51
|
Calmes B, Morel-Rouhier M, Bataillé-Simoneau N, Gelhaye E, Guillemette T, Simoneau P. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola. BMC Microbiol 2015; 15:123. [PMID: 26081847 PMCID: PMC4470081 DOI: 10.1186/s12866-015-0462-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/03/2015] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. RESULTS Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. CONCLUSIONS Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.
Collapse
Affiliation(s)
- Benoit Calmes
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Mélanie Morel-Rouhier
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès, F-54500, Nancy, France.
- INRA, UMR1136 Interactions Arbres-Microorganismes, F-54280, Champenoux, France.
| | - Nelly Bataillé-Simoneau
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Eric Gelhaye
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès, F-54500, Nancy, France.
- INRA, UMR1136 Interactions Arbres-Microorganismes, F-54280, Champenoux, France.
| | - Thomas Guillemette
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Philippe Simoneau
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| |
Collapse
|
52
|
Shen M, Zhao DK, Qiao Q, Liu L, Wang JL, Cao GH, Li T, Zhao ZW. Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress. PLoS One 2015; 10:e0123418. [PMID: 25884726 PMCID: PMC4401685 DOI: 10.1371/journal.pone.0123418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022] Open
Abstract
Glutathione S-transferases (GSTs) compose a family of multifunctional enzymes that play important roles in the detoxification of xenobiotics and the oxidative stress response. In the present study, twenty four GST genes from the transcriptome of a metal-tolerant dark septate endophyte (DSE), Exophiala pisciphila, were identified based on sequence homology, and their responses to various heavy metal exposures were also analyzed. Phylogenetic analysis showed that the 24 GST genes from E. pisciphila (EpGSTs) were divided into eight distinct classes, including seven cytosolic classes and one mitochondrial metaxin 1-like class. Moreover, the variable expression patterns of these EpGSTs were observed under different heavy metal stresses at their effective concentrations for inhibiting growth by 50% (EC50). Lead (Pb) exposure caused the up-regulation of all EpGSTs, while cadmium (Cd), copper (Cu) and zinc (Zn) treatments led to the significant up-regulation of most of the EpGSTs (p < 0.05 to p < 0.001). Furthermore, although heavy metal-specific differences in performance were observed under various heavy metals in Escherichia coli BL21 (DE3) transformed with EpGSTN-31, the over-expression of this gene was able to enhance the heavy metal tolerance of the host cells. These results indicate that E. Pisciphila harbored a diverse of GST genes and the up-regulated EpGSTs are closely related to the heavy metal tolerance of E. pisciphila. The study represents the first investigation of the GST family in E. pisciphila and provides a primary interpretation of heavy metal detoxification for E. pisciphila.
Collapse
Affiliation(s)
- Mi Shen
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Da-Ke Zhao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China; School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Qin Qiao
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Lei Liu
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Jun-Ling Wang
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Guan-Hua Cao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Tao Li
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Zhi-Wei Zhao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China; School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
53
|
Mäkelä MR, Marinović M, Nousiainen P, Liwanag AJM, Benoit I, Sipilä J, Hatakka A, de Vries RP, Hildén KS. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:63-137. [PMID: 25911233 DOI: 10.1016/bs.aambs.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mila Marinović
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - April J M Liwanag
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jussi Sipilä
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - Annele Hatakka
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Kristiina S Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
54
|
Glutathionyl-hydroquinone reductases from poplar are plastidial proteins that deglutathionylate both reduced and oxidized glutathionylated quinones. FEBS Lett 2014; 589:37-44. [PMID: 25455804 DOI: 10.1016/j.febslet.2014.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/04/2014] [Accepted: 11/15/2014] [Indexed: 12/15/2022]
Abstract
Glutathionyl-hydroquinone reductases (GHRs) catalyze the deglutathionylation of quinones via a catalytic cysteine. The two GHR genes in the Populus trichocarpa genome, Pt-GHR1 and Pt-GHR2, are primarily expressed in reproductive organs. Both proteins are localized in plastids. More specifically, Pt-GHR2 localizes in nucleoids. At the structural level, Pt-GHR1 adopts a typical GHR fold, with a dimerization interface comparable to that of the bacterial and fungal GHR counterparts. Pt-GHR1 catalyzes the deglutathionylation of both reduced and oxidized glutathionylated quinones, but the enzyme is more catalytically efficient with the reduced forms.
Collapse
|
55
|
Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol 2014; 5:192. [PMID: 25191271 PMCID: PMC4138524 DOI: 10.3389/fphar.2014.00192] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/26/2014] [Indexed: 12/31/2022] Open
Abstract
Glutathione transferases (GSTs) represent a widespread multigenic enzyme family able to modify a broad range of molecules. These notably include secondary metabolites and exogenous substrates often referred to as xenobiotics, usually for their detoxification, subsequent transport or export. To achieve this, these enzymes can bind non-substrate ligands (ligandin function) and/or catalyze the conjugation of glutathione onto the targeted molecules, the latter activity being exhibited by GSTs having a serine or a tyrosine as catalytic residues. Besides, other GST members possess a catalytic cysteine residue, a substitution that radically changes enzyme properties. Instead of promoting GSH-conjugation reactions, cysteine-containing GSTs (Cys-GSTs) are able to perform deglutathionylation reactions similarly to glutaredoxins but the targets are usually different since glutaredoxin substrates are mostly oxidized proteins and Cys-GST substrates are metabolites. The Cys-GSTs are found in most organisms and form several classes. While Beta and Omega GSTs and chloride intracellular channel proteins (CLICs) are not found in plants, these organisms possess microsomal ProstaGlandin E-Synthase type 2, glutathionyl hydroquinone reductases, Lambda, Iota and Hemerythrin GSTs and dehydroascorbate reductases (DHARs); the four last classes being restricted to the green lineage. In plants, whereas the role of DHARs is clearly associated to the reduction of dehydroascorbate to ascorbate, the physiological roles of other Cys-GSTs remain largely unknown. In this context, a genomic and phylogenetic analysis of Cys-GSTs in photosynthetic organisms provides an updated classification that is discussed in the light of the recent literature about the functional and structural properties of Cys-GSTs. Considering the antioxidant potencies of phenolic compounds and more generally of secondary metabolites, the connection of GSTs with secondary metabolism may be interesting from a pharmacological perspective.
Collapse
Affiliation(s)
- Pierre-Alexandre Lallement
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University Umeå, Sweden
| | - Arnaud Hecker
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| | - Nicolas Rouhier
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| |
Collapse
|
56
|
Transcriptomic responses of Phanerochaete chrysosporium to oak acetonic extracts: focus on a new glutathione transferase. Appl Environ Microbiol 2014; 80:6316-27. [PMID: 25107961 DOI: 10.1128/aem.02103-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood.
Collapse
|
57
|
Wang Z, Wang G, Xiang Q, Zhang Y, Wang H. Identification and characterization of a multi-domain sulfurtransferase in Phanerochaete chrysosporium. Biotechnol Lett 2014; 36:993-9. [PMID: 24557072 DOI: 10.1007/s10529-013-1444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/20/2013] [Indexed: 01/28/2023]
Abstract
A sulfurtransferase gene (PcSft) with a coding region of 546 bp was cloned from the filamentous white-rot fungus Phanerochaere chrysosporium. The 181-amino acid protein contains a highly conserved "Rhodanese-like" domain and an ATP-binding site, with a molecular weight of 20.68 kDa. Semi-quantitative RT-PCR showed that the selective expression of PcSft was involved in secondary metabolism. The recombinant PcSFT protein was expressed in E. coli BL21 (DE3) and purified by Ni(2+)-chelating and size-exclusion chromatography. Its ATPase and sulfurtransferase (SFT) activities were indentified and characterized. PcSFT exhibited optimal SFT activity at pH 8 and 30 °C as well as stability at 20 °C and pH 8. The enzyme's stability under different temperature and pH P. indicates a potential usefulness for the detoxification of cyanide in the environment.
Collapse
Affiliation(s)
- Zhongshan Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, Sichuan Province, China
| | | | | | | | | |
Collapse
|
58
|
Chen G, Zhou Y, Zeng G, Liu H, Yan M, Chen A, Guan S, Shang C, Li H, He J. Alteration of culture fluid proteins by cadmium induction inPhanerochaete chrysosporium. J Basic Microbiol 2013; 55:141-7. [DOI: 10.1002/jobm.201300398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/14/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Guiqiu Chen
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Ying Zhou
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Hongyu Liu
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Ming Yan
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Anwei Chen
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Song Guan
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Cui Shang
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Huanke Li
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| | - Jianmin He
- College of Environmental Science and Engineering; Hunan University; Changsha P. R. China
- Key Laboratory of Environmental Biology and Pollution Control; Hunan University, Ministry of Education; Changsha P. R. China
| |
Collapse
|
59
|
Identification of an elongation factor 1Bγ protein with glutathione transferase activity in both yeast and mycelial morphologies from human pathogenic Blastoschizomyces capitatus. Folia Microbiol (Praha) 2013; 59:107-13. [PMID: 23913100 DOI: 10.1007/s12223-013-0273-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Blastoschizomyces capitatus is an uncommon, opportunistic pathogenic fungus, which causes invasive and disseminated infections. This microorganism is normally present in both environmental and normal human flora. Within a host, B. capitatus is able to grow in both unicellular yeast and multicellular filamentous growth forms. In this study, we obtained in vitro morphological conversion of B. capitatus from yeast-to-mycelial phase to investigate the presence and expression of glutathione transferase (GST) enzymes in both cell forms. A protein with GST activity using the model substrate 1-chloro-2,4-dinitrobenzene was detected in both morphologies and identified by tandem mass spectrometry as a eukaryotic elongation factor 1Bγ (eEF1Bγ) protein, a member of the GST superfamily. No significant difference in GST-specific activity and kinetic constants were observed between mycelial and yeast forms, indicating that eEF1Bγ protein did not show differential expression between the two phases.
Collapse
|
60
|
Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot JP, Gelhaye E. Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 2013; 6:248-63. [PMID: 23279857 PMCID: PMC3815920 DOI: 10.1111/1751-7915.12015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 01/08/2023] Open
Abstract
Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood-decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes.
Collapse
Affiliation(s)
- Mélanie Morel
- Université de Lorraine, IAM, UMR 1136, IFR 110 EFABA, Vandoeuvre-lès-Nancy, F-54506, France.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Meux E, Morel M, Lamant T, Gérardin P, Jacquot JP, Dumarçay S, Gelhaye E. New substrates and activity of Phanerochaete chrysosporium Omega glutathione transferases. Biochimie 2012; 95:336-46. [PMID: 23063695 DOI: 10.1016/j.biochi.2012.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/04/2012] [Indexed: 01/30/2023]
Abstract
Omega glutathione transferases (GSTO) constitute a family of proteins with variable distribution throughout living organisms. It is notably expanded in several fungi and particularly in the wood-degrading fungus Phanerochaete chrysosporium, raising questions concerning the function(s) and potential redundancy of these enzymes. Within the fungal families, GSTOs have been poorly studied and their functions remain rather sketchy. In this study, we have used fluorescent compounds as activity reporters to identify putative ligands. Experiments using 5-chloromethylfluorescein diacetate as a tool combined with mass analyses showed that GSTOs are able to cleave ester bonds. Using this property, we developed a specific activity-based profiling method for identifying ligands of PcGSTO3 and PcGSTO4. The results suggest that GSTOs could be involved in the catabolism of toxic compounds like tetralone derivatives. Biochemical investigations demonstrated that these enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteine residue. To access the physiological function of these enzymes and notably during the wood interaction, recombinant proteins have been immobilized on CNBr Sepharose and challenged with beech wood extracts. Coupled with GC-MS experiments this ligand fishing method allowed to identify terpenes as potential substrates of Omega GST suggesting a physiological role during the wood-fungus interactions.
Collapse
Affiliation(s)
- Edgar Meux
- UMR 1136 INRA-UHP Interactions Arbres/Micro-Organismes, IFR110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
62
|
Mathieu Y, Prosper P, Buée M, Dumarçay S, Favier F, Gelhaye E, Gérardin P, Harvengt L, Jacquot JP, Lamant T, Meux E, Mathiot S, Didierjean C, Morel M. Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties. J Biol Chem 2012; 287:39001-11. [PMID: 23007392 DOI: 10.1074/jbc.m112.402776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.
Collapse
Affiliation(s)
- Yann Mathieu
- Université de Lorraine, Interactions Arbre-Microorganismes, UMR 1136, Institut Fédératif de Recherche 110 EFABA, Vandoeuvre-lès-Nancy F-54506, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Liu D, Gong J, Dai W, Kang X, Huang Z, Zhang HM, Liu W, Liu L, Ma J, Xia Z, Chen Y, Chen Y, Wang D, Ni P, Guo AY, Xiong X. The genome of Ganoderma lucidum provides insights into triterpenes biosynthesis and wood degradation [corrected]. PLoS One 2012; 7:e36146. [PMID: 22567134 PMCID: PMC3342255 DOI: 10.1371/journal.pone.0036146] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/26/2012] [Indexed: 01/08/2023] Open
Abstract
Background Ganoderma lucidum (Reishi or Ling Zhi) is one of the most famous Traditional Chinese Medicines and has been widely used in the treatment of various human diseases in Asia countries. It is also a fungus with strong wood degradation ability with potential in bioenergy production. However, genes, pathways and mechanisms of these functions are still unknown. Methodology/Principal Findings The genome of G. lucidum was sequenced and assembled into a 39.9 megabases (Mb) draft genome, which encoded 12,080 protein-coding genes and ∼83% of them were similar to public sequences. We performed comprehensive annotation for G. lucidum genes and made comparisons with genes in other fungi genomes. Genes in the biosynthesis of the main G. lucidum active ingredients, ganoderic acids (GAs), were characterized. Among the GAs synthases, we identified a fusion gene, the N and C terminal of which are homologous to two different enzymes. Moreover, the fusion gene was only found in basidiomycetes. As a white rot fungus with wood degradation ability, abundant carbohydrate-active enzymes and ligninolytic enzymes were identified in the G. lucidum genome and were compared with other fungi. Conclusions/Significance The genome sequence and well annotation of G. lucidum will provide new insights in function analyses including its medicinal mechanism. The characterization of genes in the triterpene biosynthesis and wood degradation will facilitate bio-engineering research in the production of its active ingredients and bioenergy.
Collapse
Affiliation(s)
- Dongbo Liu
- Hunan Agricultural University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Bourdais A, Bidard F, Zickler D, Berteaux-Lecellier V, Silar P, Espagne E. Wood utilization is dependent on catalase activities in the filamentous fungus Podospora anserina. PLoS One 2012; 7:e29820. [PMID: 22558065 PMCID: PMC3338752 DOI: 10.1371/journal.pone.0029820] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/06/2011] [Indexed: 01/24/2023] Open
Abstract
Catalases are enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. They are implicated in various physiological and pathological conditions but some of their functions remain unclear. In order to decipher the role(s) of catalases during the life cycle of Podospora anserina, we analyzed the role of the four monofunctional catalases and one bifunctional catalase-peroxidase genes present in its genome. The five genes were deleted and the phenotypes of each single and all multiple mutants were investigated. Intriguingly, although the genes are differently expressed during the life cycle, catalase activity is dispensable during both vegetative growth and sexual reproduction in laboratory conditions. Catalases are also not essential for cellulose or fatty acid assimilation. In contrast, they are strictly required for efficient utilization of more complex biomass like wood shavings by allowing growth in the presence of lignin. The secreted CATB and cytosolic CAT2 are the major catalases implicated in peroxide resistance, while CAT2 is the major player during complex biomass assimilation. Our results suggest that P. anserina produces external H2O2 to assimilate complex biomass and that catalases are necessary to protect the cells during this process. In addition, the phenotypes of strains lacking only one catalase gene suggest that a decrease of catalase activity improves the capacity of the fungus to degrade complex biomass.
Collapse
Affiliation(s)
- Anne Bourdais
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Institut Génétique et Développement de Rennes, CNRS, UMR 6061, Rennes, France
- UEB Université Rennes 1, IFR 140, Faculté de Médecine, Rennes, France
| | - Frederique Bidard
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Denise Zickler
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Veronique Berteaux-Lecellier
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Laboratoire d’Excellence « CORAIL », USR 3278 CNRS-EPHE, CRIOBE, BP 1013, Moorea, French Polynesia
| | - Philippe Silar
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Univ Paris Diderot, Sorbonne Paris Cité, UFR des Sciences du Vivant, Paris, France
| | - Eric Espagne
- Institut de Génétique et Microbiologie, Univ Paris-Sud, UMR 8621, Orsay, France
- * E-mail:
| |
Collapse
|
65
|
Velazquez F, Peak-Chew SY, Fernández IS, Neumann CS, Kay RR. Identification of a eukaryotic reductive dechlorinase and characterization of its mechanism of action on its natural substrate. ACTA ACUST UNITED AC 2012; 18:1252-60. [PMID: 22035794 PMCID: PMC3205185 DOI: 10.1016/j.chembiol.2011.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/14/2022]
Abstract
Chlorinated compounds are important environmental pollutants whose biodegradation may be limited by inefficient dechlorinating enzymes. Dictyostelium amoebae produce a chlorinated alkyl phenone called DIF which induces stalk cell differentiation during their multicellular development. Here we describe the identification of DIF dechlorinase. DIF dechlorinase is active when expressed in bacteria, and activity is lost from Dictyostelium cells when its gene, drcA, is knocked out. It has a Km for DIF of 88 nM and Kcat of 6.7 s−1. DrcA is related to glutathione S-transferases, but with a key asparagine-to-cysteine substitution in the catalytic pocket. When this change is reversed, the enzyme reverts to a glutathione S-transferase, thus suggesting a catalytic mechanism. DrcA offers new possibilities for the rational design of bioremediation strategies.
Collapse
Affiliation(s)
- Francisco Velazquez
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK.
| | | | | | | | | |
Collapse
|
66
|
Degradation of Chloro-organic Pollutants by White Rot Fungi. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Thuillier A, Ngadin AA, Thion C, Billard P, Jacquot JP, Gelhaye E, Morel M. Functional diversification of fungal glutathione transferases from the ure2p class. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:938308. [PMID: 22164343 PMCID: PMC3227518 DOI: 10.4061/2011/938308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/12/2011] [Accepted: 09/05/2011] [Indexed: 12/20/2022]
Abstract
The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to correlate the sequence diversity with the functional diversity of these glutathione transferases. The results show that among the nine isoforms found in P. chrysosporium, two belonging to Ure2pA subclass are exclusively expressed at the transcriptional level in presence of polycyclic aromatic compounds. Moreover, we have highlighted differential catalytic activities and substrate specificities between Ure2pA and Ure2pB isoforms. This diversity of sequence and function suggests that fungal Ure2p sequences have evolved rapidly in response to environmental constraints.
Collapse
Affiliation(s)
- Anne Thuillier
- Unité Mixte de Recherches INRA UHP 1136 Interaction Arbres Microorganismes, IFR 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Faculté des Sciences et Technologies, Nancy Université BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
68
|
Davis C, Carberry S, Schrettl M, Singh I, Stephens JC, Barry SM, Kavanagh K, Challis GL, Brougham D, Doyle S. The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. CHEMISTRY & BIOLOGY 2011; 18:542-52. [PMID: 21513890 DOI: 10.1016/j.chembiol.2010.12.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 12/15/2010] [Accepted: 12/29/2010] [Indexed: 01/29/2023]
Abstract
Gliotoxin, a redox-active metabolite, is produced by the opportunistic fungal pathogen Aspergillus fumigatus, and its biosynthesis is directed by the gli gene cluster. Knowledge of the biosynthetic pathway to gliotoxin, which contains a disulfide bridge of unknown origin, is limited, although L-Phe and L-Ser are known biosynthetic precursors. Deletion of gliG from the gli cluster, herein functionally confirmed as a glutathione S-transferase, results in abrogation of gliotoxin biosynthesis and accumulation of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. This putative shunt metabolite from the gliotoxin biosynthetic pathway contains an intriguing hydroxyl group at C-6, consistent with a gliotoxin biosynthetic pathway involving thiolation via addition of the glutathione thiol group to a reactive acyl imine intermediate. Complementation of gliG restored gliotoxin production and, unlike gliT, gliG was found not to be involved in fungal self-protection against gliotoxin.
Collapse
Affiliation(s)
- Carol Davis
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Meux E, Prosper P, Ngadin A, Didierjean C, Morel M, Dumarçay S, Lamant T, Jacquot JP, Favier F, Gelhaye E. Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class. J Biol Chem 2011; 286:9162-73. [PMID: 21177852 PMCID: PMC3059006 DOI: 10.1074/jbc.m110.194548] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/17/2010] [Indexed: 01/24/2023] Open
Abstract
The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.
Collapse
Affiliation(s)
- Edgar Meux
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Pascalita Prosper
- the CRM2, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Institut Jean Barriol, and
| | - Andrew Ngadin
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Claude Didierjean
- the CRM2, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Institut Jean Barriol, and
| | - Mélanie Morel
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Stéphane Dumarçay
- the Laboratoire d'Études et de Recherches sur le Matériau Bois, EA UHP 4370, Nancy Université, Faculté des Sciences et Techniques, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | - Tiphaine Lamant
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Jean-Pierre Jacquot
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| | - Frédérique Favier
- the CRM2, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Institut Jean Barriol, and
| | - Eric Gelhaye
- From the UMR 1136 INRA-UHP “Interactions Arbres/Micro-Organismes,” IFR110 “Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation,”
| |
Collapse
|