51
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
52
|
Insight into the impact of diabetes mellitus on the increased risk of hepatocellular carcinoma: mini-review. J Diabetes Metab Disord 2014; 13:57. [PMID: 24918094 PMCID: PMC4050993 DOI: 10.1186/2251-6581-13-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a multifactorial disease which is associated with a background of many causal risk factors. Diabetes mellitus however is one of the most common co-morbid illnesses found in hepatocellular carcinoma patients that are significantly associated with worsening of hepatocellular carcinoma development, patient prognosis and survival. Therefore, efforts have been focused on understanding the mechanisms underlying progression of hepatocellular carcinoma onset and development especially in diabetic patients. To our knowledge, there are no reports which address the impact of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) along with epigenetic regulations associated with increased risk of hepatocellular carcinoma confounded by diabetes mellitus. Therefore, this mini-review focuses on the possible intermediary mechanisms involved in worsening the onset and progression of hepatocellular carcinoma development confounded by diabetes mellitus. The first approach is to look at the role of inflammatory mediators (TNF-α and IL-6) in apoptosis and inflammation during hepatocarcinogenesis through monitoring levels of apoptotic regulators, B-cell lymphoma 2 protein which is encoded by BCL2 gene and apoptosis regulator BAX known as bcl-2-like protein 4 which is encoded by the BAX gene. The second approach is to focus on the possible epigenomic reprogramming that drives hepatocellular transformation since epigenetic modification of DNA is a key feature in the pathogenesis of hepatocarcinogenesis. Both approaches may suggest role of using Bcl2 and Bax as apoptotic and inflammatory markers for hepatocellular carcinoma detection as well as the importance impact of DNA methylation, hypomethylation or histone modifications as attractive candidates for early-detection biomarkers of hepatocellular carcinoma.
Collapse
|
53
|
Zeng J, Chen B. Epigenetic mechanisms in the pathogenesis of diabetic retinopathy. Ophthalmologica 2014; 232:1-9. [PMID: 24714375 DOI: 10.1159/000357824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022]
Abstract
Diabetic retinopathy (DR), which arises as a result of an increasing incidence of diabetes mellitus, has gradually become a common disease. Due to its complex pathogenesis, the treatment means of DR are very limited. The findings of several studies have shown that instituting tight glycemic control in diabetic patients does not immediately benefit the progression of retinopathy, and the benefits of good control persist beyond the period of good glycemic control. This has led to the concept of persistent epigenetic changes. Epigenetics has now become an increasingly important area of biomedical research. Recently, important roles of various epigenetic mechanisms have been identified in the pathogenesis of diabetes and its complications. The aim of this review is to provide an overview of the epigenetics and epigenetic mechanisms in diabetes and diabetes complications, and the focus is on the emerging evidence for aberrant epigenetic mechanisms in DR.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha City, PR China
| | | |
Collapse
|
54
|
Boycheva I, Vassileva V, Iantcheva A. Histone acetyltransferases in plant development and plasticity. Curr Genomics 2014; 15:28-37. [PMID: 24653661 PMCID: PMC3958957 DOI: 10.2174/138920291501140306112742] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, transcriptional regulation is determined by dynamic and reversible chromatin modifications, such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation, that are essential for the processes of DNA replication, DNA-repair, recombination and gene transcription. The reversible and rapid changes in histone acetylation induce genome-wide and specific alterations in gene expression and play a key role in chromatin modification. Because of their sessile lifestyle, plants cannot escape environmental stress, and hence have evolved a number of adaptations to survive in stress surroundings. Chromatin modifications play a major role in regulating plant gene expression following abiotic and biotic stress. Plants are also able to respond to signals that affect the maintaince of genome integrity. All these factors are associated with changes in gene expression levels through modification of histone acetylation. This review focuses on the major types of genes encoding for histone acetyltransferases, their structure, function, interaction with other genes, and participation in plant responses to environmental stimuli, as well as their role in cell cycle progression. We also bring together the most recent findings on the study of the histone acetyltransferase HAC1 in the model legumes Medicago truncatula and Lotus japonicus.
Collapse
Affiliation(s)
- Irina Boycheva
- AgroBioInstitute, Blvd. Dragan Tzankov 8, 1164 Sofia, Bulgaria
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Acad. Georgi Bonchev str. Bl. 21 1113, Sofia, Bulgaria
| | | |
Collapse
|
55
|
Li CJ, Li RW. Bioinformatic Dissecting of TP53 Regulation Pathway Underlying Butyrate-induced Histone Modification in Epigenetic Regulation. GENETICS & EPIGENETICS 2014; 6:1-7. [PMID: 25512709 PMCID: PMC4251064 DOI: 10.4137/geg.s14176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
Butyrate affects cell proliferation, differentiation, and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell-cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by ingenuity pathways analysis (IPA) in our RNA-sequencing data set. TP53 signaling pathway plays key role in many cellular processes. TP53 pathway and their involvement in cellular functions modified by butyrate treatment were scrutinized in this report by data mining the RNA-sequencing data using IPA (Ingenuity System®). The TP53 mechanistic pathway targets more than 600 genes. Downstream analysis predicted the activation of the TP53 pathway after butyrate treatment. The data mining also revealed that nine transcription factors are downstream regulators in TP53 signaling pathways. The analysis results also indicated that butyrate not only inhibits the HDAC activities, but also regulates genes encoding the HDAC enzymes through modification of histones and epigenomic landscape.
Collapse
Affiliation(s)
- Cong-Jun Li
- Bovine Functional Genomics Laboratory, Agricultural Research Service, USDA. Beltsville, MD, USA
| | - Robert W Li
- Bovine Functional Genomics Laboratory, Agricultural Research Service, USDA. Beltsville, MD, USA
| |
Collapse
|
56
|
Zebrafish (Danio rerio) as a possible bioindicator of epigenetic factors present in drinking water that may affect reproductive function: is chorion an issue? ZYGOTE 2014; 23:447-52. [PMID: 24598355 DOI: 10.1017/s0967199414000045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Emerging organic contaminants have been monitored in stream waters, raw and finished waters and wastewater effluents. Most of these contaminants, such as epigenetic substances, have been detected at very low levels. Unfortunately, their complete monitoring and/or removal are very difficult, given the increasing presence of new contaminants and due to analytical and economic considerations. For this reason, bioindicators are used as an alternative to monitor their presence. To this end, zebrafish is being used to assess certain contaminants in water quality studies. As our long-term aim is to determine if zebrafish (Danio rerio) can be used to detect environmental epigenetic factors in drinking waters with effects on human reproduction, an initial question is whether the chorion could interfere with the possible action of epigenetic factors in two reproductive events: genital ridge formation and migration of the primordial germ cells (PGCs) to these genital ridges. In the first experiment, we attempted to partially degrade the chorion of mid blastula transition (MBT) embryos with pronase, with acceptable survival rates at 5 days post fertilisation (dpf), with the group exposed for 15 min giving the best survival results. As denuded early embryos require a specific culture medium, in the next experiment embryo survival was evaluated when they were cultured up to 5 dpf in drinking waters from six different sources. Results showed a negative effect on embryo survival at 5 dpf from several waters but not in others, thus distorting the survival outcomes. These results suggest using embryos with the chorion intact from the outset when drinking waters from different sources are to be tested.
Collapse
|
57
|
Chong PN, Teh CPW, Poh BK, Noor MI. Etiology of Obesity Over the Life Span: Ecological and Genetic Highlights from Asian Countries. Curr Obes Rep 2014; 3:16-37. [PMID: 26626465 DOI: 10.1007/s13679-013-0088-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a worldwide pandemic, and the prevalence rate has doubled since the 1980s. Asian countries are also experiencing the global epidemic of obesity with its related health consequences. The prevalence of overweight and obesity are increasing at an alarming rate across all age groups in Asia. These increases are mainly attributed to rapid economic growth, which leads to socio-economic, nutrition and lifestyle transitions, resulting in a positive energy balance. In addition, fat mass and obesity-associated gene variants, copy number variants in chromosomes and epigenetic modifications have shown positive associations with the risk of obesity among Asians. In this review highlights of prevalence and related ecological and genetic factors that could influence the rapid rise in obesity among Asian populations are discussed.
Collapse
Affiliation(s)
- Pei Nee Chong
- Nutritional Sciences Programme, School of Healthcare Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Christinal Pey Wen Teh
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Bee Koon Poh
- Nutritional Sciences Programme, School of Healthcare Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Mohd Ismail Noor
- Department of Nutrition and Dietetics, Faculty of Health Sciences, MARA University of Technology, 42300, Puncak Alam, Selangor, Malaysia
| |
Collapse
|
58
|
Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000 2014; 64:95-110. [PMID: 24320958 DOI: 10.1111/prd.12000] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Epigenetics as a modifiable risk factor in periodontal diseases has been investigated in light of the current knowledge of how chronic infection and inflammation can affect gene-specific epigenetic reprogramming in periodontal tissues. Epigenomic programming might be particularly sensitive to environmental influences, and a combination of physiological stressors and environmental exposures appears to affect the epigenomic program acquired by a cell during differentiation and throughout the cellular lineage lifespan. Viral and bacterial infections can establish several types of epigenetic modifications, which sometimes engage in a complex epigenetic crosstalk also reflecting in the establishment and progress of periodontal diseases. The inflammatory and metabolic states of the periodontal tissues are driven by the infectious stimuli, and the magnitude of the cellular and molecular signature response is further dictated by the host genetic and epigenetic traits associated with various systemic exposures, including smoking, obesity and diabetes/hyperglycemia. This review discusses the advances in epigenetics, focusing on the role of DNA methylation in the pathogenesis of periodontal disease and the potential of epigenetic therapy.
Collapse
|
59
|
Abdelkarim H, Brunsteiner M, Neelarapu R, Bai H, Madriaga A, van Breemen RB, Blond SY, Gaponenko V, Petukhov PA. Photoreactive "nanorulers" detect a novel conformation of full length HDAC3-SMRT complex in solution. ACS Chem Biol 2013; 8:2538-49. [PMID: 24010878 DOI: 10.1021/cb400601g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylase 3 (HDAC3) is a promising epigenetic drug target for multiple therapeutic applications. Direct interaction between the Deacetylase Activating Domain of the silencing mediator for retinoid or thyroid-hormone receptors (SMRT-DAD) is required for activation of enzymatic activity of HDAC3. The structure of this complex and the nature of interactions with HDAC inhibitors in solution are unknown. Using novel photoreactive HDAC probes, "nanorulers", we determined the distance between the catalytic site of the full-length HDAC3 and SMRT-DAD in solution at physiologically relevant conditions and found it to be substantially different from that predicted by the X-ray model with a Δ379-428 aa truncated HDAC3. Further experiments indicated that in solution this distance might change in response to chemical stimuli, while the enzymatic activity remained unaffected. These observations were further validated by Saturation Transfer Difference (STD) NMR experiments. We propose that the observed changes in the distance are an important part of the histone code that remains to be explored. Mapping direct interactions and distances between macromolecules with such "nanorulers" as a function of cellular events facilitates better understanding of basic biology and ways for its manipulation in a cell- and tissue-specific manner.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Michael Brunsteiner
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Raghupathi Neelarapu
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - He Bai
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Antonett Madriaga
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Richard B. van Breemen
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | - Pavel A. Petukhov
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
60
|
Attia AS, Cassat JE, Aranmolate SO, Zimmerman LJ, Boyd KL, Skaar EP. Analysis of the Staphylococcus aureus abscess proteome identifies antimicrobial host proteins and bacterial stress responses at the host-pathogen interface. Pathog Dis 2013; 69:36-48. [PMID: 23847107 DOI: 10.1111/2049-632x.12063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 02/02/2023] Open
Abstract
Abscesses are a hallmark of invasive staphylococcal infections and the site of a dynamic struggle between pathogen and host. However, the precise host and bacterial factors that contribute to abscess formation and maintenance have not been completely described. In this work, we define the Staphylococcus aureus abscess proteome from both wild-type and neutropenic mice to elucidate the host response to staphylococcal infection and uncover novel S. aureus virulence factors. Among the proteins identified, the mouse protein histone H4 was enriched in the abscesses of wild-type compared with neutropenic animals. Histone H4 inhibits staphylococcal growth in vitro demonstrating a role for this protein in the innate immune response to staphylococcal infection. These analyses also identified staphylococcal proteins within the abscess, including known virulence factors and proteins with previously unrecognized roles in pathogenesis. Within the latter group was the universal stress protein Usp2, which was enriched in kidney lesions from neutropenic mice and required for the S. aureus response to stringent stress. Taken together, these data describe the S. aureus abscess proteome and lay the foundation for the identification of contributors to innate immunity and bacterial pathogenesis.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - James E Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sheg O Aranmolate
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lisa J Zimmerman
- Department of Biochemistry, Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Animal Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
61
|
Shan L, Li X, Liu L, Ding X, Wang Q, Zheng Y, Duan Y, Xuan C, Wang Y, Yang F, Shang Y, Shi L. GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation. Oncogene 2013; 33:3205-16. [DOI: 10.1038/onc.2013.270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/14/2013] [Accepted: 05/09/2013] [Indexed: 12/18/2022]
|
62
|
Shimahara H, Hirano T, Ohya K, Matsuta S, Seeram SS, Tate SI. Nucleosome structural changes induced by binding of non-histone chromosomal proteins HMGN1 and HMGN2. FEBS Open Bio 2013; 3:184-91. [PMID: 23772392 PMCID: PMC3668530 DOI: 10.1016/j.fob.2013.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/07/2023] Open
Abstract
Interactions between the nucleosome and the non-histone chromosomal proteins (HMGN1 and HMGN2) were studied by circular dichroism (CD) spectroscopy to elucidate structural changes in the nucleosome induced by HMGN binding. Unlike previous studies that used a nucleosome extracted from living cells, in this study we utilized a nucleosome reconstituted from unmodified recombinant histones synthesized in Escherichia coli and a 189-bp synthetic DNA fragment harboring a nucleosome positioning sequence. This DNA fragment consists of 5′-TATAAACGCC-3′ repeats that has a high affinity to the histone octamer. A nucleosome containing a unique octamer-binding sequence at a specific location on the DNA was produced at sufficiently high yield for spectroscopic analysis. CD data have indicated that both HMGN1 and HMGN2 can increase the winding angle of the nucleosome DNA, but the extent of the structural changes induced by these proteins differs significantly. This suggests HMGN1 and HMGN2 would have different abilities to facilitate nucleosome remodeling. A nucleosome was reconstituted from recombinant histones and a synthetic DNA. Nucleosomes were produced at sufficiently high yield for spectroscopic analysis. A nucleosome with and without HMGN proteins was analyzed using CD spectroscopy. CD data indicate that HMGN proteins increase the winding angle of the nucleosome DNA. HMGN1 and HMGN2 may have different abilities to facilitate nucleosome remodeling.
Collapse
Key Words
- CD
- CD, circular dichroism
- HMG, high mobility group
- HMGN
- HMGN1 HMGN2, non-histone chromosomal proteins
- IPTG, isopropyl-β-d-galactopyranoside
- LB, Luria–Bertani
- MNase, micrococcal nuclease
- NMR, nuclear magnetic resonance
- Nucleosome
- PCR, polymerase chain reaction
- RP-HPLC, reverse phase high performance liquid chromatography
- Reconstitution
- SDS–PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Unmodified recombinant histones
- phH2A, phH2B, phH3, and phH4, vectors for the gene expression of all four recombinant human core histones H2A, H2B, H3, and H4, respectively
Collapse
Affiliation(s)
- Hideto Shimahara
- Corresponding author. Tel.: +81 761 51 1478; fax: +81 761 51 1455.
| | | | | | | | | | | |
Collapse
|
63
|
Cheng DD, Yang QC, Zhang ZC, Yang CX, Liu YW. Antitumor activity of histone deacetylase inhibitor trichostatin A in osteosarcoma cells. Asian Pac J Cancer Prev 2013; 13:1395-9. [PMID: 22799338 DOI: 10.7314/apjcp.2012.13.4.1395] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have been reported to induce cell growth arrest, apoptosis and differentiation of tumor cells. The present study aimed to examine the effects of trichostatin A (TSA), one such inhibitor, on the cell cycle, apoptosis and invasiveness of osteosarcoma cells. METHODS MG- 63 cells were treated with TSA at various concentrations. Then, cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) and TUNEL assays, respectively; cell cycling was assessed by flow cytometry; invasion assays were performed with the transwell Boyden Chamber system. RESULTS MTT assays revealed that TSA significantly inhibited the growth of MG-63 cells in a concentration and time dependent manner. TSA treated cells demonstrated morphological changes indicative of apoptosis and TUNEL assays revealed increased apoptosis of MG-63 cells after TSA treatment. Flow cytometry showed that TSA arrested the cell cycle in G1/G2 phase and annexin V positive apoptotic cells increased markedly. In addition, the invasiveness of MG-63 cells was inhibited by TSA in a concentration dependent manner. CONCLUSION Our findings demonstrate that TSA inhibits the proliferation, induces apoptosis and inhibits invasiveness of osteosarcoma cells in vitro. HDAC inhibitors may thus have promise to become new therapeutic agents against osteosarcoma.
Collapse
Affiliation(s)
- Dong-Dong Cheng
- Department of Orthopeadics, Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | | | | | | | | |
Collapse
|
64
|
Kraus WL, Hottiger MO. PARP-1 and gene regulation: progress and puzzles. Mol Aspects Med 2013; 34:1109-23. [PMID: 23357755 DOI: 10.1016/j.mam.2013.01.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), also referred to as ADP-ribosyltransferase Diphtheria toxin-like 1 (ARTD1), is an abundant nuclear protein that plays key roles in a variety of nuclear processes, including the regulation of transcription. PARP-1 possesses an intrinsic enzymatic activity that catalyzes the transfer of ADP-ribose (ADPR) units from nicotinamide adenine dinucleotide (NAD(+)) onto target gene regulatory proteins, thereby modulating their activities. Although great strides have been made in the past decade in deciphering the seemingly opposing and varied roles of PARP-1 in gene regulation, many puzzles remain. In this review, we discuss the current state of understanding in this area, especially how PARP-1 interfaces with various components of gene regulatory pathways (e.g., the basal transcription machinery, DNA-binding transcription factors, coregulators, chromatin remodeling, histone modifications, and DNA methylation). In addition, we discuss some gene-specific, cell type-specific, and cell state-specific effects of PARP-1 on gene regulation, which might contribute to its biological functions. Finally, we review some of the recent progress targeting PARPs using chemical inhibitors, some of which may alter PARP-1-dependent gene regulatory programs to promote therapeutic outcomes.
Collapse
Affiliation(s)
- W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and the Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8511, United States.
| | | |
Collapse
|
65
|
Abstract
Epigenetic modifications constitute the next frontier in tumor biology research. Post-translation modification of histones dynamically influences gene expression independent of alterations to the DNA sequence. These mechanisms are often mediated by histone linkers or by proteins associated with the recruitment of DNA-binding proteins, HDAC I and II interacting proteins and transcriptional activators, coactivators or corepressors. Early evidence suggested that histones and their modifiers are involved in sophisticated processes that modulate tumor behavior and cellular phenotype. In this review, we discuss how recent discoveries about chromatin modifications, particularly histone acetylation, are shaping our knowledge of cell biology and our understanding of the molecular circuitry governing tumor progression and consider whether recent insights may extend to novel therapeutic approaches. Furthermore, we discuss the latest oncogenomic findings in Head and Neck Squamous Cell Carcinoma (HNSCC) from studies using Next Generation Sequencing (NGS) technology and highlight the impact of mutations identified in histones and their modifiers.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
66
|
Synthesis and antitumor activity of novel diaryl ether hydroxamic acids derivatives as potential HDAC inhibitors. Arch Pharm Res 2012; 35:1723-32. [DOI: 10.1007/s12272-012-1003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/23/2012] [Accepted: 05/14/2012] [Indexed: 12/27/2022]
|
67
|
Abstract
Type 2 diabetes (T2D) and obesity are complex disorders that constitute major public health problems. The evidence for familial aggregation of both T2D and obesity is substantial. To date, more than 150 genetic loci are associated with the development of monogenic, syndromic, or multifactorial forms of T2D or obesity. However, the proportion of overall trait variance explained by these associated loci is modest (~5-10% for T2D, ~2% for body mass index (BMI)). Some of the familial aggregation not attributable to known genetic variation, as well as many of the effects of environmental exposures, may reflect epigenetic processes. In this review, we discuss the evidence concerning the genetic contribution to individual risk of T2D and obesity, and explore the potential role of epigenetic mechanisms. We also explain how genetics, epigenetics, and environment are likely to interact to define the individual risk of disease.
Collapse
|
68
|
Abstract
Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.
Collapse
Affiliation(s)
- Abby F Fleisch
- Department of Endocrinology, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
69
|
Graf AV, Dunaeva TY, Maklakova AS, Maslova MV, Sokolova NA. Transgenerational effects of prenatal stress of different etiology. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012050068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
70
|
Park IH, Kim MM. Spermidine inhibits MMP-2 via modulation of histone acetyltransferase and histone deacetylase in HDFs. Int J Biol Macromol 2012; 51:1003-7. [PMID: 22925630 DOI: 10.1016/j.ijbiomac.2012.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
Abstract
In recent years, aging has been reported to be regulated by HAT. In this study, the inhibitory effects of spermidine on the matrix metalloproteinase-2 (MMP-2) activity and expression were investigated in human dermal fibroblasts (HDFs). It was observed that spermidine inhibits MMP-2 activity and expression. In addition, the expression levels of histone acetyltransferase (HAT), phospho-extracellular-signal related kinase (p-ERK), phospho-c-jun N-terminal kinase (p-JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) are decreased in the presence of spermidine. In contrast, the expression levels of histone deacetylase 1 (HDAC1), sirtuin 1 (SIRT1), phospho-p38 (p-p38) are increased by spermidine. In conclusion, our results suggest that spermidine could have a therapeutic potential in inhibition of metastasis through the inhibitory effects on activity and expression of MMP-2 via regulation of HAT and HDAC.
Collapse
Affiliation(s)
- In-Hwan Park
- Department of Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea
| | | |
Collapse
|
71
|
Chakravarthy S, Patel A, Bowman GD. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Nucleic Acids Res 2012; 40:8285-95. [PMID: 22753032 PMCID: PMC3458575 DOI: 10.1093/nar/gks645] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MacroH2A is a histone H2A variant that is typically found in heterochromatic regions of the genome. A positively charged linker that connects the histone-fold with the macro-domain was suggested to have DNA-binding properties, and has been shown to promote oligomerization of chromatin fibers. Here we examine the influence of this basic linker on DNA of mononucleosomes. We find that the macro-linker reduces accessibility to extranucleosomal DNA, and appears to increase compaction of the nucleosome. These properties arise from interactions between the H1-like basic linker region and DNA around the entry/exit site, which increases protection of nucleosomal DNA from exonuclease III digestion by ∼10 bp. By stabilizing the wrapping of DNA around the histone core, this basic linker of macroH2A may alter the distribution of nucleosome-associated factors, and potentially contribute to the more compacted nature of heterochromatin.
Collapse
Affiliation(s)
- Srinivas Chakravarthy
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
72
|
Silvestre F, Gillardin V, Dorts J. Proteomics to Assess the Role of Phenotypic Plasticity in Aquatic Organisms Exposed to Pollution and Global Warming. Integr Comp Biol 2012; 52:681-94. [DOI: 10.1093/icb/ics087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
73
|
Wu S, Li RW, Li W, Li CJ. Transcriptome characterization by RNA-seq unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells. PLoS One 2012; 7:e36940. [PMID: 22615851 PMCID: PMC3352864 DOI: 10.1371/journal.pone.0036940] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), especially butyrate, affect cell differentiation, proliferation, and motility. Butyrate also induces cell cycle arrest and apoptosis through its inhibition of histone deacetylases (HDACs). In addition, butyrate is a potent inducer of histone hyper-acetylation in cells. Therefore, this SCFA provides an excellent in vitro model for studying the epigenomic regulation of gene expression induced by histone acetylation. In this study, we analyzed the differential in vitro expression of genes induced by butyrate in bovine epithelial cells by using deep RNA-sequencing technology (RNA-seq). The number of sequences read, ranging from 57,303,693 to 78,933,744, were generated per sample. Approximately 11,408 genes were significantly impacted by butyrate, with a false discovery rate (FDR) <0.05. The predominant cellular processes affected by butyrate included cell morphological changes, cell cycle arrest, and apoptosis. Our results provided insight into the transcriptome alterations induced by butyrate, which will undoubtedly facilitate our understanding of the molecular mechanisms underlying butyrate-induced epigenomic regulation in bovine cells.
Collapse
Affiliation(s)
- Sitao Wu
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Robert W. Li
- United States Department of Agriculture–Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
| | - Weizhong Li
- Center for Research in Biological Systems, University of California San Diego, San Diego, California, United States of America
| | - Cong-jun Li
- United States Department of Agriculture–Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
74
|
Abstract
Understanding the determinants of human health and disease is overwhelmingly complex, particularly for common, late-onset, chronic disorders, such as obesity and diabetes. Elucidating the genetic and environmental factors that influence susceptibility to disruptions in energy homeostasis and metabolic regulation remain a challenge, and progress will entail the integration of multiple assessments of temporally dynamic environmental exposures in the context of each individual's genotype. To meet this challenge, researchers are increasingly exploring the epigenome, which is the malleable interface of gene-environment interactions. Epigenetic variation, whether innate or induced, contributes to variation in gene expression, the range of potential individual responses to internal and external cues, and risk for metabolic disease. Ultimately, advancement in our understanding of chronic disease susceptibility in humans will depend on refinement of exposure assessment tools and systems biology approaches to interpretation. In this review, we present recent progress in epigenetics of human obesity and diabetes, existing challenges, and the potential for new approaches to unravel the complex biology of metabolic dysregulation.
Collapse
Affiliation(s)
- Howard Slomko
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
75
|
Shin JH, Li RW, Gao Y, Baldwin R, Li CJ. Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells. Funct Integr Genomics 2012; 12:119-30. [PMID: 22249597 DOI: 10.1007/s10142-012-0263-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/29/2011] [Accepted: 01/02/2012] [Indexed: 12/18/2022]
Abstract
Butyrate-induced histone acetylation plays an important role in the regulation of gene expression. However, the regulation mechanisms of histone modification remain largely unclear. To comprehensively analyze histone modification induced by butyrate, we utilized chromatin immunoprecipitation (ChIP) technology combined with next-generation sequencing technology (ChIP-seq) to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27 on a large scale. To determine the location of histone H3, acetyl-H3K9, and acetyl-H3K27 binding sites within the bovine genome, we analyzed the H3-, acetyl-H3K9-, and acetyl-H3K27-enriched binding regions in the proximal promoter within 5 kb upstream, or at the 5' untranslated region (UTR) from the transcriptional start site (TSS), exon, intron, and intergenic regions (defined as regions 25 kb upstream or 10 kb downstream from the TSS). Our analysis indicated that the distribution of histone H3, acetyl-H3K9, and acetyl-H3K27 correlated with transcription activity induced by butyrate. Using the GADEM algorithm, several motifs were generated for each of the ChIP-seq datasets. A de novo search for H3, acetyl-H3K9, and acetyl-H3K27 binding motifs indicated that histone modification (acetylation) at various locations changes the histone H3 binding preferences. Our results reveal that butyrate-induced acetylation in H3K9 and H3K27 changes the sequence-based binding preference of histone H3 and underlies the potential mechanisms of gene expression regulation induced by butyrate.
Collapse
Affiliation(s)
- Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe Street, Suite 102, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
76
|
Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN. More than just tails: intrinsic disorder in histone proteins. MOLECULAR BIOSYSTEMS 2012; 8:1886-901. [DOI: 10.1039/c2mb25102g] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Premkumar DR, Jane EP, Agostino NR, DiDomenico JD, Pollack IF. Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Mol Carcinog 2011; 52:118-33. [PMID: 22086447 DOI: 10.1002/mc.21835] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 10/04/2011] [Accepted: 10/12/2011] [Indexed: 01/12/2023]
Abstract
Glioblastomas are invasive tumors with poor prognosis despite current therapies. Histone deacetylase inhibitors (HDACIs) represent a class of agents that can modulate gene expression to reduce tumor growth, and we and others have noted some antiglioma activity from HDACIs, such as vorinostat, although insufficient to warrant use as monotherapy. We have recently demonstrated that proteasome inhibitors, such as bortezomib, dramatically sensitized highly resistant glioma cells to apoptosis induction, suggesting that proteasomal inhibition may be a promising combination strategy for glioma therapeutics. In this study, we examined whether bortezomib could enhance response to HDAC inhibition in glioma cells. Although primary cells from glioblastoma multiforme (GBM) patients and established glioma cell lines did not show significant induction of apoptosis with vorinostat treatment alone, the combination of vorinostat plus bortezomib significantly enhanced apoptosis. The enhanced efficacy was due to proapoptotic mitochondrial injury and increased generation of reactive oxygen species. Our results also revealed that combination of bortezomib with vorinostat enhanced apoptosis by increasing Mcl-1 cleavage, Noxa upregulation, Bak and Bax activation, and cytochrome c release. Further downregulation of Mcl-1 using shRNA enhanced cell killing by the bortezomib/vorinostat combination. Vorinostat induced a rapid and sustained phosphorylation of histone H2AX in primary GBM and T98G cells, and this effect was significantly enhanced by co-administration of bortezomib. Vorinostat/bortezomib combination also induced Rad51 downregulation, which plays an important role in the synergistic enhancement of DNA damage and apoptosis. The significantly enhanced antitumor activity that results from the combination of bortezomib and HDACIs offers promise as a novel treatment for glioma patients.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15223, USA
| | | | | | | | | |
Collapse
|
78
|
Post-transcriptional control of gene expression in mouse early embryo development: a view from the tip of the iceberg. Genes (Basel) 2011; 2:345-59. [PMID: 24710195 PMCID: PMC3924817 DOI: 10.3390/genes2020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/22/2011] [Accepted: 04/02/2011] [Indexed: 11/17/2022] Open
Abstract
Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s) underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.
Collapse
|
79
|
Valente S, Tardugno M, Conte M, Cirilli R, Perrone A, Ragno R, Simeoni S, Tramontano A, Massa S, Nebbioso A, Miceli M, Franci G, Brosch G, Altucci L, Mai A. Novel cinnamyl hydroxyamides and 2-aminoanilides as histone deacetylase inhibitors: apoptotic induction and cytodifferentiation activity. ChemMedChem 2011; 6:698-712. [PMID: 21374822 DOI: 10.1002/cmdc.201000535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/19/2011] [Indexed: 12/26/2022]
Abstract
Four novel series of cinnamyl-containing histone deacetylase (HDAC) inhibitors 1-4 are described, containing hydroxamate (1 and 3) or 2-aminoanilide (2 and 4) derivatives. When screened against class I (maize HD1-B and human HDAC1) and class II (maize HD1-A and human HDAC4) HDACs, most hydroxamates and 2-aminoanilides displayed potent and selective inhibition toward class I enzymes. Immunoblotting analyses performed in U937 leukemia cells generally revealed high acetyl-H3 and low acetyl-α-tubulin levels. Exceptions are compounds 3 f-i, 3 m-o, and 4 k, which showed higher tubulin acetylation than SAHA. In U937 cells, cell-cycle blockade in either the G₂/M or G₁/S phase was observed with 1-4. Five hydroxamates (compounds 1 h-l) effected a two- to greater than threefold greater percent apoptosis than SAHA, and in the CD11c cytodifferentiation test some 2-aminoanilides belonging to both series 2 and 4 were more active than MS-275. The highest-scoring derivatives in terms of apoptosis (1 k, 1 l) or cytodifferentiation (2 c, 4 n) also showed antiproliferative activity in U937 cells, thus representing valuable tools for study in other cancer contexts.
Collapse
Affiliation(s)
- Sergio Valente
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Jeong C, Cho WK, Song KM, Cook C, Yoon TY, Ban C, Fishel R, Lee JB. MutS switches between two fundamentally distinct clamps during mismatch repair. Nat Struct Mol Biol 2011; 18:379-85. [PMID: 21278758 PMCID: PMC3060787 DOI: 10.1038/nsmb.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022]
Abstract
Single molecule trajectory analysis has suggested DNA repair proteins may perform a 1–dimensional (1D) search on naked DNA encompassing >10,000 nucleotides. Organized cellular DNA (chromatin) presents substantial barriers to such lengthy searches. Using dynamic single molecule fluorescence resonance energy transfer (smFRET) we determined that the mismatch repair (MMR) initiation protein MutS forms a transient clamp that scans duplex DNA for mismatched nucleotides by 1D diffusion for 1 sec (~700 bp) while in continuous rotational contact with the DNA. Mismatch identification provokes ATP binding (3 s) that induces distinctly different MutS sliding clamps with unusual stability on DNA (~600 s), which may be released by adjacent single–stranded DNA (ssDNA). These observations suggest that ATP transforms short–lived MutS lesion scanning clamps into highly stable MMR signaling clamps capable of competing with chromatin and recruiting MMR machinery, yet are recycled by ssDNA excision tracts.
Collapse
Affiliation(s)
- Cherlhyun Jeong
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Preservation of hepatocellular functionality in cultures of primary rat hepatocytes upon exposure to 4-Me2N-BAVAH, a hydroxamate-based HDAC-inhibitor. Toxicol In Vitro 2010; 25:100-9. [PMID: 20932894 DOI: 10.1016/j.tiv.2010.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/25/2010] [Accepted: 09/27/2010] [Indexed: 01/27/2023]
Abstract
Great efforts are being put in the development/optimization of reliable and highly predictive models for high-throughput screening of efficacy and toxicity of promising drug candidates. The use of primary hepatocyte cultures, however, is still limited by the occurrence of phenotypic alterations, including loss of xenobiotic biotransformation capacity. In the present study, the differentiation-stabilizing effect of a new histone deacetylase inhibitor 5-(4-dimethylaminobenzoyl)-aminovaleric acid hydroxamide (4-Me(2)N-BAVAH), a structural Trichostatin A (TSA)-analogue with a more favourable pharmaco-toxicological profile, was studied at a genome-wide scale by means of microarray analysis. Several genes coding for xenobiotic biotransformation enzymes were found to be positively regulated upon exposure to 4-Me(2)N-BAVAH. For CYP1A1/2B1/3A2, these observations were confirmed by qRT-PCR and immunoblot analysis. In addition, significantly higher 7-ethoxyresorufin-O-deethylase and 7-pentoxyresorufin-O-dealkylase activity levels were measured. These effects were accompanied by an increased expression of CCAAT/enhancer binding protein alpha and hepatic nuclear factor (HNF)4α, but not of HNF1α. Finally, 4-Me(2)N-BAVAH was found to induce histone H3 acetylation at the proximal promoter of the albumin, CYP1A1 and CYP2B1 genes, suggesting that chromatin remodelling is directly involved in the transcriptional regulation of these genes. In conclusion, histone deacetylase inhibitors prove to be efficient agents for better maintaining a differentiated hepatic phenotype in rat hepatocyte cultures.
Collapse
|
82
|
Monteiro FM, Oliveira CS, Oliveira LZ, Saraiva NZ, Mercadante MEZ, Lopes FL, Arnold DR, Garcia JM. Chromatin modifying agents in the in vitro production of bovine embryos. Vet Med Int 2010; 2011. [PMID: 20936105 PMCID: PMC2948908 DOI: 10.4061/2011/694817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/28/2010] [Accepted: 09/10/2010] [Indexed: 11/20/2022] Open
Abstract
The low efficiency observed in cloning by nuclear transfer is related to an aberrant gene expression following errors in epigenetic reprogramming. Recent studies have focused on further understanding of the modifications that take place in the chromatin of embryos during the preimplantation period, through the use of chromatin modifying agents. The goal of these studies is to identify the factors involved in nuclear reprogramming and to adjust in vitro manipulations in order to better mimic in vivo conditions. Therefore, proper knowledge of epigenetic reprogramming is necessary to prevent possible epigenetic errors and to improve efficiency and the use of in vitro fertilization and cloning technologies in cattle and other species.
Collapse
|
83
|
|
84
|
Zhao F, Zeng LL, Chen Y, Li R, Liu Y, Wen L, Cheng YQ, Zhang C. Effects of triptolide on histone acetylation and HDAC8 expression in multiple myeloma in vitro. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0148-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
85
|
Huang WJ, Chen CC, Chao SW, Lee SS, Hsu FL, Lu YL, Hung MF, Chang CI. Synthesis ofN-Hydroxycinnamides Capped with a Naturally Occurring Moiety as Inhibitors of Histone Deacetylase. ChemMedChem 2010; 5:598-607. [DOI: 10.1002/cmdc.200900494] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
86
|
de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:302-18. [PMID: 19878744 PMCID: PMC3243496 DOI: 10.1016/j.bbagrm.2009.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
Abstract
Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.
Collapse
Affiliation(s)
- Robson F. de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| |
Collapse
|
87
|
Abstract
Epigenetics investigates heritable changes in gene expression that occur without changes in DNA sequence. Several epigenetic mechanisms, including DNA methylation and histone modifications, can change genome function under exogenous influence. We review current evidence indicating that epigenetic alterations mediate effects caused by exposure to environmental toxicants. Results obtained from animal models indicate that in utero or early-life environmental exposures produce effects that can be inherited transgenerationally and are accompanied by epigenetic alterations. The search for human equivalents of the epigenetic mechanisms identified in animal models is under way. Recent investigations have identified a number of environmental toxicants that cause altered methylation of human repetitive elements or genes. Some exposures can alter epigenetic states and the same and/or similar epigenetic alterations can be found in patients with the disease of concern. On the basis of current evidence, we propose possible models for the interplay between environmental exposures and the human epigenome. Several investigations have examined the relationship between exposure to environmental chemicals and epigenetics, and have identified toxicants that modify epigenetic states. Whether environmental exposures have transgenerational epigenetic effects in humans remains to be elucidated. In spite of the current limitations, available evidence supports the concept that epigenetics holds substantial potential for furthering our understanding of the molecular mechanisms of environmental toxicants, as well as for predicting health-related risks due to conditions of environmental exposure and individual susceptibility.
Collapse
|
88
|
He R, Chen Y, Chen Y, Ougolkov AV, Zhang JS, Savoy DN, Billadeau DD, Kozikowski AP. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J Med Chem 2010; 53:1347-56. [PMID: 20055418 PMCID: PMC2919064 DOI: 10.1021/jm901667k] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our triazole-based histone deacetylase inhibitor (HDACI), octanedioic acid hydroxyamide[3-(1-phenyl-1H-[1,2,3]triazol-4-yl)phenyl]amide (4a), suppresses pancreatic cancer cell growth in vitro with the lowest IC(50) value of 20 nM against MiaPaca-2 cell. In this study, we continued our efforts to develop triazol-4-ylphenyl bearing hydroxamate analogues by embellishing the terminal phenyl ring of 4a with different substituents. The isoform inhibitory profile of these hydroxamate analogues was similar to those of 4a. All of these triazol-4-ylphenyl bearing hydroxamates are pan-HDACIs like SAHA. Moreover, compounds 4h and 11a were found to be very effective inhibitors of cancer cell growth in the HupT3 (IC(50) = 50 nM) and MiaPaca-2 (IC(50) = 40 nM) cancer cell lines, respectively. Compound 4a was found to reactivate the expression of CDK inhibitor proteins and to suppress pancreatic cancer cell growth in vivo. Taken together, these data further support the value of the triazol-4-ylphenyl bearing hydroxamates in identifying potential pancreatic cancer therapies.
Collapse
Affiliation(s)
- Rong He
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Yufeng Chen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Yihua Chen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Andrei V. Ougolkov
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Jin-San Zhang
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Doris N. Savoy
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| |
Collapse
|
89
|
HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010; 17:1392-408. [DOI: 10.1038/cdd.2009.216] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
90
|
Characterization of DNA-Hv1 histone interactions; discrimination of DNA size and shape. FEBS Lett 2010; 584:935-40. [DOI: 10.1016/j.febslet.2010.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/21/2022]
|
91
|
Jane EP, Premkumar DR, Addo-Yobo SO, Pollack IF. Abrogation of mitogen-activated protein kinase and Akt signaling by vandetanib synergistically potentiates histone deacetylase inhibitor-induced apoptosis in human glioma cells. J Pharmacol Exp Ther 2009; 331:327-37. [PMID: 19622715 PMCID: PMC2766222 DOI: 10.1124/jpet.109.155705] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022] Open
Abstract
Vandetanib is a multitargeted tyrosine kinase inhibitor. Our initial studies demonstrated that this agent blocks vascular endothelial growth factor receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor phosphorylation and mitogen-activated protein kinase (MAPK)-mediated signaling in glioma cell lines in a dose-dependent manner. Despite these effects, we observed that vandetanib had little effect on apoptosis induction at clinically achievable concentrations. Because histone deacetylase inhibitors (HDACIs) have been suggested to regulate signaling protein transcription and downstream interactions via modulation of protein chaperone function through the 90-kDa heat shock protein, we investigated whether combining vandetanib with an HDACI could synergistically potentiate signaling pathway inhibition and apoptosis induction in a panel of malignant human glioma cell lines. Proliferation assays, apoptosis induction studies, and Western immunoblot analysis were conducted in cells treated with vandetanib and HDACIs as single agents or in combination. Vandetanib and suberoylanalide hydroxamic acid reduced proliferation in all cell lines when used as single agents, and the combination produced marked potentiation of growth inhibition as assessed by combinatorial methods. These effects were paralleled by potentiation of Akt signaling inhibition and apoptosis induction. Our results indicate that inhibition of histone deacetylation enhances the antiproliferative effect of vandetanib in malignant human glioma cell lines by enhancing inhibition of MAPK, Akt, and other downstream effectors that may have application in combinatorial therapeutics for these tumors.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | |
Collapse
|
92
|
Snykers S, Henkens T, De Rop E, Vinken M, Fraczek J, De Kock J, De Prins E, Geerts A, Rogiers V, Vanhaecke T. Role of epigenetics in liver-specific gene transcription, hepatocyte differentiation and stem cell reprogrammation. J Hepatol 2009; 51:187-211. [PMID: 19457566 DOI: 10.1016/j.jhep.2009.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlling both growth and differentiation of stem cells and their differentiated somatic progeny is a challenge in numerous fields, from preclinical drug development to clinical therapy. Recently, new insights into the underlying molecular mechanisms have unveiled key regulatory roles of epigenetic marks driving cellular pluripotency, differentiation and self-renewal/proliferation. Indeed, the transcription of genes, governing cell-fate decisions during development and maintenance of a cell's differentiated status in adult life, critically depends on the chromatin accessibility of transcription factors to genomic regulatory and coding regions. In this review, we discuss the epigenetic control of (liver-specific) gene-transcription and the intricate interplay between chromatin modulation, including histone (de)acetylation and DNA (de)methylation, and liver-enriched transcription factors. Special attention is paid to their role in directing hepatic differentiation of primary hepatocytes and stem cells in vitro.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Tapadar S, He R, Luchini DN, Billadeau DD, Kozikowski AP. Isoxazole moiety in the linker region of HDAC inhibitors adjacent to the Zn-chelating group: effects on HDAC biology and antiproliferative activity. Bioorg Med Chem Lett 2009; 19:3023-6. [PMID: 19419863 DOI: 10.1016/j.bmcl.2009.04.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/04/2009] [Accepted: 04/07/2009] [Indexed: 11/26/2022]
Abstract
A series of hydroxamic acid based histone deacetylase inhibitors 6-15, containing an isoxazole moiety adjacent to the Zn-chelating hydroxamic acid, is reported herein. Some of these compounds showed nanomolar activity in the HDAC isoform inhibitory assay and exhibited micro molar inhibitory activity against five pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Subhasish Tapadar
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
94
|
Long J, Zhao J, Yan Z, Liu Z, Wang N. Antitumor effects of a novel sulfur-containing hydroxamate histone deacetylase inhibitor H40. Int J Cancer 2009; 124:1235-44. [PMID: 19058176 DOI: 10.1002/ijc.24074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are among the most promising targeted anticancer agents and are potent inducers of growth arrest, differentiation, and/or apoptotic cell death of transformed cells. In this study, antitumor effects of a novel sulfur-containing hydroxamate HDAC inhibitor, H40, were observed and compared with a typical HDAC inhibitor SAHA. In biochemical HDAC assay, H40 showed a potent HDAC inhibition. It induced histone H3 hyperacetylation, correlating with inhibition of cancer cell proliferation, induction of cell differentiation and cell cycle blockage. A broad cytotoxicity was observed across cell lines from different tumor entities. The autophagy rather than apoptosis inducing activity for both H40 and SAHA was observed in prostate cancer PC-3M cells. HDAC inhibitor-induced p21(CIP/WAF1) expression was evident in PC-3M and HL-60 cell lines. The in vivo efficacy of H40 against a murine prostate carcinoma TRAMP-C2 was compared with that of SAHA, which showed that H40 exerted a favorable antitumor action when only administered twice a week. We conclude that H40 might have clinical value in cancer chemotherapy and warrants further investigation in this regard.
Collapse
Affiliation(s)
- Juan Long
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
95
|
Yang Z, Tang H, Huang H, Deng H. RTA promoter demethylation and histone acetylation regulation of murine gammaherpesvirus 68 reactivation. PLoS One 2009; 4:e4556. [PMID: 19234612 PMCID: PMC2644783 DOI: 10.1371/journal.pone.0004556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/15/2009] [Indexed: 01/24/2023] Open
Abstract
Gammaherpesviruses have a common biological characteristic, latency and lytic replication. The balance between these two phases in murine gammaherpesvirus 68 (MHV-68) is controlled by the replication and transcription activator (RTA) gene. In this report, we investigated the effect of DNA demethylation and histone acetylation on MHV-68 replication. We showed that distinctive methylation patterns were associated with MHV-68 at the RTA promoter during latency or lytic replication. Treatment of MHV-68 latently-infected S11E cells with a DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AzaC), only weakly reactivated MHV-68, despite resulted in demethylation of the viral RTA promoter. In contrast, treatment with a histone deacetylase (HDAC) inhibitor trichostatin A (TSA) strongly reactivated MHV-68 from latency, and this was associated with significant change in histone H3 and H4 acetylation levels at the RTA promoter. We further showed that HDAC3 was recruited to the RTA promoter and inhibited RTA transcription during viral latency. However, TSA treatment caused rapid removal of HDAC3 and also induced passive demethylation at the RTA promoter. In vivo, we found that the RTA promoter was hypomethylated during lytic infection in the lung and that methylation level increased with virus latent infection in the spleen. Collectively, our data showed that histone acetylation, but not DNA demethylation, is sufficient for effective reactivation of MHV-68 from latency in S11E cells.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Haidong Tang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Hai Huang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Deng
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
96
|
Dynamic regulation of antigen receptor gene assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:103-15. [PMID: 19731805 DOI: 10.1007/978-1-4419-0296-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A hallmark feature of adaptive immunity is the production of lymphocytes bearing an enormous repertoire of receptors for foreign antigens. This repertoire is generated early in B and T-cell development by the process of V(D)J recombination, which randomly assembles functional immunoglobulin (Ig) and T-cell receptor (TCR) genes from large arrays of DNA segments. Precursor lymphocytes must target then retarget a single V(D)J recombinase enzyme to distinct regions within antigen receptor loci to guide lymphocyte development and to ensure that each mature B and T-cell expresses only a single antigen receptor specificity. Proper targeting of V(D)J recombinase is also essential to avoid chromosomal aberrations that result in lymphoid malignancies. Early studies suggested that changes in the specificity of V(D)J recombination are achieved by differentially opening or closing chromatin associated with Ig and TCR gene segments at the proper developmental time point. This accessibility model has been extended significantly in recent years and it has become clear that control mechanisms governing antigen receptor gene assembly are multifaceted and vary from locus to locus. In this chapter we review how genetic and epigenetic mechanisms as well as widespread changes in chromosomal conformation synergize to orchestrate the diversification of genes encoding B and T-cell antigen receptors.
Collapse
|
97
|
Chromatin restoration following nucleotide excision repair involves the incorporation of ubiquitinated H2A at damaged genomic sites. DNA Repair (Amst) 2008; 8:262-73. [PMID: 19059499 DOI: 10.1016/j.dnarep.2008.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
Restoration of functionally intact chromatin structure following DNA damage processing is crucial for maintaining genetic and epigenetic information in human cells. Here, we show the UV-induced uH2A foci formation in cells lacking XPC, DDB2, CSA or CSB, but not in cells lacking XPA, XPG or XPF indicating that uH2A incorporation relied on successful damage repair occurring through either GGR or TCR sub-pathway. In contrast, XPA, XPG or XPF were not required for formation of gammaH2AX foci in asynchronous cells. Notably, the H2A ubiquitin ligase Ring1B, a component of Polycomb repressor complex 1, did not localize at DNA damage sites. However, histone chaperone CAF-1 showed distinct localization to the damage sites. Knockdown of CAF-1 p60 abolished CAF-1 as well as uH2A foci formation. CAF-1 p150 was found to associate with NER factors TFIIH, RPA p70 and PCNA in chromatin. These data demonstrate that successful NER of genomic lesions and prompt CAF-1-mediated chromatin restoration link uH2A incorporation at the sites of damage repair within chromatin.
Collapse
|
98
|
Foulon K, Baltora-Rosset S, Fuentes V, Mesnard F, Da Nascimento S, Bouhassira E, Rochette J. Development of H1e histone linker-specific antibodies by means of synthetic peptides. ACTA ACUST UNITED AC 2008; 63:1-8. [PMID: 14984567 DOI: 10.1046/j.1399-3011.2004.00097.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large body of data suggests that the linker histones family (H1) affects gene expression. Investigation of the linker histones role is then of a major interest in cell cycle studies with implications in gene therapy. Indeed, it has been shown that in most tissues a switch of histone subtypes occurs when the cells cease to divide. To investigate linker histone role in gene or transgene expression, an antibody against subtypes of H1 would be useful for immunoprecipitation experiments and further assays measuring H1subtypes-DNA interactions in living cells. In order to produce an antibody against the H1e subtype of linker histones, two synthetic peptides derived from two regions of the H1e mouse histone protein were examined for their potential, [as keyhole limpet hemocyanin (KLH) conjugates] to elicit polyclonal anti-H1e antibodies in New Zealand white rabbits. Selection of the peptide sequences was based on amino acid differences within the different classes of histones and between mice and rabbit histones as well. The evaluation of their potential immunogenic properties was based on examination of peptide hydropathy using predicting algorithms. Immunoglobulins (IgG) obtained from immunized and nonimmunized rabbits were tested using enzyme-linked immunosorbent assay (ELISA) procedures, Western immunoblot, and immunofluorescence experiments. Results showed that the selected synthetic peptides gave rise to a high-titer polyclonal antibody able to recognize the H1e histone under various conditions. This polyclonal antibody did not cross-react with other histones. To our knowledge, this is the first antibody produced against the mouse H1e linker histone.
Collapse
Affiliation(s)
- K Foulon
- Laboratoire des Biomolécules et Pathologies Dégénératives, EA 2629 Faculté de Médecine & Pharmacie, UPJV 1, Rue des Louvels 80037 Amiens Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
99
|
Final checkup of neoplastic DNA replication: Evidence for failure in decision-making at the mitotic cell cycle checkpoint G1/S. Exp Hematol 2008; 36:1403-16. [DOI: 10.1016/j.exphem.2008.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022]
|
100
|
Mai A, Valente S, Nebbioso A, Simeoni S, Ragno R, Massa S, Brosch G, De Bellis F, Manzo F, Altucci L. New pyrrole-based histone deacetylase inhibitors: binding mode, enzyme- and cell-based investigations. Int J Biochem Cell Biol 2008; 41:235-47. [PMID: 18834955 DOI: 10.1016/j.biocel.2008.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 11/30/2022]
Abstract
Aroyl-pyrrolyl-hydroxy-amides (APHAs) are a class of synthetic HDAC inhibitors described by us since 2001. Through structure-based drug design, two isomers of the APHA lead compound 1, the 3-(2-benzoyl-1-methyl-1H-pyrrol-4-yl)-N-hydroxy-2-propenamide 2 and the 3-(2-benzoyl-1-methyl-1H-pyrrol-5-yl)-N-hydroxy-2-propenamide 3 (iso-APHAs) were designed, synthesized and tested in murine leukemia cells as antiproliferative and cytodifferentiating agents. To improve their HDAC activity and selectivity, chemical modifications at the benzoyl moieties were investigated and evaluated using three maize histone deacetylases: HD2, HD1-B (class I human HDAC homologue), and HD1-A (class II human HDAC homologue). Docking experiments on HD1-A and HD1-B homology models revealed that the different compounds selectivity profiles could be addressed to different binding modes as observed for the reference compound SAHA. Smaller hydrophobic cap groups improved class II HDAC selectivity through the interaction with HD1-A Asn89-Ser90-Ile91, while bulkier aromatic substituents increased class I HDAC selectivity. Taking into account the whole enzyme data and the functional test results, the described iso-APHAs showed a behaviour of class I/IIb HDACi, with 4b and 4i preferentially inhibiting class IIb and class I HDACs, respectively. When tested in the human leukaemia U937 cell line, 4i showed altered cell cycle (S phase arrest), joined to high (51%) apoptosis induction and significant (21%) differentiation activity.
Collapse
Affiliation(s)
- Antonello Mai
- Dipartimento di Studi Farmaceutici, Sapienza Università di Roma, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|