repair (MMR) participates in an error-prone repair mode that promotes A:T mutagenesis and double-strand breaks at the immunoglobulin (Ig) genes. As such, MMR is capable of compounding the mutation frequency of AID activity as well as broadening the spectrum of base mutations; thereby increasing the efficiency of antibody maturation. We here review the current understanding of this MMR-mediated process and describe how the MMR signaling cascade downstream of AID diverges in a locus dependent manner and even within the Ig locus itself to differentially promote somatic hypermutation (SHM) and class switch recombination (CSR) in B cells.
Collapse
|
54
|
Saribasak H, Maul RW, Cao Z, Yang WW, Schenten D, Kracker S, Gearhart PJ. DNA polymerase ζ generates tandem mutations in immunoglobulin variable regions. ACTA ACUST UNITED AC 2012; 209:1075-81. [PMID: 22615128 PMCID: PMC3371727 DOI: 10.1084/jem.20112234] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic inactivation of the genes encoding several low-fidelity DNA polymerases indicates that DNA polymerase ζ inserts tandem double-base substitutions in the immunoglobulin variable region in mouse B cells. Low-fidelity DNA polymerases introduce nucleotide substitutions in immunoglobulin variable regions during somatic hypermutation. Although DNA polymerase (pol) η is the major low-fidelity polymerase, other DNA polymerases may also contribute. Existing data are contradictory as to whether pol ζ is involved. We reasoned that the presence of pol η may mask the contribution of pol ζ, and therefore we generated mice deficient for pol η and heterozygous for pol ζ. The frequency and spectra of hypermutation was unaltered between Polζ+/− Polη−/− and Polζ+/+ Polη−/− clones. However, there was a decrease in tandem double-base substitutions in Polζ+/− Polη−/− cells compared with Polζ+/+ Polη−/− cells, suggesting that pol ζ generates tandem mutations. Contiguous mutations are consistent with the biochemical property of pol ζ to extend a mismatch with a second mutation. The presence of this unique signature implies that pol ζ contributes to mutational synthesis in vivo. Additionally, data on tandem mutations from wild type, Polζ+/−, Polζ−/−, Ung−/−, Msh2−/−, Msh6−/−, and Ung−/− Msh2−/− clones suggest that pol ζ may function in the MSH2–MSH6 pathway.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Klug AR, Harbut MB, Lloyd RS, Minko IG. Replication bypass of N2-deoxyguanosine interstrand cross-links by human DNA polymerases η and ι. Chem Res Toxicol 2012; 25:755-62. [PMID: 22332732 DOI: 10.1021/tx300011w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA-interstrand cross-links (ICLs) can be repaired by biochemical pathways requiring DNA polymerases that are capable of translesion DNA synthesis (TLS). The anticipated function of TLS polymerases in these pathways is to insert nucleotides opposite and beyond the linkage site. The outcome of these reactions can be either error-free or mutagenic. TLS-dependent repair of ICLs formed between the exocyclic nitrogens of deoxyguanosines (N(2)-dG) can result in low-frequency base substitutions, predominantly G to T transversions. Previously, we demonstrated in vitro that error-free bypass of a model acrolein-mediated N(2)-dG ICL can be accomplished by human polymerase (pol) κ, while Rev1 can contribute to this bypass by inserting dC opposite the cross-linked dG. The current study characterized two additional human DNA polymerases, pol η and pol ι, with respect to their potential contributions to either error-free or mutagenic bypass of these lesions. In the presence of individual dNTPs, pol η could insert dA, dG, and dT opposite the cross-linked dG, but incorporation of dC was not apparent. Further primer extension was observed only from the dC and dG 3' termini, and the amounts of products were low relative to the matched undamaged substrate. Analyses of bypass products beyond the adducted site revealed that dG was present opposite the cross-linked dG in the majority of extended primers, and short deletions were frequently detected. When pol ι was tested for its ability to replicate past this ICL, the correct dC was preferentially incorporated, but no further extension was observed. Under the steady-state conditions, the efficiency of dC incorporation was reduced ~500-fold relative to the undamaged dG. Thus, in addition to pol κ-catalyzed error-free bypass of N(2)-dG ICLs, an alternative, albeit low-efficiency, mechanism may exist. In this pathway, either Rev1 or pol ι could insert dC opposite the lesion, while pol η could perform the subsequent extension.
Collapse
Affiliation(s)
- Alex R Klug
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, L606, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
56
|
Kano C, Hanaoka F, Wang JY. Analysis of mice deficient in both REV1 catalytic activity and POLH reveals an unexpected role for POLH in the generation of C to G and G to C transversions during Ig gene hypermutation. Int Immunol 2012; 24:169-74. [DOI: 10.1093/intimm/dxr109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
57
|
LIN XIANJIE, WANG QIANG, WU JIAN, LIU CHENGBU. DFT STUDY ON THE MECHANISM OF DNA DAMAGE CAUSED BY THE ISOMERIZATION OF DNA PURINE BASE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608003897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of DNA damage caused by the isomerization of purine base is studied with density functional theory calculations at the B3LYP/6-311+G(d,p) level. The transition states of all the isomerizations are obtained, and the intrinsic reaction coordinate (IRC) analyses are performed to identify these transition states further. The isomerizations of purine bases can be classified into two types. The first is the hydrogen transfer between atoms, whose transition state includes a four-member ring. The second is the bond N–H rotation about the double bond N=C , and the plane CNH is perpendicular to the molecular plane in its transition state. The hydrogen transfer has higher reaction potential barrier, larger tunnel effect, and smaller equilibrium constant and rate constant than that of the N–H rotation. Effects of the hydration are considered in the framework of the polarizable continuum model (PCM) in SCRF method at the B3LYP/6-311+G(d,p) level. The isomerizations which result in the configuration changes of purine base and bring directly the DNA damage are endothermic and thermodynamic nonspontaneous processes. The probability of DNA damage caused by the guanine isomerization is larger than that by adenine.
Collapse
Affiliation(s)
- XIANJIE LIN
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - QIANG WANG
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - JIAN WU
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - CHENGBU LIU
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
58
|
Arana ME, Potapova O, Kunkel TA, Joyce CM. Kinetic analysis of the unique error signature of human DNA polymerase ν. Biochemistry 2011; 50:10126-35. [PMID: 22008035 DOI: 10.1021/bi201197p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
59
|
Hile SE, Wang X, Lee MYWT, Eckert KA. Beyond translesion synthesis: polymerase κ fidelity as a potential determinant of microsatellite stability. Nucleic Acids Res 2011; 40:1636-47. [PMID: 22021378 PMCID: PMC3287198 DOI: 10.1093/nar/gkr889] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microsatellite DNA synthesis represents a significant component of human genome replication that must occur faithfully. However, yeast replicative DNA polymerases do not possess high fidelity for microsatellite synthesis. We hypothesized that the structural features of Y-family polymerases that facilitate accurate translesion synthesis may promote accurate microsatellite synthesis. We compared human polymerases κ (Pol κ) and η (Pol η) fidelities to that of replicative human polymerase δ holoenzyme (Pol δ4), using the in vitro HSV-tk assay. Relative polymerase accuracy for insertion/deletion (indel) errors within 2-3 unit repeats internal to the HSV-tk gene concurred with the literature: Pol δ4 >> Pol κ or Pol η. In contrast, relative polymerase accuracy for unit-based indel errors within [GT](10) and [TC](11) microsatellites was: Pol κ ≥ Pol δ4 > Pol η. The magnitude of difference was greatest between Pols κ and δ4 with the [GT] template. Biochemically, Pol κ displayed less synthesis termination within the [GT] allele than did Pol δ4. In dual polymerase reactions, Pol κ competed with either a stalled or moving Pol δ4, thereby reducing termination. Our results challenge the ideology that pol κ is error prone, and suggest that DNA polymerases with complementary biochemical properties can function cooperatively at repetitive sequences.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
60
|
Rapid cell division contributes to efficient induction of A/T mutations during Ig gene hypermutation. Mol Immunol 2011; 48:1993-9. [DOI: 10.1016/j.molimm.2011.06.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/04/2011] [Accepted: 06/05/2011] [Indexed: 01/28/2023]
|
61
|
Kennedy SR, Chen CY, Schmitt MW, Bower CN, Loeb LA. The biochemistry and fidelity of synthesis by the apicoplast genome replication DNA polymerase Pfprex from the malaria parasite Plasmodium falciparum. J Mol Biol 2011; 410:27-38. [PMID: 21570407 PMCID: PMC3117635 DOI: 10.1016/j.jmb.2011.04.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/15/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum, the major causative agent of human malaria, contains three separate genomes. The apicoplast (an intracellular organelle) contains an ∼35-kb circular DNA genome of unusually high A/T content (>86%) that is replicated by the nuclear-encoded replication complex Pfprex. Herein, we have expressed and purified the DNA polymerase domain of Pfprex [KPom1 (Klenow-like polymerase of malaria 1)] and measured its fidelity using a LacZ-based forward mutation assay. In addition, we analyzed the kinetic parameters for the incorporation of both complementary and noncomplementary nucleotides using Kpom1 lacking 3'→5' exonucleolytic activity. KPom1 exhibits a strongly biased mutational spectrum in which T→C is the most frequent single-base substitution and differs significantly from the closely related Escherichia coli DNA polymerase I. Using E. coli harboring a temperature-sensitive polymerase I allele, we established that KPom1 can complement the growth-defective phenotype at an elevated temperature. We propose that the error bias of KPom1 may be exploited in the complementation assay to identify nucleoside analogs that mimic this base-mispairing and preferentially inhibit apicoplast DNA replication.
Collapse
Affiliation(s)
- Scott R. Kennedy
- Department of Pathology, University of Washington at Seattle, Seattle, WA 98195
| | - Cheng-Yao Chen
- Department of Pathology, University of Washington at Seattle, Seattle, WA 98195
| | - Michael W. Schmitt
- Department of Pathology, University of Washington at Seattle, Seattle, WA 98195
| | - Cole N. Bower
- Department of Pathology, University of Washington at Seattle, Seattle, WA 98195
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington at Seattle, Seattle, WA 98195
- Department of Biochemistry, University of Washington at Seattle, Seattle, WA 98195
| |
Collapse
|
62
|
Abstract
The discovery of human DNA polymerase eta (pol η) has a major impact on the fields of DNA replication/repair fields. Since the discovery of human pol η, a number of new DNA polymerases with the ability to bypass various DNA lesions have been discovered. Among these polymerases, pol η is the most extensively studied lesion bypass polymerase with a defined major biological function, that is, to replicate across the cyclobutane pyrimidine dimers introduced by UV irradiation. Cyclobutane pyrimidine dimer is a major DNA lesion that causes distortion of DNA structure and block the replicative DNA polymerases during DNA replication process. Genetic defects in the pol η gene, Rad30, results in a disease called xeroderma pigmentosum variant. This review focuses on the overall properties of pol η and the mechanism that involved in regulating its activity in cells. In addition, the role of pol η in the action of DNA-targeting anticancer compounds is also discussed.
Collapse
Affiliation(s)
- Kai-ming Chou
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
63
|
Zhang W, Qin Z, Zhang X, Xiao W. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett 2011; 585:2786-94. [PMID: 21536034 DOI: 10.1016/j.febslet.2011.04.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 11/15/2022]
Abstract
Living organisms not only repair DNA damage induced by environmental agents and endogenous cellular metabolites, but have also developed mechanisms to survive in the presence of otherwise lethal lesions. DNA-damage tolerance (DDT) is considered such a mechanism that resumes DNA synthesis in the presence of replication-blocking lesions. Recent studies revealed that DDT in budding yeast is achieved through sequential ubiquitination of DNA polymerase processivity factor, proliferating cell nuclear antigen (PCNA). It is generally believed that monoubiquitinated PCNA promotes translesion DNA synthesis, whereas polyubiquitinated PCNA mediates an error-free mode of lesion bypass. This review will discuss how ubiquitinated PCNA modulates different means of lesion bypass.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | | | | | | |
Collapse
|
64
|
Välk K, Vooder T, Kolde R, Reintam MA, Petzold C, Vilo J, Metspalu A. Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology 2011; 79:283-92. [PMID: 21412013 DOI: 10.1159/000322116] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Despite the well-defined histological types of non-small cell lung cancer (NSCLC), a given stage is often associated with wide-ranging survival rates and treatment outcomes. This disparity has led to an increased demand for the discovery and identification of new informative biomarkers. METHODS In the current study, we screened 81 NSCLC samples using Illumina whole-genome gene expression microarrays in an effort to identify differentially expressed genes and new NSCLC biomarkers. RESULTS We identified novel genes whose expression was upregulated in NSCLC, including SPAG5, POLH, KIF23, and RAD54L, which are associated with mitotic spindle formation, DNA repair, chromosome segregation, and dsDNA break repair, respectively. We also identified several novel genes whose expression was downregulated in NSCLC, including SGCG, NLRC4, MMRN1, and SFTPD, which are involved in extracellular matrix formation, apoptosis, blood vessel leakage, and inflammation, respectively. We found a significant correlation between RNA degradation and survival in adenocarcinoma cases. CONCLUSIONS Even though the follow-up time was too limited to draw final conclusions, we were able to show better prediction p values in a group selection based on molecular profiles compared to histology. The current study also uncovered new candidate biomarker genes that are likely to be involved in diverse processes associated with NSCLC development.
Collapse
Affiliation(s)
- Kristjan Välk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
65
|
Zhu C, Hsu E. Error-prone DNA repair activity during somatic hypermutation in shark B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:5336-47. [PMID: 20921520 DOI: 10.4049/jimmunol.1000779] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sharks are representatives of the earliest vertebrates that possess an immune system utilizing V(D)J recombination to generate Ag receptors. Their Ab repertoire diversity is based in part on a somatic hypermutation process that introduces adjacent nucleotide substitutions of 2-5 bp. We have isolated mutant nonfunctional Ig rearrangements and intronic flank sequences to characterize the nonselected, intrinsic properties of this phenomenon; changes unique to shark were observed. Duplications and deletions were associated with N additions, suggesting participation of a DNA polymerase with some degree of template independence during the repair of DNA breaks initiated by activation-induced cytidine deaminase. Other mutations were consistent with some in vitro activities of mammalian translesion DNA polymerase η: tandem base substitutions, strand slippage, and small insertions/deletions. The nature of substitution patterns shows that DNA lesions at shark Ig genes recruit DNA repair factors with a species-specific repertoire of activities. We speculate that the tandem mutations are introduced by direct sequential misinsertions and that, in shark B cells, the mispairs tend to be extended rather than proofread. Despite extensive changes undergone by some mutants, the physical range of mutational activity remained restricted to VDJ and within the first 2-kb portion of the 6.8-kb J-C intron, perhaps a self-regulating aspect of activation-induced cytidine deaminase action that is conserved in evolution.
Collapse
Affiliation(s)
- Catherine Zhu
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY 11203-2098, USA
| | | |
Collapse
|
66
|
Arana ME, Kunkel TA. Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 2010; 20:304-11. [PMID: 20934516 PMCID: PMC3087159 DOI: 10.1016/j.semcancer.2010.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 12/19/2022]
Abstract
This article considers the fidelity of DNA replication performed by eukaryotic DNA polymerases involved in replicating the nuclear genome. DNA replication fidelity can vary widely depending on the DNA polymerase, the composition of the error, the flanking sequence, the presence of DNA damage and the ability to correct errors. As a consequence, defects in processes that determine DNA replication fidelity can confer strong mutator phenotypes whose specificity can help determine the molecular nature of the defect.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
67
|
Roche B, Claës A, Rougeon F. Deoxyuridine triphosphate incorporation during somatic hypermutation of mouse VkOx genes after immunization with phenyloxazolone. THE JOURNAL OF IMMUNOLOGY 2010; 185:4777-82. [PMID: 20861355 DOI: 10.4049/jimmunol.1001459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Somatic hypermutation (SHM) of Ig genes is the result of a two-phase process initiated by activation-induced cytidine deaminase, relying on two different strategies for the introduction of mutations at CG pairs (phase I) and at AT pairs (phase II). To explain the selectivity of phase II, two mechanisms were proposed: AT-selective error-prone DNA-polymerases, deoxyuridine triphosphate (dUTP) incorporation, or both. However, there has been no experimental evidence so far of the possible involvement of the latter. We have developed a ligation-anchored PCR method based on the formation of single-strand breaks at uracils. In this study, we show the presence of uracil in hypermutating VkOx genes in wild type (AID(+/+)) mice, demonstrating that dUTP incorporation via DNA polymerases could be a major mechanism in SHM. Thus, error-prone DNA polymerases would participate in SHM via low-fidelity replication and incorporation of dUTP.
Collapse
Affiliation(s)
- Benjamin Roche
- Unité de Génétique et Biochimie du Développement and Unité de Recherche Associée, Centre National de la Recherche Scientifique 2581, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
68
|
Washington MT, Carlson KD, Freudenthal BD, Pryor JM. Variations on a theme: eukaryotic Y-family DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1113-23. [PMID: 19616647 PMCID: PMC2846237 DOI: 10.1016/j.bbapap.2009.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 12/22/2022]
Abstract
Most classical DNA polymerases, which function in normal DNA replication and repair, are unable to synthesize DNA opposite damage in the template strand. Thus in order to replicate through sites of DNA damage, cells are equipped with a variety of nonclassical DNA polymerases. These nonclassical polymerases differ from their classical counterparts in at least two important respects. First, nonclassical polymerases are able to efficiently incorporate nucleotides opposite DNA lesions while classical polymerases are generally not. Second, nonclassical polymerases synthesize DNA with a substantially lower fidelity than do classical polymerases. Many nonclassical polymerases are members of the Y-family of DNA polymerases, and this article focuses on the mechanisms of the four eukaryotic members of this family: polymerase eta, polymerase kappa, polymerase iota, and the Rev1 protein. We discuss the mechanisms of these enzymes at the kinetic and structural levels with a particular emphasis on how they accommodate damaged DNA substrates. Work over the last decade has shown that the mechanisms of these nonclassical polymerases are fascinating variations of the mechanism of the classical polymerases. The mechanisms of polymerases eta and kappa represent rather minor variations, while the mechanisms of polymerase iota and the Rev1 protein represent rather major variations. These minor and major variations all accomplish the same goal: they allow the nonclassical polymerases to circumvent the problems posed by the template DNA lesion.
Collapse
Affiliation(s)
- M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
69
|
Okudaira N, Uehara Y, Fujikawa K, Kagawa N, Ootsuyama A, Norimura T, Saeki KI, Nohmi T, Masumura KI, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Ono T. Radiation Dose-Rate Effect on Mutation Induction in Spleen and Liver of gpt delta Mice. Radiat Res 2010; 173:138-47. [DOI: 10.1667/rr1932.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Naohito Okudaira
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Kazuo Fujikawa
- Deparment of Life Science, Faculty of Science and Technology, Kinki University, Kowakae, Higashiosaka 577-8502, Japan
| | - Nao Kagawa
- Deparment of Life Science, Faculty of Science and Technology, Kinki University, Kowakae, Higashiosaka 577-8502, Japan
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Norimura
- Department of Radiation Biology and Health, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ken-ichi Saeki
- Yokohama College of Pharmacy, Totsuka-ku, Yokohama 245-0066, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ken-ichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Tsuneya Matsumoto
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Yoichi Oghiso
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Shingo Nakamura
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Tetsuya Ono
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
70
|
Abstract
In response to an assault by foreign organisms, peripheral B cells can change their antibody affinity and isotype by somatically mutating their genomic DNA. The ability of a cell to modify its DNA is exceptional in light of the potential consequences of genetic alterations to cause human disease and cancer. Thus, as expected, this mechanism of antibody diversity is tightly regulated and coordinated through one protein, activation-induced deaminase (AID). AID produces diversity by converting cytosine to uracil within the immunoglobulin loci. The deoxyuracil residue is mutagenic when paired with deoxyguanosine, since it mimics thymidine during DNA replication. Additionally, B cells can manipulate the DNA repair pathways so that deoxyuracils are not faithfully repaired. Therefore, an intricate balance exists which is regulated at multiple stages to promote mutation of immunoglobulin genes, while retaining integrity of the rest of the genome. Here we discuss and summarize the current understanding of how AID functions to cause somatic hypermutation.
Collapse
Affiliation(s)
- Robert W. Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Patricia J. Gearhart
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
71
|
Abstract
DNA polymerases (Pols) act as key players in DNA metabolism. These enzymes are the only biological macromolecules able to duplicate the genetic information stored in the DNA and are absolutely required every time this information has to be copied, as during DNA replication or during DNA repair, when lost or damaged DNA sequences have to be replaced with "original" or "correct" copies. In each DNA repair pathway one or more specific Pols are required. A feature of mammalian DNA repair pathways is their redundancy. The failure of one of these pathways can be compensated by another one. However, several DNA lesions require a specific repair pathway for error free repair. In many tumors one or more DNA repair pathways are affected, leading to error prone repair of some kind of lesions by alternatives routes, thus leading to accumulation of mutations and contributing to genomic instability, a common feature of cancer cell. In this chapter, we present the role of each Pol in genome maintenance and highlight the connections between the malfunctioning of these enzymes and cancer progress.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNR, Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy
| | | | | |
Collapse
|
72
|
Uehara Y, Ikehata H, Furuya M, Kobayashi S, He D, Chen Y, Komura JI, Ohtani H, Shimokawa I, Ono T. XPC is involved in genome maintenance through multiple pathways in different tissues. Mutat Res 2009; 670:24-31. [PMID: 19615386 DOI: 10.1016/j.mrfmmm.2009.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 05/28/2023]
Abstract
In an attempt to evaluate the role of the Xpc gene in maintaining genomic stability in vivo under normal conditions, the age-dependent accumulation of spontaneous mutations in different tissues was analyzed in Xpc-deficient lacZ-transgenic mice. Brain, testis, and small intestine revealed no effects from the Xpc-deficiency, whereas liver, spleen, heart, and lung showed an enhanced age-related accumulation of mutations in Xpc-deficient mice. In the spleen, the effect was not obvious at 2 and 12 months of age, but became apparent at 23 months. The magnitude of the observed effect at an advanced age was similar in the liver, spleen and heart, but was comparatively smaller in the lung. Haploinsufficiency was observed in liver and spleen but not in heart and lung. Analysis of DNA sequences in the mutants revealed that the frequency of G:C to T:A changes were elevated in the liver and heart of Xpc-deficient aged mice, supporting the possible involvement of XPC in base excision repair of oxidized guanine. The occurrence of two or more mutations within a single lacZ gene was termed a multiple mutation and was also elevated in old Xpc-deficient mice. Among the clones examined, two mutant clones showed as many as four mutations within a short stretch of DNA. This is the first demonstration to support suggestions for the existence of a role for XPC in the suppression of multiple mutations. These multiple mutations could conceivably be generated by error-prone trans-lesional DNA synthesis. Overall, these results indicate that there may be diverse roles or mechanisms through which XPC participates in genome maintenance in different tissues.
Collapse
Affiliation(s)
- Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Faili A, Stary A, Delbos F, Weller S, Aoufouchi S, Sarasin A, Weill JC, Reynaud CA. A backup role of DNA polymerase kappa in Ig gene hypermutation only takes place in the complete absence of DNA polymerase eta. THE JOURNAL OF IMMUNOLOGY 2009; 182:6353-9. [PMID: 19414788 DOI: 10.4049/jimmunol.0900177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patients with the variant form of xeroderma pigmentosum (XPV) syndrome have a genetic deficiency in DNA polymerase (Pol) eta, and display accordingly an increased skin sensitivity to UV light, as well as an altered mutation pattern of their Ig V genes in memory B cells, alteration that consists in a reduced mutagenesis at A/T bases. We previously suggested that another polymerase with a different mutation signature, Pol kappa, is used as backup for Ig gene hypermutation in both humans and mice in cases of complete Pol eta deficiency, a proposition supported in this study by the analysis of Pol eta x Pol kappa double-deficient mice. We also describe a new XPV case, in which a splice site mutation of the first noncoding exon results in a decreased mRNA expression, a mRNA that otherwise encodes a normal Pol eta protein. Whereas the Pol eta mRNA level observed in patient's fibroblasts is one-twentieth the value of healthy controls, it is only reduced to one-fourth of the normal level in activated B cells. Memory B cells from this patient showed a 50% reduction in A/T mutations, with a spectrum that still displays a strict Pol eta signature. Pol eta thus appears as a dominant enzyme in hypermutation, its presence precluding the use of a substitute enzyme even in conditions of reduced availability. Such a dominant behavior may explain the lack of Pol kappa signature in Ig gene mutations of some XPV patients previously described, for whom residual Pol eta activity might exist.
Collapse
Affiliation(s)
- Ahmad Faili
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale Unite 783 Développement du Système immunitaire, Université Paris Descartes, Site Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Saribasak H, Rajagopal D, Maul RW, Gearhart PJ. Hijacked DNA repair proteins and unchained DNA polymerases. Philos Trans R Soc Lond B Biol Sci 2009; 364:605-11. [PMID: 19008198 DOI: 10.1098/rstb.2008.0188] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic hypermutation of immunoglobulin (Ig) genes occurs at a frequency that is a million times greater than the mutation in other genes. Mutations occur in variable genes to increase antibody affinity, and in switch regions before constant genes to cause switching from IgM to IgG. Hypermutation is initiated in activated B cells when the activation-induced deaminase protein deaminates cytosine in DNA to uracil. Uracils can be processed by either a mutagenic pathway to produce mutations or a non-mutagenic pathway to remove mutations. In the mutagenic pathway, we first studied the role of mismatch repair proteins, MSH2, MSH3, MSH6, PMS2 and MLH1, since they would recognize mismatches. The MSH2-MSH6 heterodimer is involved in hypermutation by binding to U:G and other mismatches generated during repair synthesis, but the other proteins are not necessary. Second, we analysed the role of low-fidelity DNA polymerases eta, iota and theta in synthesizing mutations, and conclude that polymerase eta is the dominant participant by generating mutations at A:T base pairs. In the non-mutagenic pathway, we examined the role of the Cockayne syndrome B protein that interacts with other repair proteins. Mice deficient in this protein had normal hypermutation and class switch recombination, showing that it is not involved.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
75
|
McCulloch SD, Kokoska RJ, Garg P, Burgers PM, Kunkel TA. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. Nucleic Acids Res 2009; 37:2830-40. [PMID: 19282446 PMCID: PMC2685079 DOI: 10.1093/nar/gkp103] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols δ and η. Yeast Pol δ and yeast Pol η both bypass 8-oxoG and misincorporate adenine during bypass. However, yeast Pol η is 10-fold more efficient than Pol δ, and following bypass Pol η switches to less processive synthesis, similar to that observed during bypass of a cis-syn thymine-thymine dimer. Moreover, yeast Pol η is at least 10-fold more accurate than yeast Pol δ during 8-oxoG bypass. These differences are maintained in the presence of the accessory proteins RFC, PCNA and RPA and are consistent with the established role of Pol η in suppressing ogg1-dependent mutagenesis in yeast. Surprisingly different results are obtained with human and mouse Pol η. Both mammalian enzymes bypass 8-oxoG efficiently, but they do so less processively, without a switch point and with much lower fidelity than yeast Pol η. The fact that yeast and mammalian Pol η have intrinsically different catalytic properties has potential biological implications.
Collapse
Affiliation(s)
- Scott D McCulloch
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research, NC 27709, USA
| | | | | | | | | |
Collapse
|
76
|
Suzuki M, Niimi A, Limsirichaikul S, Tomida S, Miao Huang Q, Izuta S, Usukura J, Itoh Y, Hishida T, Akashi T, Nakagawa Y, Kikuchi A, Pavlov Y, Murate T, Takahashi T. PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}. J Biochem 2009; 146:13-21. [PMID: 19279190 DOI: 10.1093/jb/mvp043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translesion DNA synthesis (TLS) involves PCNA mono-ubiquitination and TLS DNA polymerases (pols). Recent evidence has shown that the mono-ubiquitination is induced not only by DNA damage but also by other factors that induce stalling of the DNA replication fork. We studied the effect of spontaneous DNA replication errors on PCNA mono-ubiquitination and TLS induction. In the pol1L868F strain, which expressed an error-prone pol alpha, PCNA was spontaneously mono-ubiquitinated. Pol alpha L868F had a rate-limiting step at the extension from mismatched primer termini. Electron microscopic observation showed the accumulation of a single-stranded region at the DNA replication fork in yeast cells. For pol alpha errors, pol zeta participated in a generation of +1 frameshifts. Furthermore, in the pol1L868F strain, UV-induced mutations were lower than in the wild-type and a pol delta mutant strain (pol3-5DV), and deletion of the RAD30 gene (pol eta) suppressed this defect. These data suggest that nucleotide misincorporation by pol alpha induces exposure of single-stranded DNA, PCNA mono-ubiquitination and activates TLS pols.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ubiquitylated PCNA plays a role in somatic hypermutation and class-switch recombination and is required for meiotic progression. Proc Natl Acad Sci U S A 2008; 105:16248-53. [PMID: 18854411 DOI: 10.1073/pnas.0808182105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes are dependent upon activation-induced cytidine deaminase (AID)-induced mutations. The scaffolding properties of proliferating cell nuclear antigen (PCNA) and ubiquitylation of its residue K164 have been suggested to play an important role organizing the error-prone repair events that contribute to the AID-induced diversification of the Ig locus. We generated knockout mice for PCNA (Pcna(-/-)), which were embryonic lethal. Expression of PCNA with the K164R mutation rescued the lethal phenotype, but the mice (Pcna(-/-)tg(K164R)) displayed a meiotic defect in early pachynema and were sterile. B cells proliferated normally in Pcna(-/-)tg(K164R) mice, but a PCNA-K164R mutation resulted in impaired ex vivo CSR to IgG1 and IgG3, which was associated with reduced mutation frequency at the switch regions and a bias toward blunt junctions. Analysis of the heavy chain V186.2 region after NP-immunization showed in Pcna(-/-)tg(K164R) mice a significant reduction in the mutation frequency of A:T residues in WA motifs preferred by polymerase-eta (Poleta), and a strand-biased increase in the mutation frequency of G residues, preferentially in the context of AID-targeted GYW motifs. The phenotype of Pcna(-/-)tg(K164R) mice supports the idea that ubiquitylation of PCNA participates directly in the meiotic process and the diversification of the Ig locus through class-switch recombination (CSR) and somatic hypermutation (SHM).
Collapse
|
78
|
Masuda K, Ouchida R, Yokoi M, Hanaoka F, Azuma T, Wang JY. DNA polymerase η is a limiting factor for A:T mutations in Ig genes and contributes to antibody affinity maturation. Eur J Immunol 2008; 38:2796-805. [DOI: 10.1002/eji.200838502] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
79
|
Martomo SA, Saribasak H, Yokoi M, Hanaoka F, Gearhart PJ. Reevaluation of the role of DNA polymerase theta in somatic hypermutation of immunoglobulin genes. DNA Repair (Amst) 2008; 7:1603-8. [PMID: 18485835 PMCID: PMC2561943 DOI: 10.1016/j.dnarep.2008.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/02/2023]
Abstract
DNA polymerase theta has been implicated in the process of somatic hypermutation in immunoglobulin variable genes based on several reports of alterations in the frequency and spectra of mutations from Polq(-/-) mice. However, these studies have contrasting results on mutation frequencies and the types of nucleotide substitutions, which question the role of polymerase theta in hypermutation. DNA polymerase eta has a dominant effect on mutation and may substitute in the absence of polymerase theta to affect the pattern. Therefore, we have examined mutation in mice deficient for both polymerases theta and eta. The mutation frequencies in rearranged variable genes from Peyer's patches were similar in wild type, Polq(-/-), Polh(-/-), and Polq(-/-)Polh(-/-) mice. The types of substitutions were also similar between wild type and Polq(-/-) clones, and between Polh(-/-) and Polq(-/-)Polh(-/-) clones. Furthermore, there was no difference in heavy chain class switching in splenic B cells from the four groups of mice. These results indicate that polymerase theta does not play a significant role in the generation of somatic mutation in immunoglobulin genes.
Collapse
Affiliation(s)
- Stella A. Martomo
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, United States
| | - Huseyin Saribasak
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, United States
| | - Masayuki Yokoi
- Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Patricia J. Gearhart
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, United States
| |
Collapse
|
80
|
Scaringe WA, Li K, Gu D, Gonzalez KD, Chen Z, Hill KA, Sommer SS. Somatic microindels in human cancer: the insertions are highly error-prone and derive from nearby but not adjacent sense and antisense templates. Hum Mol Genet 2008; 17:2910-8. [PMID: 18632684 DOI: 10.1093/hmg/ddn190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic microindels (microdeletions with microinsertions) have been studied in normal mouse tissues using the Big Blue lacI transgenic mutation detection system. Here we analyze microindels in human cancers using an endogenous and transcribed gene, the TP53 gene. Microindel frequency, the enhancement of 1-2 microindels and other features are generally similar to that observed in the non-transcribed lacI gene in normal mouse tissues. The current larger sample of somatic microindels reveals recurroids: mutations in which deletions are identical and the co-localized insertion is similar. The data reveal that the inserted sequences derive from nearby but not adjacent sequences in contrast to the slippage that characterizes the great majority of pure microinsertions. The microindel inserted sequences derive from a template on the sense or antisense strand with similar frequency. The estimated error rate of the insertion process of 13% per bp is by far the largest reported in vivo, with the possible exception of somatic hypermutation in the immunoglobulin gene. The data constrain possible mechanisms of microindels and raise the question of whether microindels are 'scars' from the bypass of large DNA adducts by a translesional polymerase, e.g. the 'Tarzan model' presented herein.
Collapse
Affiliation(s)
- William A Scaringe
- Department of Molecular Genetics, City of Hope National Medical Center, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Ouchida R, Ukai A, Mori H, Kawamura K, Dollé MET, Tagawa M, Sakamoto A, Tokuhisa T, Yokosuka T, Saito T, Yokoi M, Hanaoka F, Vijg J, Wang JY. Genetic analysis reveals an intrinsic property of the germinal center B cells to generate A:T mutations. DNA Repair (Amst) 2008; 7:1392-8. [PMID: 18562254 DOI: 10.1016/j.dnarep.2008.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 01/05/2023]
Abstract
The immunoglobulin genes undergo a high frequency of point mutations at both C:G and A:T pairs in the germinal center (GC) B cells. This hypermutation process is initiated by the activation-induced cytidine deaminase (AID), which converts cytosine to uracil and generates a U:G lesion. Replication of this lesion, or its repair intermediate the abasic site, could introduce C:G mutations but the mechanisms leading to mutations at non-damaged A:T pairs remain elusive. Using a lacZ-transgenic system in which endogenous genome mutations can be detected with high sensitivity, we found that GC B cells exhibited a much higher ratio of A:T mutations as compared to naïve B, non-GC B, and cells of other tissues. This property does not require AID or active transcription of the target gene, and is dependent on DNA polymerase eta. These in vivo results demonstrate that GC B cells are unique in having an intrinsic propensity to generate A:T mutations during repair of endogenous DNA damage. These findings have important implications in understanding how AID, which can only target C:G base pairs, is able to induce the entire spectrum of mutations observed in immunoglobulin variable region genes in GC B cells.
Collapse
Affiliation(s)
- Rika Ouchida
- Laboratory for Immune Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Tsurumi, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Arana ME, Seki M, Wood RD, Rogozin IB, Kunkel TA. Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Res 2008; 36:3847-56. [PMID: 18503084 PMCID: PMC2441791 DOI: 10.1093/nar/gkn310] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 12/14/2022] Open
Abstract
Human DNA polymerase theta (pol or POLQ) is a proofreading-deficient family A enzyme implicated in translesion synthesis (TLS) and perhaps in somatic hypermutation (SHM) of immunoglobulin genes. These proposed functions and kinetic studies imply that pol may synthesize DNA with low fidelity. Here, we show that when copying undamaged DNA, pol generates single base errors at rates 10- to more than 100-fold higher than for other family A members. Pol adds single nucleotides to homopolymeric runs at particularly high rates, exceeding 1% in certain sequence contexts, and generates single base substitutions at an average rate of 2.4 x 10(-3), comparable to inaccurate family Y human pol kappa (5.8 x 10(-3)) also implicated in TLS. Like pol kappa, pol is processive, implying that it may be tightly regulated to avoid deleterious mutagenesis. Pol also generates certain base substitutions at high rates within sequence contexts similar to those inferred to be copied by pol during SHM of immunoglobulin genes in mice. Thus, pol is an exception among family A polymerases, and its low fidelity is consistent with its proposed roles in TLS and SHM.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, Department of Pharmacology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA
| | - Mineaki Seki
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, Department of Pharmacology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA
| | - Richard D. Wood
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, Department of Pharmacology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA
| | - Igor B. Rogozin
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, Department of Pharmacology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, Department of Pharmacology, University of Pittsburgh Medical School, Hillman Cancer Center, Research Pavilion Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863 and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20894, USA
| |
Collapse
|
83
|
Abstract
To cope with an unpredictable variety of potential pathogenic insults, the immune system must generate an enormous diversity of recognition structures, and it does so by making stepwise modifications at key genetic loci in each lymphoid cell. These modifications proceed through the action of lymphoid-specific proteins acting together with the general DNA-repair machinery of the cell. Strikingly, these general mechanisms are usually diverted from their normal functions, being used in rather atypical ways in order to privilege diversity over accuracy. In this Review, we focus on the contribution of a set of DNA polymerases discovered in the past decade to these unique DNA transactions.
Collapse
|
84
|
Emond S, Mondon P, Pizzut-Serin S, Douchy L, Crozet F, Bouayadi K, Kharrat H, Potocki-Véronèse G, Monsan P, Remaud-Simeon M. A novel random mutagenesis approach using human mutagenic DNA polymerases to generate enzyme variant libraries. Protein Eng Des Sel 2008; 21:267-74. [DOI: 10.1093/protein/gzn004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
85
|
Pabla R, Rozario D, Siede W. Regulation of Saccharomyces cerevisiae DNA polymerase eta transcript and protein. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:157-68. [PMID: 17874115 DOI: 10.1007/s00411-007-0132-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/03/2007] [Indexed: 05/17/2023]
Abstract
RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase eta function in vivo.
Collapse
Affiliation(s)
- Ritu Pabla
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
86
|
Hidaka K, Yamada M, Kamiya H, Masutani C, Harashima H, Hanaoka F, Nohmi T. Specificity of mutations induced by incorporation of oxidized dNTPs into DNA by human DNA polymerase eta. DNA Repair (Amst) 2008; 7:497-506. [PMID: 18242151 DOI: 10.1016/j.dnarep.2007.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 12/09/2007] [Accepted: 12/11/2007] [Indexed: 01/24/2023]
Abstract
Aberrant oxidation is a property of many tumor cells. Oxidation of DNA precursors, i.e., deoxynucleotide triphosphates (dNTPs), as well as DNA is a major cause of genome instability. Here, we report that human DNA polymerase eta (h Poleta) incorporates oxidized dNTPs, i.e., 2-hydroxy-2'-deoxyadenosine 5'-triphosphate (2-OH-dATP) and 8-hydroxy-2'-deoxyguanosine 5'-triphosphate (8-OH-dGTP), into DNA in an erroneous and efficient manner, thereby inducing various types of mutations during in vitro gap-filling DNA synthesis. When 2-OH-dATP was present at a concentration equal to those of the four normal dNTPs in the reaction mixture, DNA synthesis by h Poleta enhanced the frequency of G-to-T transversions eight-fold higher than that of the transversions in control where only the normal dNTPs were present. When 8-OH-dGTP was present at an equimolar concentration to the normal dNTPs, it enhanced the frequency of A-to-C transversions 17-fold higher than the control. It also increased the frequency of C-to-A transversions about two-fold. These results suggest that h Poleta incorporates 2-OH-dATP opposite template G and incorporates 8-OH-dGTP opposite template A and slightly opposite template C during DNA synthesis. Besides base substitutions, h Poleta enhanced the frequency of single-base frameshifts and deletions with the size of more than 100 base pairs when 8-OH-dGTP was present in the reaction mixture. Since h Poleta is present in replication foci even without exogenous DNA damage, we suggest that h Poleta may be involved in induction of various types of mutations through the erroneous and efficient incorporation of oxidized dNTPs into DNA in human cells.
Collapse
Affiliation(s)
- Katsuhiko Hidaka
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
87
|
McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008; 18:148-61. [PMID: 18166979 PMCID: PMC3639319 DOI: 10.1038/cr.2008.4] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In their seminal publication describing the structure of the DNA double helix, Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.
Collapse
Affiliation(s)
- Scott D McCulloch
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| | | |
Collapse
|
88
|
Hile SE, Eckert KA. DNA polymerase kappa produces interrupted mutations and displays polar pausing within mononucleotide microsatellite sequences. Nucleic Acids Res 2007; 36:688-96. [PMID: 18079151 PMCID: PMC2241860 DOI: 10.1093/nar/gkm1089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microsatellites are ubiquitously present in eukaryotic genomes and are implicated as positive factors in evolution. At the nucleotide level, microsatellites undergo slippage events that alter allele length and base changes that interrupt the repetitive tract. We examined DNA polymerase errors within a [T]11 microsatellite using an in vitro assay that preferentially detects mutations other than unit changes. We observed that human DNA polymerase kappa (Pol κ) inserts dGMP and dCMP within the [T]11 mononucleotide repeat, producing an interrupted 12-bp allele. Polymerase β produced such interruptions at a lower frequency. These data demonstrate that DNA polymerases are capable of directly producing base interruptions within microsatellites. At the molecular level, expanded microsatellites have been implicated in DNA replication fork stalling. Using an in vitro primer extension assay, we observed sequence-specific synthesis termination by DNA polymerases within mononucleotides. Quantitatively, intense, polar pausing was observed for both pol κ and polymerase α-primase within a [T]11 allele. A mechanism is proposed in which pausing results from DNA bending within the duplex stem of the nascent DNA. Our data support the concept of a microsatellite life-cycle, and are consistent with the models in which DNA sequence or secondary structures contributes to non-uniform rates of replication fork progression.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
89
|
Lada AG, Iyer LM, Rogozin IB, Aravind L, Pavlov YI. Incarnation of classical pro- and eukaryotic mechanisms of mutagenesis in hypermutagenesis and immunity of vertebrates. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
d'Abbadie M, Hofreiter M, Vaisman A, Loakes D, Gasparutto D, Cadet J, Woodgate R, Pääbo S, Holliger P. Molecular breeding of polymerases for amplification of ancient DNA. Nat Biotechnol 2007; 25:939-43. [PMID: 17632524 PMCID: PMC1978225 DOI: 10.1038/nbt1321] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 05/18/2007] [Indexed: 11/09/2022]
Abstract
In the absence of repair, lesions accumulate in DNA. Thus, DNA persisting in specimens of paleontological, archaeological or forensic interest is inevitably damaged. We describe a strategy for the recovery of genetic information from damaged DNA. By molecular breeding of polymerase genes from the genus Thermus (Taq (Thermus aquaticus), Tth (Thermus thermophilus) and Tfl (Thermus flavus)) and compartmentalized self-replication selection, we have evolved polymerases that can extend single, double and even quadruple mismatches, process non-canonical primer-template duplexes and bypass lesions found in ancient DNA, such as hydantoins and abasic sites. Applied to the PCR amplification of 47,000-60,000-year-old cave bear DNA, these outperformed Taq DNA polymerase by up to 150% and yielded amplification products at sample dilutions at which Taq did not. Our results demonstrate that engineered polymerases can expand the recovery of genetic information from Pleistocene specimens and may benefit genetic analysis in paleontology, archeology and forensic medicine.
Collapse
Affiliation(s)
- Marc d'Abbadie
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
McCulloch SD, Wood A, Garg P, Burgers PMJ, Kunkel TA. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta. Biochemistry 2007; 46:8888-96. [PMID: 17608453 PMCID: PMC2288658 DOI: 10.1021/bi700234t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among several hypotheses to explain how translesion synthesis (TLS) by DNA polymerase eta (pol eta) suppresses ultraviolet light-induced mutagenesis in vivo despite the fact that pol eta copies DNA with low fidelity, here we test whether replication accessory proteins enhance the fidelity of TLS by pol eta. We first show that the single-stranded DNA binding protein RPA, the sliding clamp PCNA, and the clamp loader RFC slightly increase the processivity of yeast pol eta and its ability to recycle to new template primers. However, these increases are small, and they are similar when copying an undamaged template and a template containing a cis-syn TT dimer. Consequently, the accessory proteins do not strongly stimulate the already robust TT dimer bypass efficiency of pol eta. We then perform a comprehensive analysis of yeast pol eta fidelity. We show that it is much less accurate than other yeast DNA polymerases and that the accessory proteins have little effect on fidelity when copying undamaged templates or when bypassing a TT dimer. Thus, although accessory proteins clearly participate in pol eta functions in vivo, they do not appear to help suppress UV mutagenesis by improving pol eta bypass fidelity per se.
Collapse
Affiliation(s)
- Scott D McCulloch
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
92
|
Ohm-Laursen L, Barington T. Analysis of 6912 unselected somatic hypermutations in human VDJ rearrangements reveals lack of strand specificity and correlation between phase II substitution rates and distance to the nearest 3' activation-induced cytidine deaminase target. THE JOURNAL OF IMMUNOLOGY 2007; 178:4322-34. [PMID: 17371989 DOI: 10.4049/jimmunol.178.7.4322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The initial event of somatic hypermutation (SHM) is the deamination of cytidine residues by activation-induced cytidine deaminase (AID). Deamination is followed by the replication over uracil and/or different error-prone repair events. We sequenced 659 nonproductive human IgH rearrangements (IGHV3-23*01) from blood B lymphocytes enriched for CD27-positive memory cells. Analyses of 6,912 unique, unselected substitutions showed that in vivo hot and cold spots for the SHM of C and G residues corresponded closely to the target preferences reported for AID in vitro. A detailed analysis of all possible four-nucleotide motifs present on both strands of the V(H) gene showed significant correlations between the substitution frequencies in reverse complementary motifs, suggesting that the SHM machinery targets both strands equally well. An analysis of individual J(H) and D gene segments showed that the substitution frequencies in the individual motifs were comparable to the frequencies found in the V(H) gene. Interestingly, J(H)6-carrying sequences were less likely to undergo SHM (average 15.2 substitutions per V(H) region) than sequences using J(H)4 (18.1 substitutions, p = 0.03). We also found that the substitution rates in G and T residues correlated inversely with the distance to the nearest 3' WRC AID hot spot motif on both the nontranscribed and transcribed strands. This suggests that phase II SHM takes place 5' of the initial AID deamination target and primarily targets T and G residues or, alternatively, the corresponding A and C residues on the opposite strand.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense C, Denmark
| | | |
Collapse
|
93
|
Kamath-Loeb AS, Lan L, Nakajima S, Yasui A, Loeb LA. Werner syndrome protein interacts functionally with translesion DNA polymerases. Proc Natl Acad Sci U S A 2007; 104:10394-9. [PMID: 17563354 PMCID: PMC1965524 DOI: 10.1073/pnas.0702513104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Indexed: 12/14/2022] Open
Abstract
Werner syndrome (WS) is characterized by premature onset of age-associated disorders and predisposition to cancer. The WS protein, WRN, encodes 3' --> 5' DNA helicase and 3' --> 5' DNA exonuclease activities, and is implicated in the maintenance of genomic stability. Translesion (TLS) DNA polymerases (Pols) insert nucleotides opposite replication-blocking DNA lesions and presumably prevent replication fork stalling/collapse. Here, we present in vitro and in vivo data that demonstrate functional interaction between WRN and the TLS Pols, Poleta, Polkappa, and Poliota. In vitro, WRN stimulates the extension activity of TLS Pols on lesion-free and lesion-containing DNA templates, and alleviates pausing at stalling lesions. Stimulation is mediated through an increase in the apparent V(max) of the polymerization reaction. Notably, by accelerating the rate of nucleotide incorporation, WRN increases mutagenesis by Poleta. In vivo, WRN and Poleta colocalize at replication-dependent foci in response to UVC irradiation. The functional interaction between WRN and TLS Pols may promote replication fork progression, at the expense of increased mutagenesis, and obviate the need to resolve stalled/collapsed forks by processes involving chromosomal rearrangements.
Collapse
Affiliation(s)
- Ashwini S. Kamath-Loeb
- *Department of Pathology, The Gottstein Memorial Cancer Research Center, University of Washington, Seattle, WA 98195; and
| | - Li Lan
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 98-8575, Japan
| | - Satoshi Nakajima
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 98-8575, Japan
| | - Akira Yasui
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 98-8575, Japan
| | - Lawrence A. Loeb
- *Department of Pathology, The Gottstein Memorial Cancer Research Center, University of Washington, Seattle, WA 98195; and
| |
Collapse
|
94
|
Masuda K, Ouchida R, Hikida M, Kurosaki T, Yokoi M, Masutani C, Seki M, Wood RD, Hanaoka F, O-Wang J. DNA polymerases eta and theta function in the same genetic pathway to generate mutations at A/T during somatic hypermutation of Ig genes. J Biol Chem 2007; 282:17387-94. [PMID: 17449470 DOI: 10.1074/jbc.m611849200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Somatic hypermutation of the Ig genes requires the activity of multiple DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs. Mice deficient for DNA polymerase eta (POLH) exhibited an approximately 80% reduction of the mutations at A/T, whereas absence of polymerase (POLQ) resulted in approximately 20% reduction of both A/T and C/G mutations. To investigate whether the residual A/T mutations observed in the absence of POLH are generated by POLQ and how these two polymerases might cooperate or compete with each other to generate A/T mutations, here we have established mice deficient for both POLH and POLQ. Polq(-/-)Polh(-/-) mice, however, did not show a further decrease of A/T mutations as compared with Polh(-/-) mice, suggesting that POLH and POLQ function in the same genetic pathway in the generation of these mutations. Frequent misincorporation of nucleotides, in particular opposite template T, is a known feature of POLH, but the efficiency of extension beyond the misincorporation differs significantly depending on the nature of the mispairing. Remarkably, we found that POLQ catalyzed extension more efficiently than POLH from all types of mispaired termini opposite A or T. Moreover, POLQ was able to extend mispaired termini generated by POLH albeit at a relatively low efficiency. These results reveal genetic and biochemical interactions between POLH and POLQ and suggest that POLQ might cooperate with POLH to generate some of the A/T mutations during the somatic hypermutation of Ig genes.
Collapse
Affiliation(s)
- Keiji Masuda
- Laboratory for Immune Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Cannistraro VJ, Taylor JS. Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures. J Biol Chem 2007; 282:11188-96. [PMID: 17303570 DOI: 10.1074/jbc.m608478200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA misalignment occurs in homopolymer tracts during replication and can lead to frameshift mutations. Polymerase (pol) recognition of primer-templates containing bulge structures and the transmission of a bulge through a polymerase binding site or replication complex are important components of frameshift mutagenesis. In this report, we describe the interaction of the catalytic core of pol eta with primer-templates containing bulge structures by single round primer extension. We found that pol eta could stabilize a frayed primer terminus, which enhances its ability to extend primer-templates containing bulges. Based on methylphosphonate-DNA mapping, pol eta interacts with the single strand template but not appreciably with the template strand of the DNA stem greater than two nucleotides from the primer terminus. These latter characteristics, combined with the ability to stabilize a frayed primer terminus, may explain why primer-templates containing template bulges are extended so efficiently by pol eta. Although pol eta could accommodate large bulges and continue synthesis without obstruction, bulge structures in the template, but not in the primer, caused termination of the T7 DNA replication complex. Terminations occurred when the template bulge neared the helix-loop-helix domain of the polymerase thumb. Terminations were not observed, however, when bulge structures approached the site of interaction of the DNA with the extended thumb and thioredoxin. At low temperature, however, terminations did occur at this site.
Collapse
|
96
|
Barone F, McCulloch SD, Macpherson P, Maga G, Yamada M, Nohmi T, Minoprio A, Mazzei F, Kunkel TA, Karran P, Bignami M. Replication of 2-hydroxyadenine-containing DNA and recognition by human MutSalpha. DNA Repair (Amst) 2007; 6:355-66. [PMID: 17188944 PMCID: PMC2111060 DOI: 10.1016/j.dnarep.2006.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 12/11/2022]
Abstract
2-Hydroxyadenine (2-OH-A), a product of DNA oxidation, is a potential source of mutations. We investigated how representative DNA polymerases from the A, B and Y families dealt with 2-OH-A in primer extension experiments. A template 2-OH-A reduced the rate of incorporation by DNA polymerase alpha (Pol alpha) and Klenow fragment (Kf(exo-)). Two Y family DNA polymerases, human polymerase eta (Pol eta) and the archeal Dpo4 polymerase were affected differently. Bypass by Pol eta was very inefficient whereas Dpo4 efficiently replicated 2-OH-A. Replication of a template 2-OH-A by both enzymes was mutagenic and caused base substitutions. Dpo4 additionally introduced single base deletions. Thermodynamic analysis showed that 2-OH-A forms stable base pairs with T, C and G, and to a lesser extent with A. Oligonucleotides containing 2-OH-A base pairs, including the preferred 2-OH-A:T, were recognized by the human MutSalpha mismatch repair (MMR). MutSalpha also recognized 2-OH-A located in a repeat sequence that mimics a frameshift intermediate.
Collapse
Affiliation(s)
- Flavia Barone
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Scott D. McCulloch
- Laboratory of Molecular Genetics and Structural Biology, National Institute of Environmental Sciences, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Peter Macpherson
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Masami Yamada
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokio 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokio 158-8501, Japan
| | - Anna Minoprio
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Filomena Mazzei
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Structural Biology, National Institute of Environmental Sciences, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Peter Karran
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | - Margherita Bignami
- Unit of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
97
|
Abstract
The primary role of DNA polymerases is to accurately and efficiently replicate the genome in order to ensure the maintenance of the genetic information and its faithful transmission through generations. This is not a simple task considering the size of the genome and its constant exposure to endogenous and environmental DNA damaging agents. Thus, a number of DNA repair pathways operate in cells to protect the integrity of the genome. In addition to their role in replication, DNA polymerases play a central role in most of these pathways. Given the multitude and the complexity of DNA transactions that depend on DNA polymerase activity, it is not surprising that cells in all organisms contain multiple highly specialized DNA polymerases, the majority of which have only recently been discovered. Five DNA polymerases are now recognized in Escherichia coli, 8 in Saccharomyces cerevisiae, and at least 15 in humans. While polymerases in bacteria, yeast and mammalian cells have been extensively studied much less is known about their counterparts in plants. For example, the plant model organism Arabidopsis thaliana is thought to contain 12 DNA polymerases, whose functions are mostly unknown. Here we review the properties and functions of DNA polymerases focusing on yeast and mammalian cells but paying special attention to the plant enzymes and the special circumstances of replication and repair in plant cells.
Collapse
Affiliation(s)
- Miguel Garcia-Diaz
- Laboratory of Structural Biology and Laboratory of Molecular Genetics NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
98
|
Gonzalez KD, Hill KA, Li K, Li W, Scaringe WA, Wang JC, Gu D, Sommer SS. Somatic microindels: analysis in mouse soma and comparison with the human germline. Hum Mutat 2007; 28:69-80. [PMID: 16977595 DOI: 10.1002/humu.20416] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microindels, defined as mutations that result in a colocalized microinsertion and microdeletion with a net gain or loss of between 1 and 50 nucleotides, may be an important contributor to cancer. We report the first comprehensive analysis of somatic microindels. Our large database of mutations in the lacI transgene of Big Blue((R)) mice contains 0.5% microindels, 2.8% pure microinsertions, and 11.5% pure microdeletions. There appears to be no age, gender, or tissue-type specificity in the frequency of microindels. Of the independent somatic mutations that result in a net in-frame insertion or deletion, microindels are responsible for 13% of protein expansions and 6% of protein contractions. These in-frame microindels may play a crucial role in oncogenesis and evolution via "protein tinkering" (i.e., modest expansion or contraction of proteins). Four characteristics suggest that microindels are caused by unique mechanisms, not just simple combinations of the same mechanisms that cause pure microinsertions and pure microdeletions. First, microinsertions and microdeletions commonly occur at hotspots, but none of the 30 microindels are recurrent. Second, the sizes of the deletions and insertions in microindels are larger and more varied than in pure microdeletions and pure microinsertions. Third, microinsertions overwhelmingly repeat the adjacent base (97%) while the insertions in microindels do so only infrequently (17%). Fourth, analysis of the sequence contexts of microindels is consistent with unique mechanisms including recruitment of translesion DNA synthesis polymerases. The mouse somatic microindels have characteristics similar to those of human germline microindels, consistent with similar causative mechanisms in mouse and human, and in soma and germline.
Collapse
Affiliation(s)
- Kelly D Gonzalez
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Arana ME, Takata KI, Garcia-Diaz M, Wood RD, Kunkel TA. A unique error signature for human DNA polymerase nu. DNA Repair (Amst) 2007; 6:213-23. [PMID: 17118716 PMCID: PMC1950682 DOI: 10.1016/j.dnarep.2006.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/25/2022]
Abstract
Human DNA polymerase nu (pol nu) is one of three A family polymerases conserved in vertebrates. Although its biological functions are unknown, pol nu has been implicated in DNA repair and in translesion DNA synthesis (TLS). Pol nu lacks intrinsic exonucleolytic proofreading activity and discriminates poorly against misinsertion of dNTP opposite template thymine or guanine, implying that it should copy DNA with low base substitution fidelity. To test this prediction and to comprehensively examine pol nu DNA synthesis fidelity as a clue to its function, here we describe human pol nu error rates for all 12 single base-base mismatches and for insertion and deletion errors during synthesis to copy the lacZ alpha-complementation sequence in M13mp2 DNA. Pol nu copies this DNA with average single-base insertion and deletion error rates of 7 x 10(-5) and 17 x 10(-5), respectively. This accuracy is comparable to that of replicative polymerases in the B family, lower than that of its A family homolog, human pol gamma, and much higher than that of Y family TLS polymerases. In contrast, the average single-base substitution error rate of human pol nu is 3.5 x 10(-3), which is inaccurate compared to the replicative polymerases and comparable to Y family polymerases. Interestingly, the vast majority of errors made by pol nu reflect stable misincorporation of dTMP opposite template G, at average rates that are much higher than for homologous A family members. This pol nu error is especially prevalent in sequence contexts wherein the template G is preceded by a C-G or G-C base pair, where error rates can exceed 10%. Amino acid sequence alignments based on the structures of more accurate A family polymerases suggest substantial differences in the O-helix of pol nu that could contribute to this unique error signature.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
| | - Kei-ichi Takata
- Department of Pharmacology, University of Pittsburgh Medical School Hillman Cancer Center, Research Pavilion Suite 2.6 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| | - Miguel Garcia-Diaz
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
| | - Richard D. Wood
- Department of Pharmacology, University of Pittsburgh Medical School Hillman Cancer Center, Research Pavilion Suite 2.6 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
| |
Collapse
|
100
|
Delbos F, Aoufouchi S, Faili A, Weill JC, Reynaud CA. DNA polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. ACTA ACUST UNITED AC 2006; 204:17-23. [PMID: 17190840 PMCID: PMC2118439 DOI: 10.1084/jem.20062131] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations at A/T bases within immunoglobulin genes have been shown to be generated by a repair pathway involving the DNA-binding moiety of the mismatch repair complex constituted by the MSH2–MSH6 proteins, together with DNA polymerase η (pol η). However, residual A/T mutagenesis is still observed upon inactivation in the mouse of each of these factors, suggesting that the panel of activities involved might be more complex. We reported previously (Delbos, F., A. De Smet, A. Faili, S. Aoufouchi, J.-C. Weill, and C.-A. Reynaud. 2005. J. Exp. Med. 201:1191–1196) that residual A/T mutagenesis in pol η–deficient mice was likely contributed by another enzyme not normally involved in hypermutation, DNA polymerase κ, which is mobilized in the absence of the normal polymerase partner. We report the complete absence of A/T mutations in MSH2–pol η double-deficient mice, thus indicating that the residual A/T mutagenesis in MSH2-deficient mice is contributed by pol η, now recruited by uracil N-glycosylase, the second DNA repair pathway involved in hypermutation. We propose that this particular recruitment of pol η corresponds to a profound modification of the function of uracil glycosylase in the absence of the mismatch repair complex, suggesting that MSH2–MSH6 actively prevent uracil glycosylase from error-free repair during hypermutation. pol η thus appears to be the sole contributor of A/T mutations in the normal physiological context.
Collapse
Affiliation(s)
- Frédéric Delbos
- Institut National de la Santé et de la Recherche Médicale U783 (Développement du système immunitaire) and Université Paris René Descartes, Faculté de Médecine René Descartes, Site Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|