51
|
Immunological tolerance as a barrier to protective HIV humoral immunity. Curr Opin Immunol 2017; 47:26-34. [PMID: 28728075 DOI: 10.1016/j.coi.2017.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/23/2017] [Indexed: 01/19/2023]
Abstract
HIV-1 infection typically eludes antibody control by our immune system and is not yet prevented by a vaccine. While many viral features contribute to this immune evasion, broadly neutralizing antibodies (bnAbs) against HIV-1 are often autoreactive and it has been suggested that immunological tolerance may restrict a neutralizing antibody response. Indeed, recent Ig knockin mouse studies have shown that bnAb-expressing B cells are largely censored by central tolerance in the bone marrow. However, the contribution of peripheral tolerance in limiting the HIV antibody response by anergic and potentially protective B cells is poorly understood. Studies using mouse models to elucidate how anergic B cells are regulated and can be recruited into HIV-specific neutralizing antibody responses may provide insight into the development of a protective HIV-1 vaccine.
Collapse
|
52
|
Schroeder KMS, Agazio A, Strauch PJ, Jones ST, Thompson SB, Harper MS, Pelanda R, Santiago ML, Torres RM. Breaching peripheral tolerance promotes the production of HIV-1-neutralizing antibodies. J Exp Med 2017; 214:2283-2302. [PMID: 28698284 PMCID: PMC5551567 DOI: 10.1084/jem.20161190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/07/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Schroeder et al. demonstrate that when peripheral tolerance is relaxed, tier 2 HIV-1–neutralizing antibodies can be elicited and identify new autoreactive antibody specificities against histone H2A capable of neutralizing tier 2 HIV-1. A subset of characterized HIV-1 broadly neutralizing antibodies (bnAbs) are polyreactive with additional specificities for self-antigens and it has been proposed immunological tolerance may present a barrier to their participation in protective humoral immunity. We address this hypothesis by immunizing autoimmune-prone mice with HIV-1 Envelope (Env) and characterizing the primary antibody response for HIV-1 neutralization. We find autoimmune mice generate neutralizing antibody responses to tier 2 HIV-1 strains with alum treatment alone in the absence of Env. Importantly, experimentally breaching immunological tolerance in wild-type mice also leads to the production of tier 2 HIV-1–neutralizing antibodies, which increase in breadth and potency following Env immunization. In both genetically prone and experimentally induced mouse models of autoimmunity, increased serum levels of IgM anti-histone H2A autoantibodies significantly correlated with tier 2 HIV-1 neutralization, and anti-H2A antibody clones were found to neutralize HIV-1. These data demonstrate that breaching peripheral tolerance permits a cross-reactive HIV-1 autoantibody response able to neutralize HIV-1.
Collapse
Affiliation(s)
- Kristin M S Schroeder
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Amanda Agazio
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Pamela J Strauch
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Sean T Jones
- Division of Infectious Diseases, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Michael S Harper
- Division of Infectious Diseases, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
53
|
Abstract
Autoantibody testing is performed to help diagnose patients who have clinical symptoms suggestive of possible autoimmune diseases. Antinuclear antibodies (ANA) are present in many systemic autoimmune conditions such as systemic lupus erythematosus (SLE). However, a positive ANA test may also be seen with non-autoimmune inflammatory diseases, including both acute and chronic infections. When the ANA test is used as an initial screen in patients with non-specific clinical symptoms, such as fever, joint pain, myalgias, fatigue, rash, or anemia, the likelihood of a positive result due to infection will increase, especially in children. This article identifies acute and chronic infectious diseases that are likely to produce a positive ANA result and summarizes recent literature addressing both the causes and consequences of these findings.
Collapse
Affiliation(s)
- Christine M Litwin
- a Pathology and Laboratory Medicine, Medical University of South Carolina , Charleston , South Carolina , USA
| | - Steven R Binder
- b Clinical Diagnostics Group, Bio-Rad Laboratories , Hercules , California , USA
| |
Collapse
|
54
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
55
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
56
|
Hart GT, Akkaya M, Chida AS, Wei C, Jenks SA, Tipton C, He C, Wendel BS, Skinner J, Arora G, Kayentao K, Ongoiba A, Doumbo O, Traore B, Narum DL, Jiang N, Crompton PD, Sanz I, Pierce SK. The Regulation of Inherently Autoreactive VH4-34-Expressing B Cells in Individuals Living in a Malaria-Endemic Area of West Africa. THE JOURNAL OF IMMUNOLOGY 2016; 197:3841-3849. [PMID: 27798155 DOI: 10.4049/jimmunol.1600491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4+ plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4+ peripheral blood CD19+ B cells was similar in United States adults and African adults and children; however, more 9G4+ B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4+ IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4+ B cells acquired phenotypes of atypical and classical memory B cells and 9G4+ IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4+ B cells and 9G4+ IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.
Collapse
Affiliation(s)
- Geoffrey T Hart
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Asiya S Chida
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Chungwen Wei
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Scott A Jenks
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | | | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Gunjan Arora
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Ogobara Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, Bamako, Mali; and
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
57
|
Van Regenmortel MHV. Structure-Based Reverse Vaccinology Failed in the Case of HIV Because it Disregarded Accepted Immunological Theory. Int J Mol Sci 2016; 17:E1591. [PMID: 27657055 PMCID: PMC5037856 DOI: 10.3390/ijms17091591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022] Open
Abstract
Two types of reverse vaccinology (RV) should be distinguished: genome-based RV for bacterial vaccines and structure-based RV for viral vaccines. Structure-based RV consists in trying to generate a vaccine by first determining the crystallographic structure of a complex between a viral epitope and a neutralizing monoclonal antibody (nMab) and then reconstructing the epitope by reverse molecular engineering outside the context of the native viral protein. It is based on the unwarranted assumption that the epitope designed to fit the nMab will have acquired the immunogenic capacity to elicit a polyclonal antibody response with the same protective capacity as the nMab. After more than a decade of intensive research using this type of RV, this approach has failed to deliver an effective, preventive HIV-1 vaccine. The structure and dynamics of different types of HIV-1 epitopes and of paratopes are described. The rational design of an anti-HIV-1 vaccine is shown to be a misnomer since investigators who claim that they design a vaccine are actually only improving the antigenic binding capacity of one epitope with respect to only one paratope and not the immunogenic capacity of an epitope to elicit neutralizing antibodies. Because of the degeneracy of the immune system and the polyspecificity of antibodies, each epitope studied by the structure-based RV procedure is only one of the many epitopes that the particular nMab is able to recognize and there is no reason to assume that this nMab must have been elicited by this one epitope of known structure. Recent evidence is presented that the trimeric Env spikes of the virus possess such an enormous plasticity and intrinsic structural flexibility that it is it extremely difficult to determine which Env regions are the best candidate vaccine immunogens most likely to elicit protective antibodies.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, 300, Boulevard Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France.
| |
Collapse
|
58
|
van Haaren MM, van den Kerkhof TLGM, van Gils MJ. Natural infection as a blueprint for rational HIV vaccine design. Hum Vaccin Immunother 2016; 13:229-236. [PMID: 27649455 PMCID: PMC5287307 DOI: 10.1080/21645515.2016.1232785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
So far, the development of a human immunodeficiency virus (HIV) vaccine has been unsuccessful. However, recent progress in the field of broadly neutralizing antibodies (bNAbs) has reinvigorated the search for an HIV vaccine. bNAbs develop in a minority of HIV infected individuals and passive transfer of these bNAbs to non-human primates provides protection from HIV infection. Studies in a number of HIV infected individuals on bNAb maturation alongside viral evolution and escape have shed light on the features important for bNAb elicitation. Here we review the observations from these studies, and how they influence the rational design of HIV vaccines.
Collapse
Affiliation(s)
- Marlies M van Haaren
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Tom L G M van den Kerkhof
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Marit J van Gils
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
59
|
Abstract
Purpose of review This review highlights recent developments in HIV-1 antibody engineering and discusses the effects of increased polyreactivity on serum half-lives of engineered antibodies. Recent findings Recent studies have uncovered a wealth of information about the relationship between the sequences and efficacies of anti-HIV-1 antibodies through a combination of bioinformatics, structural characterization and in vivo studies. This knowledge has stimulated efforts to enhance antibody breadth and potency for therapeutic use. Although some engineered antibodies have shown increased polyreactivity and short half-lives, promising efforts are circumventing these problems. Summary Antibodies are desirable as therapeutics due to their ability to recognize targets with both specificity and high affinity. Furthermore, the ability of antibodies to stimulate Fc-mediated effector functions can increase their utility. Thus, mAbs have become central to strategies for the treatment of various diseases. Using both targeted and library-based approaches, antibodies can be engineered to improve their therapeutic properties. This article will discuss recent antibody engineering efforts to improve the breadth and potency of anti-HIV-1 antibodies. The polyreactivity of engineered HIV-1 bNAbs and the effect on serum half-life will be explored along with strategies to overcome problems introduced by engineering antibodies. Finally, advances in creating bispecific anti-HIV-1 reagents are discussed.
Collapse
|
60
|
Tawar RG, Colpitts CC, Timm J, Fehm T, Roggendorf M, Meisel H, Meyer N, Habersetzer F, Cosset FL, Berg T, Zeisel MB, Baumert TF. Acute hepatitis C virus infection induces anti-host cell receptor antibodies with virus-neutralizing properties. Hepatology 2015; 62:726-36. [PMID: 26010076 DOI: 10.1002/hep.27906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/19/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) causes persistent infection in the majority of infected individuals. The mechanisms of persistence and clearance are only partially understood. Antibodies (Abs) against host cell entry receptors have been shown to inhibit HCV infection in cell culture and animal models. In this study, we aimed to investigate whether anti-receptor Abs are induced during infection in humans in vivo and whether their presence is associated with outcome of infection. We established an enzyme-linked immunosorbant assay using a recombinant CD81-claudin-1 (CLDN1) fusion protein to detect and quantify Abs directed against extracellular epitopes of the HCV CD81-CLDN1 coreceptor complex. The presence of anti-receptor Abs was studied in serum of patients from a well-defined cohort of a single-source HCV outbreak of pregnant women and several control groups, including uninfected pregnant women, patients with chronic hepatitis B and D virus (HBV/HDV) infection, and healthy individuals. Virus-neutralizing activity of Abs was determined using recombinant cell culture-derived HCV (HCVcc). Our results demonstrate that HCV-infected patients have statistically significantly higher anti-CD81/CLDN1 Ab titers during the early phase of infection than controls. The titers were significantly higher in resolvers compared to persisters. Functional studies using immunoadsorption and HCV cell culture models demonstrate that HCV-neutralizing anti-receptor Abs are induced in the early phase of HCV infection, but not in control groups. CONCLUSION The virus-neutralizing properties of these Abs suggest a role for control of viral infection in conjunction with antiviral responses. Characterization of these anti-receptor Abs opens new avenues to prevent and treat HCV infection.
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Che C Colpitts
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Jörg Timm
- Institute for Virology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Helga Meisel
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Medicine, Berlin, Germany
| | - Nicolas Meyer
- Pôle de Santé Publique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, Lyon, France; Inserm, U1111, Lyon France; Ecole Normale Supérieure; CNRS UMR 5308, Lyon, France; LabEx Ecofect, University of Lyon, Lyon, France
| | - Thomas Berg
- Department of Internal Medicine, Neurology and Dermatology, Gastroenterology and Rheumatology Clinic, Section of Hepatology, University of Leipzig, Leipzig, Germany
| | - Mirjam B Zeisel
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
61
|
Williams WB, Liao HX, Moody MA, Kepler TB, Alam SM, Gao F, Wiehe K, Trama AM, Jones K, Zhang R, Song H, Marshall DJ, Whitesides JF, Sawatzki K, Hua A, Liu P, Tay MZ, Seaton KE, Shen X, Foulger A, Lloyd KE, Parks R, Pollara J, Ferrari G, Yu JS, Vandergrift N, Montefiori DC, Sobieszczyk ME, Hammer S, Karuna S, Gilbert P, Grove D, Grunenberg N, McElrath MJ, Mascola JR, Koup RA, Corey L, Nabel GJ, Morgan C, Churchyard G, Maenza J, Keefer M, Graham BS, Baden LR, Tomaras GD, Haynes BF. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science 2015; 349:aab1253. [PMID: 26229114 DOI: 10.1126/science.aab1253] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/09/2015] [Indexed: 01/04/2023]
Abstract
An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy.
Collapse
Affiliation(s)
- Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ashley M Trama
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kathryn Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hongshuo Song
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dawn J Marshall
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - John F Whitesides
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kaitlin Sawatzki
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Axin Hua
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Pinghuang Liu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Matthew Z Tay
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kelly E Seaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Krissey E Lloyd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jae-Sung Yu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Scott Hammer
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Gilbert
- The Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Doug Grove
- The Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cecilia Morgan
- The Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Keefer
- University of Rochester School of Medicine, Rochester, NY, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
62
|
Structure-Guided Design of an Anti-dengue Antibody Directed to a Non-immunodominant Epitope. Cell 2015; 162:493-504. [PMID: 26189681 DOI: 10.1016/j.cell.2015.06.057] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/13/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
Dengue is the most common vector-borne viral disease, causing nearly 400 million infections yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral responses may not be accessible by conventional B cell panning methods. To demonstrate an alternative strategy to generating a therapeutic antibody, we employed a non-immunodominant, but functionally relevant, epitope in domain III of the E protein, and engineered by structure-guided methods an antibody directed to it. The resulting antibody, Ab513, exhibits high-affinity binding to, and broadly neutralizes, multiple genotypes within all four serotypes. To assess therapeutic relevance of Ab513, activity against important human clinical features of dengue was investigated. Ab513 mitigates thrombocytopenia in a humanized mouse model, resolves vascular leakage, reduces viremia to nearly undetectable levels, and protects mice in a maternal transfer model of lethal antibody-mediated enhancement. The results demonstrate that Ab513 may reduce the public health burden from dengue.
Collapse
|
63
|
Wine Y, Horton AP, Ippolito GC, Georgiou G. Serology in the 21st century: the molecular-level analysis of the serum antibody repertoire. Curr Opin Immunol 2015; 35:89-97. [PMID: 26172290 DOI: 10.1016/j.coi.2015.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
The ensemble of antibodies found in serum and secretions represents the key adaptive component of B-cell mediated humoral immunity. The antibody repertoire is shaped by the historical record of exposure to exogenous factors such as pathogens and vaccines, as well as by endogenous host-intrinsic factors such as genetics, self-antigens, and age. Thanks to very recent technology advancements it is now becoming possible to identify and quantify the individual antibodies comprising the serological repertoire. In parallel, the advent of high throughput methods for antigen and immunosignature discovery opens up unprecedented opportunities to transform our understanding of numerous key questions in adaptive humoral immunity, including the nature and dynamics of serological memory, the role of polyspecific antibodies in health and disease and how protective responses to infections or vaccine challenge arise. Additionally, these technologies also hold great promise for therapeutic antibody and biomarker discovery in a variety of settings.
Collapse
Affiliation(s)
- Yariv Wine
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew P Horton
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
64
|
Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies. Cell Host Microbe 2015; 16:304-13. [PMID: 25211073 DOI: 10.1016/j.chom.2014.08.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/10/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022]
Abstract
Induction of HIV-1 broad neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development but has remained challenging partially due to unusual traits of bnAbs, including high somatic hypermutation (SHM) frequencies and in-frame insertions and deletions (indels). Here we examined the propensity and functional requirement for indels within HIV-1 bnAbs. High-throughput sequencing of the immunoglobulin (Ig) VHDJH genes in HIV-1 infected and uninfected individuals revealed that the indel frequency was elevated among HIV-1-infected subjects, with no unique properties attributable to bnAb-producing individuals. This increased indel occurrence depended only on the frequency of SHM point mutations. Indel-encoded regions were generally proximal to antigen binding sites. Additionally, reconstruction of a HIV-1 CD4-binding site bnAb clonal lineage revealed that a large compound VHDJH indel was required for bnAb activity. Thus, vaccine development should focus on designing regimens targeted at sustained activation of bnAb lineages to achieve the required SHM and indel events.
Collapse
|
65
|
Van Regenmortel MHV. Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit 2015; 27:627-39. [PMID: 25277087 DOI: 10.1002/jmr.2394] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/09/2022]
Abstract
The concept of antibody specificity is analyzed and shown to reside in the ability of an antibody to discriminate between two antigens. Initially, antibody specificity was attributed to sequence differences in complementarity determining regions (CDRs), but as increasing numbers of crystallographic antibody-antigen complexes were elucidated, specificity was analyzed in terms of six antigen-binding regions (ABRs) that only roughly correspond to CDRs. It was found that each ABR differs significantly in its amino acid composition and tends to bind different types of amino acids at the surface of proteins. In spite of these differences, the combined preference of the six ABRs does not allow epitopes to be distinguished from the rest of the protein surface. These findings explain the poor success of past and newly proposed methods for predicting protein epitopes. Antibody polyspecificity refers to the ability of one antibody to bind a large variety of epitopes in different antigens, and this property explains how the immune system develops an antibody repertoire that is able to recognize every antigen the system is likely to encounter. Antibody heterospecificity arises when an antibody reacts better with another antigen than with the one used to raise the antibody. As a result, an antibody may sometimes appear to have been elicited by an antigen with which it is unable to react. The implications of antibody polyspecificity and heterospecificity in vaccine development are pointed out.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- Wallenberg Research Center, Stellenbosch Institute for Advanced Study, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
66
|
Corsiero E, Sutcliffe N, Pitzalis C, Bombardieri M. Accumulation of self-reactive naïve and memory B cell reveals sequential defects in B cell tolerance checkpoints in Sjögren's syndrome. PLoS One 2014; 9:e114575. [PMID: 25535746 PMCID: PMC4275206 DOI: 10.1371/journal.pone.0114575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterised by breach of self-tolerance towards nuclear antigens resulting in high affinity circulating autoantibodies. Although peripheral B cell disturbances have been described in SS, with predominance of naïve and reduction of memory B cells, the stage at which errors in B cell tolerance checkpoints accumulate in SS is unknown. Here we determined the frequency of self- and poly-reactive B cells in the circulating naïve and memory compartment of SS patients. Single CD27-IgD+ naïve, CD27+IgD+ memory unswitched and CD27+IgD- memory switched B cells were sorted by FACS from the peripheral blood of 7 SS patients. To detect the frequency of polyreactive and autoreactive clones, paired Ig VH and VL genes were amplified, cloned and expressed as recombinant monoclonal antibodies (rmAbs) displaying identical specificity of the original B cells. IgVH and VL gene usage and immunoreactivity of SS rmAbs were compared with those obtained from healthy donors (HD). From a total of 353 VH and 293 VL individual sequences, we obtained 114 rmAbs from circulating naïve (n = 66) and memory (n = 48) B cells of SS patients. Analysis of the Ig V gene repertoire did not show significant differences in SS vs. HD B cells. In SS patients, circulating naïve B cells (with germline VH and VL genes) displayed a significant accumulation of clones autoreactive against Hep-2 cells compared to HD (43.1% vs. 25%). Moreover, we demonstrated a progressive increase in the frequency of circulating anti-nuclear naïve (9.3%), memory unswitched (22.2%) and memory switched (27.3%) B cells in SS patients. Overall, these data provide novel evidence supporting the existence of both early and late defects in B cell tolerance checkpoints in patients with SS resulting in the accumulation of autoreactive naïve and memory B cells.
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom
- * E-mail: (EC); (MB)
| | - Nurhan Sutcliffe
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom
- * E-mail: (EC); (MB)
| |
Collapse
|
67
|
Van Regenmortel MHV. An Outdated Notion of Antibody Specificity is One of the Major Detrimental Assumptions of the Structure-Based Reverse Vaccinology Paradigm, Which Prevented It from Helping to Develop an Effective HIV-1 Vaccine. Front Immunol 2014; 5:593. [PMID: 25477882 PMCID: PMC4235417 DOI: 10.3389/fimmu.2014.00593] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/05/2014] [Indexed: 01/12/2023] Open
Abstract
The importance of paradigms for guiding scientific research is explained with reference to the seminal work of Karl Popper and Thomas Kuhn. A prevalent paradigm, followed for more than a decade in HIV-1 vaccine research, which gave rise to the strategy known as structure-based reverse vaccinology is described in detail. Several reasons why this paradigm did not allow the development of an effective HIV-1 vaccine are analyzed. A major reason is the belief shared by many vaccinologists that antibodies possess a narrow specificity for a single epitope and are not polyspecific for a diverse group of potential epitopes. When this belief is abandoned, it becomes obvious that the one particular epitope structure observed during the crystallographic analysis of a neutralizing antibody–antigen complex does not necessarily reveal, which immunogenic structure should be used to elicit the same type of neutralizing antibody. In the physical sciences, scientific explanations are usually presented as logical deductions derived from a relevant law of nature together with certain initial conditions. In immunology, causal explanations in terms of a single cause acting according to a law of nature are not possible because numerous factors always play a role in bringing about an effect. The implications of this state of affairs for the rational design of HIV vaccines are outlined. An alternative approach to obtain useful scientific understanding consists in intervening empirically in the immune system and it is suggested that manipulating the system experimentally is needed to learn to control it and achieve protective immunity by vaccination.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- CNRS, Biotechnologie des Interactions Moleculaires, IREBS, School of Biotechnology, ESBS, University of Strasbourg , Illkirch , France
| |
Collapse
|
68
|
Antibody B cell responses in HIV-1 infection. Trends Immunol 2014; 35:549-61. [DOI: 10.1016/j.it.2014.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
|
69
|
Owen JP, Waite JL, Holden KZ, Clayton DH. Does antibody binding to diverse antigens predict future infection? Parasite Immunol 2014; 36:573-84. [DOI: 10.1111/pim.12141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022]
Affiliation(s)
- J. P. Owen
- Department of Entomology; Washington State University; Pullman WA USA
| | - J. L. Waite
- Department of Biology; University of Utah; Salt Lake City UT USA
| | - K. Z. Holden
- Department of Entomology; Washington State University; Pullman WA USA
| | - D. H. Clayton
- Department of Biology; University of Utah; Salt Lake City UT USA
| |
Collapse
|
70
|
Abstract
UNLABELLED It is generally acknowledged that human broadly neutralizing antibodies (bNAbs) capable of neutralizing multiple HIV-1 clades are often polyreactive or autoreactive. Whereas polyreactivity or autoreactivity has been proposed to be crucial for neutralization breadth, no systematic, quantitative study of self-reactivity among nonneutralizing HIV-1 Abs (nNAbs) has been performed to determine whether poly- or autoreactivity in bNAbs is a consequence of chronic antigen (Ag) exposure and/or inflammation or a fundamental property of neutralization. Here, we use protein microarrays to assess binding to >9,400 human proteins and find that as a class, bNAbs are significantly more poly- and autoreactive than nNAbs. The poly- and autoreactive property is therefore not due to the infection milieu but rather is associated with neutralization. Our observations are consistent with a role of heteroligation for HIV-1 neutralization and/or structural mimicry of host Ags by conserved HIV-1 neutralization sites. Although bNAbs are more mutated than nNAbs as a group, V(D)J mutation per se does not correlate with poly- and autoreactivity. Infrequent poly- or autoreactivity among nNAbs implies that their dominance in humoral responses is due to the absence of negative control by immune regulation. Interestingly, four of nine bNAbs specific for the HIV-1 CD4 binding site (CD4bs) (VRC01, VRC02, CH106, and CH103) bind human ubiquitin ligase E3A (UBE3A), and UBE3A protein competitively inhibits gp120 binding to the VRC01 bNAb. Among these four bNAbs, avidity for UBE3A was correlated with neutralization breadth. Identification of UBE3A as a self-antigen recognized by CD4bs bNAbs offers a mechanism for the rarity of this bNAb class. IMPORTANCE Eliciting bNAbs is key for HIV-1 vaccines; most Abs elicited by HIV-1 infection or immunization, however, are strain specific or nonneutralizing, and unsuited for protection. Here, we compare the specificities of bNAbs and nNAbs to demonstrate that bNAbs are significantly more poly- and autoreactive than nNAbs. The strong association of poly- and autoreactivity with bNAbs, but not nNAbs from infected patients, indicates that the infection milieu, chronic inflammation and Ag exposure, CD4 T-cell depletion, etc., alone does not cause poly- and autoreactivity. Instead, these properties are fundamentally linked to neutralization breadth, either by the requirement for heteroligation or the consequence of host mimicry by HIV-1. Indeed, we show that human UBE3A shares an epitope(s) with HIV-1 envelope recognized by four CD4bs bNAbs. The poly- and autoreactivity of bNAbs surely contribute to the rarity of membrane-proximal external region (MPER) and CD4bs bNAbs and identify a roadblock that must be overcome to induce protective vaccines.
Collapse
|
71
|
Schneider DA, von Herrath MG. Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia 2014; 57:2009-18. [PMID: 25073445 PMCID: PMC4153966 DOI: 10.1007/s00125-014-3340-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022]
Abstract
In type 1 diabetes, as a result of as yet unknown triggering events, auto-aggressive CD8(+) T cells, together with a significant number of other inflammatory cells, including CD8(+) T lymphocytes with unknown specificity, infiltrate the pancreas, leading to insulitis and destruction of the insulin-producing beta cells. Type 1 diabetes is a multifactorial disease caused by an interactive combination of genetic and environmental factors. Viruses are major environmental candidates with known potential effects on specific key points in the pathogenesis of type 1 diabetes and recent findings seem to confirm this presumption. However, we still lack well-grounded mechanistic explanations for how exactly viruses may influence type 1 diabetes aetiology. In this review we provide a summary of experimentally defined viral mechanisms potentially involved in the ontology of type 1 diabetes and discuss some novel hypotheses of how viruses may affect the initiation and natural history of the disease.
Collapse
Affiliation(s)
- Darius A. Schneider
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 USA
- Department of Medicine, UC San Diego, La Jolla, CA USA
| | - Matthias G. von Herrath
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 USA
- Novo Nordisk Type 1 Diabetes Research Center, Seattle, WA 98109 USA
| |
Collapse
|
72
|
Gao F, Bonsignori M, Liao HX, Kumar A, Xia SM, Lu X, Cai F, Hwang KK, Song H, Zhou T, Lynch RM, Alam SM, Moody MA, Ferrari G, Berrong M, Kelsoe G, Shaw GM, Hahn BH, Montefiori DC, Kamanga G, Cohen MS, Hraber P, Kwong PD, Korber BT, Mascola JR, Kepler TB, Haynes BF. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 2014; 158:481-91. [PMID: 25065977 PMCID: PMC4150607 DOI: 10.1016/j.cell.2014.06.022] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Feng Gao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| | - Mattia Bonsignori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hua-Xin Liao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Amit Kumar
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Shi-Mao Xia
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Xiaozhi Lu
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Fangping Cai
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Kwan-Ki Hwang
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hongshuo Song
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Munir Alam
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Guido Ferrari
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Mark Berrong
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Garnett Kelsoe
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Montefiori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Gift Kamanga
- UNC Project, Lilongwe, Malawi; Departments of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Departments of Medicine, Epidemiology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Hraber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02215, USA
| | - Barton F Haynes
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| |
Collapse
|
73
|
Kamatari YO, Ohta S, Inoshima Y, Oda M, Maruno T, Kobayashi Y, Ishiguro N. Identification and characterization of a multispecific monoclonal antibody G2 against chicken prion protein. Protein Sci 2014; 23:1050-9. [PMID: 24863561 DOI: 10.1002/pro.2491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/11/2022]
Abstract
We previously generated a monoclonal antibody (mAb), G2, by immunizing mice with Residues 174-247 of the chicken prion protein (ChPrP(C) ). In this study, we found that G2 possessed an extremely unusual characteristic for a mAb; in particular, it could react with at least three proteins other than ChPrP(C) , the original antigenic protein. We immunoscreened a complementary DNA library from chicken brain DNA and found three proteins (SEPT3, ATP6V1C1, and C6H10orf76) that reacts with G2. There were no regions of amino acid sequence similarity between ChPrP(C) and SEPT3, ATP6V1C1, or C6H10orf76. We selected ATP6V1C1 as a representative of the three proteins and identified the epitope within ATP6V1C1 that reacts with G2. The amino acid sequence of the G2 epitope within ATP6V1C1 (Pep8) was not related to the G2 epitope within ChPrP(C) (Pep18mer). However, enzyme-linked immunosorbent assay, surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) experiments indicated that these two peptides have similar binding affinity for G2. The apparent KD values of Pep18mer and Pep8 obtained from SPR experiments were 2.9 × 10(-8) and 1.6 × 10(-8) M, respectively. Antibody inhibition test using each peptide indicated that the binding sites of the two different peptides overlapped each other. We observed that these two peptides substantially differed in several binding characteristics. Based on the SPR experiments, the association and dissociation rate constants of Pep18mer were higher than those of Pep8. A clear difference was also observed in ITC experiments. These differences may be explained by G2 adopting different binding conformations and undergoing different binding pathways.
Collapse
Affiliation(s)
- Yuji O Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
74
|
Yu L, Guan Y. Immunologic Basis for Long HCDR3s in Broadly Neutralizing Antibodies Against HIV-1. Front Immunol 2014; 5:250. [PMID: 24917864 PMCID: PMC4040451 DOI: 10.3389/fimmu.2014.00250] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
A large number of potent broadly neutralizing antibodies (bnAbs) against HIV-1 have been reported in recent years, raising hope for the possibility of an effective vaccine based on epitopes recognized by these protective antibodies. However, many of these bnAbs contain the long heavy chain complementarity-determining region 3 (HCDR3), which is viewed as an obstacle to the development of an HIV-1 vaccine targeting the bnAb responses. This mini-review summarizes the current literature and discusses the different potential immunologic mechanisms for generating long HCDR3, including D–D fusion, VH replacement, long N region addition, and skewed D–J gene usage, among which potential VH replacement products appear to be significant contributors. VH replacement occurs through recombinase activated gene-mediated secondary recombination and contributes to the diversified naïve B cell repertoire. During VH replacement, a short stretch of nucleotides from previously rearranged VH genes remains within the newly formed HCDR3, thus elongating its length. Accumulating evidence suggests that long HCDR3s are present in significant numbers in the human mature naïve B cell repertoire and are primarily generated by recombination during B cell development. These new observations indicate that long HCDR3s, though low in frequency, are a normal feature of the human antibody naïve repertoire and they appear to be selected to target conserved epitopes located in deep, partially obscured regions of the HIV-1 envelope trimer. Therefore, the presence of long HCDR3 sequences should not necessarily be viewed as an obstacle to the development of an HIV-1 vaccine based upon bnAb responses.
Collapse
Affiliation(s)
- Lei Yu
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Yongjun Guan
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
75
|
Corsiero E, Pitzalis C, Bombardieri M. Peripheral and synovial mechanisms of humoral autoimmunity in rheumatoid arthritis. Drug Discov Today 2014; 19:1161-5. [PMID: 24880103 DOI: 10.1016/j.drudis.2014.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 01/03/2023]
Abstract
One of the hallmarks of rheumatoid arthritis (RA) is the development of humoral autoimmunity resulting in circulating autoantibodies. The clinical efficacy of B cell-depleting biologic treatments highlighted a key role for autoreactive B cell activation in the pathogenesis of RA. In this review, we discuss the key mechanisms leading to breach of B cell self-tolerance in the peripheral compartment. We also highlight the contribution of synovial ectopic lymphoid structures (ELS) in the development of functional niches of autoreactive B cells promoting humoral autoimmunity in the inflamed RA joints over and above secondary lymphoid organs (SLO).
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
76
|
Dimitrov JD, Planchais C, Scheel T, Ohayon D, Mesnage S, Berek C, Kaveri SV, Lacroix-Desmazes S. A cryptic polyreactive antibody recognizes distinct clades of HIV-1 glycoprotein 120 by an identical binding mechanism. J Biol Chem 2014; 289:17767-79. [PMID: 24802758 DOI: 10.1074/jbc.m114.556266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyreactive antibodies play an important role for neutralization of human immunodeficiency virus (HIV). In addition to intrinsic polyreactive antibodies, the immune system of healthy individuals contains antibodies with cryptic polyreactivity. These antibodies acquire promiscuous antigen binding potential post-translationally, after exposure to various redox-active substances such as reactive oxygen species, iron ions, and heme. Here, we characterized the interaction of a prototypic human antibody that acquires binding potential to glycoprotein (gp) 120 after exposure to heme. The kinetic and thermodynamic analyses of interaction of the polyreactive antibody with distinct clades of gp120 demonstrated that the antigen-binding promiscuity of the antibody compensates for the molecular heterogeneity of the target antigen. Thus, the polyreactive antibody recognized divergent gp120 clades with similar values of the binding kinetics and quantitatively identical changes in the activation thermodynamic parameters. Moreover, this antibody utilized the same type of noncovalent forces for formation of complexes with gp120. In contrast, HIV-1-neutralizing antibodies isolated from HIV-1-infected individuals, F425 B4a1 and b12, demonstrated different binding behavior upon interaction with distinct variants of gp120. This study contributes to a better understanding of the physiological role and binding mechanism of antibodies with cryptic polyreactivity. Moreover, this study might be of relevance for understanding the basic aspects of HIV-1 interaction with human antibodies.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France,
| | - Cyril Planchais
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| | - Tobias Scheel
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 13092 Berlin, Germany, and
| | - Delphine Ohayon
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| | - Stephane Mesnage
- the Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Claudia Berek
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 13092 Berlin, Germany, and
| | - Srinivas V Kaveri
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| |
Collapse
|
77
|
Ringe R, Bhattacharya J. Preventive and therapeutic applications of neutralizing antibodies to Human Immunodeficiency Virus Type 1 (HIV-1). THERAPEUTIC ADVANCES IN VACCINES 2014; 1:67-80. [PMID: 24757516 DOI: 10.1177/2051013613494534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of a preventive vaccine to neutralize the highly variable and antigenically diverse human immunodeficiency virus type 1 (HIV-1) has been an indomitable goal. The recent discovery of a number of cross-neutralizing and potent monoclonal antibodies from elite neutralizers has provided important insights in this field. Neutralizing antibodies (NAbs) are useful in identifying neutralizing epitopes of vaccine utility and for understanding the mechanism of potent and broad cross-neutralization thus providing a modality of preventive and therapeutic value. In this article we review the current understanding on the potential use of broadly neutralizing antibodies (bNAbs) in their full-length IgG structure, engineered domain antibody or bispecific versions towards preventive and therapeutic applications. The potential implications of NAbs are discussed in the light of the recent developments as key components in vaccination against HIV-1. The development of a vaccine immunogen which elicits bNAbs and confers protective immunity remains a real challenge.
Collapse
Affiliation(s)
- Rajesh Ringe
- Weill Medical College of Cornell University, New York, NY, USA
| | - Jayanta Bhattacharya
- International AIDS Vaccine Initiative (IAVI), THSTI-IAVI HVTR Laboratory, Translational Health Science and Technology Institute (THSTI), Gurgaon-122016, Haryana, India
| |
Collapse
|
78
|
West AP, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 2014; 156:633-48. [PMID: 24529371 DOI: 10.1016/j.cell.2014.01.052] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 11/30/2022]
Abstract
Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
79
|
Bonsignori M, Wiehe K, Grimm SK, Lynch R, Yang G, Kozink DM, Perrin F, Cooper AJ, Hwang KK, Chen X, Liu M, McKee K, Parks RJ, Eudailey J, Wang M, Clowse M, Criscione-Schreiber LG, Moody MA, Ackerman ME, Boyd SD, Gao F, Kelsoe G, Verkoczy L, Tomaras GD, Liao HX, Kepler TB, Montefiori DC, Mascola JR, Haynes BF. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. J Clin Invest 2014; 124:1835-43. [PMID: 24614107 DOI: 10.1172/jci73441] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/09/2014] [Indexed: 11/17/2022] Open
Abstract
Broadly HIV-1-neutralizing antibodies (BnAbs) display one or more unusual traits, including a long heavy chain complementarity-determining region 3 (HCDR3), polyreactivity, and high levels of somatic mutations. These shared characteristics suggest that BnAb development might be limited by immune tolerance controls. It has been postulated that HIV-1-infected individuals with autoimmune disease and defective immune tolerance mechanisms may produce BnAbs more readily than those without autoimmune diseases. In this study, we identified an HIV-1-infected individual with SLE who exhibited controlled viral load (<5,000 copies/ml) in the absence of controlling HLA phenotypes and developed plasma HIV-1 neutralization breadth. We collected memory B cells from this individual and isolated a BnAb, CH98, that targets the CD4 binding site (CD4bs) of HIV-1 envelope glycoprotein 120 (gp120). CH98 bound to human antigens including dsDNA, which is specifically associated with SLE. Anti-dsDNA reactivity was also present in the patient's plasma. CH98 had a mutation frequency of 25% and 15% nt somatic mutations in the heavy and light chain variable domains, respectively, a long HCDR3, and a deletion in the light chain CDR1. The occurrence of anti-dsDNA reactivity by a HIV-1 CD4bs BnAb in an individual with SLE raises the possibility that some BnAbs and SLE-associated autoantibodies arise from similar pools of B cells.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/chemistry
- Antibodies, Antinuclear/genetics
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Autoantibodies/blood
- Autoantibodies/chemistry
- Autoantibodies/genetics
- B-Lymphocytes/immunology
- Base Sequence
- DNA/genetics
- Female
- HIV Antibodies/blood
- HIV Antibodies/chemistry
- HIV Antibodies/genetics
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/immunology
- HIV Infections/complications
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/immunology
- Humans
- Immunologic Memory
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/immunology
- Models, Molecular
- Molecular Sequence Data
- Multiprotein Complexes/chemistry
- Mutation
- Protein Conformation
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Viral Load
Collapse
|
80
|
Polyreactive antibodies plus complement enhance the phagocytosis of cells made apoptotic by UV-light or HIV. Sci Rep 2014; 3:2271. [PMID: 23881356 PMCID: PMC3721073 DOI: 10.1038/srep02271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022] Open
Abstract
Polyreactive antibodies are a major component of the natural antibody repertoire
and are capable of binding a variety of structurally unrelated antigens. Many of the
properties attributed to natural antibodies, in fact, are turning out to be due to
polyreactive antibodies. In humans, each day, billions of cells undergo apoptosis.
In the present experiments, we show by ImageStream technology that although
polyreactive antibodies do not bind to live T cells they bind to both the plasma
membrane and cytoplasm of late apoptotic cells, fix complement, generate the
anaphylatoxin C5a and increase by as much as 5 fold complement-mediated phagocytosis
by macrophages. Of particular importance, T cells undergoing apoptosis following
infection with HIV also bind polyreactive antibodies and are phagocytosed. We
conclude that the polyreactive antibodies in the natural antibody repertoire
contribute in a major way to the clearance of cells made apoptotic by a variety of
natural and infectious processes.
Collapse
|
81
|
Sedykh MA, Buneva VN, Nevinsky GA. Polyreactivity of natural antibodies: Exchange by HL-fragments. BIOCHEMISTRY (MOSCOW) 2013; 78:1305-1320. [DOI: 10.1134/s0006297913120018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
82
|
Dimitrov JD, Planchais C, Roumenina LT, Vassilev TL, Kaveri SV, Lacroix-Desmazes S. Antibody polyreactivity in health and disease: statu variabilis. THE JOURNAL OF IMMUNOLOGY 2013; 191:993-9. [PMID: 23873158 DOI: 10.4049/jimmunol.1300880] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An Ab molecule or a BCR that is able to bind multiple structurally unrelated Ags is defined as polyreactive. Polyreactive Abs and BCRs constitute an important part of immune repertoires under physiological conditions and may play essential roles in immune defense and in the maintenance of immune homeostasis. In this review, we integrate and discuss different findings that reveal the indispensable role of Ag-binding polyreactivity in the immune system. First, we describe the functional and molecular characteristics of polyreactive Abs. The following part of the review concentrates on the biological roles attributed to polyreactive Abs and to polyreactive BCRs. Finally, we discuss recent studies that link Ig polyreactivity with distinct pathological conditions.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- INSERM, Unité 872, Centre de Recherche des Cordeliers, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
83
|
Klein F, Mouquet H, Dosenovic P, Scheid JF, Scharf L, Nussenzweig MC. Antibodies in HIV-1 vaccine development and therapy. Science 2013; 341:1199-204. [PMID: 24031012 DOI: 10.1126/science.1241144] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1-neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1.
Collapse
Affiliation(s)
- Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Xu Y, Roach W, Sun T, Jain T, Prinz B, Yu TY, Torrey J, Thomas J, Bobrowicz P, Vasquez M, Wittrup KD, Krauland E. Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. Protein Eng Des Sel 2013; 26:663-70. [DOI: 10.1093/protein/gzt047] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
85
|
The griffithsin dimer is required for high-potency inhibition of HIV-1: evidence for manipulation of the structure of gp120 as part of the griffithsin dimer mechanism. Antimicrob Agents Chemother 2013; 57:3976-89. [PMID: 23752505 DOI: 10.1128/aac.00332-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Griffithsin (Grft) is a protein lectin derived from red algae that tightly binds the HIV envelope protein gp120 and effectively inhibits virus infection. This inhibition is due to the binding by Grft of high-mannose saccharides on the surface of gp120. Grft has been shown to be a tight dimer, but the role of the dimer in Grft's anti-HIV function has not been fully explored. To investigate the role of the Grft dimer in anti-HIV function, an obligate dimer of Grft was designed by expressing the protein with a peptide linker between the two subunits. This "Grft-linker-Grft" is a folded protein dimer, apparently nearly identical in structural properties to the wild-type protein. A "one-armed" obligate dimer was also designed (Grft-linker-Grft OneArm), with each of the three carbohydrate binding sites of one subunit mutated while the other subunit remained intact. While both constructed dimers retained the ability to bind gp120 and the viral surface, Grft-linker-Grft OneArm was 84- to 1,010-fold less able to inhibit HIV than wild-type Grft, while Grft-linker-Grft had near-wild-type antiviral potency. Furthermore, while the wild-type protein demonstrated the ability to alter the structure of gp120 by exposing the CD4 binding site, Grft-linker-Grft OneArm largely lost this ability. In experiments to investigate gp120 shedding, it was found that Grft has different effects on gp120 shedding for strains from subtype B and subtype C, and this might correlate with Grft function. Evidence is provided that the dimer form of Grft is critical to the function of this protein in HIV inhibition.
Collapse
|
86
|
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured? J Trop Med 2013; 2013:493834. [PMID: 23690791 PMCID: PMC3652195 DOI: 10.1155/2013/493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Collapse
|
87
|
Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013; 496:469-76. [PMID: 23552890 PMCID: PMC3637846 DOI: 10.1038/nature12053] [Citation(s) in RCA: 814] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
Abstract
Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination.
Collapse
|
88
|
Muellenbeck MF, Ueberheide B, Amulic B, Epp A, Fenyo D, Busse CE, Esen M, Theisen M, Mordmüller B, Wardemann H. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. ACTA ACUST UNITED AC 2013; 210:389-99. [PMID: 23319701 PMCID: PMC3570107 DOI: 10.1084/jem.20121970] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plasmodium falciparum infection leads to the development of protective classical and atypical memory B cell antibody responses. Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired. We show at the single cell level that natural Pf infection induces the development of classical memory B cells (CM) and atypical memory B cells (AtM) that produce broadly neutralizing antibodies against blood stage Pf parasites. CM and AtM contribute to anti-Pf serum IgG production, but only AtM show signs of active antibody secretion. AtM and CM were also different in their IgG gene repertoire, suggesting that they develop from different precursors. The findings provide direct evidence that natural Pf infection leads to the development of protective memory B cell antibody responses and suggest that constant immune activation rather than impaired memory function leads to the accumulation of AtM in malaria. Understanding the memory B cell response to natural Pf infection may be key to the development of a malaria vaccine that induces long-lived protection.
Collapse
Affiliation(s)
- Matthias F Muellenbeck
- Max Planck Research Group Molecular Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Bader V, Tomppo L, Trossbach SV, Bradshaw NJ, Prikulis I, Leliveld SR, Lin CY, Ishizuka K, Sawa A, Ramos A, Rosa I, García Á, Requena JR, Hipolito M, Rai N, Nwulia E, Henning U, Ferrea S, Luckhaus C, Ekelund J, Veijola J, Järvelin MR, Hennah W, Korth C. Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum Mol Genet 2012; 21:4406-18. [PMID: 22798627 PMCID: PMC3529585 DOI: 10.1093/hmg/dds273] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a chronic illness of heterogenous biological origin. We hypothesized that, similar to chronic progressive brain conditions, persistent functional disturbances of neurons would result in disturbed proteostasis in the brains of schizophrenia patients, leading to increased abundance of specific misfolded, insoluble proteins. Identification of such proteins would facilitate the elucidation of molecular processes underlying these devastating conditions. We therefore generated antibodies against pooled insoluble proteome of post-mortem brains from schizophrenia patients in order to identify unique, disease-specific epitopes. We successfully identified such an epitope to be present on collapsin-response mediator protein 1 (CRMP1) in biochemically purified, insoluble brain fractions. A genetic association analysis for the CRMP1 gene in a large Finnish population cohort (n = 4651) corroborated the association of physical and social anhedonia with the CRMP1 locus in a DISC1 (Disrupted-in-schizophrenia 1)-dependent manner. Physical and social anhedonia are heritable traits, present as chronic, negative symptoms of schizophrenia and severe major depression, thus constituting serious vulnerability factors for mental disease. Strikingly, lymphoblastoid cell lines derived from schizophrenia patients mirrored aberrant CRMP1 immunoreactivity by showing an increase of CRMP1 expression, suggesting its potential role as a blood-based diagnostic marker. CRMP1 is a novel candidate protein for schizophrenia traits at the intersection of the reelin and DISC1 pathways that directly and functionally interacts with DISC1. We demonstrate the impact of an interdisciplinary approach where the identification of a disease-associated epitope in post-mortem brains, powered by a genetic association study, is rapidly translated into a potential blood-based diagnostic marker.
Collapse
Affiliation(s)
- Verian Bader
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| | - Liisa Tomppo
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | | | | | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| | - S. Rutger Leliveld
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| | - Chi-Ying Lin
- Department of Psychiatry, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Adriana Ramos
- Department of Medicine and
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Isaac Rosa
- Department of Pharmacology, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Ángel García
- Department of Pharmacology, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Jesús R. Requena
- Department of Medicine and
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Maria Hipolito
- Department of Psychiatry, Howard University, Washington, DC, USA
| | - Narayan Rai
- Department of Psychiatry, Howard University, Washington, DC, USA
| | - Evaristus Nwulia
- Department of Psychiatry, Howard University, Washington, DC, USA
| | - Uwe Henning
- Department of Psychiatry, Heinrich Heine University Düsseldorf, Germany
| | - Stefano Ferrea
- Department of Psychiatry, Heinrich Heine University Düsseldorf, Germany
| | | | - Jesper Ekelund
- National Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
- Vaasa Hospital District, Vaasa, Finland
| | - Juha Veijola
- Department of Psychiatry, University of Oulu Central Hospital, Oulu, Finland
| | - Marjo-Riitta Järvelin
- School of Public Health and MRC Health Protection Agency, Centre for Environment and Health, Imperial College London, London, UK
- Institute of Health Sciences and Biocenter Oulu, University of Oulu, Oulu, Finland and
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Medical Genetics Section, University of Edinburgh, Edinburgh, UK
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
90
|
Xiong Y, Zhou ZH, Notkins AL. Pictorial demonstration of the simultaneous binding of multiple unrelated antigens to individual polyreactive antibody-producing B cells. Scand J Immunol 2012; 76:342-3. [PMID: 22703112 DOI: 10.1111/j.1365-3083.2012.02746.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
91
|
Chang H, Biswas S, Tallarico AS, Sarkis PTN, Geng S, Panditrao MM, Zhu Q, Marasco WA. Human B-cell ontogeny in humanized NOD/SCID γc(null) mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun 2012; 13:399-410. [PMID: 22592523 PMCID: PMC3411862 DOI: 10.1038/gene.2012.16] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Characterization of the human antibody (Ab) repertoire in mouse models of the human immune system is essential to establish their relevance in translational studies. Single human B-cells were sorted from bone marrow and periphery of humanized NOD/SCID γcnull mice at 8–10 months post-engraftment with human cord blood-derived CD34+ stem cells. Human immunoglobulin variable heavy (VH) and kappa (Vκ) genes were amplified, cognate VH-Vκ gene-pairs assembled as single-chain variable fragment-Fc antibodies (scFvFcs) and functional studies performed. Although overall distribution of VH genes approximated the normal human Ab repertoire, analysis of the VH-third complementarity determining regions (H-CDR3) in the mature B-cell subset demonstrated an increase in length and positive charges suggesting autoimmune characteristics. Additionally, >70% of Vκ sequences utilized Vκ4-1, a germline gene associated with autoimmunity. The mature B-cell subset-derived scFvFcs displayed the highest frequency of autoreactivity and polyspecificity, suggesting defects in checkpoint control mechanisms. Furthermore, these scFvFcs demonstrated binding to recombinant HIV envelope corroborating previous observations of poly/autoreactivity in anti-HIVgp140 antibodies. These data lend support to the hypothesis that anti-HIV BnAbs may be derived from auto/polyspecific Abs that escaped immune elimination and that the hNSG mouse could provide a new experimental platform for studying the origin of anti-HIV neutralizing Ab responses.
Collapse
Affiliation(s)
- H Chang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012; 30:423-33. [PMID: 22565972 DOI: 10.1038/nbt.2197] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure of immunization with the HIV-1 envelope to induce broadly neutralizing antibodies against conserved epitopes is a major barrier to producing a preventive HIV-1 vaccine. Broadly neutralizing monoclonal antibodies (BnAbs) from those subjects who do produce them after years of chronic HIV-1 infection have one or more unusual characteristics, including polyreactivity for host antigens, extensive somatic hypermutation and long, variable heavy-chain third complementarity-determining regions, factors that may limit their expression by host immunoregulatory mechanisms. The isolation of BnAbs from HIV-1-infected subjects and the use of computationally derived clonal lineages as templates provide a new path for HIV-1 vaccine immunogen design. This approach, which should be applicable to many infectious agents, holds promise for the construction of vaccines that can drive B cells along rare but desirable maturation pathways.
Collapse
|
93
|
Kong L, Sattentau QJ. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design. JOURNAL OF AIDS & CLINICAL RESEARCH 2012; S8:3. [PMID: 23227445 PMCID: PMC3515071 DOI: 10.4172/2155-6113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today's rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome.
Collapse
Affiliation(s)
- Leopold Kong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
94
|
Scholz JL, Cancro MP. Resolve, revise, and relax: the 3 Rs of B cell repertoire adjustment. Immunol Lett 2012; 143:2-8. [PMID: 22330846 DOI: 10.1016/j.imlet.2012.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/29/2012] [Indexed: 12/20/2022]
Abstract
Competition for limited, cell extrinsic survival factors is a general feature of peripheral selection checkpoints involved in B lymphocyte maturation and activation. Perhaps the best-characterized example involves BLyS (B lymphocyte stimulator), which modulates the size and composition of mature naïve B cell pools, but evidence for analogous competitive checkpoints is emerging for both germinal center B cells and plasma cells. Here we discuss how deliberate alteration of BLyS levels might be used to manipulate B cell repertoire selection in order to restore self-tolerance in autoimmunity, remodel the repertoire to accommodate neo-self antigens introduced through transplantation and gene therapy, or expand repertoire diversity to reveal novel, therapeutically useful specificities.
Collapse
Affiliation(s)
- Jean L Scholz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | | |
Collapse
|