51
|
da Costa JP, Cova M, Ferreira R, Vitorino R. Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 2015; 99:2023-40. [PMID: 25586583 DOI: 10.1007/s00253-015-6375-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides are small molecules with activity against bacteria, yeasts, fungi, viruses, bacteria, and even tumor cells that make these molecules attractive as therapeutic agents. Due to the alarming increase of antimicrobial resistance, interest in alternative antimicrobial agents has led to the exploitation of antimicrobial peptides, both synthetic and from natural sources. Thus, many peptide-based drugs are currently commercially available for the treatment of numerous ailments, such as hepatitis C, myeloma, skin infections, and diabetes. Initial barriers are being increasingly overcome with the development of cost-effective, more stable peptides. Herein, we review the available strategies for their synthesis, bioinformatics tools for the rational design of antimicrobial peptides with enhanced therapeutic indices, hurdles and shortcomings limiting the large-scale production of AMPs, as well as the challenges that the pharmaceutical industry faces on their use as therapeutic agents.
Collapse
Affiliation(s)
- João Pinto da Costa
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | |
Collapse
|
52
|
Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J Virol 2014; 89:2866-74. [PMID: 25540379 DOI: 10.1128/jvi.02901-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human papillomavirus (HPV) is a significant oncogenic virus, but the innate immune response to HPV is poorly understood. Human α-defensin 5 (HD5) is an innate immune effector peptide secreted by epithelial cells in the genitourinary tract. HD5 is broadly antimicrobial, exhibiting potent antiviral activity against HPV at physiologic concentrations; however, the specific mechanism of HD5-mediated inhibition against HPV is unknown. During infection, the HPV capsid undergoes several critical cell-mediated viral protein processing steps, including unfolding and cleavage of the minor capsid protein L2 by host cyclophilin B and furin. Using HPV16 pseudovirus, we show that HD5 interacts directly with the virus and inhibits the furin-mediated cleavage of L2 at the cell surface during infection at a step downstream of the cyclophilin B-mediated unfolding of L2. Importantly, HD5 does not affect the enzymatic activity of furin directly. Thus, our data support a model in which HD5 prevents furin from accessing L2 by occluding the furin cleavage site via direct binding to the viral capsid. IMPORTANCE Our study elucidates a new antiviral action for α-defensins against nonenveloped viruses in which HD5 directly interferes with a critical host-mediated viral processing step, furin cleavage of L2, at the cell surface. Blocking this key event has deleterious effects on the intracellular steps of virus infection. Thus, in addition to informing the antiviral mechanisms of α-defensins, our studies highlight the critical role of furin cleavage in HPV entry. Innate immune control, mediated in part by α-defensins expressed in the genital mucosa, may influence susceptibility to HPV infections that lead to cervical cancer. Moreover, understanding the mechanism of these natural antivirals may inform the design of therapeutics to limit HPV infection.
Collapse
|
53
|
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F. The porcine innate immune system: an update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:321-43. [PMID: 24709051 PMCID: PMC7103209 DOI: 10.1016/j.dci.2014.03.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/21/2023]
Abstract
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.
Collapse
Affiliation(s)
- K H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - T Käser
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - A Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - W Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Summerfield
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - V Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - H L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
54
|
Kalle M, Papareddy P, Kasetty G, van der Plas MJA, Mörgelin M, Malmsten M, Schmidtchen A. A peptide of heparin cofactor II inhibits endotoxin-mediated shock and invasive Pseudomonas aeruginosa infection. PLoS One 2014; 9:e102577. [PMID: 25047075 PMCID: PMC4105479 DOI: 10.1371/journal.pone.0102577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII) has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections.
Collapse
Affiliation(s)
- Martina Kalle
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- * E-mail:
| | - Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Gopinath Kasetty
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Mariena J. A. van der Plas
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | | | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
55
|
Affiliation(s)
- Mayim E. Wiens
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sarah S. Wilson
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Carissa M. Lucero
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
56
|
Abstract
There is a pressing need to develop new antiviral treatments; of the 60 drugs currently available, half are aimed at HIV-1 and the remainder target only a further six viruses. This demand has led to the emergence of possible peptide therapies, with 15 currently in clinical trials. Advancements in understanding the antiviral potential of naturally occurring host defence peptides highlights the potential of a whole new class of molecules to be considered as antiviral therapeutics. Cationic host defence peptides, such as defensins and cathelicidins, are important components of innate immunity with antimicrobial and immunomodulatory capabilities. In recent years they have also been shown to be natural, broad-spectrum antivirals against both enveloped and non-enveloped viruses, including HIV-1, influenza virus, respiratory syncytial virus and herpes simplex virus. Here we review the antiviral properties of several families of these host peptides and their potential to inform the design of novel therapeutics.
Collapse
Affiliation(s)
- Emily Gwyer Findlay
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Silke M. Currie
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| |
Collapse
|
57
|
SPINK9 stimulates metalloprotease/EGFR-dependent keratinocyte migration via purinergic receptor activation. J Invest Dermatol 2014; 134:1645-1654. [PMID: 24441102 DOI: 10.1038/jid.2014.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
Serine protease inhibitors of the Kazal-type 9 (SPINK9) is a keratinocyte-derived cationic peptide that is found most abundantly in the upper layers of the palmar-plantar epidermis. In vitro, the peptide displays the capacity to inhibit specifically kallikrein-related peptidase 5 (KLK5). Here, we report that cells expressing SPINK9 secrete the peptide constitutively. Recombinant SPINK9 (rSPINK9) provoked transactivation of the EGFR in human keratinocytes, resulting in efficient downstream triggering of cell migration. Transactivation occurred via functional upregulation of a disintegrin and metalloproteases (ADAMs), as evidenced by suppression with a metalloproteinase inhibitor and an EGFR-blocking antibody. SPINK9 preparations isolated from human skin also displayed EGFR-transactivating capacity. The classical purinergic receptor antagonists oxidized ATP and pyridoxalphosphate-6-azophenyl-2',4',-disulfonic acid effectively suppressed EGFR transactivation by rSPINK9, indicating that in analogy to what has recently been reported for the cationic antimicrobial peptides cathelicidin LL-37 and bee venom melittin, purinergic receptors have an essential bridging role in promoting the upregulation of ADAM function by the cationic peptide. SPINK9 could represent an example of how a cationic peptide may subserve multiple and interrelated functions that contribute to the maintenance of the physical and immunological barrier of the skin.
Collapse
|
58
|
Amjadi F, Salehi E, Mehdizadeh M, Aflatoonian R. Role of the innate immunity in female reproductive tract. Adv Biomed Res 2014; 3:1. [PMID: 24592358 PMCID: PMC3928842 DOI: 10.4103/2277-9175.124626] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/10/2013] [Indexed: 02/06/2023] Open
Abstract
The mucosal immune system in the female reproductive tract (FRT) is well equipped to meet the sexually transmitted pathogens, allogeneic sperm, and the immunologically distinct fetus. Analysis of the FRT indicates that epithelial cells provide a physical barrier against pathogens and microbial infections as well as secretions containing anti-microbial peptides, cytokines, and chemokines which recruit and activate immune cells. Epithelial and immune cells confer protection in part through Toll-like receptors. The aim of this literature is to review the diverse components of the innate immune system, contributing to an exclusive protection system throughout the FRT.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Applied Physiology Research Center and Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Anatomy, Tehran University of Medical Science, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomy, Cellular and Molecular Research Center, Iran University of Medical Science, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
59
|
Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013; 425:4965-80. [PMID: 24095897 PMCID: PMC3842434 DOI: 10.1016/j.jmb.2013.09.038] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
Defensins are an effector component of the innate immune system with broad antimicrobial activity. Humans express two types of defensins, α- and β-defensins, which have antiviral activity against both enveloped and non-enveloped viruses. The diversity of defensin-sensitive viral species reflects a multitude of antiviral mechanisms. These include direct defensin targeting of viral envelopes, glycoproteins, and capsids in addition to inhibition of viral fusion and post-entry neutralization. Binding and modulation of host cell surface receptors and disruption of intracellular signaling by defensins can also inhibit viral replication. In addition, defensins can function as chemokines to augment and alter adaptive immune responses, revealing an indirect antiviral mechanism. Nonetheless, many questions regarding the antiviral activities of defensins remain. Although significant mechanistic data are known for α-defensins, molecular details for β-defensin inhibition are mostly lacking. Importantly, the role of defensin antiviral activity in vivo has not been addressed due to the lack of a complete defensin knockout model. Overall, the antiviral activity of defensins is well established as are the variety of mechanisms by which defensins achieve this inhibition; however, additional research is needed to fully understand the role of defensins in viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jason G. Smith
- University of Washington School of Medicine, Box 357735, 1705 North East Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
60
|
Papareddy P, Kalle M, Sørensen OE, Malmsten M, Mörgelin M, Schmidtchen A. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis. PLoS Pathog 2013; 9:e1003803. [PMID: 24339780 PMCID: PMC3855554 DOI: 10.1371/journal.ppat.1003803] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/17/2013] [Indexed: 01/04/2023] Open
Abstract
Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2). This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections. Bacterial infections, especially sepsis, are worldwide a major cause of morbidity and mortality. Sepsis is characterized by an excessive and uncontrolled immune and coagulation response caused by bacteria and bacterial products, which eventually leads to multiple organ failure. Despite supportive treatments and administration of antibiotics, the incidence of sepsis is rising. Development of antibiotic resistance among bacteria, and the inability of antibiotics to target dysregulated host responses during severe infections and sepsis, motivates the search for novel anti-infective treatment modalities. Here, we describe a therapeutic potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2). The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.
Collapse
Affiliation(s)
- Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- * E-mail:
| | - Martina Kalle
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Ole E. Sørensen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | | | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Lund, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
61
|
Santos JC, Silva-Gomes S, Silva JP, Gama M, Rosa G, Gallo RL, Appelberg R. Endogenous cathelicidin production limits inflammation and protective immunity to Mycobacterium avium in mice. IMMUNITY INFLAMMATION AND DISEASE 2013; 2:1-12. [PMID: 25400920 PMCID: PMC4220664 DOI: 10.1002/iid3.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 01/29/2023]
Abstract
The production of antimicrobial peptides, such as the cathelicidins, plays a prominent role in the innate immune response against microbial pathogens. Cathelicidins are widely distributed amongst living organisms, and the antimicrobial peptides generated by proteolysis of the precursor forms are typically cationic and α-helical, a structure that facilitates their interaction and insertion into anionic bacterial cell walls and membranes, causing damage and promoting microbial death. Here, we found that mouse cathelicidin (Camp) expression was induced in bone marrow-derived macrophages by infection with Mycobacterium avium in a TLR2- and TNF-dependent manner. However, the endogenous production of the cathelin-related antimicrobial peptide (CRAMP) was not required for the bacteriostasis of M. avium either in primary cultures of macrophages or in vivo, as shown by the use of CRAMP-null mice. In contrast, the lack of Camp led to a transient improvement of M. avium growth control in the spleens of infected mice while at the same time causing an exacerbation of the inflammatory response to infection. Our data highlight the anti-inflammatory effects of CRAMP and suggests that virulent mycobacteria may possess strategies to escape its antimicrobial activity.
Collapse
Affiliation(s)
- José Carlos Santos
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - Sandro Silva-Gomes
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - João Pedro Silva
- Centre of Biological Engineering, Universidade do Minho Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, Universidade do Minho Braga, Portugal
| | - Gustavo Rosa
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - Richard L Gallo
- Department of Medicine, Division of Dermatology, University of California 9500 Gilman Drive, San Diego, CA, 92093-0612, USA
| | - Rui Appelberg
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| |
Collapse
|
62
|
Karasneh JA, Ababneh KT, Taha AH, Al-Abbadi MS, Marzouka NADS, Jaradat SM, Thornhill MH. Association of vitamin D receptor gene polymorphisms with chronic and aggressive periodontitis in Jordanian patients. Eur J Oral Sci 2013; 121:551-8. [DOI: 10.1111/eos.12085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Jumana A. Karasneh
- Department of Oral Medicine & Oral Surgery; Dental School; Jordan University of Science & Technology; Irbid Jordan
| | - Khansa T. Ababneh
- Department of Preventive Dentistry; Faculty of Dentistry; Jordan University of Science and Technology; Irbid Jordan
| | | | | | | | - Sameh M. Jaradat
- Klinik für Hautkrankheiten; Universitä tsklinikum Jena; Friedrich-Schiller-Universität Jena; Jena Germany
| | - Martin H. Thornhill
- Unit of Oral and Maxillofacial Medicine and Surgery; The University of Sheffield; School of Clinical Dentistry; Sheffield UK
| |
Collapse
|
63
|
Hing TC, Ho S, Shih DQ, Ichikawa R, Cheng M, Chen J, Chen X, Law I, Najarian R, Kelly CP, Gallo RL, Targan SR, Pothoulakis C, Koon HW. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice. Gut 2013; 62:1295-305. [PMID: 22760006 PMCID: PMC3737259 DOI: 10.1136/gutjnl-2012-302180] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clostridium difficile mediates intestinal inflammation by releasing toxin A (TxA), a potent enterotoxin. Cathelicidins (Camp as gene name, LL-37 peptide in humans and mCRAMP peptide in mice) are antibacterial peptides that also posses anti-inflammatory properties. OBJECTIVES To determine the role of cathelicidins in models of Clostridium difficile infection and TxA-mediated ileal inflammation and cultured human primary monocytes. DESIGN Wild-type (WT) and mCRAMP-deficient (Camp(-/-)) mice were treated with an antibiotic mixture and infected orally with C difficile. Some mice were intracolonically given mCRAMP daily for 3 days. Ileal loops were also prepared in WT mice and treated with either saline or TxA and incubated for 4 h, while some TxA-treated loops were injected with mCRAMP. RESULTS Intracolonic mCRAMP administration to C difficile-infected WT mice showed significantly reduced colonic histology damage, apoptosis, tissue myeloperoxidase (MPO) and tumour necrosis factor (TNF)α levels. Ileal mCRAMP treatment also significantly reduced histology damage, tissue apoptosis, MPO and TNFα levels in TxA-exposed ileal loops. WT and Camp(-/-) mice exhibited similar intestinal responses in both models, implying that C difficile/TxA-induced endogenous cathelicidin may be insufficient to modulate C difficile/TxA-mediated intestinal inflammation. Both LL-37 and mCRAMP also significantly reduced TxA-induced TNFα secretion via inhibition of NF-κB phosphorylation. Endogenous cathelicidin failed to control C difficile and/or toxin A-mediated inflammation and even intestinal cathelicidin expression was increased in humans and mice. CONCLUSION Exogenous cathelicidin modulates C difficile colitis by inhibiting TxA-associated intestinal inflammation. Cathelicidin administration may be a new anti-inflammatory treatment for C difficile toxin-associated disease.
Collapse
Affiliation(s)
- Tressia C Hing
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Samantha Ho
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - David Q Shih
- Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Ryan Ichikawa
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Michelle Cheng
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Jeremy Chen
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Robert Najarian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard L Gallo
- Division of Dermatology, the University of California San Diego, San Diego, California, USA
| | - Stephan R Targan
- Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Hon Wai Koon
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
64
|
Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, Wang H, Fitch PM, Schwarze J, Davidson DJ. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One 2013; 8:e73659. [PMID: 24023689 PMCID: PMC3758310 DOI: 10.1371/journal.pone.0073659] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.
Collapse
Affiliation(s)
- Silke M. Currie
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Emily Gwyer Findlay
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Brian J. McHugh
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Annie Mackellar
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tian Man
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Department of Respiratory Medicine, Affiliated Nanjing Children's Hospital of Nanjing Medical University, Nanjing, PR China
| | - Derek Macmillan
- Department of Chemistry, University College London, London, United Kingdom
| | - Hongwei Wang
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Center for Translational Medicine, Medical School of Nanjing University, Nanjing, PR China
| | - Paul M. Fitch
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jürgen Schwarze
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Lu W, de Leeuw E. Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochem Biophys Res Commun 2013; 436:557-62. [PMID: 23770364 DOI: 10.1016/j.bbrc.2013.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/05/2013] [Indexed: 12/15/2022]
Abstract
Defensins are cationic antimicrobial peptides that play an important role in innate immunity by primarily acting against microbes. Their antimicrobial properties have been widely studied and are well understood. Defensins contribute to regulation of host immunity also. Their effects on cells of the host however are less well understood. Here, we report on the pro-inflammatory and apoptotic properties of Human Defensin 5, the major antimicrobial peptide of ileal Paneth cells. We find that HD-5 up-regulates expression of genes involved in cell survival and inflammation in a NF-kB-dependent fashion in epithelial cells. Further, we find that HD-5 has pro-apoptotic effects on intestinal epithelial cells as well as primary CD4+ T cells.
Collapse
Affiliation(s)
- Wuyuan Lu
- Institute of Human Virology of the University of Maryland Baltimore School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
66
|
Polewicz M, Gracia A, Garlapati S, van Kessel J, Strom S, Halperin SA, Hancock REW, Potter AA, Babiuk LA, Gerdts V. Novel vaccine formulations against pertussis offer earlier onset of immunity and provide protection in the presence of maternal antibodies. Vaccine 2013; 31:3148-55. [PMID: 23684829 DOI: 10.1016/j.vaccine.2013.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/18/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
Whooping cough is a respiratory illness most severe in infants and young children. While the introduction of whole-cell (wP) and acellular pertussis (aP) vaccines has greatly reduced the burden of the disease, pertussis remains a problem in neonates and adolescents. New vaccines are needed that can provide early life and long-lasting protection of infants. Vaccination at an early age, however, is problematic due to the interference with maternally derived antibodies (MatAbs) and the bias towards Th2-type responses following vaccination. Here we report the development of a novel vaccine formulation against pertussis that is highly protective in the presence of MatAbs. We co-formulated pertussis toxoid (PTd) and filamentous hemagglutinin (FHA) with cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN), cationic innate defense regulator (IDR) peptide and polyphosphazene (PP) into microparticle and soluble vaccine formulations and tested them in murine and porcine models in the presence and absence of passive immunity. Vaccines composed of the new adjuvant formulations induced an earlier onset of immunity, higher anti-pertussis IgG2a and IgA titers, and a balanced Th1/Th2-type responses when compared to immunization with Quadracel(®), one of the commercially available vaccines for pertussis. Most importantly, the vaccines offered protection against challenge infection in the presence of passively transferred MatAbs.
Collapse
Affiliation(s)
- Monika Polewicz
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan S7N 5E3, SK, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Trans-10, cis 12-Conjugated Linoleic Acid-Induced Milk Fat Depression Is Associated with Inhibition of PPARγ Signaling and Inflammation in Murine Mammary Tissue. J Lipids 2013; 2013:890343. [PMID: 23762566 PMCID: PMC3666273 DOI: 10.1155/2013/890343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/18/2013] [Indexed: 12/19/2022] Open
Abstract
Exogenous trans-10, cis-12-CLA (CLA) reduces lipid synthesis in murine adipose and mammary (MG) tissues. However, genomewide alterations in MG and liver (LIV) associated with dietary CLA during lactation remain unknown. We fed mice (n = 5/diet) control or control + trans-10, cis-12-CLA (37 mg/day) between d 6 and d 10 postpartum. The 35,302 annotated murine exonic evidence-based oligo (MEEBO) microarray and quantitative RT-PCR were used for transcript profiling. Milk fat concentration was 44% lower on d 10 versus d 6 due to CLA. The CLA diet resulted in differential expression of 1,496 genes. Bioinformatics analyses underscored that a major effect of CLA on MG encompassed alterations in cellular signaling pathways and phospholipid species biosynthesis. Dietary CLA induced genes related to ER stress (Xbp1), apoptosis (Bcl2), and inflammation (Orm1, Saa2, and Cp). It also induced marked inhibition of PPAR γ signaling, including downregulation of Pparg and Srebf1 and several lipogenic target genes (Scd, Fasn, and Gpam). In LIV, CLA induced hepatic steatosis probably through perturbations in the mitochondrial functions and induction of ER stress. Overall, results from this study underscored the role of PPAR γ signaling on mammary lipogenic target regulation. The proinflammatory effect due to CLA could be related to inhibition of PPAR γ signaling.
Collapse
|
68
|
Jo EK. Autophagy as an innate defense against mycobacteria. Pathog Dis 2013; 67:108-18. [PMID: 23620156 DOI: 10.1111/2049-632x.12023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/12/2013] [Accepted: 01/13/2013] [Indexed: 12/31/2022] Open
Abstract
Over the past several years, much has been revealed about the roles of autophagy and the mechanisms by which the autophagic pathway activates the host innate effector response against Mycobacterium tuberculosis (Mtb) infection. In response to invading mycobacteria, the host innate immune system not only recognizes pathogen motifs through innate receptors, it also produces appropriate effector proteins, including cytokines. These innate signals activate or regulate autophagic pathways during infection. It is now clear that vitamin D and functional vitamin D receptor signaling are critical in the activation of autophagic defenses against Mtb in human cells. Immunity-related GTPase family M proteins, including the cationic antimicrobial protein cathelicidin and autophagic receptor p62, participate in autophagic pathways that enhance antimicrobial activity against mycobacteria. Moreover, reactive oxygen species mediate antibacterial autophagy and successful antimicrobial responses during antibiotic chemotherapy. Recent work has also shown that pathogenic Mtb can be targeted by selective autophagy through an ESX-1 type VII secretion system. Here, we review the triggers, host factors, and intracellular pathways that regulate host autophagy and its impact on antimicrobial host defenses during mycobacterial infection.
Collapse
Affiliation(s)
- Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
69
|
Farajzadeh-Sheikh A, Jolodar A, Ghaemmaghami S. Sequence characterization of cDNA sequence of encoding of an antimicrobial Peptide with no disulfide bridge from the Iranian mesobuthus eupeus venomous glands. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:36-41. [PMID: 23486842 PMCID: PMC3589777 DOI: 10.5812/ircmj.4024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 11/16/2022]
Abstract
Background Scorpion venom glands produce some antimicrobial peptides (AMP) that can rapidly kill a broad range of microbes and have additional activities that impact on the quality and effectiveness of innate responses and inflammation. Objectives In this study, we reported the identification of a cDNA sequence encoding cysteine-free antimicrobial peptides isolated from venomous glands of this species. Materials and Methods Total RNA was extracted from the Iranian mesobuthus eupeus venom glands, and cDNA was synthesized by using the modified oligo (dT). The cDNA was used as the template for applying Semi-nested RT- PCR technique. PCR Products were used for direct nucleotide sequencing and the results were compared with Gen Bank database. Results A 213 BP cDNA fragment encoding the entire coding region of an antimicrobial toxin from the Iranian scorpion M. Eupeus venom glands were isolated. The full-length sequence of the coding region was 210 BP contained an open reading frame of 70 amino with a predicted molecular mass of 7970.48 Da and theoretical Pi of 9.10. The open reading frame consists of 210 BP encoding a precursor of 70 amino acid residues, including a signal peptide of 23 residues a propertied of 7 residues, and a mature peptide of 34 residues with no disulfide bridge. The peptide has detectable sequence identity to the Lesser Asian mesobuthus eupeus MeVAMP-2 (98%), MeVAMP-9 (60%) and several previously described AMPs from other scorpion venoms including mesobuthus martensii (94%) and buthus occitanus Israelis (82%). Conclusions The secondary structure of the peptide mainly consisted of α-helical structure which was generally conserved by previously reported scorpion counterparts. The phylogenetic analysis showed that the Iranian MeAMP-like toxin was similar but not identical with that of venom antimicrobial peptides from lesser Asian scorpion mesobuthus eupeus.
Collapse
Affiliation(s)
- Ahmad Farajzadeh-Sheikh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Abbas Jolodar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
- Corresponding author: Abbas Jolodar, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran. Tel.: +98-6113330073, Fax: +98-6113360807, E-mail:
| | | |
Collapse
|
70
|
Farajzadeh-Sheikh A, Jolodar A, Ghaemmaghami S. Sequence characterization of cDNA sequence of encoding of an antimicrobial Peptide with no disulfide bridge from the Iranian mesobuthus eupeus venomous glands. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 8:307-18. [PMID: 23486842 DOI: 10.2174/187152809789352230] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/08/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND Scorpion venom glands produce some antimicrobial peptides (AMP) that can rapidly kill a broad range of microbes and have additional activities that impact on the quality and effectiveness of innate responses and inflammation. OBJECTIVES In this study, we reported the identification of a cDNA sequence encoding cysteine-free antimicrobial peptides isolated from venomous glands of this species. MATERIALS AND METHODS Total RNA was extracted from the Iranian mesobuthus eupeus venom glands, and cDNA was synthesized by using the modified oligo (dT). The cDNA was used as the template for applying Semi-nested RT- PCR technique. PCR Products were used for direct nucleotide sequencing and the results were compared with Gen Bank database. RESULTS A 213 BP cDNA fragment encoding the entire coding region of an antimicrobial toxin from the Iranian scorpion M. Eupeus venom glands were isolated. The full-length sequence of the coding region was 210 BP contained an open reading frame of 70 amino with a predicted molecular mass of 7970.48 Da and theoretical Pi of 9.10. The open reading frame consists of 210 BP encoding a precursor of 70 amino acid residues, including a signal peptide of 23 residues a propertied of 7 residues, and a mature peptide of 34 residues with no disulfide bridge. The peptide has detectable sequence identity to the Lesser Asian mesobuthus eupeus MeVAMP-2 (98%), MeVAMP-9 (60%) and several previously described AMPs from other scorpion venoms including mesobuthus martensii (94%) and buthus occitanus Israelis (82%). CONCLUSIONS The secondary structure of the peptide mainly consisted of α-helical structure which was generally conserved by previously reported scorpion counterparts. The phylogenetic analysis showed that the Iranian MeAMP-like toxin was similar but not identical with that of venom antimicrobial peptides from lesser Asian scorpion mesobuthus eupeus.
Collapse
Affiliation(s)
- Ahmad Farajzadeh-Sheikh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | | | | |
Collapse
|
71
|
Jiang W, Ghosh SK, Flyckt R, Kalinowska M, Starks D, Jurevic R, Weinberg A, Lederman MM, Rodriguez B. Bacterial colonization and beta defensins in the female genital tract in HIV infection. Curr HIV Res 2012; 10:504-12. [PMID: 22716110 DOI: 10.2174/157016212802429848] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/15/2012] [Accepted: 06/11/2012] [Indexed: 11/22/2022]
Abstract
Beta defensins are antimicrobial peptides that serve to protect the host from microbial invasion at skin and mucosal surfaces. Here we explore the relationships among beta defensin levels, total bacterial colonization, and colonization by bacterial vaginosis (BV)-related bacteria and lactobacilli in the female genital tract in HIV infected women and healthy controls. Cervicovaginal lavage (CVL) samples were obtained from 30 HIV-infected women and 36 uninfected controls. Quantitative PCR assays were used to measure DNA levels of bacterial 16S ribosomal DNA (reflective of total bacterial load), and levels of three BV-related bacteria, three Lactobacillus species (L. crispatus, L. iners and L. jensenii), and total Lactobacillus levels in CVL. Levels of human beta defensins (hBD-2 and hBD-3) were quantified by ELISA. In viremic HIV+ donors, we found that CVL levels of bacterial 16S rDNA were significantly increased, and inversely correlated with peripheral CD4+ T cell counts in HIV+ women, and inversely correlated with age in both HIV+ women and controls. Although CVL DNA levels of BV-associated bacteria tended to be increased, and CVL levels of Lactobacillus DNAs tended to be decreased in HIV+ donors, none of these differences was significant. CVL levels of hBD-2 and hBD-3 were correlated and were not different in HIV+ women and controls. However, significant positive correlations between hBD-3 levels and total bacterial DNA levels in controls were not demonstrable in HIV+ women; the significant positive correlations of hBD2 or hBD-3 and three Lactobacillus species in controls were also not demonstrable in HIV+ women. These results suggest that HIV infection is associated with impaired regulation of innate defenses at mucosal sites.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Infectious Diseases, Department of Medicine, Center for AIDS Research, Case Western Reserve University and University Hospitals/Case Medical Center, 2109 Adelbert Rd, CWRU BRB1048B, 4984, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Actin exists as a monomer (G-actin) which can be polymerized to filaments) F-actin) that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.
Collapse
|
73
|
Thomassin JL, Brannon JR, Kaiser J, Gruenheid S, Le Moual H. Enterohemorrhagic and enteropathogenic Escherichia coli evolved different strategies to resist antimicrobial peptides. Gut Microbes 2012; 3:556-61. [PMID: 22895086 PMCID: PMC3495793 DOI: 10.4161/gmic.21656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are enteric human pathogens that colonize the large and small intestines, respectively. To establish infection EHEC and EPEC must overcome innate host defenses, such as antimicrobial peptides (AMPs) produced by the intestinal epithelium. Gram-negative pathogens have evolved different mechanisms to resist AMPs, including outer-membrane proteases that degrade AMPs. We showed that the protease OmpT degrades the human AMP LL-37 more rapidly in EHEC than in EPEC. Promoter-swap experiments showed that this is due to differences in the promoters of the two genes, leading to greater ompT expression and subsequently greater levels of OmpT in EHEC. Here, we propose that the different ompT expression in EHEC and EPEC reflects the varying levels of LL-37 throughout the human intestinal tract. These data suggest that EHEC and EPEC adapted to their specific niches by developing distinct AMP-specific resistance mechanisms.
Collapse
Affiliation(s)
- Jenny-Lee Thomassin
- Department of Microbiology and Immunology; McGill University, Montreal, QC Canada
| | - John R. Brannon
- Department of Microbiology and Immunology; McGill University, Montreal, QC Canada
| | - Julienne Kaiser
- Department of Microbiology and Immunology; McGill University, Montreal, QC Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology; McGill University, Montreal, QC Canada,Correspondence to: Samantha Gruenheid, and Hervé Le Moual,
| | - Hervé Le Moual
- Department of Microbiology and Immunology; McGill University, Montreal, QC Canada,Faculty of Dentistry; McGill University, Montreal, QC Canada,Correspondence to: Samantha Gruenheid, and Hervé Le Moual,
| |
Collapse
|
74
|
Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 2012; 39:10957-70. [PMID: 23065264 PMCID: PMC3487008 DOI: 10.1007/s11033-012-1997-x] [Citation(s) in RCA: 397] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.
Collapse
|
75
|
Youssef DA, Ranasinghe T, Grant WB, Peiris AN. Vitamin D's potential to reduce the risk of hospital-acquired infections. DERMATO-ENDOCRINOLOGY 2012; 4:167-75. [PMID: 22928073 PMCID: PMC3427196 DOI: 10.4161/derm.20789] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Health care–associated and hospital-acquired infections are two entities associated with increased morbidity and mortality. They are highly costly and constitute a great burden to the health care system. Vitamin D deficiency (< 20 ng/ml) is prevalent and may be a key contributor to both acute and chronic ill health. Vitamin D deficiency is associated with decreased innate immunity and increased risk for infections. Vitamin D can positively influence a wide variety of microbial infections.
Herein we discuss hospital-acquired infections, such as pneumonia, bacteremias, urinary tract and surgical site infections, and the potential role vitamin D may play in ameliorating them. We also discuss how vitamin D might positively influence these infections and help contain health care costs. Pending further studies, we think it is prudent to check vitamin D status at hospital admission and to take immediate steps to address existing insufficient 25-hydroxyvitamin D levels.
Collapse
|
76
|
Zhang M, Qiu Z, Li Y, Yang Y, Zhang Q, Xiang Q, Su Z, Huang Y. Construction and characterization of a recombinant human beta defensin 2 fusion protein targeting the epidermal growth factor receptor: in vitro study. Appl Microbiol Biotechnol 2012; 97:3913-23. [DOI: 10.1007/s00253-012-4257-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/04/2023]
|
77
|
Fitzgerald-Hughes D, Devocelle M, Humphreys H. Beyond conventional antibiotics for the future treatment of methicillin-resistantStaphylococcus aureusinfections: two novel alternatives. ACTA ACUST UNITED AC 2012; 65:399-412. [DOI: 10.1111/j.1574-695x.2012.00954.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/31/2022]
|
78
|
Kovach MA, Ballinger MN, Newstead MW, Zeng X, Bhan U, Yu FS, Moore BB, Gallo RL, Standiford TJ. Cathelicidin-related antimicrobial peptide is required for effective lung mucosal immunity in Gram-negative bacterial pneumonia. THE JOURNAL OF IMMUNOLOGY 2012; 189:304-11. [PMID: 22634613 DOI: 10.4049/jimmunol.1103196] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cathelicidins are a family of endogenous antimicrobial peptides that exert diverse immune functions, including both direct bacterial killing and immunomodulatory effects. In this study, we examined the contribution of the murine cathelicidin, cathelicidin-related antimicrobial peptide (CRAMP), to innate mucosal immunity in a mouse model of Gram-negative pneumonia. CRAMP expression is induced in the lung in response to infection with Klebsiella pneumoniae. Mice deficient in the gene encoding CRAMP (Cnlp(-/-)) demonstrate impaired lung bacterial clearance, increased bacterial dissemination, and reduced survival in response to intratracheal K. pneumoniae administration. Neutrophil influx into the alveolar space during K. pneumoniae infection was delayed early but increased by 48 h in CRAMP-deficient mice, which was associated with enhanced expression of inflammatory cytokines and increased lung injury. Bone marrow chimera experiments indicated that CRAMP derived from bone marrow cells rather than structural cells was responsible for antimicrobial effects in the lung. Additionally, CRAMP exerted bactericidal activity against K. pneumoniae in vitro. Similar defects in lung bacterial clearance and delayed early neutrophil influx were observed in CRAMP-deficient mice infected with Pseudomonas aeruginosa, although this did not result in increased bacterial dissemination, increased lung injury, or changes in lethality. Taken together, our findings demonstrate that CRAMP is an important contributor to effective host mucosal immunity in the lung in response to Gram-negative bacterial pneumonia.
Collapse
Affiliation(s)
- Melissa A Kovach
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Pereiro P, Balseiro P, Romero A, Dios S, Forn-Cuni G, Fuste B, Planas JV, Beltran S, Novoa B, Figueras A. High-throughput sequence analysis of turbot (Scophthalmus maximus) transcriptome using 454-pyrosequencing for the discovery of antiviral immune genes. PLoS One 2012; 7:e35369. [PMID: 22629298 PMCID: PMC3356354 DOI: 10.1371/journal.pone.0035369] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/16/2012] [Indexed: 02/01/2023] Open
Abstract
Background Turbot (Scophthalmus maximus L.) is an important aquacultural resource both in Europe and Asia. However, there is little information on gene sequences available in public databases. Currently, one of the main problems affecting the culture of this flatfish is mortality due to several pathogens, especially viral diseases which are not treatable. In order to identify new genes involved in immune defense, we conducted 454-pyrosequencing of the turbot transcriptome after different immune stimulations. Methodology/Principal Findings Turbot were injected with viral stimuli to increase the expression level of immune-related genes. High-throughput deep sequencing using 454-pyrosequencing technology yielded 915,256 high-quality reads. These sequences were assembled into 55,404 contigs that were subjected to annotation steps. Intriguingly, 55.16% of the deduced protein was not significantly similar to any sequences in the databases used for the annotation and only 0.85% of the BLASTx top-hits matched S. maximus protein sequences. This relatively low level of annotation is possibly due to the limited information for this specie and other flatfish in the database. These results suggest the identification of a large number of new genes in turbot and in fish in general. A more detailed analysis showed the presence of putative members of several innate and specific immune pathways. Conclusions/Significance To our knowledge, this study is the first transcriptome analysis using 454-pyrosequencing for turbot. Previously, there were only 12,471 EST and less of 1,500 nucleotide sequences for S. maximus in NCBI database. Our results provide a rich source of data (55,404 contigs and 181,845 singletons) for discovering and identifying new genes, which will serve as a basis for microarray construction, gene expression characterization and for identification of genetic markers to be used in several applications. Immune stimulation in turbot was very effective, obtaining an enormous variety of sequences belonging to genes involved in the defense mechanisms.
Collapse
Affiliation(s)
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas, IIM, CSIC, Vigo, Spain
| | | | - Sonia Dios
- Instituto de Investigaciones Marinas, IIM, CSIC, Vigo, Spain
| | | | - Berta Fuste
- Centros Científicos y Tecnológicos de la UB, CCiT-UB, Universitat de Barcelona, Edifici Clúster, Parc Científic de Barcelona, Barcelona, Spain
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona, IBUB, Barcelona, Spain
| | - Sergi Beltran
- Centros Científicos y Tecnológicos de la UB, CCiT-UB, Universitat de Barcelona, Edifici Clúster, Parc Científic de Barcelona, Barcelona, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, IIM, CSIC, Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, IIM, CSIC, Vigo, Spain
- * E-mail:
| |
Collapse
|
80
|
Alexander DB, Iigo M, Yamauchi K, Suzui M, Tsuda H. Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol 2012; 90:279-306. [PMID: 22553915 DOI: 10.1139/o2012-013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin is a major component of biologically important mucosal fluids and of the specific granules of neutrophils. Understanding its biological function is essential for understanding neutrophil- and mucosal-mediated immunity. In this review, we reevaluate the in vivo functions of human lactoferrin (hLF) emphasizing in vivo studies and in vitro studies performed in biologically relevant fluids. We discuss the evidence in the literature that supports (or does not support) proposed roles for hLF in mucosal immunity and in neutrophil function. We argue that the current literature supports a microbiostatic role, but not a microbicidal role, for hLF in vivo. The literature also supports a role for hLF in inhibiting colonization and infection of epithelial surfaces by microorganisms and in protecting tissues from neutrophil-mediated damage. Using this information, we briefly discuss hLF in the context of the complex biological fluids in which it is found.
Collapse
Affiliation(s)
- David B Alexander
- Laboratory of Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | | | |
Collapse
|
81
|
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 2012; 52:337-60. [PMID: 22235859 DOI: 10.1146/annurev-pharmtox-010611-134535] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.
Collapse
Affiliation(s)
- Nannette Y Yount
- Divisions of Infectious Diseases and Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | |
Collapse
|
82
|
Pereiro P, Figueras A, Novoa B. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. FISH & SHELLFISH IMMUNOLOGY 2012; 32:879-89. [PMID: 22381569 DOI: 10.1016/j.fsi.2012.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/08/2012] [Accepted: 02/12/2012] [Indexed: 05/06/2023]
Abstract
Hepcidins are antimicrobial peptides with an important role in the host innate immunity. Moreover, it has been reported that mammalian hepcidins present a dual-function being a key regulator in the iron homeostasis. Here, we describe the coding sequence of a novel hepcidin-like peptide in turbot, Scophthalmus maximus. This molecule presents several differences with regard to the previously characterized hepcidin in this flatfish species and it has not the hypothetical iron regulatory sequence Q-S/I-H-L/I-S/A-L in the N-terminal region. Therefore we propose the existence of at least two types of hepcidin in turbot. Moreover, results revealed a higher variability in the mRNA sequences of the novel hepcidin compared with the other form. Constitutive expression of turbot hepcidins (Hepcidin-1 and Hepcidin-2) was analyzed in several tissues and as expected, both molecules were highly represented in liver. On the other hand, the effect of three different stimuli (bacterial or viral infection and iron overloading) in the level of hepcidin mRNA was also examined and a differential response to pathogens and iron was observed. Whereas both hepcidins were affected by pathogen challenge, only Hepcidin-1 was up-regulated after iron overloading. Therefore, this and other evidences suggest that these peptides could be involved in different functions covering the dual role of mammalian hepcidins.
Collapse
Affiliation(s)
- P Pereiro
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain
| | | | | |
Collapse
|
83
|
Williams WM, Castellani RJ, Weinberg A, Perry G, Smith MA. Do β-defensins and other antimicrobial peptides play a role in neuroimmune function and neurodegeneration? ScientificWorldJournal 2012; 2012:905785. [PMID: 22606066 PMCID: PMC3346844 DOI: 10.1100/2012/905785] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/26/2011] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that the brain responds to mechanical trauma and development of most neurodegenerative diseases with an inflammatory sequelae that was once thought exclusive to systemic immunity. Mostly cationic peptides, such as the β-defensins, originally assigned an antimicrobial function are now recognized as mediators of both innate and adaptive immunity. Herein supporting evidence is presented for the hypothesis that neuropathological changes associated with chronic disease conditions of the CNS involve abnormal expression and regulatory function of specific antimicrobial peptides. It is also proposed that these alterations exacerbate proinflammatory conditions within the brain that ultimately potentiate the neurodegenerative process.
Collapse
Affiliation(s)
- Wesley M Williams
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
84
|
Ju SM, Goh AR, Kwon DJ, Youn GS, Kwon HJ, Bae YS, Choi SY, Park J. Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Mol Cells 2012; 33:335-41. [PMID: 22450687 PMCID: PMC3887796 DOI: 10.1007/s10059-012-2287-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022] Open
Abstract
Defensins, a family of antimicrobial peptides, are one of the first lines of host defense. Human beta-defensins (hBD) such as hBD-2 and -3 have anti-HIV activity. Previous studies have shown that HIV-1 virion can induce the expression of hBD, although the exact components of HIV-1 virion that are responsible for hBD expression have not yet been elucidated. In this study, we examined the effect of HIV-1 Tat on the expression of hBD in B cells. Stimulation of B cells with HIV-1 Tat protein significantly increased the mRNA and protein levels of hBD-2. HIV-1 Tat also induced the activation of a reporter gene for hBD-2 in a dose-dependent manner in B cells. Pretreatment of B cells with a JNK inhibitor suppressed HIV-1 Tat-induced hBD-2 expression. Pretreatment of B cells with AP-1 inhibitors or NF-κB inhibitors led to a decrease in HIV-1 Tat-induced protein and mRNA expression of hBD-2. Taken together, our results indicate that HIV-1 Tat can up-regulate the expression of hBD-2 via JNK-NF-κB/AP-1-dependent pathways in human B cells.
Collapse
Affiliation(s)
- Sung Mi Ju
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Ah Ra Goh
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Dong-Joo Kwon
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | | | | | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| |
Collapse
|
85
|
Choi KY, Chow LNY, Mookherjee N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 2012; 4:361-70. [PMID: 22739631 DOI: 10.1159/000336630] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/18/2012] [Indexed: 12/21/2022] Open
Abstract
Host defence peptides (HDPs) are innate immune effector molecules found in diverse species. HDPs exhibit a wide range of functions ranging from direct antimicrobial properties to immunomodulatory effects. Research in the last decade has demonstrated that HDPs are critical effectors of both innate and adaptive immunity. Various studies have hypothesized that the antimicrobial property of certain HDPs may be largely due to their immunomodulatory functions. Mechanistic studies revealed that the role of HDPs in immunity is very complex and involves various receptors, signalling pathways and transcription factors. This review will focus on the multiple functions of HDPs in immunity and inflammation, with special reference to cathelicidins, e.g. LL-37, certain defensins and novel synthetic innate defence regulator peptides. We also discuss emerging concepts of specific HDPs in immune-mediated inflammatory diseases, including the potential use of cationic peptides as therapeutics for immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Ka-Yee Choi
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine and Immunology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
86
|
Gursoy UK, Könönen E. Understanding the roles of gingival beta-defensins. J Oral Microbiol 2012; 4:JOM-4-15127. [PMID: 22389759 PMCID: PMC3290911 DOI: 10.3402/jom.v4i0.15127] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/16/2022] Open
Abstract
Gingival epithelium produces β-defensins, small cationic peptides, as part of its contribution to the innate host defense against the bacterial challenge that is constantly present in the oral cavity. Besides their functions in healthy gingival tissues, β-defensins are involved in the initiation and progression, as well as restriction of periodontal tissue destruction, by acting as antimicrobial, chemotactic, and anti-inflammatory agents. In this article, we review the common knowledge about β-defensins, coming from in vivo and in vitro monolayer studies, and present new aspects, based on the experience on three-dimensional organotypic culture models, to the important role of gingival β-defensins in homeostasis of the periodontium.
Collapse
Affiliation(s)
- Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | |
Collapse
|
87
|
Mei HF, Jin XB, Zhu JY, Zeng AH, Wu Q, Lu XM, Li XB, Shen J. β-defensin 2 as an adjuvant promotes anti-melanoma immune responses and inhibits the growth of implanted murine melanoma in vivo. PLoS One 2012; 7:e31328. [PMID: 22348070 PMCID: PMC3278441 DOI: 10.1371/journal.pone.0031328] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 01/06/2012] [Indexed: 12/02/2022] Open
Abstract
β-defensin 2 is a small antimicrobial peptide of the innate immune system and has been thought to regulate anti-tumor immunity. However, little is known on whether β-defensin 2 could modulate melanoma-specific NK and T cell responses. In this study, we first cloned the murine β-defensin 2 gene by RT-PCR and generated the β-defensin 2 stably expressing B16 cells (B16-mBD2). Subsequently, we evaluated whether vaccination with irradiated B16-mBD2 could modulate the growth of implanted B16 cells and determined the potential mechanisms underlying the action of B16-mBD2 vaccine in modulating the growth of B16 tumors in C57BL/6. We found that vaccination with irradiated B16-mBD2, but not with control B16-p or parental B16, inhibited the development and progression of B16 tumors, and prolonged the survival of tumor-bearing mice. However, vaccination with irradiated B16-mBD2 failed to inhibit the development of B16 tumors in the CD4+- or CD8+-depleted recipients. Furthermore, vaccination with irradiated B16-mBD2 stimulated strong NK activity and promoted potent B16-specific CTL responses, accompanied by augmenting IFN-γ and IL-12, but not IL-4, responses in the recipient mice. Moreover, vaccination with irradiated B16-mBD2 promoted the infiltration of CD8+ and CD4+ T, NK cells and macrophages in the tumor tissues. These data suggest β-defensin 2 may act as a positive regulator, promoting anti-tumor NK and T cell responses in vivo. Therefore, β-defensin 2 may be used for the development of immunotherapy for the intervention of melanoma.
Collapse
Affiliation(s)
- Han-fang Mei
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Bell S, Howard A, Wilson JA, Abbot EL, Smith WD, Townes CL, Hirst BH, Hall J. Streptococcus pyogenes infection of tonsil explants is associated with a human β-defensin 1 response from control but not recurrent acute tonsillitis patients. Mol Oral Microbiol 2012; 27:160-71. [PMID: 22520386 DOI: 10.1111/j.2041-1014.2012.640.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human β-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.
Collapse
Affiliation(s)
- S Bell
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Leonard BC, Marks SL, Outerbridge CA, Affolter VK, Kananurak A, Young A, Moore PF, Bannasch DL, Bevins CL. Activity, expression and genetic variation of canine β-defensin 103: a multifunctional antimicrobial peptide in the skin of domestic dogs. J Innate Immun 2012; 4:248-59. [PMID: 22261569 DOI: 10.1159/000334566] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/19/2011] [Indexed: 01/28/2023] Open
Abstract
The skin functions as more than a physical barrier to infection. Epithelial cells of the skin can synthesize antimicrobial peptides, including defensins, which exhibit direct antimicrobial activity. Here we characterize the expression pattern, genetic variation and activity of the major β-defensin expressed in canine skin, canine β-defensin 103 (CBD103). The gene encoding CBD103 exhibits two forms of polymorphism: a common 3-basepair deletion allele and a gene copy-number variation. Golden retrievers and Labrador retrievers were the only breeds that encoded the variant allele of CBD103, termed CBD103ΔG23. Both these breeds also exhibited a CBD103 gene copy-number polymorphism that ranged from 2 to 4 gene-copies per diploid genome. Recombinant CBD103 and CBD103ΔG23, as well as the human ortholog human β-defensin 3 (hBD3) and hBD3ΔG23, showed potent and comparable antimicrobial killing against both methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius. Skin biopsy specimens from dogs with atopic dermatitis revealed CBD103 expression levels similar to those in healthy controls and comparable at lesional and nonlesional sites. This expression pattern in dogs differs from the previously reported reduced expression of the human ortholog in atopic dermatitis. Overall, the similarities of CBD103 and its human ortholog reported here support the notion that the domestic dog may serve as a valuable model for studying β-defensin biology in the skin.
Collapse
Affiliation(s)
- Brian C Leonard
- Department of Microbiology and Immunology, UC Davis School of Medicine, Davis, CA 95616-8645, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Subramanian H, Gupta K, Guo Q, Price R, Ali H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem 2011; 286:44739-49. [PMID: 22069323 PMCID: PMC3247983 DOI: 10.1074/jbc.m111.277152] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/29/2011] [Indexed: 01/14/2023] Open
Abstract
Human LL-37 is a multifunctional antimicrobial peptide that promotes inflammation, angiogenesis, wound healing, and tumor metastasis. Most effects of LL-37 are mediated via the activation of the cell surface G protein-coupled receptor FPR2 on leukocytes and endothelial cells. Although LL-37 induces chemotaxis, degranulation, and chemokine production in mast cells, the receptor involved and the mechanism of its regulation remain unknown. MrgX2 is a member of Mas-related genes that is primarily expressed in human dorsal root ganglia and mast cells. We found that a human mast cell line LAD2 and CD34(+) cell-derived primary mast cells, which natively express MrgX2, responded to LL-37 for sustained Ca(2+) mobilization and substantial degranulation. However, an immature human mast cell line, HMC-1, that lacks functional MrgX2 did not respond to LL-37. shRNA-mediated knockdown of MrgX2 in LAD2 mast cell line and primary CD34(+) cell-derived mast cells caused a substantial reduction in LL-37-induced degranulation. Furthermore, mast cell lines stably expressing MrgX2 responded to LL-37 for chemotaxis, degranulation, and CCL4 production. Surprisingly, MrgX2 was resistant to LL-37-induced phosphorylation, desensitization, and internalization. In addition, shRNA-mediated knockdown of the G protein-coupled receptor kinases (GRK2 and GRK3) had no effect on LL-37-induced mast cell degranulation. This study identified MrgX2 as a novel G protein-coupled receptor for the antibacterial peptide LL-37 and demonstrated that unlike most G protein-coupled receptors it is resistant to agonist-induced receptor phosphorylation, desensitization, and internalization.
Collapse
Affiliation(s)
- Hariharan Subramanian
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kshitij Gupta
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Qiang Guo
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ryan Price
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hydar Ali
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
91
|
Abstract
The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases.
Collapse
|
92
|
Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 2011; 80:620-32. [PMID: 22104105 DOI: 10.1128/iai.05896-11] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is a commensal colonizer of the gastrointestinal tract of humans, where it coexists with highly diverse bacterial communities. It is not clear whether this interaction limits or promotes the potential of C. albicans to become an opportunistic pathogen. Here we investigate the interaction between C. albicans and three species of streptococci from the viridans group, which are ubiquitous and abundant oral commensal bacteria. The ability of C. albicans to form biofilms with Streptococcus oralis, Streptococcus sanguinis, or Streptococcus gordonii was investigated using flow cell devices that allow abiotic biofilm formation under salivary flow. In addition, we designed a novel flow cell system that allows mucosal biofilm formation under conditions that mimic the environment in the oral and esophageal mucosae. It was observed that C. albicans and streptococci formed a synergistic partnership where C. albicans promoted the ability of streptococci to form biofilms on abiotic surfaces or on the surface of an oral mucosa analogue. The increased ability of streptococci to form biofilms in the presence of C. albicans could not be explained by a growth-stimulatory effect since the streptococci were unaffected in their growth in planktonic coculture with C. albicans. Conversely, the presence of streptococci increased the ability of C. albicans to invade organotypic models of the oral and esophageal mucosae under conditions of salivary flow. Moreover, characterization of mucosal invasion by the biofilm microorganisms suggested that the esophageal mucosa is more permissive to invasion than the oral mucosa. In summary, C. albicans and commensal oral streptococci display a synergistic interaction with implications for the pathogenic potential of C. albicans in the upper gastrointestinal tract.
Collapse
|
93
|
Wannemuehler TJ, Manukyan MC, Brewster BD, Rouch J, Poynter JA, Wang Y, Meldrum DR. Advances in mesenchymal stem cell research in sepsis. J Surg Res 2011; 173:113-26. [PMID: 22225756 DOI: 10.1016/j.jss.2011.09.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sepsis remains a source of morbidity and mortality in the postoperative patient despite appropriate resuscitative and antimicrobial approaches. Recent research has focused upon additional interventions such as exogenous cell-based therapy. Mesenchymal stem cells (MSCs) exhibit multiple beneficial properties through their capacity for homing, attenuating the inflammatory response, modulating immune cells, and promoting tissue healing. Recent animal trials have provided evidence that MSCs may be useful therapeutic adjuncts. MATERIALS AND METHODS A directed search of recent medical literature was performed utilizing PubMed to examine the pathophysiology of sepsis, mechanisms of mesenchymal stem cell interaction with host cells, sepsis animal models, and recent trials utilizing stem cells in sepsis. RESULTS MSCs continue to show promise in the treatment of sepsis by their intrinsic ability to home to injured tissue, secrete paracrine signals to limit systemic and local inflammation, decrease apoptosis in threatened tissues, stimulate neoangiogenesis, activate resident stem cells, beneficially modulate immune cells, and exhibit direct antimicrobial activity. These effects are associated with reduced organ dysfunction and improved survival in animal models. CONCLUSION Research utilizing animal models of sepsis has provided a greater understanding of the beneficial properties of MSCs. Their capacity to home to sites of injury and use paracrine mechanisms to change the local environment to ultimately improve organ function and survival make MSCs attractive in the treatment of sepsis. Future studies are needed to further evaluate the complex interactions between MSCs and host tissues.
Collapse
Affiliation(s)
- Todd J Wannemuehler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, Davidson DJ, Donis RO. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One 2011; 6:e25333. [PMID: 22031815 PMCID: PMC3198734 DOI: 10.1371/journal.pone.0025333] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/01/2011] [Indexed: 01/13/2023] Open
Abstract
The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease.
Collapse
Affiliation(s)
- Peter G. Barlow
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Pavel Svoboda
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Annie Mackellar
- MRC Centre for Inflammation Research, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Anthony A. Nash
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian A. York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
95
|
Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 2011; 6:635-51. [PMID: 21707311 DOI: 10.2217/fmb.11.27] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of magainins, cecropins and defensins 30 years ago, antimicrobial peptides (AMPs) have been hailed as a potential solution to the dearth of novel antibiotic development. AMPs have shown robust activity against a wide variety of pathogens, including drug-resistant bacteria. Unlike small-molecule antibiotics, however, AMPs have failed to translate this success to the clinic. Only the polymyxins, gramicidins, nisin and daptomycin are currently approved for medical use; the latter is the only example to have been developed in the last several decades. Nonetheless, researchers continue to isolate, modify and develop novel AMPs for therapeutic applications. Efforts have focused on increasing stability, reducing cytotoxicity, improving antimicrobial activity and incorporating AMPs in novel formulations, including nanoscale particles. As peptide synthesis and recombinant production methodologies improve, and more relevant bioassays become available, it becomes increasingly likely that AMPs will break the regulatory barrier and enter the marketplace as valuable antimicrobial weapons in the next 10 years.
Collapse
Affiliation(s)
- Randal Eckert
- C3 Jian, Inc., 423 Hindry Ave, Unit D, Inglewood, CA 90301, USA.
| |
Collapse
|
96
|
Wira CR, Patel MV, Ghosh M, Mukura L, Fahey JV. Innate immunity in the human female reproductive tract: endocrine regulation of endogenous antimicrobial protection against HIV and other sexually transmitted infections. Am J Reprod Immunol 2011; 65:196-211. [PMID: 21294805 DOI: 10.1111/j.1600-0897.2011.00970.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mucosal surfaces of the female reproductive tract (FRT) contain a spectrum of antimicrobials that provide the first line of defense against viruses, bacteria, and fungi that enter the lower FRT. Once thought to be a sterile compartment, the upper FRT is periodically exposed to pathogens throughout the menstrual cycle. More recently, secretions from the upper FRT have been shown to contribute to downstream protection in the lower FRT. In this review, we examine the antimicrobials in FRT secretions made by immune cells and epithelial cells in the upper and lower FRT that contribute to innate protection. Because each site is hormonally regulated to maintain fertility, this review focuses on the contributions of hormone balance during the menstrual cycle to innate immune protection. As presented in this review, studies from our laboratory and others demonstrate that sex hormones regulate antimicrobials produced by innate immune cells throughout the FRT. The goal of this review is to examine the spectrum of antimicrobials in the FRT and the ways in which they are regulated to provide protection against pathogens that compromise reproductive health and threaten the lives of women.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | | | | | |
Collapse
|
97
|
Inhaled therapies for tuberculosis and the relevance of activation of lung macrophages by particulate drug-delivery systems. Ther Deliv 2011; 2:753-68. [DOI: 10.4155/tde.11.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pathogenic strains of Mycobacterium tuberculosis (Mtb) induce ‘alternative activation’ of lung macrophages that they colonize, in order to create conditions that promote the establishment and progression of infection. There is some evidence to indicate that such macrophages may be rescued from alternative activation by inhalable microparticles containing a variety of drugs. This review summarizes the experience of various groups of researchers, relating to observations of induction of a number of classical macrophage activation pathways. Restoration of a ‘respiratory burst’ and upregulation of reactive oxygen species and nitrogen intermediates through the phagocyte oxidase and nitric oxide synthetase enzyme systems; induction of proinflammatory macrophage cytokines; and finally induction of apoptosis rather than necrosis of the infected macrophage are discussed. It is suggested that there is scope to co-opt host responses in the management of tuberculosis, through the route of pulmonary drug delivery.
Collapse
|
98
|
Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2011; 2:101. [PMID: 21772831 PMCID: PMC3131049 DOI: 10.3389/fmicb.2011.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. are major cause of human morbidity and mortality worldwide. Upon entry into the human host, Salmonella spp. must overcome the resistance to colonization mediated by the gut microbiota and the innate immune system. They successfully accomplish this by inducing inflammation and mechanisms of innate immune defense. Many models have been developed to study Salmonella spp. interaction with the microbiota that have helped to identify factors necessary to overcome colonization resistance and to mediate disease. Here we review the current state of studies into this important pathogen/microbiota/host interaction in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Brian M M Ahmer
- The Department of Microbiology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
99
|
Yang Y, Jing L, Li T, Cao G, Liu S. A new Beta defensin from sika deer: molecular cloning and sequence characterization. Anim Biotechnol 2011; 22:64-70. [PMID: 21500108 DOI: 10.1080/10495398.2011.554104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The beta-defensins are small, well-characterized peptides with broad antimicrobial activities. Here we report the identification of a novel β-defensin, sika deer β-defensin-1 (siBD-1), from sika deer tissues with a pair of PCR primers according to the conserved cDNA sequences of known ruminant β-defensins. Total RNA was extracted from the tongue epithelia of a sika deer and the 418 bp cDNA encoding siBD-1 was amplified by the reverse transcription PCR (RT-PCR), 5'- and 3'-RACE. The cDNA contained an open reading frame (ORF) of 192 bases which encoded a 64 amino acid prepro-peptide. The prepro-peptide contained six invariantly spaced cysteine residues, which is the β defensin consensus sequence. The putative mature peptide of the siBD-1 contained nine positively charged residues (5 arginine-R, 3 lysine-K, and 1 histidine-H). The sequence homology shows that siBD-1 has 73.0-90.6% amino-acid identity and 74.6-90.6% cDNA identity with other ruminant beta-defensins, sharing the greatest identity with buffalo enteric β-defensin in both amino acid and nucleotide sequences.
Collapse
Affiliation(s)
- Yinfeng Yang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot City, China
| | | | | | | | | |
Collapse
|
100
|
Abstract
Human gingival epithelial cells (GEC) produce peptides, such as β-defensins and the cathelicidin LL-37, that are both antimicrobial and that modulate the innate immune response. In myeloid and airway epithelial cells, the active form of vitamin D(3) [1,25(OH)(2)D(3)] increases the expression and antibacterial activity of LL-37. To examine the activity of vitamin D on the innate immune defense of the gingival epithelium, cultured epithelial cells were treated with either 10(-8) M 1,25(OH)(2)D(3) or ethanol for up to 24 h. A time-dependent induction of LL-37 mRNA up to 13-fold at 24 h in both standard monolayer and three-dimensional cultures was observed. Induction of the vitamin D receptor and the 1-α-hydroxylase genes was also observed. The hydroxylase was functional, as LL-37 induction was observed in response to stimulation by 25(OH)D(3). Through microarray analysis of other innate immune genes, CD14 expression increased 4-fold, and triggering receptor expressed on myeloid cells-1 (TREM-1) was upregulated 16-fold after 24 h of treatment with 1,25(OH)(2)D(3). TREM-1 is a pivotal amplifier of the innate immune response in macrophages, leading to increased production by inflammatory response genes. Activation of TREM-1 on the GEC led to an increase in interleukin-8 (IL-8) mRNA levels. Incubation of three-dimensional cultures with 1,25(OH)(2)D(3) led to an increase in antibacterial activity against the periodontal pathogen Aggregatibacter actinomycetemcomitans when the bacteria were added to the apical surface. This study is the first to demonstrate the effect of vitamin D on antibacterial defense of oral epithelial cells, suggesting that vitamin D(3) could be utilized to enhance the innate immune defense in the oral cavity.
Collapse
|