51
|
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 2014; 115:189-209. [PMID: 24467911 DOI: 10.1016/j.pneurobio.2013.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na(+)/H(+) exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H(+)-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca(2+), Na(+), and Zn(2+), and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention.
Collapse
|
52
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
53
|
Pregnenolone sulfate: from steroid metabolite to TRP channel ligand. Molecules 2013; 18:12012-28. [PMID: 24084011 PMCID: PMC6270300 DOI: 10.3390/molecules181012012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 01/16/2023] Open
Abstract
Pregnenolone sulfate is a steroid metabolite with a plethora of actions and functions. As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from the pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Most recently, pregnenolone sulfate has been functionally “upgraded” from modulator of ion channels to an activating ion channel ligand. This review will focus on molecular aspects of the neurosteroid, pregnenolone sulfate, its metabolism, concentrations in serum and tissues and last not least will summarize the functional data.
Collapse
|
54
|
Yan G, Wang Q, Shi H, Han Y, Ma G, Tang C, Gu Y. Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia. PLoS One 2013; 8:e73839. [PMID: 24013220 PMCID: PMC3754945 DOI: 10.1371/journal.pone.0073839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/30/2013] [Indexed: 12/11/2022] Open
Abstract
AIMS Arachidonic acid (AA) and its metabolites, prostaglandins (PG) are known to be involved in regulation of vascular homeostasis including vascular tone and vessel wall tension, but their potential role in Hypoxic pulmonary vasoconstriction (HPV) remains unclear. In this study, we examined the effects of AA and PGE2 on the hypoxic response in isolated rat intrapulmonary arteries (IPAs). METHODS AND RESULTS We carried out the investigation on IPAs by vessel tension measurement. Isotetrandrine (20 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. Both indomethacin (100 µM) and NS398 attenuated KPSS-induced vessel contraction and phase I, phase IIb and phase IIc of HPV, implying that COX-2 plays a primary role in the hypoxic response of rat IPAs. PGE2 alone caused a significant vasoconstriction in isolated rat IPAs. This constriction is mediated by EP4. Blockage of EP4 by L-161982 (1 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. However, AH6809 (3 µM), an antagonist of EP1, EP2, EP3 and DP1 receptors, exerted no effect on KPSS or hypoxia induced vessel contraction. Increase of cellular cAMP by forskolin could significantly reduce KPSS-induced vessel contraction and abolish phase I, phase II b and phase II c of HPV. CONCLUSION Our results demonstrated a vasoconstrictive effect of PGE2 on rat IPAs and this effect is via activation of EP4. Furthermore, our results suggest that intracellular cAMP plays dual roles in regulation of vascular tone, depending on the spatial distribution of cAMP and its coupling with EP receptor and Ca(2+) channels.
Collapse
Affiliation(s)
- Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China ; Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
55
|
Han Y, Yan G, Wang Q, Ma G, Tang C, Gu Y, Li L, Zhao J. Predominant role of vasoconstrictors over dilatators derived from arachidonic acid in hypoxic pulmonary vasoconstriction. Mol Med Rep 2013; 8:1263-71. [PMID: 23970347 DOI: 10.3892/mmr.2013.1645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 08/08/2013] [Indexed: 11/05/2022] Open
Abstract
Prostanoids derived from arachidonic acid (AA) have been shown to play a permissive role in the regulation of vascular tone and wall tension. Conventionally, epoxyeicosatrienoic acids (EETs) and prostacyclin have been considered as dilatators, whereas thromboxane (TX) and hydroxyeicosatetraenoic acid (HETE) were considered as vasoconstrictors. However, the role of these prostanoids in the mediation of acute hypoxic pulmonary vasoconstriction is not yet clearly understood. In the present study, the role of prostanoids in the acute hypoxic response in rat isolated intrapulmonary arteries (IPAs) was investigated. Exogenous AA directly caused vasoconstriction, but exerted a significant inhibition on hypoxic vasoconstriction. The vasoconstriction by AA was mediated by the endothelium. AA metabolites from lipoxygenase (LOX) had no effect on vascular tone or hypoxic vasoconstriction. Consistent results from the blockage of cytochrome P450 (CYP) or CYP epoxide hydrolase showed that HETE contributed to endothelium‑independent hypoxic vasoconstriction. EET via epoxygenase exerted no effect on 80 mM KPSS‑induced vessel contraction or hypoxic vasoconstriction. In addition, prostacyclin also failed to inhibit hypoxic pulmonary vasoconstriction (HPV). However, blockage of thromboxane A2/prostanoid (TP) receptors almost eliminated hypoxic vasoconstriction, suggesting the primary role of TP receptors in the regulation of the hypoxic response in rat IPAs. In conclusion, the current data indicate the predominant role of vasoconstrictors instead of dilatators in mediating HPV. These data also highlight a pivotal role for voltage‑independent Ca2+ entry in pulmonary hypoxic response and suggest that modulation of these channels by prostanoids underlies their regulatory mechanisms.
Collapse
Affiliation(s)
- Yeshan Han
- Department of Anesthesiology, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci 2013; 51:92-8. [PMID: 23532768 DOI: 10.1007/s12031-013-0005-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/13/2013] [Indexed: 12/28/2022]
Abstract
Transient global cerebral ischemia due to cardiac arrest followed by resuscitation (CA/CPR) causes significant neurological damage in vulnerable neuron populations within the brain, such as hippocampal CA1 neurons. In recent years, we have implicated the transient receptor potential M2 (TRPM2) channel as a mediator of ischemic injury to neurons. We previously demonstrated that genetic and pharmacological strategies that reduce TRPM2 function preferentially protect male neurons in vitro and reduce infarct volume following experimental stroke. Due to the narrow therapeutic window for intervention following ischemic stroke, it is important to assess the role of TRPM2 in other models of cerebral ischemia. Therefore, this study utilized a modified mouse model of CA/CPR to mimic more accurately the clinical condition by maintaining body and head temperatures near the physiological range throughout. Here, we report that inhibition of TRPM2 activity with clotrimazole reduces hippocampal CA1 neuronal injury when administered 30 min after resuscitation from cardiac arrest. Consistent with our previous observations, neuroprotection was observed in male mice and no effect on injury was observed in the female. These findings provide further evidence for TRPM2 as a target for protection against cerebral ischemia in the male brain.
Collapse
|
57
|
Abstract
Transient receptor potential (TRP) cation channel superfamily plays important roles in variety cellular processes including polymodal cellular sensing, cell adhesion, cell polarity, proliferation, differentiation and apoptosis. One of its subfamilies are TRPM channels. mRNA expression of its founding member, TRPM1 (melastatin), correlates with terminal melanocytic differentiation and loss of its expression has been identified as an important diagnostic and prognostic marker for primary cutaneous melanoma. Because TRPM1 gene codes two transcripts: TRPM1 channel protein in its exons and miR-211 in one of its introns, we propose a dual role for TRPM1 gene where the loss of TRPM1 channel protein is an excellent marker of melanoma aggressiveness, while the expression of miR-211 is linked to the tumor suppressor function of TRPM1. In addition, three other members of this subfamily, TRPM 2, 7 and 8 are implicated in the regulation of melanocytic behaviour. TRPM2 is capable of inducing melanoma apoptosis and necrosis. TRPM7 can be a protector and detoxifier in both melanocytes and melanoma cells. TRPM8 can mediate agonist-induced melanoma cell death. Therefore, we propose that TRPM1, TRPM2, TRPM7 and TRPM8 play crucial roles in melanocyte physiology and melanoma oncology and are excellent diagnostic markers and theraputic targets.
Collapse
Affiliation(s)
- Huazhang Guo
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
58
|
Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin 2013; 34:39-48. [PMID: 22864302 DOI: 10.1038/aps.2012.95] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.
Collapse
|
59
|
Melzer N, Hicking G, Göbel K, Wiendl H. TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. PLoS One 2012; 7:e47617. [PMID: 23077651 PMCID: PMC3470594 DOI: 10.1371/journal.pone.0047617] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022] Open
Abstract
TRPM2, a highly Ca2+-permeable member of the transient receptor potential melastatin-related (TRPM) family of cation channels, is expressed in cells of the immune system. We demonstrate firstly that TRPM2 cation channels on T cells critically influence T cell proliferation and proinflammatory cytokine secretion following polyclonal T cell receptor stimulation. Consistently, trpm2-deficient mice exhibited an attenuated clincal phenotype of experimental autoimmune encephalomyelitis (EAE) with reduced inflammatory and demyelinating spinal cord lesions. Importantly, trmp2-deficient T cells were as susceptible as wildtype T cells to oxidative stress-induced cell death as it occurs in inflammatory CNS lesions. This supports the notion that the attenuated EAE phenotype is mainly due to reduced T cell effector functions but unaffected by potential modulation of T cell survival at the site of inflammation. Our findings suggest TRPM2 cation channels as a potential target for treating autoimmune CNS inflammation.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology-Inflammatory Disorders of the Nervous System and Neurooncology, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
60
|
Holendova B, Grycova L, Jirku M, Teisinger J. PtdIns(4,5)P2 interacts with CaM binding domains on TRPM3 N-terminus. Channels (Austin) 2012; 6:479-82. [PMID: 22989896 DOI: 10.4161/chan.22177] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TRPM3 has been reported to play an important role in Ca(2+) homeostasis, but its gating mechanisms and regulation via Ca(2+) are unknown. Ca(2+) binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding. We also showed that the other Ca(2+) binding protein, S100A1, is able to bind to these regions and that CaM and S100A1 compete for these binding sites on the TRPM3 N-terminus. Moreover, our results suggest that another very important TRP channel activity modulator, PtdIns(4,5)P(2), interacts with the CaM/S100A1 binding sites on the TRPM3 N-terminus with high affinity.
Collapse
Affiliation(s)
- Blanka Holendova
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
61
|
Zhang YH, Sun HY, Chen KH, Du XL, Liu B, Cheng LC, Li X, Jin MW, Li GR. Evidence for functional expression of TRPM7 channels in human atrial myocytes. Basic Res Cardiol 2012; 107:282. [PMID: 22802050 PMCID: PMC3442166 DOI: 10.1007/s00395-012-0282-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/15/2012] [Accepted: 07/05/2012] [Indexed: 12/16/2022]
Abstract
Transient receptor potential melastatin-7 (TRPM7) channels have been recently reported in human atrial fibroblasts and are believed to mediate fibrogenesis in human atrial fibrillation. The present study investigates whether TRPM7 channels are expressed in human atrial myocytes using whole-cell patch voltage-clamp, RT-PCR and Western blotting analysis. It was found that a gradually activated TRPM7-like current was recorded with a K+- and Mg2+-free pipette solution in human atrial myocytes. The current was enhanced by removing extracellular Ca2+ and Mg2+, and the current increase could be inhibited by Ni2+ or Ba2+. The TRPM7-like current was potentiated by acidic pH and inhibited by La3+ and 2-aminoethoxydiphenyl borate. In addition, Ca2+-activated TRPM4-like current was recorded in human atrial myocytes with the addition of the Ca2+ ionophore A23187 in bath solution. RT-PCR and Western immunoblot analysis revealed that in addition to TRPM4, TRPM7 channel current, mRNA and protein expression were evident in human atrial myocytes. Interestingly, TRPM7 channel protein, but not TRPM4 channel protein, was significantly increased in human atrial specimens from the patients with atrial fibrillation. Our results demonstrate for the first time that functional TRPM7 channels are present in human atrial myocytes, and the channel expression is upregulated in the atria with atrial fibrillation.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J Biol Chem 2012; 287:16645-55. [PMID: 22451665 DOI: 10.1074/jbc.m112.350686] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential melastatin 3 ion channel (TRPM3) belongs to the TRP family of cation-permeable ion channels involved in many important biological functions such as pain transduction, thermosensation, and mechanoregulation. The channel was reported to play an important role in Ca(2+) homeostasis, but its gating mechanisms, functions, and regulation are still under research. Utilizing biophysical and biochemical methods, we characterized two independent domains, Ala-35-Lys-124 and His-291-Gly-382, on the TRPM3 N terminus, responsible for interactions with the Ca(2+)-binding proteins calmodulin (CaM) and S100A1. We identified several positively charged residues within these domains as having a crucial impact on CaM/S100A1 binding. The data also suggest that the interaction is calcium-dependent. We also performed competition assays, which suggested that CaM and S100A1 are able to compete for the same binding sites within the TRPM3 N terminus. This is the first time that such an interaction has been shown for TRP family members.
Collapse
Affiliation(s)
- Blanka Holakovska
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
63
|
Bogeski I, Kappl R, Kummerow C, Gulaboski R, Hoth M, Niemeyer BA. Redox regulation of calcium ion channels: Chemical and physiological aspects. Cell Calcium 2011; 50:407-23. [DOI: 10.1016/j.ceca.2011.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/26/2011] [Indexed: 02/07/2023]
|
64
|
Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, Herson PS. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 2011; 31:2160-8. [PMID: 21587268 PMCID: PMC3210342 DOI: 10.1038/jcbfm.2011.77] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The calcium-permeable transient receptor potential M2 (TRPM2) ion channel is activated following oxidative stress and has been implicated in ischemic damage; however, little experimental evidence exists linking TRPM2 channel activation to damage following cerebral ischemia. We directly assessed the involvement of TRPM2 channels in ischemic brain injury using pharmacological inhibitors and short-hairpin RNA (shRNA)-mediated knockdown of TRPM2 expression. Each of the four TRPM2 inhibitors tested provided significant protection to male neurons following in vitro ischemia (oxygen-glucose deprivation, OGD), while having no effect in female neurons. Similarly, TRPM2 knockdown by TRPM2 shRNA resulted in significantly reduced neuronal cell death following OGD only in male neurons. The TRPM2 inhibitor clotrimazole reduced infarct volume in male mice, while having no effect on female infarct volume. Finally, intrastriatal injection of lentivirus expressing shRNA against TRPM2 resulted in significantly smaller striatal infarcts only in male mice following middle cerebral artery occlusion, having no significant effect in female mice. Data presented in the current study demonstrate that TRPM2 inhibition and knockdown preferentially protects male neurons and brain against ischemia in vitro and in vivo, indicating that TRPM2 inhibitors may provide a new therapeutic approach to the treatment of stroke in men.
Collapse
Affiliation(s)
- Jia Jia
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Zamudio-Bulcock PA, Everett J, Harteneck C, Valenzuela CF. Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats. J Neurochem 2011; 119:474-85. [PMID: 21955047 DOI: 10.1111/j.1471-4159.2011.07441.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functional implications of transient receptor potential melastatin 3 (TRPM3) activation, the most recently described member of the melastatin subfamily of cation permeable TRP channels, have begun to be elucidated in recent years. The discovery of TRPM3 activation by the steroid pregnenolone sulfate (PregS) has shed new light on the physiological role of this channel. For example, TRPM3 activation enhances insulin secretion from β pancreatic cells, induces contraction of vascular smooth muscle, and is also involved in the detection of noxious heat. Although TRPM3 expression has been detected in several regions of the developing and mature brain, little is known about the roles of TRPM3 in brain physiology. In this study, we demonstrate the abundant expression of TRPM3 steroid-sensitive channels in the developing cerebellar cortex. We also show that TRPM3-like channels are expressed at glutamatergic synapses in neonatal Purkinje cells. We recently showed that PregS potentiates spontaneous glutamate release onto neonatal Purkinje cells during a period of active glutamatergic synapse formation; we now show that this effect of PregS is mediated by TRPM3-like channels. Mefenamic acid, a recently discovered TRPM3 antagonist, blocked the effect of PregS on glutamate release. The PregS effect on glutamate release was mimicked by other TRPM3 agonists (nifedipine and epipregnanolone sulfate) but not by a TRMP3-inactive steroid (progesterone). Our findings identify TRPM3 channels as novel modulators of glutamatergic transmission in the developing brain.
Collapse
Affiliation(s)
- Paula A Zamudio-Bulcock
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | |
Collapse
|
66
|
Ma HT, Beaven MA. Regulators of Ca(2+) signaling in mast cells: potential targets for treatment of mast cell-related diseases? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:62-90. [PMID: 21713652 DOI: 10.1007/978-1-4419-9533-9_5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A calcium signal is essential for degranulation, generation of eicosanoids and optimal production of cytokines in mast cells in response to antigen and other stimulants. The signal is initiated by phospholipase C-mediated production of inositol1,4,5-trisphosphate resulting in release of stored Ca(2+) from the endoplasmic reticulum (ER) and Golgi. Depletion of these stores activates influx of extracellular Ca(2+), usually referred to as store-operated calcium entry (SOCE), through the interaction of the Ca(2+)-sensor, stromal interacting molecule-1 (STIM1 ), in ER with Orai1(CRACM1) and transient receptor potential canonical (TRPC) channel proteins in the plasma membrane (PM). This interaction is enabled by microtubular-directed reorganization of ER to form ER/PM contact points or "punctae" in which STIM1 and channel proteins colocalize. The ensuing influx of Ca(2+) replenishes Ca(2+) stores and sustains elevated levels of cytosolic Ca(2+) ions-the obligatory signal for mast-cell activation. In addition, the signal can acquire spatial and dynamic characteristics (e.g., calcium puffs, waves, oscillations) that encode signals for specific functional outputs. This is achieved by coordinated regulation of Ca(2+) fluxes through ATP-dependent Ca(2+)-pumps and ion exchangers in mitochondria, ER and PM. As discussed in this chapter, studies in mast cells revealed much about the mechanisms described above but little about allergic and autoimmune diseases although studies in other types of cells have exposed genetic defects that lead to aberrant calcium signaling in immune diseases. Pharmacologic agents that inhibit or activate the regulatory components of calcium signaling in mast cells are also discussed along with the prospects for development of novel SOCE inhibitors that may prove beneficial in the treatment inflammatory mast-cell related diseases.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
67
|
Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, Meyerhof W, Harteneck C. Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol 2011; 162:1757-69. [PMID: 21198543 DOI: 10.1111/j.1476-5381.2010.01186.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Fenamates are N-phenyl-substituted anthranilic acid derivatives clinically used as non-steroid anti-inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the role of the volume-modulated transient receptor potential (TRP) channels TRPM3 and TRPV4. EXPERIMENTAL APPROACH Firstly, we measured the blocking potencies and selectivities of fenamates on TRPM3 and TRPV4 as well as TRPC6 and TRPM2 by Ca(2+) imaging in the heterologous HEK293 cell system. Secondly, we further investigated the effects of mefenamic acid on cytosolic Ca(2+) and on the membrane voltage in single HEK293 cells that exogenously express TRPM3. Thirdly, in insulin-secreting INS-1E cells, which endogenously express TRPM3, we validated the effect of mefenamic acid on cytosolic Ca(2+) and insulin secretion. KEY RESULTS We identified and characterized mefenamic acid as a selective and potent TRPM3 blocker, whereas other fenamate structures non-selectively blocked TRPM3, TRPV4, TRPC6 and TRPM2. CONCLUSIONS AND IMPLICATIONS This study reveals that mefenamic acid selectively inhibits TRPM3-mediated calcium entry. This selectivity was further confirmed using insulin-secreting cells. K(ATP) channel-dependent increases in cytosolic Ca(2+) and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3-dependent Ca(2+) entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin-secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic β-cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function.
Collapse
Affiliation(s)
- Chihab Klose
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA), Eberhard-Karls-University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Wu SN, Wu PY, Tsai ML. Characterization of TRPM8-like channels activated by the cooling agent icilin in the macrophage cell line RAW 264.7. J Membr Biol 2011; 241:11-20. [PMID: 21445583 DOI: 10.1007/s00232-011-9358-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/11/2011] [Indexed: 12/16/2022]
Abstract
Icilin is recognized as a chemical agonist of nociceptors and can activate TRPM8 channels. However, whether this agent has any effects on immune cells remains unknown. In this study, the effects of icilin on ion currents were investigated in RAW 264.7 murine macrophage-like cells. Icilin (1-100 μM) increased the amplitude of nonselective (NS) cation current (INS) in a concentration-dependent manner with an EC50 value of 8.6 μM. LaCl3 (100 μM) or capsazepine (30 μM) reversed icilin-induced INS; however, neither apamin (200 nM) nor iberiotoxin (200 nM) had any effects on it. In cell-attached configuration, when the electrode was filled with icilin (30 μM), a unique population of NS cation channels were activated with single-channel conductance of 158 pS. With the use of a long-lasting ramp pulse protocol, increasing icilin concentration produced a left shift in the activation curve of NS channels, with no change in the slope factor of the curve. The probability of channel opening enhanced by icilin was increased by either elevated extracellular Ca2+ or application of ionomycin (10 μM), while it was reduced by BAPTA-AM (10 μM). Icilin-stimulated activity is associated with an increase in mean open time and a reduction in mean closed time. Under current-clamp conditions, icilin caused membrane depolarization. Therefore, icilin interacts with the TRPM8-like channel to increase INS and depolarizes the membrane in these cells.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, No. 1, University Road, Tainan, 70101, Taiwan,
| | | | | |
Collapse
|
69
|
Pan T, Li X, Jankovic J. The association between Parkinson's disease and melanoma. Int J Cancer 2011; 128:2251-60. [PMID: 21207412 DOI: 10.1002/ijc.25912] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/20/2010] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of melanin-positive, dopaminergic neurons in the substantia nigra. Although there is convincing epidemiologic evidence of a negative association between PD and most cancers, a notable exception to this is that melanoma, a malignant tumor of melanin-producing cells in skin, occurs with higher-than-expected frequency among subjects with PD and that melanoma patients are more likely to have PD. A clear biological explanation for this epidemiological observation is lacking. Here, we present a comprehensive review of published literature exploring the association between PD and melanoma. On the basis of published findings, we conclude that (i) changes in pigmentation including melanin synthesis and/or melanin synthesis enzymes, such as tyrosinase and tyrosine hydroxylase, play important roles in altered vulnerability for both PD and melanoma; (ii) changes of PD-related genes such as Parkin, LRRK2 and α-synuclein may increase the risk of melanoma; (iii) changes in some low-penetrance genes such as cytochrome p450 debrisoquine hydroxylase locus, glutathione S-transferase M1 and vitamin D receptor could increase the risk for both PD and melanoma and (iv) impaired autophagy in both PD and melanoma could also explain the association between PD and melanoma. Future studies are required to address whether altered pigmentation, PD- or melanoma-related gene changes and/or changes in autophagy function induce oncogenesis or apoptosis. From a clinical point of view, early diagnosis of melanoma in PD patients is critical and can be enhanced by periodic dermatological surveillance, including skin biopsies.
Collapse
Affiliation(s)
- Tianhong Pan
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | | | | |
Collapse
|
70
|
Abed E, Martineau C, Moreau R. Role of melastatin transient receptor potential 7 channels in the osteoblastic differentiation of murine MC3T3 cells. Calcif Tissue Int 2011; 88:246-53. [PMID: 21207015 DOI: 10.1007/s00223-010-9455-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/12/2010] [Indexed: 01/10/2023]
Abstract
Adequate bone formation is assured by the coordinated proliferation, migration, differentiation, and secretory functions of osteoblasts. Epidemiological studies have linked insufficient dietary magnesium (Mg) intake to osteoporosis. Here, we investigated the role of melastatin-like transient receptor potential 7 (TRPM7), a calcium (Ca) and Mg channel, in osteoblastic differentiation of the murine MC3T3 cell line. Osteoblastic differentiation was monitored by alkaline phosphatase activity, osteocalcin gene expression, and extracellular matrix mineralization. Gene expression of TRPM7 increased with osteoblastic differentiation, suggesting the importance of intracellular Ca/Mg homeostasis to cell differentiation. Alteration of intracellular Ca/Mg homeostasis by culture conditions with low extracellular Ca or Mg significantly reduced the osteoblastic differentiation markers alkaline phosphatase activity and osteocalcin gene expression. In accordance, matrix mineralization was reduced under low extracellular Ca or Mg levels. Nevertheless, expression of collagen type I, the predominant matrix protein, was increased in low-Mg culture conditions, indicating that dysfunction of matrix protein production cannot account for the reduced mineralization. Silencing TRPM7 expression during the differentiation period also reduced osteoblastic differentiation and the extent of matrix mineralization. Gene expression of osteoblastic transcription factor Runx2 was reduced by conditions of culture under low extracellular Ca or Mg levels, as well as by TRPM7 silencing. Our results indicate that intracellular Ca and Mg homeostasis ensured by TRPM7 expression is important for the osteoblastic differentiation of MC3T3 cells. Thus, Mg deficiency, a common condition among the population, may be associated with altered osteoblastic differentiation leading to inadequate bone formation and the development of osteoporosis.
Collapse
Affiliation(s)
- Elie Abed
- Laboratoire du Métabolisme osseux, Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
71
|
Watanabe M, Shinohara A, Matsukawa T, Chiba M, Wu J, Iesaki T, Okada T. Chronic magnesium deficiency decreases tolerance to hypoxia/reoxygenation injury in mouse heart. Life Sci 2011; 88:658-63. [PMID: 21315739 DOI: 10.1016/j.lfs.2011.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/09/2010] [Accepted: 01/18/2011] [Indexed: 11/26/2022]
Abstract
AIMS Magnesium (Mg) deficiency has been reported to be associated with the development of the metabolic syndrome, cardiovascular diseases, and sudden death. We examined the influence of chronic Mg deficiency on cardiac tolerance to hypoxia/reoxygenation injury. MAIN METHODS Mice were fed an Mg-deficient diet for 4 weeks, and then their hearts were excised for Langendorff perfusion experiments. The levels of total Mg in the blood and heart were quantified by atomic absorption spectrometry. KEY FINDINGS In Mg-deficient mice, the Mg concentration in whole blood was markedly decreased; however, that in the heart remained unchanged. When the hearts of control mice were exposed to hypoxia/reoxygenation, removal of extracellular Mg from a normal Krebs solution containing 1.2 mM Mg resulted in a significant decrease in the recovery of the tension-rate product (TRP) upon reoxygenation. In Mg-deficient mice, the recovery of TRP in the heart was reduced significantly in the absence of extracellular Mg compared to that in controls. The addition of Mg to the perfusate did not improve TRP recovery. During hypoxia/reoxygenation, cardiac damage evaluated by myocardial aspartate amino transferase (AST) release was greater in hearts of Mg-deficient mice than in that of control mice. SIGNIFICANCE These results indicate that chronic Mg deficiency causes severe hypomagnesemia and a decrease in cardiac tolerance to hypoxia, without changing the intracellular Mg content. The decreased tolerance to hypoxia was not affected by the presence or absence of extracellular Mg, suggesting that some intracellular metabolic abnormalities develop in the cardiac myocytes of Mg-deficient mice.
Collapse
Affiliation(s)
- Makino Watanabe
- Department of Physiology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
72
|
Zholos A, Johnson C, Burdyga T, Melanaphy D. TRPM channels in the vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:707-29. [PMID: 21290323 DOI: 10.1007/978-94-007-0265-3_37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent studies show that mammalian melastatin TRPM nonselective cation channels (TRPM1-8), members of the largest and most diverse TRP subfamily, are widely expressed in the endothelium and vascular smooth muscles. When activated, these channels similarly to other TRPs permit the entry of sodium, calcium and magnesium, thus causing membrane depolarisation. Although membrane depolarisation reduces the driving force for calcium entry via TRPMs as well as other pathways for calcium entry, in smooth muscle myocytes expressing voltage-gated Ca(2+) channels the predominant functional effect is an increase in intracellular Ca(2+) concentration and myocyte contraction. This review focuses on several best documented aspects of vascular functions of TRPMs, including the role of TRPM2 in oxidant stress, regulation of endothelial permeability and cell death, the connection between TRPM4 and myogenic response, significance of TRPM7 for magnesium homeostasis, vessel injury and hypertension, and emerging evidence that the cold and menthol receptor TRPM8 is involved in the regulation of vascular tone.
Collapse
Affiliation(s)
- Alexander Zholos
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Royal Victoria Hospital, Queen's University of Belfast, Belfast BT12 6BA, UK.
| | | | | | | |
Collapse
|
73
|
Harteneck C, Klose C, Krautwurst D. Synthetic modulators of TRP channel activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:87-106. [PMID: 21290290 DOI: 10.1007/978-94-007-0265-3_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In humans, 27 TRP channels from 6 related families contribute to a broad spectrum of cellular functions, such as thermo-, pressure-, volume-, pain- and chemosensation. Pain and inflammation-inducing compounds represent potent plant and animal defense mechanisms explaining the great variety of the naturally occurring, TRPV1-, TRPM8-, and TRPA1-activating ligands. The discovery of the first vanilloid receptor (TRPV1) and its involvement in nociception triggered the euphoria and the hope in novel therapeutic strategies treating pain, and this clear-cut indication inspired the development of TRPV1-selective ligands. On the other hand the nescience in the physiological role and putative clinical indication hampered the development of a selective drug in the case of the other TRP channels. Therefore, currently only a handful of mostly un-selective blocker is available to target TRP channels. Nevertheless, there is an ongoing quest for new, natural or synthetic ligands and modulators. In this chapter, we will give an overview on available broad-range blocker, as well as first TRP channel-selective compounds.
Collapse
Affiliation(s)
- Christian Harteneck
- Institute for Pharmacology and Toxicology, Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICEPHA), Eberhard-Karls-University, Tübingen, Germany.
| | | | | |
Collapse
|
74
|
Dadon D, Minke B. Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 2010; 42:1430-45. [PMID: 20399884 DOI: 10.1016/j.biocel.2010.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 11/26/2022]
Abstract
Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca(2+). In this review we focus on the roles of these channels in: (i) cell death (ii) proliferation and differentiation and (iii) transmitter release. Cell death: Ca(2+) influx participates in apoptotic and necrotic cell death. The Ca(2+) permeability and high sensitivity of part of these channels to oxidative/metabolic stress make them important participants in cell death. Several examples are given. Transient Receptor Potential Melastatin 2 is activated by H(2)O(2), inducing cell death through an increase in cellular Ca(2+) and activation of Poly ADP-Ribose Polymerase. Exposure of cultured cortical neurons to oxygen-glucose deprivation, in vitro, causes cell death via cation influx, mediated by Transient Receptor Potential Melastatin 7. Metabolic stress constitutively activates the Ca(2+) permeable Transient Receptor Potential channels of Drosophila photoreceptor in the dark, potentially leading to retinal degeneration. Similar sensitivity to metabolic stress characterizes several mammalian Transient Receptor Potential Canonical channels. Proliferation and differentiation: The rise in cytosolic Ca(2+) induces cell growth, differentiation and proliferation via activation of several transcription factors. Activating a variety of store operated and Transient Receptor Potential channels cause a rise in cytosolic Ca(2+), making these channels components involved in proliferation and differentiation. Transmitter release: Transient Receptor Potential Melastatin 7 channels reside in synaptic vesicles and regulate neurotransmitter release by a mechanism that is not entirely clear. All the above features of Transient Receptor Potential channels make them crucial components in important, sometimes conflicting, cellular processes that still need to be explored.
Collapse
Affiliation(s)
- Daniela Dadon
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada and the Kühne Minerva Center, for Studies of Visual Transduction, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
75
|
Zholos A. Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol 2010; 159:1559-71. [PMID: 20233227 DOI: 10.1111/j.1476-5381.2010.00649.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian transient receptor potential melastatin (TRPM) non-selective cation channels, the largest TRP subfamily, are widely expressed in excitable and non-excitable cells where they perform diverse functions ranging from detection of cold, taste, osmolarity, redox state and pH to control of Mg(2+) homeostasis and cell proliferation or death. Recently, TRPM gene expression has been identified in vascular smooth muscles with dominance of the TRPM8 channel. There has been in parallel considerable progress in decoding the functional roles of several TRPMs in the vasculature. This research on native cells is aided by the knowledge of the activation mechanisms and pharmacological properties of heterologously expressed TRPM subtypes. This paper summarizes the present state of knowledge of vascular TRPM channels and outlines several anticipated directions of future research in this area.
Collapse
Affiliation(s)
- Alexander Zholos
- Centre for Vision and Vascular Science, Queen's University of Belfast, UK.
| |
Collapse
|
76
|
Hoffmann A, Grimm C, Kraft R, Goldbaum O, Wrede A, Nolte C, Hanisch UK, Richter-Landsberg C, Brück W, Kettenmann H, Harteneck C. TRPM3 is expressed in sphingosine-responsive myelinating oligodendrocytes. J Neurochem 2010; 114:654-65. [PMID: 20163522 DOI: 10.1111/j.1471-4159.2010.06644.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes are the myelin-forming cells of the CNS and guarantee proper nerve conduction. Sphingosine, one major component of myelin, has recently been identified to activate TRPM3, a member of the melastatin-related subfamily of transient receptor potential (TRP) channels. TRPM3 has been demonstrated to be expressed in brain with unknown cellular distribution. Here, we show for the first time that TRPM3 is expressed in oligodendrocytes in vitro and in vivo. TRPM3 is present during oligodendrocyte differentiation. Immunohistochemistry of adult rat brain slices revealed staining of white matter areas, which co-localized with oligodendrocyte markers. Analysis of the developmental distribution revealed that, prior to myelination, TRPM3 channels are localized on neurons. On oligodendrocytes they are found after the onset of myelination. RT-PCR studies showed that the transcription of TRPM3 splice variants is also developmentally regulated in vitro. Ca(2+) imaging approaches revealed the presence of a sphingosine-induced Ca(2+) entry mechanism in oligodendrocytes - with a pharmacological profile similar to the profile published for heterologously expressed TRPM3. These findings indicate that TRPM3 participates as a Ca(2+)-permeable and sphingosine-activated channel in oligodendrocyte differentiation and CNS myelination.
Collapse
Affiliation(s)
- Anja Hoffmann
- Zelluläre Neurowissenschaften, Max-Delbrück-Centrum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Cloning and characterization of rat transient receptor potential-melastatin 4 (TRPM4). Biochem Biophys Res Commun 2009; 391:806-11. [PMID: 19945433 DOI: 10.1016/j.bbrc.2009.11.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 11/21/2022]
Abstract
Transient receptor potential-melastatin 4 (TRPM4) is a Ca(2+)-activated, but Ca(2+)-impermeable, cation channel. Increasing [Ca(2+)](i) induce current activation and reduction through TRPM4 channels. Several TRPM4 isoforms are expressed in mice and humans, but rat TRPM4 (rTRPM4) has not been previously identified. Here, we identified, cloned, and characterized two rTRPM4 isoforms, rTRPM4a and rTRPM4b, using 5'-RACE-PCR. rTRPM4b channel activity increased with [Ca(2+)](i) in a dose-dependent manner. However, the rTRPM4b Ca(2+)-dependent activity at negative potentials differed from that of human TRPM4b (hTRPM4b), even though both represent full-length proteins. Additionally, rTRPM4b showed a slightly different single-channel current amplitude and open time distribution than hTRPM4b. However, rTRPM4a, which lacks the N-terminal region of rTRPM4b, and hTRPM4a had no similar functional channel activities. Furthermore, we characterized splicing regions, tissue distribution, and cellular localization of these isoforms. Unlike rTRPM4a, rTRPM4b was localized to the membrane at high levels, suggesting that rTRPM4b is the functionally active channel.
Collapse
|
78
|
Freestone PS, Chung KKH, Guatteo E, Mercuri NB, Nicholson LFB, Lipski J. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 2009; 30:1849-59. [PMID: 19912331 DOI: 10.1111/j.1460-9568.2009.06990.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05-1 microm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 +/- 15 pA) associated with increases in intracellular [Ca(2+)] ([Ca(2+)](i)) (73.8 +/- 7.7 nm) and intracellular [Na(+)] (3.1 +/- 0.6 mm) (all with 1 microm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca(2+)](i) rise was abolished by removing extracellular Ca(2+), and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca(2+)](i) rise resulted in a large (46.6 +/- 25.3 nm) Ca(2+) response when baseline [Ca(2+)](i) was increased by a 'priming' protocol that activated voltage-gated Ca(2+) channels. There was also a positive correlation between 'naturally' occurring variations in baseline [Ca(2+)](i) and the rotenone-induced [Ca(2+)](i) rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K(+) channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca(2+)](i) rise by a small increase in baseline [Ca(2+)](i).
Collapse
Affiliation(s)
- Peter S Freestone
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
79
|
Takumida M, Ishibashi T, Hamamoto T, Hirakawa K, Anniko M. Expression of transient receptor potential channel melastin (TRPM) 1-8 and TRPA1 (ankyrin) in mouse inner ear. Acta Otolaryngol 2009; 129:1050-60. [PMID: 19065290 DOI: 10.1080/00016480802570545] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSIONS It has been shown that TRPMs may play a functional role in sensory cell physiology, fluid homeostasis, sensory cell death, and thermosensation in the inner ear, while TRPA1 plays an important role in sensory transduction. OBJECTIVE To study expression of TRPM1-8 and TRPA1 in the mouse inner ear. MATERIALS AND METHODS The localization of TRPM1-8 and TRPA1 in the inner ear of normal and gentamicin-treated CBA/J mice was investigated by immunohistochemistry. RESULTS The stria vascularis displayed a positive immunofluorescent reaction to TRPM1, 2, 3, 6, and 7. In the organ of Corti, outer and inner hair cells (OHCs and IHCs) showed positive immunofluorescence to TRPM1, 2, 3, 6, 7, and 8. Spiral ganglion cells were immunoreactive to TRPM1, 2, 3, 6, 7, and 8. The nerve fibers in the spiral ganglion cells and the nerves innervating the OHCs or IHCs were noticeably immunofluorescent to TRPM8 and TRPA1. In the vestibular end organs, vestibular sensory cells showed immunofluorescence to TRPM1, 2, 3, 6, and 7. The vestibular dark cells showed immunofluorescence to TRPM1, 3, 6, and 7; only the apical portion reacted to TRPM4. The nerve fibers innervating the vestibular sensory cells were distinctly reactive to TRPM8 and TRPA1, while the vestibular ganglion cells reacted to TRPM1, 2, 3, 6, 7, and 8.
Collapse
|
80
|
Abstract
Calcium signals mediate diverse cellular functions in immunological cells. Early studies with mast cells, then a preeminent model for studying Ca2+-dependent exocytosis, revealed several basic features of calcium signaling in non-electrically excitable cells. Subsequent studies in these and other cells further defined the basic processes such as inositol 1,4,5-trisphosphate-mediated release of Ca2+ from Ca2+ stores in the endoplasmic reticulum (ER); coupling of ER store depletion to influx of external Ca2+ through a calcium-release activated calcium (CRAC) channel now attributed to the interaction of the ER Ca2+ sensor, stromal interacting molecule-1 (STIM1), with a unique Ca2+-channel protein, Orai1/CRACM1, and subsequent uptake of excess Ca2+ into ER and mitochondria through ATP-dependent Ca2+ pumps. In addition, transient receptor potential channels and ion exchangers also contribute to the generation of calcium signals that may be global or have dynamic (e.g., waves and oscillations) and spatial resolution for specific functional readouts. This review discusses past and recent developments in this field of research, the pharmacologic agents that have assisted in these endeavors, and the mast cell as an exemplar for sorting out how calcium signals may regulate multiple outputs in a single cell.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
81
|
Abed E, Moreau R. Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor. Am J Physiol Cell Physiol 2009; 297:C360-8. [DOI: 10.1152/ajpcell.00614.2008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone is a dynamic tissue that is continuously being remodeled throughout life. Specialized cells called osteoclasts transiently break down old bone (resorption process) at multiple sites as other cells known as osteoblasts are replacing it with new tissue (bone formation). Usually, both resorption and formation processes are in balance and thereby maintain skeletal strength and integrity. This equilibrium is assured by the coordination of proliferation, migration, differentiation, and secretory functions of the osteoblasts, which are essential for adequate formation and resorption processes. Disturbances of this equilibrium may lead to decreased bone mass (osteoporosis), increased bone fragility, and susceptibility to fractures. Epidemiological studies have linked insufficient dietary magnesium (Mg2+) intake in humans with low bone mass and osteoporosis. Here, we investigated the roles of Mg2+ and melastatin-like transient receptor potential 7 (TRPM7), known as Mg2+ channels, in human osteoblast cell proliferation and migration induced by platelet-derived growth factor (PDGF), which has been involved in the bone remodeling process. PDGF promoted an influx of Mg2+, enhanced cell migration, and stimulated the gene expression of TRPM7 channels in human osteoblast MG-63 cells. The stimulation of osteoblast proliferation and migration by PDGF was significantly reduced under culture conditions of low extracellular Mg2+ concentrations. Silencing TRPM7 expression in osteoblasts by specific small interfering RNA prevented the induction by PDGF of Mg2+ influx, proliferation, and migration. Our results indicate that extracellular Mg2+ and TRPM7 are important for PDGF-induced proliferation and migration of human osteoblasts. Thus Mg2+ deficiency, a common condition among the general population, may be associated with altered osteoblast functions leading to inadequate bone formation and the development of osteoporosis.
Collapse
|
82
|
Devi S, Kedlaya R, Maddodi N, Bhat KMR, Weber CS, Valdivia H, Setaluri V. Calcium homeostasis in human melanocytes: role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light. Am J Physiol Cell Physiol 2009; 297:C679-87. [PMID: 19587221 DOI: 10.1152/ajpcell.00092.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin (TRPM) is a subfamily of ion channels that are involved in sensing taste, ambient temperature, low pH, osmolarity, and chemical ligands. Melastatin 1/TRPM1, the founding member, was originally identified as melanoma metastasis suppressor based on its expression in normal pigment cells in the skin and the eye but not in aggressive, metastasis-competent melanomas. The role of TRPM1 and its regulation in normal melanocytes and in melanoma progression is not understood. Here, we studied the relationship of TRPM1 expression to growth and differentiation of human epidermal melanocytes. TRPM1 expression and intracellular Ca(2+) levels are significantly lower in rapidly proliferating melanocytes compared to the slow growing, differentiated melanocytes. We show that lentiviral short hairpin RNA (shRNA)-mediated knockdown of TRPM1 results in reduced intracellular Ca(2+) and decreased Ca(2+) uptake suggesting a role for TRPM1 in Ca(2+) homeostasis in melanocytes. TRPM1 knockdown also resulted in a decrease in tyrosinase activity and intracellular melanin pigment. Expression of the tumor suppressor p53 by transfection or induction of endogenous p53 by ultraviolet B radiation caused repression of TRPM1 expression accompanied by decrease in mobilization of intracellular Ca(2+) and uptake of extracellular Ca(2+). These data suggest a role for TRPM1-mediated Ca(2+) homeostasis, which is also regulated by ultraviolet B, in melanogenesis.
Collapse
Affiliation(s)
- Sulochana Devi
- Dept. of Dermatology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Lazzeri M. TRP family proteins in the lower urinary tract: translating basic science into new clinical prospective. Ther Adv Urol 2009; 1:33-42. [PMID: 21789052 PMCID: PMC3126043 DOI: 10.1177/1756287209103922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lower urinary tract (LUT) is densely innervated by capsaicin-sensitive primary afferent neurons, a sub set of sensory nerves, in a number of species including humans. These fibers exhibit both a sensory (afferent) function, including the regulation of the micturition reflex and the perception of pain, and an 'efferent' function, involved in the detrusor smooth muscle contractility and plasma protein extravasation. The discovery of specific binding sites for capsaicin, the pungent ingredient of red chilli, initiated a rush that ended up with the cloning of the 'vanilloid receptor', which belongs to the TRP (transient receptor potential) family. Here we reviewed the knowledge about the presumable functions of TRP family proteins in the LUT as regulators of bladder reflex activity, pain perception and cell differentiation. This review will focus on experimental evidence and promising clinical applications of targeting these proteins for the treatment of detrusor overactivity and bladder pain syndrome. As TRP receptor ligands may promote cellular death, and inhibit the growth of normal and neoplastic cells, the translation of basic science evidence into new clinical prospective for bladder and prostate cancer will be shown.
Collapse
Affiliation(s)
- Massimo Lazzeri
- Department of Urology, Santa Chiara Hospital Piazza Indipendenza n° 11, 50129, Florence, Italy
| |
Collapse
|
84
|
Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: amplification caused by intracellular Ca2+. ACTA ACUST UNITED AC 2009; 212:270-6. [PMID: 19112146 DOI: 10.1242/jeb.023283] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliated protozoan Paramecium spontaneously changes its swimming direction in the absence of external stimuli. Such behavior is based on resting potential fluctuations, the amplitudes of which reach a few mV. When the resting potential fluctuation is positive and large, a spike-like depolarization is frequently elicited that reverses the beating of the cilia associated with directional changes during swimming. We aimed to study how the resting potential fluctuation is amplified. Simultaneous measurements of the resting potential and intracellular Ca(2+) ([Ca(2+)](i)) from a deciliated cell showed that positive potential fluctuations were frequently accompanied by a small increase in [Ca(2+)](i). This result suggests that Ca(2+) influx through the somatic membrane occurs during the resting state. The mean amplitude of the resting potential fluctuation was largely decreased by either an intracellular injection of a calcium chelater (BAPTA) or by an extracellular addition of Ba(2+). Hence, a small increase in [Ca(2+)](i) amplifies the resting potential fluctuation. Simulation analysis of the potential fluctuation was made by assuming that Ca(2+) and K(+) channels of surface membrane are fluctuating between open and closed states. The simulated fluctuation increased to exhibit almost the same amplitude as the measured fluctuation using the assumption that a small Ca(2+) influx activates Ca(2+) channels in a positive feedback manner.
Collapse
Affiliation(s)
- Yasuo Nakaoka
- Biophysical Dynamics Laboratories, Graduate School of Frontier Bioscience, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | |
Collapse
|
85
|
Abed E, Labelle D, Martineau C, Loghin A, Moreau R. Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Mol Membr Biol 2008; 26:146-58. [PMID: 19115145 DOI: 10.1080/09687680802612721] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The preservation of bone mass relies on adequate proliferation, differentiation, secretion of matrix proteins and rate of apoptosis of the bone-forming osteoblasts. Although growing body of evidence indicates that the transient receptor potential (TRP) channels play important roles in numerous cellular functions, limited information is available about the TRP channels in osteoblasts. Here, we inventoried the gene expression and addressed some roles of the TRP channels in various osteoblast-like cells. The transcripts of canonical TRP (TRPC) channels were revealed for TRPC1, TRPC3, TRPC4 and TRPC6 in human MG-63, SaOS and U2 OS osteoblasts while transcripts for TRPC2, TRPC4, TRPC6 and TRPC7 were observed in the murine MC3T3 osteoblasts. PCR products were shown for the melastatin-related TRP (TRPM) channels TRPM4, TRPM6, TRPM7 and TRPM8 in all cell lines. The TRPM1 was specifically expressed by murine MC3T3 cells while the TRPM3 transcripts were revealed solely in human osteoblast-like cells. Transcripts for TRPV2 and TRPV4 were shown in osteoblastic cells. By interfering RNA approaches, the TRPC1 channels in osteoblasts were shown to be responsible for the capacitative calcium entry (CCE) and for the stimulation of cell proliferation by platelet-derived growth factor. On the other hand, interfering RNA-mediated abrogation of the expression of TRPM7, known as calcium and magnesium channels, resulted in the reduction of both basal and growth factor-stimulated osteoblastic cell proliferation. Our results provide the first complete reference for the gene expression of TRP channels in osteoblasts and point to their importance in cell proliferation.
Collapse
Affiliation(s)
- Elie Abed
- Laboratoire du Métabolisme osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
86
|
Lange I, Penner R, Fleig A, Beck A. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 2008; 44:604-15. [PMID: 18572241 PMCID: PMC2597220 DOI: 10.1016/j.ceca.2008.05.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/08/2008] [Accepted: 05/13/2008] [Indexed: 11/16/2022]
Abstract
The Ca(2+)-permeable TRPM2 channel is a dual function protein that is activated by intracellular ADPR through its enzymatic pyrophosphatase domain with Ca(2+) acting as a co-factor. Other TRPM2 regulators include cADPR, NAADP and H(2)O(2), which synergize with ADPR to potentiate TRPM2 activation. Although TRPM2 has been thoroughly characterized in overexpression or cell-line systems, little is known about the features of TRPM2 in primary cells. We here characterize the regulation of TRPM2 activation in human neutrophils and report that ADPR activates TRPM2 with an effective half-maximal concentration (EC(50)) of 1microM. Potentiation by Ca(2+) is dose-dependent with an EC(50) of 300nM. Both cADPR and NAADP activate TRPM2, albeit with lower efficacy than in the presence of subthreshold levels of ADPR (100nM), which significantly shifts the EC(50) for cADPR from 44 to 3muM and for NAADP from 95 to 1microM. TRPM2 activation by ADPR can be suppressed by AMP with an IC(50) of 10microM and cADPR-induced activation can be blocked by 8-Bromo-cADPR. We further show that 100microM H(2)O(2) enables subthreshold concentrations of ADPR (100nM) to activate TRPM2. We conclude that agonistic and antagonistic characteristics of TRPM2 as seen in overexpression systems are largely compatible with the functional properties of TRPM2 currents measured in human neutrophils, but the potencies of agonists in primary cells are significantly higher.
Collapse
Affiliation(s)
- Ingo Lange
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, Hawaii 96813
| | - Reinhold Penner
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, Hawaii 96813
| | - Andrea Fleig
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, Hawaii 96813
| | - Andreas Beck
- Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, Hawaii 96813
| |
Collapse
|
87
|
Fujiwara Y, Minor DL. X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 2008; 383:854-70. [PMID: 18782578 PMCID: PMC2630241 DOI: 10.1016/j.jmb.2008.08.059] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/16/2008] [Accepted: 08/20/2008] [Indexed: 11/23/2022]
Abstract
Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. Earlier studies showed that members of the TRPM subclass possess a self-assembling tetrameric C-terminal cytoplasmic coiled-coil domain that underlies channel assembly and trafficking. Here, we present the high-resolution crystal structure of the coiled-coil domain of the channel enzyme TRPM7. The crystal structure, together with biochemical experiments, reveals an unexpected four-stranded antiparallel coiled-coil architecture that bears unique features relative to other antiparallel coiled-coils. Structural analysis indicates that a limited set of interactions encode assembly specificity determinants and uncovers a previously unnoticed segregation of TRPM assembly domains into two families that correspond with the phylogenetic divisions seen for the complete subunits. Together, the data provide a framework for understanding the mechanism of TRPM channel assembly and highlight the diversity of forms found in the coiled-coil fold.
Collapse
Affiliation(s)
- Yuichiro Fujiwara
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics & Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158-2330, USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics & Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158-2330, USA
| |
Collapse
|
88
|
Slominski A. Cooling skin cancer: menthol inhibits melanoma growth. Focus on "TRPM8 activation suppresses cellular viability in human melanoma". Am J Physiol Cell Physiol 2008; 295:C293-5. [PMID: 18684990 DOI: 10.1152/ajpcell.00312.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
89
|
Abstract
Transient receptor potential (TRP) channels are important in many neuronal and non-neuronal physiological processes. The past 2 years have seen much progress in the use of structural biology techniques to elucidate molecular mechanisms of TRP channel gating and regulation. Two approaches have proven fruitful: (i) a divide-and-conquer strategy has provided high-resolution structural details of TRP channel fragments although it fails to explain how these fragments are integrated in the full channel; and (ii) electron microscopy of entire TRP channels has yielded low-resolution images that provide a basis for testable models of TRP channel architecture. The results of each approach, summarized in this review, provide a preview of what the future holds in TRP channel structural biology.
Collapse
Affiliation(s)
- Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238, USA.
| |
Collapse
|
90
|
Brown RC, Wu L, Hicks K, O'neil RG. Regulation of blood-brain barrier permeability by transient receptor potential type C and type v calcium-permeable channels. Microcirculation 2008; 15:359-71. [PMID: 18464164 PMCID: PMC3077823 DOI: 10.1080/10739680701762656] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To identify plasma membrane ion channels mediating calcium influx at the blood-brain barrier in response to disrupting stimuli. METHODS We examined the expression and function of candidate transient receptor potential channels using reverse transcriptase polymerase chain recation, Fura-2 calcium imaging, and permeability assays. RESULTS Immortalized mouse brain microvessel endothelial cells expressed multiple transient receptor potential isoforms: transient receptor potential C1, C2, C4, and C7, M2, M3, M4, and M7, and V2 and V4. Similar profiles were observed in freshly isolated cerebral microvessels and primary cultured rat brain endothelial cells. Thrombin-stimulated calcium influx in brain endothelial cells was blocked by transient receptor potential C inhibitors. Transient receptor potential V activating stimuli also increased intracellular calcium. This increase was inhibited by a transient receptor potential V blocker or by removal of extracellular calcium. Barrier integrity was compromised by thrombin, hypo-osmolar stress, and PMA treatment. The increase in barrier permeability induced by transient receptor potential V activators was blocked by transient receptor potential V inhibition, while thrombin effects were inhibited by transient receptor potential C inhibitors. CONCLUSIONS These results demonstrate that transient receptor potential C and transient receptor potential V channels mediate calcium influx at the blood-brain barrier, and as a consequence, may modulate barrier integrity.
Collapse
Affiliation(s)
- Rachel C Brown
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | | | |
Collapse
|
91
|
Meng F, To WKL, Gu Y. Inhibition effect of arachidonic acid on hypoxia-induced [Ca(2+)](i) elevation in PC12 cells and human pulmonary artery smooth muscle cells. Respir Physiol Neurobiol 2008; 162:18-23. [PMID: 18455484 DOI: 10.1016/j.resp.2008.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
Abstract
[Ca(2+)](i) elevation is a key event when O(2) sensitive cells, e.g. PC12 cells and pulmonary artery smooth muscle cells, face hypoxia. Ca(2+) entry pathways in mediating hypoxia-induced [Ca(2+)](i) elevation include: voltage-gated Ca(2+) channels (VGCCs), transient receptor potential (TRP) channel and Na(+)-Ca(2+) ex-changer (NCX). In the pulmonary artery, accumulated evidence strongly suggests that prostaglandins (PGs) are involved in pulmonary inflammation and cause vasoconstriction during hypoxia. In this study, we investigated the effect of arachidonic acid (AA), the upstream substrate for PGs, on hypoxia response in O(2) sensitive cells. Exogenous application of AA significantly inhibited hypoxia-induced [Ca(2+)](i) elevation. This effect was due to AA itself rather than its degenerative products. The pharmacological modulation of endogenous AA showed that the prevention of AA generation by blockage of cPLA2, diacylglycerol (DAG) lipase and fatty acid hydrolysis (FAAH), augments hypoxia-induced [Ca(2+)](i) elevation, whereas prevention of AA degeneration attenuates hypoxia-induced [Ca(2+)](i) elevation. Over-expression of COX2 enhances hypoxia-induced [Ca(2+)](i) elevation and this enhancement is reversed by exogenous AA. Our results suggest that AA inhibits hypoxia response. The dynamic alterations in cellular lipids might determine cell response to hypoxia.
Collapse
Affiliation(s)
- Fei Meng
- Department of Physiology, The Medical School, University of Birmingham, Vincent Drive, Birmingham, UK
| | | | | |
Collapse
|
92
|
Lecrux C, McCabe C, Weir CJ, Gallagher L, Mullin J, Touzani O, Muir KW, Lees KR, Macrae IM. Effects of Magnesium Treatment in a Model of Internal Capsule Lesion in Spontaneously Hypertensive Rats. Stroke 2008; 39:448-54. [DOI: 10.1161/strokeaha.107.492934] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
The study aim was to assess the effects of magnesium sulfate (MgSO
4
) administration on white matter damage in vivo in spontaneously hypertensive rats.
Methods—
The left internal capsule was lesioned by a local injection of endothelin-1 (ET-1; 200 pmol) in adult spontaneously hypertensive rats. MgSO
4
was administered (300 mg/kg SC) 30 minutes before injection of ET-1, plus 200 mg/kg every hour thereafter for 4 hours. Infarct size was measured by T2-weighted magnetic resonance imaging (day 2) and histology (day 11), and functional recovery was assessed on days 3 and 10 by the cylinder and walking-ladder tests.
Results—
ET-1 application induced a small, localized lesion within the internal capsule. Despite reducing blood pressure, MgSO
4
did not significantly influence infarct volume (by magnetic resonance imaging: median, 2.1 mm
3
; interquartile range, 1.3 to 3.8, vs 1.6 mm
3
and 1.2 to 2.1, for the vehicle-treated group; by histology: 0.3 mm
3
and 0.2 to 0.9 vs 0.3 mm
3
and 0.2 to 0.5, respectively). Significant forelimb and hindlimb motor deficits were evident in the vehicle-treated group as late as day 10. These impairments were significantly ameliorated by MgSO
4
in both cylinder (left forelimb use,
P
<0.01 and both-forelimb use,
P
<0.03 vs vehicle) and walking-ladder (right hindlimb score,
P
<0.02 vs vehicle) tests.
Conclusions—
ET-1–induced internal capsule ischemia in spontaneously hypertensive rats represents a good model of lacunar infarct with small lesion size, minimal adverse effects, and a measurable motor deficit. Despite inducing mild hypotension, MgSO
4
did not significantly influence infarct size but reduced motor deficits, supporting its potential utility for the treatment of lacunar infarct.
Collapse
Affiliation(s)
- Clotilde Lecrux
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - Christopher McCabe
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - Christopher J. Weir
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - Lindsay Gallagher
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - Jim Mullin
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - Omar Touzani
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - Keith W. Muir
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - Kennedy R. Lees
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| | - I. Mhairi Macrae
- From the 7TMRI Facility (C.L., C.M., L.G., J.M., I.M.M.), Division of Clinical Neuroscience, University of Glasgow, Glasgow, Scotland; Centre Cyceron (C.L., O.T.), CNRS UMR 6185, University of Caen, Caen, France; the Robertson Centre for Biostatistics (C.J.W.); Division of Clinical Neurosciences (K.W.M.), Institute of Neurological Sciences, Southern General Hospital; and the Division of Cardiovascular and Medical Sciences (K.R.L.), Western Infirmary, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
93
|
|
94
|
Camerino DC, Desaphy JF, Tricarico D, Pierno S, Liantonio A. Therapeutic Approaches to Ion Channel Diseases. ADVANCES IN GENETICS 2008; 64:81-145. [DOI: 10.1016/s0065-2660(08)00804-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
95
|
Abed E, Moreau R. Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif 2007; 40:849-65. [PMID: 18021175 DOI: 10.1111/j.1365-2184.2007.00476.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Bone tissue in the adult is continuously being remodelled, and overall bone mass is maintained constant by the balance between osteoclastic bone resorption and osteoblastic bone formation. Adequate osteoblastic proliferation is essential for both appropriate formation and for regulation of resorption, and thereby the maintenance of bone remodelling equilibrium. OBJECTIVES Here, we have investigated the roles of melastatin-like transient receptor potential 6 and 7 (TRPM6, TRPM7), which are calcium (Ca2+) and magnesium (Mg2+) conducting channels, during proliferation of human osteoblasts. RESULTS Genetic expression of TRPM6 and TRPM7 was shown in human osteoblast-like MG-63, SaOS and U2-OS cells, and reduction of extracellular Mg2+ or Ca2+ led to a decrease of cell proliferation. Concomitant reduction of both ions further accentuated reduction of cell proliferation. Expression of TRPM7 channels was increased under conditions of reduced extracellular Mg2+ and Ca2+ levels whereas expression of TRPM6 was not modified, suggesting compensatory mechanisms afforded by TRPM7 in order to maintain intracellular ion homeostasis. Pre-incubation of cells in reduced extracellular Mg2+ conditions led to activation of Ca2+ and Mg2+ influx. Reduction of TRPM7 expression by specific siRNA prevented latter influx and inhibited cell proliferation. CONCLUSIONS Our results indicate that extracellular Mg2+ and Ca2+ deficiency reduces the proliferation of human osteoblastic cells. Expression and activity of TRPM7 is modulated by extracellular Mg2+ and Ca2+ availability, indicating that TRPM7 channels are involved in intracellular ion homeostasis and proliferation of osteoblasts.
Collapse
Affiliation(s)
- E Abed
- Laboratoire du Métabolisme Osseux, Centre BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
96
|
Abstract
TRPM2 is a calcium-permeable nonselective cation channel that is opened by the binding of ADP-ribose (ADPR) to a C-terminal nudix domain. Channel activity is further regulated by several cytosolic factors, including cyclic ADPR (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP), Ca2+ and calmodulin (CaM), and adenosine monophosphate (AMP). In addition, intracellular ions typically used in patch-clamp experiments such as Cs+ or Na+ can alter ADPR sensitivity and voltage dependence, complicating the evaluation of the roles of the various modulators in a physiological context. We investigated the roles of extra- and intracellular Ca2+ as well as CaM as modulators of ADPR-induced TRPM2 currents under more physiological conditions, using K+-based internal saline in patch-clamp experiments performed on human TRPM2 expressed in HEK293 cells. Our results show that in the absence of Ca2+, both internally and externally, ADPR alone cannot induce cation currents. In the absence of extracellular Ca2+, a minimum of 30 nM internal Ca2+ is required to cause partial TRPM2 activation with ADPR. However, 200 μM external Ca2+ is as efficient as 1 mM Ca2+ in TRPM2 activation, indicating an external Ca2+ binding site important for proper channel function. Ca2+ facilitates ADPR gating with a half-maximal effective concentration of 50 nM and this is independent of extracellular Ca2+. Furthermore, TRPM2 currents inactivate if intracellular Ca2+ levels fall below 100 nM irrespective of extracellular Ca2+. The facilitatory effect of intracellular Ca2+ is not mimicked by Mg2+, Ba2+, or Zn2+. Only Sr2+ facilitates TRPM2 as effectively as Ca2+, but this is due to Sr2+-induced Ca2+ release from internal stores rather than a direct effect of Sr2+ itself. Together, these data demonstrate that cytosolic Ca2+ regulates TRPM2 channel activation. Its facilitatory action likely occurs via CaM, since the addition of 100 μM CaM to the patch pipette significantly enhances ADPR-induced TRPM2 currents at fixed [Ca2+]i and this can be counteracted by calmidazolium. We conclude that ADPR is responsible for TRPM2 gating and Ca2+ facilitates activation via calmodulin.
Collapse
Affiliation(s)
- John Starkus
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
97
|
Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF, Tymianski M, MacDonald JF. TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci U S A 2007; 104:16323-8. [PMID: 17913893 PMCID: PMC2042205 DOI: 10.1073/pnas.0701149104] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure to low Ca(2+) and/or Mg(2+) is tolerated by cardiac myocytes, astrocytes, and neurons, but restoration to normal divalent cation levels paradoxically causes Ca(2+) overload and cell death. This phenomenon has been called the "Ca(2+) paradox" of ischemia-reperfusion. The mechanism by which a decrease in extracellular Ca(2+) and Mg(2+) is "detected" and triggers subsequent cell death is unknown. Transient periods of brain ischemia are characterized by substantial decreases in extracellular Ca(2+) and Mg(2+) that mimic the initial condition of the Ca(2+) paradox. In CA1 hippocampal neurons, lowering extracellular divalents stimulates a nonselective cation current. We show that this current resembles TRPM7 currents in several ways. Both (i) respond to transient decreases in extracellular divalents with inward currents and cell excitation, (ii) demonstrate outward rectification that depends on the presence of extracellular divalents, (iii) are inhibited by physiological concentrations of intracellular Mg(2+), (iv) are enhanced by intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)), and (v) can be inhibited by Galphaq-linked G protein-coupled receptors linked to phospholipase C beta1-induced hydrolysis of PIP(2). Furthermore, suppression of TRPM7 expression in hippocampal neurons strongly depressed the inward currents evoked by lowering extracellular divalents. Finally, we show that activation of TRPM7 channels by lowering divalents significantly contributes to cell death. Together, the results demonstrate that TRPM7 contributes to the mechanism by which hippocampal neurons "detect" reductions in extracellular divalents and provide a means by which TRPM7 contributes to neuronal death during transient brain ischemia.
Collapse
Affiliation(s)
| | - Hong-Shuo Sun
- Departments of *Physiology
- Surgery, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Toronto Western Hospital Research Institute, 11-416 MC-PAV, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | | | - Xiujun Sun
- Toronto Western Hospital Research Institute, 11-416 MC-PAV, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | | | | | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | - Zhi-Gang Xiong
- Robert S. Dow Neurobiology Laboratories, Legacy Research, 1225 Northeast Second Avenue, Portland, OR 97232; and
| | - Michael F. Jackson
- Departments of *Physiology
- **To whom correspondence may be addressed at:
Department of Physiology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, Canada M5S 1A8. E-mail: , , or
| | - Michael Tymianski
- Surgery, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Toronto Western Hospital Research Institute, 11-416 MC-PAV, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- **To whom correspondence may be addressed at:
Department of Physiology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, Canada M5S 1A8. E-mail: , , or
| | - John F. MacDonald
- Departments of *Physiology
- Pharmacology
- **To whom correspondence may be addressed at:
Department of Physiology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, Canada M5S 1A8. E-mail: , , or
| |
Collapse
|
98
|
Phelps CB, Gaudet R. The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. J Biol Chem 2007; 282:36474-80. [PMID: 17908685 DOI: 10.1074/jbc.m707205200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential (TRP) channels are a family of cation channels involved in diverse cellular functions. They are composed of a transmembrane domain of six putative transmembrane segments flanked by large N- and C-terminal cytoplasmic domains. The melastatin subfamily (TRPM) channels have N-terminal domains of approximately 700 amino acids with four regions of shared homology and C-terminal domains containing the conserved TRP domain followed by a coiled-coil region. Here we investigated the effects of N- and C-terminal deletions on the cold and menthol receptor, TRPM8, expressed heterologously in Sf21 insect cells. Patch-clamp electrophysiology was used to study channel activity and revealed that only deletion of the first 39 amino acids was tolerated by the channel. Further N-terminal truncation or any C-terminal deletions prevented proper TRPM8 function. Confocal microscopy with immunofluorescence revealed that amino acids 40-86 are required for localization to the plasma membrane. Furthermore, analysis of deletion mutant oligomerization shows that the transmembrane domain is sufficient for TPRM8 assembly into tetramers. TRPM8 channels with C-terminal deletions tetramerize and localize properly but are inactive, indicating that although not essential for tetramerization and localization, the C terminus is critical for proper function of the channel sensor and/or gate.
Collapse
Affiliation(s)
- Christopher B Phelps
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
99
|
Boulais N, Pereira U, Lebonvallet N, Misery L. The whole epidermis as the forefront of the sensory system. Exp Dermatol 2007; 16:634-5. [PMID: 17620089 DOI: 10.1111/j.1600-0625.2007.00590.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicholas Boulais
- Laboratory of Skin Neurobiology, Unit of Compared and Integrative Physiology, University of Western Brittany, Brest, France
| | | | | | | |
Collapse
|
100
|
Naziroğlu M, Lückhoff A, Jüngling E. Antagonist effect of flufenamic acid on TRPM2 cation channels activated by hydrogen peroxide. Cell Biochem Funct 2007; 25:383-7. [PMID: 16933200 DOI: 10.1002/cbf.1310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca(2+)-permeable cation channel that is activated by hydrogen peroxide (H(2)O(2)) as a consequence of oxidative stress although the channel activation by H(2)O(2) appears to represent a cell-specific process in cells with endogenous expression of TRPM2. Flufenamic acid (FA) is a non-steroidal anti-inflammatory compound. Whether H(2)O(2) activates or FA inhibits TRPM2 channels in Chinese hamster ovary (CHO) cell is currently unknown. Due to lack of known antogonists of this channel, we demonstrate in CHO cells that FA inhibits TRPM2 activated by extracellular H(2)O(2). CHO cells were transfected with cDNA coding for TRPM2. Cells were studied with the conventional whole-cell patch clamp technique. The intracellular solution used EDTA (10 mM) as chelator for Ca(2+) and heavy metal ions. H(2)O(2) (10 mM) and FA (0.1 mM) were applied extracellularly. Non-selective cation currents were consistently induced by H(2)O(2). The time cause of H(2)O(2) effects was characterized by a delay of 2-5 min and a slow current induction to reach a plateau. The H(2)O(2)- induced inward current was effectively inhibited by 0.1 mM FA applied extracellularly. In conclusion, we have demonstrated that FA is an effective antogonist of TRPM2 channels and H(2)O(2)activated currents in CHO cells. FA in CHO cells may be considered, at best, a starting point for the development of TRPM2 channel blockers.
Collapse
Affiliation(s)
- Mustafa Naziroğlu
- Institute of Physiology, Medical Faculty, RWTH Aachen, Pauwelsstrasse, Aachen, Germany.
| | | | | |
Collapse
|