51
|
Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 2014; 19:317-26. [PMID: 24503167 DOI: 10.1016/j.intimp.2014.01.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/07/2014] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
Abstract
Neuroinflammatory responses play a crucial role in the pathogenesis of Alzheimer's disease (AD). Ginsenoside Rg5 (Rg5), an abundant natural compound in Panax ginseng, has been found to be beneficial in treating AD. In the present study, we demonstrated that Rg5 improved cognitive dysfunction and attenuated neuroinflammatory responses in streptozotocin (STZ)-induced memory impaired rats. Cognitive deficits were ameliorated with Rg5 (5, 10 and 20mg/kg) treatment in a dose-dependent manner together with decreased levels of inflammatory cytokines TNF-α and IL-1β (P<0.05) in brains of STZ rats. Acetylcholinesterase (AChE) activity was also significantly reduced by Rg5 whereas choline acetyltransferase (ChAT) activity was remarkably increased in the cortex and hippocampus of STZ-induced AD rats (P<0.05). In addition, Congo red and immunohistochemistry staining results showed that Rg5 alleviated Aβ deposition but enhanced the expressions of insulin-like growth factors 1 (IGF-1) and brain derived neurophic factor (BDNF) in the hippocampus and cerebral cortex (P<0.05). Western blot analysis also demonstrated that Rg5 increased remarkably BDNF and IGF-1 expressions whereas decreased significantly Aβ deposits (P<0.05). Furthermore, it was observed that the expressions of COX-2 and iNOS were significantly up-regulated in STZ-induced AD rats and down-regulated strongly (P<0.05) by Rg5 compared with control rats. These data demonstrated that STZ-induced learning and memory impairments in rats could be improved by Rg5, which was associated with attenuating neuroinflammatory responses. Our findings suggested that Rg5 could be a beneficial agent for the treatment of AD.
Collapse
|
52
|
Identification of potential bivalent inhibitors from natural compounds for acetylcholinesterase through in silico screening using multiple pharmacophores. J Mol Graph Model 2013; 40:72-9. [DOI: 10.1016/j.jmgm.2012.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 11/30/2012] [Accepted: 12/17/2012] [Indexed: 01/18/2023]
|
53
|
Chen Y, Sun J, Fang L, Liu M, Peng S, Liao H, Lehmann J, Zhang Y. Tacrine–Ferulic Acid–Nitric Oxide (NO) Donor Trihybrids as Potent, Multifunctional Acetyl- and Butyrylcholinesterase Inhibitors. J Med Chem 2012; 55:4309-21. [DOI: 10.1021/jm300106z] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yao Chen
- State Key Laboratory
of Natural
Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Center of Drug Discovery, China
Pharmaceutical University, Nanjing 210009, PR China
- Lehrstuhl für Pharmazeutische/Medizinische
Chemie, Institut für Pharmazie, Friedrich-Schiller-Universität
Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Jianfei Sun
- Neurobiology Lab, New Drug Screening
Center, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Lei Fang
- Center of Drug Discovery, China
Pharmaceutical University, Nanjing 210009, PR China
| | - Mei Liu
- Neurobiology Lab, New Drug Screening
Center, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Sixun Peng
- State Key Laboratory
of Natural
Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Center of Drug Discovery, China
Pharmaceutical University, Nanjing 210009, PR China
| | - Hong Liao
- Neurobiology Lab, New Drug Screening
Center, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jochen Lehmann
- Lehrstuhl für Pharmazeutische/Medizinische
Chemie, Institut für Pharmazie, Friedrich-Schiller-Universität
Jena, Philosophenweg 14, D-07743 Jena, Germany
- College of Pharmacy, King Saud
University Riyadh, Saudi Arabia
| | - Yihua Zhang
- State Key Laboratory
of Natural
Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Center of Drug Discovery, China
Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
54
|
Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer's disease-associated pathogenesis in vitro and in vivo. PLoS One 2012; 7:e31921. [PMID: 22384101 PMCID: PMC3285653 DOI: 10.1371/journal.pone.0031921] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
We have previously synthesized a series of hybrid compounds by linking ferulic acid to tacrine as multifunctional agents based on the hypotheses that Alzheimer's disease (AD) generates cholinergic deficiency and oxidative stress. Interestingly, we found that they may have potential pharmacological activities for treating AD. Here we report for the first time that tacrine-6-ferulic acid (T6FA), one of these compounds, can prevent amyloid-β peptide (Aβ)-induced AD-associated pathological changes in vitro and in vivo. Our results showed that T6FA significantly inhibited auto- and acetylcholinesterase (AChE)-induced aggregation of Aβ1–40in vitro and blocked the cell death induced by Aβ1–40 in PC12 cells. In an AD mouse model by the intracerebroventricular injection of Aβ1–40, T6FA significantly improved the cognitive ability along with increasing choline acetyltransferase and superoxide dismutase activity, decreasing AChE activity and malondialdehyde level. Based on our findings, we conclude that T6FA may be a promising multifunctional drug candidate for AD.
Collapse
|
55
|
Carvajal FJ, Inestrosa NC. Interactions of AChE with Aβ Aggregates in Alzheimer's Brain: Therapeutic Relevance of IDN 5706. Front Mol Neurosci 2011; 4:19. [PMID: 21949501 PMCID: PMC3172730 DOI: 10.3389/fnmol.2011.00019] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/21/2011] [Indexed: 12/20/2022] Open
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE activity in 7-month-old double transgenic mice (APPSWE–PS1) and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We concluded that early treatment with IDN 5706 decreases AChE–Aβ interaction and this effect might be of therapeutic interest in the treatment of AD.
Collapse
Affiliation(s)
- Francisco J Carvajal
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
56
|
Pisani L, Catto M, Giangreco I, Leonetti F, Nicolotti O, Stefanachi A, Cellamare S, Carotti A. Design, synthesis, and biological evaluation of coumarin derivatives tethered to an edrophonium-like fragment as highly potent and selective dual binding site acetylcholinesterase inhibitors. ChemMedChem 2011; 5:1616-30. [PMID: 20677317 DOI: 10.1002/cmdc.201000210] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A large series of substituted coumarins linked through an appropriate spacer to 3-hydroxy-N,N-dimethylanilino or 3-hydroxy-N,N,N-trialkylbenzaminium moieties were synthesized and evaluated as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The highest AChE inhibitory potency in the 3-hydroxy-N,N-dimethylanilino series was observed with a 6,7-dimethoxy-3-substituted coumarin derivative, which, along with an outstanding affinity (IC(50)=0.236 nM) exhibits excellent AChE/BChE selectivity (SI>300 000). Most of the synthesized 3-hydroxy-N,N,N-trialkylbenzaminium salts display an AChE affinity in the sub-nanomolar to picomolar range along with excellent AChE/BChE selectivities (SI values up to 138 333). The combined use of docking and molecular dynamics simulations permitted us to shed light on the observed structure-affinity and structure-selectivity relationships, to detect two possible alternative binding modes, and to assess the critical role of pi-pi stacking interactions in the AChE peripheral binding site.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento Farmaco-chimico, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Pecic S, McAnuff MA, Harding WW. Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations. J Enzyme Inhib Med Chem 2010; 26:46-55. [PMID: 20583856 DOI: 10.3109/14756361003671078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nantenine, as well as a number of flexible analogs, were evaluated for acetylcholinesterase (AChE) inhibitory activity in microplate spectrophotometric assays based on Ellman's method. It was found that the rigid aporphine core of nantenine is an important structural requirement for its anticholinesterase activity. Nantenine showed mixed inhibition kinetics in enzyme assays. Molecular docking experiments suggest that nantenine binds preferentially to the catalytic site of AChE but is also capable of interacting with the peripheral anionic site (PAS) of the enzyme, thus accounting for its mixed inhibition profile. The aporphine core of nantenine may thus be a useful template for the design of novel PAS or dual-site AChE inhibitors. Inhibiting the PAS is desirable for prevention of aggregation of the amyloid peptide Aβ, a major causative factor in the progression of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Stevan Pecic
- City University of New York Hunter College, Department of Chemistry, New York, NY 10065, USA
| | | | | |
Collapse
|
58
|
Sadighara P, Ashrafihelan J, Barin A, Ali Esfahani T. Histopathology and cholinergic assessment of Pterocarya fraxinifolia on chicken embryo. Interdiscip Toxicol 2009; 2:254-6. [PMID: 21217863 PMCID: PMC2984111 DOI: 10.2478/v10102-009-0023-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 11/21/2022] Open
Abstract
There are no reports of toxicological studies of Pterocarya fraxinifolia. The leaves are used for fishing, which also an anesthetic agent. Currently, many drugs utilized in anesthesia practice are modified cholinergic transmission and acetylcholine esterase inhibitors; these are parts of anaesthetic pharmacy. Therefore, cholinergic assessment was surveyed in chicken embryo, which Pterocarya fraxinifolia extractes were injected in 0.1, 1 and 10 mg concentration at day 4 of incubation. Serum and brain cholinesterase were analyzed on day 20 of incubation. The signs were not due to the changes of cholinesterase activity. In histopathology examination, massive necrosis was observed in the spinal cord. Other tissues such as heart, kidneys, skeletal bones and muscles, trachea and lungs, digestive system and endocrine glands were completely developed. This data suggests that the spinal cord is a target organ of the bioactive component of this plant.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of toxicology, Faculty of veterinary, Tehran University, Tehran, Iran
| | - Javad Ashrafihelan
- Department of pathobiology, Faculty of veterinary, Tabriz University, Tabriz, Iran
| | - Abbas Barin
- Department of clinical pathology, Faculty of veterinary, Tehran University, Tehran, Iran
| | - Tahreh Ali Esfahani
- Department of toxicology, Faculty of veterinary, Tehran University, Tehran, Iran
| |
Collapse
|
59
|
Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Mol Neurobiol 2008; 38:178-98. [DOI: 10.1007/s12035-008-8041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/16/2008] [Indexed: 01/09/2023]
|
60
|
Butini S, Campiani G, Borriello M, Gemma S, Panico A, Persico M, Catalanotti B, Ros S, Brindisi M, Agnusdei M, Fiorini I, Nacci V, Novellino E, Belinskaya T, Saxena A, Fattorusso C. Exploiting Protein Fluctuations at the Active-Site Gorge of Human Cholinesterases: Further Optimization of the Design Strategy to Develop Extremely Potent Inhibitors. J Med Chem 2008; 51:3154-70. [DOI: 10.1021/jm701253t] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Marianna Borriello
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Alessandro Panico
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Marco Persico
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Bruno Catalanotti
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Sindu Ros
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Marianna Agnusdei
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Isabella Fiorini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Vito Nacci
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Tatyana Belinskaya
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Ashima Saxena
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Caterina Fattorusso
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Università di Siena, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, via Aldo Moro, Università di Siena, 53100 Siena, Italy Dipartimento di Chimica delle Sostanze Naturali e Dipartimento di Chimica Farmaceutica e Tossicologica Università di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| |
Collapse
|
61
|
Interaction of acetylcholinesterase with the G4 domain of the laminin alpha1-chain. Biochem J 2008; 411:507-14. [PMID: 18215127 DOI: 10.1042/bj20071404] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the primary function of AChE (acetylcholinesterase) is the synaptic hydrolysis of acetylcholine, it appears that the protein is also able to promote various non-cholinergic activities, including cell adhesion, neurite outgrowth and amyloidosis. We have observed previously that AChE is able to bind to mouse laminin-111 in vitro by an electrostatic mechanism. We have also observed that certain mAbs (monoclonal antibodies) recognizing AChE's PAS (peripheral anionic site) inhibit both laminin binding and cell adhesion in neuroblastoma cells. Here, we investigated the interaction sites of the two molecules, using docking, synthetic peptides, ELISAs and conformational interaction site mapping. Mouse AChE was observed on docking to bind to a discontinuous, largely basic, structure, Val(2718)-Arg-Lys-Arg-Leu(2722), Tyr(2738)-Tyr(2739), Tyr(2789)-Ile-Lys-Arg-Lys(2793) and Val(2817)-Glu-Arg-Lys(2820), on the mouse laminin alpha1 G4 domain. ELISAs using synthetic peptides confirmed the involvement of the AG-73 site (2719-2729). This site overlaps extensively with laminin's heparin-binding site, and AChE was observed to compete with heparan sulfate for laminin binding. Docking showed the major component of the interaction site on AChE to be the acidic sequence Arg(90)-Glu-Leu-Ser-Glu-Asp(95) on the omega loop, and also the involvement of Pro(40)-Pro-Val(42), Arg(46) (linked to Glu(94) by a salt bridge) and the hexapeptide Asp(61)-Ala-Thr-Thr-Phe-Gln(66). Epitope analysis, using CLiPS technology, of seven adhesion-inhibiting mAbs (three anti-human AChE, one anti-Torpedo AChE and three anti-human anti-anti-idiotypic antibodies) showed their major recognition site to be the sequence Pro(40)-Pro-Met-Gly-Pro-Arg-Arg-Phe(48) (AChE human sequence). The antibodies, however, also reacted with the proline-containing sequences Pro(78)-Gly-Phe-Glu-Gly-Thr-Glu(84) and Pro(88)-Asn-Arg-Glu-Leu-Ser-Glu-Asp(95). Antibodies that recognized other features of the PAS area but not the Arg(90)-Gly-Leu-Ser-Glu-Asp(95) motif interfered neither with laminin binding nor with cell adhesion. These results define sites for the interaction of AChE and laminin and suggest that the interaction plays a role in cell adhesion. They also suggest the strong probability of functional redundancy between AChE and other molecules in early development, particularly heparan sulfate proteoglycans, which may explain the survival of the AChE-knockout mouse.
Collapse
|
62
|
Chapter 1 Cholinergic components of frontal lobe function and dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2008; 88:1-30. [DOI: 10.1016/s0072-9752(07)88001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
63
|
Martinez A, Castro A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 2006; 15:1-12. [PMID: 16370929 DOI: 10.1517/13543784.15.1.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current pharmacotherapy for Alzheimer's disease involves compounds that are aimed at increasing the levels of acetylcholine in the brain by facilitating cholinergic neurotransmission through inhibition of cholinesterase. These drugs, known as acetylcholinesterase inhibitors, have been shown to improve cognition and global functions but have little impact on improving the eventual progression of the disease; however, there is evidence that other cholinesterases such as butyrylcholinesterase can play an important role in cholinergic function in the brain, and the long-suspected non-cholinergic actions of acetylcholinesterase, mainly the interference with the beta-amyloid protein cascade, have recently driven a profound revolution in cholinesterase drug research. Several disease-modifying agents are under development that target these enzymes and have hope of becoming the next generation of effective drugs in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Martinez
- NeuroPharma, Avda de la Industria 52, 28760 Madrid, Spain.
| | | |
Collapse
|
64
|
Roldan-Tapia L, Nieto-Escamez FA, del Aguila EM, Laynez F, Parron T, Sanchez-Santed F. Neuropsychological sequelae from acute poisoning and long-term exposure to carbamate and organophosphate pesticides. Neurotoxicol Teratol 2006; 28:694-703. [PMID: 17029710 DOI: 10.1016/j.ntt.2006.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/26/2006] [Accepted: 07/31/2006] [Indexed: 11/25/2022]
Abstract
UNLABELLED This research examines the effects of different degrees of pesticide exposure on neuropsychological performance. Exposures varied from acute poisoning coupled with chronic exposure to low or high levels of chronic exposure (defined by years of exposure). A cross-sectional neuropsychological and biochemical study was conducted in greenhouse farmers from southern Spain: data from 24 acutely poisoned workers and 40 non-poisoned but chronically (low or high) exposed sprayers were compared to 26 controls. We examined performance on 21 neuropsychological tests that assessed attention, memory, praxis, gnosis, motor coordination, naming and reasoning and also examined values of plasmatic cholinesterase. Results indicated statistically significant neuropsychological deficits in the acute poisoning and high chronic exposure groups after controlling for confounds, whereas similar performance was seen in the low chronic exposed subjects and controls. Subjects who were acutely poisoned performed worse than the other groups on perceptual, visuomotor, visual memory and mood state domains. Both the acutely poisoned and the chronically high exposed subjects obtained significantly lower scores in the perceptual, verbal memory and visuomotor domains. Levels of butyrylcholinesterase were related to the seasonal sprayer activity except in the case of acutely poisoned subjects. CONCLUSIONS Both acutely poisoned long-term workers and chronically high (>10 years) exposed workers exhibited similar disturbances in perception and visuo-motor processing, in the absence of any related acute effect of butyrylcholinesterase inhibition. In the case of acutely poisoned subjects, verbal and perceptive learning and recall and constructive abilities were also impaired. These results point to the need for follow-up studies to assess the possible sequelae of chronic and acute exposure to pesticides and their interactions.
Collapse
Affiliation(s)
- Lola Roldan-Tapia
- Dpto. Neurociencia y Ciencias de la Salud, Universidad de Almeria, La Cañada 04120 Almeria, Spain
| | | | | | | | | | | |
Collapse
|
65
|
Grazina M, Pratas J, Silva F, Oliveira S, Santana I, Oliveira C. Genetic basis of Alzheimer's dementia: role of mtDNA mutations. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:92-107. [PMID: 16681804 DOI: 10.1111/j.1601-183x.2006.00225.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder associated to dementia in late adulthood. Amyloid precursor protein, presenilin 1 and presenilin 2 genes have been identified as causative genes for familial AD, whereas apolipoprotein E epsilon4 allele has been associated to the risk for late onset AD. However, mutations on these genes do not explain the majority of cases. Mitochondrial respiratory chain (MRC) impairment has been detected in brain, muscle, fibroblasts and platelets of Alzheimer's patients, indicating a possible involvement of mitochondrial DNA (mtDNA) in the aetiology of the disease. Several reports have identified mtDNA mutations in Alzheimer's patients, suggesting the existence of related causal factors probably of mtDNA origin, thus pointing to the involvement of mtDNA in the risk contributing to dementia, but there is no consensual opinion in finding the cause for impairment. However, mtDNA mutations might modify age of onset, contributing to the neurodegenerative process, probably due to an impairment of MRC and/or translation mechanisms.
Collapse
Affiliation(s)
- M Grazina
- Biochemistry Institute, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
66
|
Luo W, Yu QS, Kulkarni SS, Parrish DA, Holloway HW, Tweedie D, Shafferman A, Lahiri DK, Brossi A, Greig NH. Inhibition of human acetyl- and butyrylcholinesterase by novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine. J Med Chem 2006; 49:2174-85. [PMID: 16570913 PMCID: PMC2610450 DOI: 10.1021/jm050578p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new enantiomeric synthesis utilizing classical resolution provided two novel series of optically active inhibitors of cholinesterase: (-)- and (+)-O-carbamoyl phenols of tetrahydrofurobenzofuran and methanobenzodioxepine. An additional two series of (-)- and (+)-O-carbamoyl phenols of pyrroloindole and furoindole were obtained by known procedures, and their anticholinesterase actions were similarly quantified against freshly prepared human acetyl- (AChE) and butyrylcholinesterase (BChE). Both enantiomeric forms of each series demonstrated potent cholinesterase inhibitory activity (with IC(50) values as low as 10 nM for AChE and 3 nM for BChE), with the exception of the (+)-O-carbamoyl phenols of pyrroloindole, which lacked activity (IC(50) values >1 microM). Based on the biological data of these four series, a structure-activity relationship (SAR) analysis was provided by molecular volume calculations. In addition, a probable transition-state model was established according to the known X-ray structure of a transition-state complex of Torpedo californica AChE-m-(N,N,N-trimethylammonio)-2,2,2-trifluoroacetophenone (TcAChE-TMTFA). This model proved valuable in explaining the enantioselectivity and enzyme subtype selectivity of each series. These carbamates are more potent than, or similarly potent to, anticholinesterases in current clinical use, providing not only inhibitors of potential clinical relevance but also pharmacological tools to define drug-enzyme binding interactions within an enzyme crucial in the maintenance of cognition and numerous systemic physiological functions in health, aging, and disease.
Collapse
Affiliation(s)
- Weiming Luo
- Drug Design & Development Section, Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, Maryland 21224, USA
| | - Qian-sheng Yu
- Drug Design & Development Section, Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, Maryland 21224, USA
| | - Santosh S. Kulkarni
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan shock Dr., Baltimore, MD 21224, USA
| | - Damon A. Parrish
- Laboratory for the Structure of Matter, Department of the Navy, Naval Research Laboratory, Washington, D.C. 20375, USA
| | - Harold W. Holloway
- Drug Design & Development Section, Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, Maryland 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, Maryland 21224, USA
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 74100 Israel
| | - Debomoy K. Lahiri
- Psychiatric Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arnold Brossi
- School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, Maryland 21224, USA
- To whom correspondence should be addressed: Phone: 410-558-8278; Fax: 410-558-8323, E-Mail:
| |
Collapse
|
67
|
Nordberg A. Mechanisms Behind the Neuroprotective Actions of Cholinesterase Inhibitors in Alzheimer Disease. Alzheimer Dis Assoc Disord 2006; 20:S12-8. [PMID: 16772751 DOI: 10.1097/01.wad.0000213804.59187.2d] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inhibitors of the enzyme acetylcholinesterase (AChE) are presently used as long-term symptomatic treatments for patients with Alzheimer disease (AD), as they enhance central levels of synaptic acetylcholine. The accumulation of evidence implicating AChE in the pathogenesis of AD raises the question of whether, in addition to their palliative actions, inhibitors of this enzyme are able to act as disease-modifying agents. In addition to their catalytic effects, there is a suggestion that AChE inhibitors may influence expression of AChE isoforms and increase expression of nicotinic receptors, both of which correlate with cognitive improvements in AD patients. The neuroprotective effect of nicotine, presumably mediated via nicotinic receptors, against beta-amyloid (Abeta) toxicity and its effect on amyloid precursor protein (APP) and Abeta production has previously been established. It has also been shown that AChE inhibitors influence APP processing and attenuate Abeta-induced toxicity via mechanisms including interruption of the production of Abeta, alteration of the levels of Abeta 1-50 and 1-52, and formation of the soluble form of APP. Some of these effects seem to occur independently of nicotinic receptors, however. If such experimental in vitro observations can be extrapolated into clinical neuroprotective properties, AChE inhibitors could positively modulate the disease course of AD.
Collapse
Affiliation(s)
- Agneta Nordberg
- Neurotec Department, Division of Molecular Neuropharmacology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
68
|
Fu AL, Zhang XM, Sun MJ. Antisense inhibition of acetylcholinesterase gene expression for treating cognition deficit in Alzheimer's disease model mice. Brain Res 2005; 1066:10-5. [PMID: 16337925 DOI: 10.1016/j.brainres.2005.09.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 09/12/2005] [Accepted: 09/24/2005] [Indexed: 11/26/2022]
Abstract
To examine whether the selected antisense oligodeoxynucleotides (AS-ODN) targeting against human brain acetylcholinesterase (AChE) mRNA could improve the cognitive deficit in the Alzheimer's disease (AD) model mice induced by amyloid-beta peptide (Abeta), we determined the time-effect relationship of AChE activity and the learning and memory after AS-ODN delivery. The results showed that the AChE activity decreased gradually along with time, initiating at 8 h and lasting 42 h. The time-effect curves of acetylcholine (ACh) behaved consistency with that of AChE activity. The animal cognition studies showed that in step-through test, the error number of the AS-ODN-treated AD model mice was significantly decreased, and the memory retention was increased. In the water maze performance, the swimming time obviously shortened. Our results indicated that antisense therapy is of potential use in the treatment of cognitive deficit in the Abeta model mice.
Collapse
Affiliation(s)
- Ai-Ling Fu
- Institute of Pharmacology and Toxicology, Academy of Military Medicine, Beijing 100850, China
| | | | | |
Collapse
|
69
|
Kamal MA, Al-Jafari AA, Yu QS, Greig NH. Kinetic analysis of the inhibition of human butyrylcholinesterase with cymserine. Biochim Biophys Acta Gen Subj 2005; 1760:200-6. [PMID: 16309845 DOI: 10.1016/j.bbagen.2005.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 09/07/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Accompanying the gradual rise in the average age of the population of most industrialized countries is a regrettable progressive rise in the number of individuals afflicted with age-related neurodegenerative disorders, epitomized by Alzheimer's disease (AD) but, additionally, including Parkinson's disease (PD) and stroke. The primary therapeutic strategy, to date, involves the use of cholinesterases inhibitors (ChEIs) to amplify residual cholinergic activity. The enzyme, acetylcholinesterase (AChE), along with other elements of the cholinergic system is depleted in the AD brain. In contrast, however, its sister enzyme, butyrylcholinesterase (BuChE), that likewise cleaves acetylcholine (ACh), is elevated and both AChE and BuChE co-localize in high amounts with the classical pathological hallmarks of AD. The mismatch between increased brain BuChE and depleted levels of both ACh and AChE, particularly late in the disease, has supported the design and development of new ChEIs with a preference for BuChE; exemplified by the novel agent, cymserine, whose binding kinetics are characterized for the first time. Specifically, as assessed by the Ellman method, cymserine demonstrated potent concentration-dependent binding with human BuChE. The IC50 was determined as 63 to 100 nM at the substrate concentration range of 25 to 800 microM BuSCh. In addition, the following new binding constants were investigated for human BuChE inhibition by cymserine: T(FPnubeta), K(nubeta), K(Bs), K(MIBA), M(IC50), D(Sc), R(f), (O)K(m), OIC100, K(sl), theta(max) and R(i). These new kinetic constants may open new avenues for the kinetic study of the inhibition of a broad array of other enzymes by a wide variety of inhibitors. In synopsis, cymserine proved to be a potent inhibitor of human BuChE in comparison to its structural analogue, phenserine.
Collapse
Affiliation(s)
- Mohammad A Kamal
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| | | | | | | |
Collapse
|