51
|
Boguslavsky DV, Sharov KS, Sharova NP. Using Alternative Sources of Energy for Decarbonization: A Piece of Cake, but How to Cook This Cake? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16286. [PMID: 36498366 PMCID: PMC9735948 DOI: 10.3390/ijerph192316286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Few analytical or research works claim that the negative impact of improper use of ASEs may be comparable with that of hydrocarbons and sometimes even greater. It has become a common view that "green" energy (ASE) is clean, safe and environmentally friendly (eco-friendly) in contrast with "black" energy (hydrocarbons). We analyzed 144 works on systemic and/or comparative research of the modern and prospective ASE: biofuels, hydrogen, hydropower, nuclear power, wind power, solar power, geothermal power, oceanic thermal power, tidal power, wind wave power and nuclear fusion power. We performed our analysis within the Spaceship Earth paradigm. We conclude that there is no perfect ASE that is always eco-friendly. All ASEs may be dangerous to the planet considered as a closed and isolated unit ("spaceship") if they are used in an inconsistent manner. This is not in the least a reason to deny them as prospective sources of energy. Using all ASEs in different proportions in various regions of the planet, where their harm to the planet and humanity can be minimized and, on the contrary, their efficiency maximized, would give humanity the opportunity to decarbonize the Earth, and make the energy transition in the most effective way.
Collapse
|
52
|
Duong CM, Lim TT. Optimization and microbial diversity of anaerobic co-digestion of swine manure with waste kitchen oil at high organic loading rates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:199-208. [PMID: 36252449 DOI: 10.1016/j.wasman.2022.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic co-digestion of swine manure (SM) and waste kitchen oil (WKO) was conducted to evaluate the effect of high organic loading rates (OLRs) on biogas production efficiency and microbial changes. Combinations of different loading rates of SM and WKO, with total OLRs from 2 to 8 g VS (volatile solid)/L/d, were evaluated in a laboratory-scale study. While feeding more than 4 g VSSM/L/d did not result in higher biogas production in both mono- and co-digestion scenarios, the addition of WKO increased the total OLR up to 6 g VS/L/d without significant reduction of system productivity. Biogas yields of M2O1 (2 g VSSM/L/d + 1 g VSWKO/L/d) and M4O2 were 910 ± 35 and 849 ± 85 mL/g VSfed which were 25.2 % and 16.9 % higher than the mono-digestion of M2, respectively. A significant increase of bacterial alpha-diversity (Shannon index) was observed in M2O1, at 233.0 ± 3.6 compared with 218.7 ± 5.1 of M2 (p < 0.05). Less bacterial alpha-diversity and accumulation of volatile fatty acids were observed in M4O1 and M4O2, suggesting their potential instability. When digesters were fed with M2, the introduction of 1.4 g VSWKO/L/d or more did not increase biogas yield and could cause system imbalance. The study suggests the limit of WKO could be increased when higher OLRs of SM were applied but should not be more than 4 g VSSM/L/d, and ratio between SM and WKO should be considered to avoid failure. Some of the system disturbances took up to three months to show.
Collapse
Affiliation(s)
- Cuong Manh Duong
- Plant Science & Technology, University of Missouri, Columbia, MO 65211-5200, USA; Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Viet Nam.
| | - Teng-Teeh Lim
- Plant Science & Technology, University of Missouri, Columbia, MO 65211-5200, USA
| |
Collapse
|
53
|
Obtainment of lignocellulose degradation microbial community: the effect of acid–base combination after restrictive enrichment. Arch Microbiol 2022; 204:683. [DOI: 10.1007/s00203-022-03195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
|
54
|
de Albuquerque FP, Dastyar W, Mirsoleimani Azizi SM, Zakaria BS, Kumar A, Dhar BR. Carbon cloth amendment for boosting high-solids anaerobic digestion with percolate recirculation: Spatial patterns of microbial communities. CHEMOSPHERE 2022; 307:135606. [PMID: 35810875 DOI: 10.1016/j.chemosphere.2022.135606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The addition of conductive materials in anaerobic digestion (AD) is a promising method for boosting biomethane recovery from organic waste. However, conductive additives have rarely been investigated for the high-solids anaerobic digestion (HSAD). Here, the impact of adding carbon cloth in the solid phase of an HSAD system with percolate recirculation was investigated. Furthermore, spatial patterns of microbial communities in suspended biomass, percolate, and carbon cloth attached biofilm were assessed. Carbon cloth increased biomethane yield from source-separated organics (SSO) by 20% more than the unamended control by shortening the lag phase (by 15%) and marginally improving the methanogenesis rate constant (by ∼8%) under a batch operation for 50 days. Microbial community analysis demonstrated higher relative abundances of the archaeal population in the carbon cloth amended reactor than in unamended control (12%-21% vs. 5%-15%). Compared to percolate and suspension, carbon cloth attached microbial community showed higher enrichment of known electroactive Pseudomonas species along with Methanosarcina and Methanobacterium species, indicating the possibility of DIET-based syntrophy among these species.
Collapse
Affiliation(s)
| | - Wafa Dastyar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | | | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Amit Kumar
- Mechanical Engineering, University of Alberta, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
55
|
Gahlot P, Balasundaram G, Tyagi VK, Atabani AE, Suthar S, Kazmi AA, Štěpanec L, Juchelková D, Kumar A. Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 214:113856. [PMID: 35850293 DOI: 10.1016/j.envres.2022.113856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge is rich source of carbon, nutrients, and trace elements and can be subjected to proper treatment before disposal to fulfill government legislation and protect receiving environments. Anaerobic digestion (AD) is a well-adopted technology for stabilizing sewage sludge and recovering energy-rich biogas and nutrient-rich digestate. However, a slow hydrolysis rate limits the biodegradability of sludge. In the present study we have attempted to explain the potential of thermal hydrolysis to enhance anaerobic digestion of sewage sludge. Thermal pretreatment improves biodegradability and recycling of the sludge as an excellent energy and nutrients recovery source at reasonable capital (CAPEX) and operational (OPEX) costs. Other pretreatments like conventional (below/above 100 °C), temperature-phased anaerobic digestion (TPAD), microwave and chemically mediated thermal pretreatment have also been accounted. This review provides a holistic overview of sludge's characterization and value-added properties, various techniques used for sludge pretreatment for resource recovery, emphasizing conventional and advanced thermal pretreatment, challenges in scale-up of these technologies, and successful commercialization of thermal pretreatment techniques.
Collapse
Affiliation(s)
- Pallavi Gahlot
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Gowtham Balasundaram
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology Roorkee, 247667, India.
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039, Kayseri, Turkey; Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800, Ostrava-Poruba, Ostrava, Czech Republic
| | - Surinder Suthar
- School of Environment and Natural Resources, Doon University, Dehradun, 248 001, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Libor Štěpanec
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800, Ostrava-Poruba, Ostrava, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800, Ostrava-Poruba, Ostrava, Czech Republic
| | - Arvind Kumar
- International Cooperation Division, Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, 110 016, India
| |
Collapse
|
56
|
Sari NF, Ray P, Rymer C, Kliem KE, Stergiadis S. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition. Animals (Basel) 2022; 12:2998. [PMID: 36359121 PMCID: PMC9654579 DOI: 10.3390/ani12212998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Methane (CH4) emission from enteric fermentation of ruminant livestock is a source of greenhouse gases (GHG) and has become a significant concern for global warming. Enteric methane emission is also associated with poor feed efficiency. Therefore, research has focused on identifying dietary mitigation strategies to decrease CH4 emissions from ruminants. In recent years, plant-derived bioactive compounds have been investigated for their potential to reduce CH4 emissions from ruminant livestock. The organosulphur compounds of garlic have been observed to decrease CH4 emission and increase propionate concentration in anaerobic fermentations (in vitro) and in the rumen (in vivo). However, the mode of action of CH4 reduction is not completely clear, and the response in vivo is inconsistent. It might be affected by variations in the concentration and effect of individual substances in garlic. The composition of the diet that is being fed to the animal may also contribute to these differences. This review provides a summary of the effect of garlic and its bioactive compounds on CH4 emissions by ruminants. Additionally, this review aims to provide insight into garlic and its bioactive compounds in terms of enteric CH4 mitigation efficacy, consistency in afficacy, possible mode of action, and safety deriving data from both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Nurul Fitri Sari
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong 16911, West Java, Indonesia
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- The Nature Conservancy, Arlington, VA 22203, USA
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Kirsty E. Kliem
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| |
Collapse
|
57
|
Microalgae and Cyanobacteria Biomass Pretreatment Methods: A Comparative Analysis of Chemical and Thermochemical Pretreatment Methods Aimed at Methane Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anaerobic digestion of microalgae and cyanobacteria was first proposed as a destination for algal biomass accumulated on stabilization ponds since it could not be disposed of directly in the environment. Now, the versatility of algal biomass makes them a suitable candidate to produce biofuels and other biomolecules in biorefineries. Anaerobic digestion of biomass is advantageous because it does not require the extraction of specific cellular constituents or drying of the biomass. Nevertheless, challenges remain regarding biomass concentration and their resistant cell walls, which are factors that could hamper methane yield. Many pretreatment methods, including chemical and thermochemical, have been proposed to break down the complex polymers present on the cell wall into smaller molecules. Unfortunately, the relationship between biomass solubilization and methane yield is not well defined. This article intends to review the anaerobic digestion of algal biomass and the role of chemical and thermochemical pretreatments in enhancing methane production. Several pretreatment conditions selected from the scientific literature were compared to verify which conditions actually improve methane yield. The severity of the selected pretreatments was also assessed using the combined severity factor. Results suggest that thermochemical pretreatment in less severe conditions is the most efficient, leading to a greater increase in methane yield. Only enzymatic pretreatments and some thermal pretreatments result in a positive energy balance. The large-scale implementation of pretreatment methods requires technological innovations to reduce energy consumption and its integration with other processes in wastewater treatment plants.
Collapse
|
58
|
Piveteau P, Druilhe C, Aissani L. What on earth? The impact of digestates and composts from farm effluent management on fluxes of foodborne pathogens in agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156693. [PMID: 35700775 DOI: 10.1016/j.scitotenv.2022.156693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The recycling of biomass is the cornerstone of sustainable development in the bioeconomy. In this context, digestates and composts from processed agricultural residues and biomasses are returned to the soil. Whether or not the presence of pathogenic microorganisms in these processed biomasses is a threat to the sustainability of the current on-farm practices is still the subject of debate. In this review, we describe the microbial pathogens that may be present in digestates and composts. We then provide an overview of the current European regulation designed to mitigate health hazards linked to the use of organic fertilisers and soil improvers produced from farm biomasses and residues. Finally, we discuss the many factors that underlie the fate of microbial pathogens in the field. We argue that incorporating land characteristics in the management of safety issues connected with the spreading of organic fertilisers and soil improvers can improve the sustainability of biomass recycling.
Collapse
|
59
|
Jeong SY, Kim TG. Determination of methanogenesis by nutrient availability via regulating the relative fitness of methanogens in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156002. [PMID: 35588829 DOI: 10.1016/j.scitotenv.2022.156002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 05/16/2023]
Abstract
Response of microbial community to nutrient availability in anaerobic digestion (AD) remains elusive. Prokaryotic communities in AD batch cultures with 0, 1, 3, 5, 7, 11, 15, 20, and 25 g/L peptone were monitored using massive parallel sequencing and quantitative PCR over a 34-day experimental period. Methane production displayed a hump-shaped response to the nutrient gradient (peaking at 15 g/L peptone). Moreover, total and acetoclastic methanogens showed hump-shaped responses (both peaking at 11 g/L peptone). However, prokaryotic population increased with nutrient concentration (linear regression, R2 = 0.86) while diversity decreased (R2 = 0.94), and ordination analysis showed a gradual succession of community structure along the first axis. Network analysis revealed that extent of interspecific interactions (e.g., edge number and clustering coefficient) exhibited a hump-shaped response. The combined results indicate that abundant species became more dominated with increasing nutrient, which can result in a gain or loss of interspecific interaction within the community. Network module analysis showed that one module dominated the network at each nutrient level (comprising 41%-65% of the nodes), indicating that AD community formed a core microbial guild. The most abundant phylotypes, Macellibacteroides and Butyricicoccaceae, were consistently negative with acetoclastic methanogens in the dominant modules. Their predominance at ≥15 g/L peptone can explain the hump-shaped responses of methanogenesis and methanogens. Collectively, methanogenesis and microbial network exhibited hump-shaped responses, although microbial community exhibited monotonic responses. Therefore, nutrient availability can determine the methanogenesis through regulating the relative fitness of methanogens within the community.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Microbiology, Pusan National University, Pusan 46241, Republic of Korea
| | - Tae Gwan Kim
- Department of Microbiology, Pusan National University, Pusan 46241, Republic of Korea.
| |
Collapse
|
60
|
Holl E, Steinbrenner J, Merkle W, Krümpel J, Lansing S, Baier U, Oechsner H, Lemmer A. Two-stage anaerobic digestion: State of technology and perspective roles in future energy systems. BIORESOURCE TECHNOLOGY 2022; 360:127633. [PMID: 35863602 DOI: 10.1016/j.biortech.2022.127633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Two-stage anaerobic digestion (TSAD) systems have been studied on a laboratory scale for about 50 years. However, they have not yet reached industrial scale despite their potential for future energy systems. This review provides an analysis of the TSAD technology, including the influence of process parameters on biomass conversion rates. The most common substrate (35.2% of the 38 selected studies) used in the analysed data was in the category of rapidly hydrolysable industrial waste with an average dry matter content of 7.24%. The highest methane content of 85% was reached when digesting food waste in a combination of two mesophilic continuously stirred tank reactors with an acidic (pH 5.5) first stage and alkaline (pH 7) second stage. Therefore, the review shows the limitations of the TSAD technology, future research directions, and the effect of integration of TSAD systems into the current strategy to reduce greenhouse gas emissions.
Collapse
Affiliation(s)
- Elena Holl
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany.
| | - Jörg Steinbrenner
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany
| | - Wolfgang Merkle
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Biocatalyst and Process Technology Unit, Einsiedlerstrasse 29, 8820 Wädenswil, Switzerland
| | - Johannes Krümpel
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany
| | - Stephanie Lansing
- Dept of Environmental Science & Technology, University of Maryland, College Park, MD, USA
| | - Urs Baier
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Biocatalyst and Process Technology Unit, Einsiedlerstrasse 29, 8820 Wädenswil, Switzerland
| | - Hans Oechsner
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany
| | - Andreas Lemmer
- University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany
| |
Collapse
|
61
|
Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
62
|
Liu Y, Sim J, Hailemariam RH, Lee J, Rho H, Park KD, Kim DW, Woo YC. Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques. CHEMOSPHERE 2022; 303:134959. [PMID: 35580646 DOI: 10.1016/j.chemosphere.2022.134959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
With the increasing global demand for energy, renewable and sustainable biogas has attracted considerable attention. However, the presence of various gases such as methane, carbon dioxide (CO2), nitrogen, and hydrogen sulfide in biogas, and the potential emission of acid gases, which may adversely influence the environment, limits the efficient application of biogas in many fields. Consequently, researchers have focused on the upgrade and purification of biogas to eliminate impurities and obtain high-quality and high-purity biomethane with an increased combustion efficiency. In this context, the removal of CO2 gas, which is the most abundant contaminant in biogas, is of significance. Compared to conventional biogas purification processes such as water scrubbing, chemical absorption, pressure swing adsorption, and cryogenic separation, advanced membrane separation technologies are simpler to implement, easier to scale, and incur lower costs. Notably, hollow fiber membranes enhance the gas separation efficiency and decrease costs because their large specific surface area provides a greater range of gas transport. Several reviews have described biogas upgrading technologies and gas separation membranes composed of different materials. In this review, five commonly used commercial biogas upgrading technologies, as well as biological microalgae-based techniques are compared, the advantages and limitations of polymeric and mixed matrix hollow fiber membranes are highlighted, and methods to fabricate and modify hollow fiber membranes are described. This will provide more ideas and methods for future low-cost, large-scale industrial biogas upgrading using membrane technology.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeonghoo Sim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Ruth Habte Hailemariam
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jonghun Lee
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Kwang-Duck Park
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yun Chul Woo
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
63
|
Akamatsu K, Imamura K, Nakao SI, Wang XL. Hydrogen Produced from Simulated Biogas Using a Membrane Reactor with a Dimethoxydimethylsilane-Derived Silica Membrane Operated under Pressure and without Sweep Gas. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.22we044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kazuki Akamatsu
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University
| | - Keigo Imamura
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University
| | - Shin-ichi Nakao
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University
| | - Xiao-lin Wang
- Department of Chemical Engineering, Tsinghua University
| |
Collapse
|
64
|
Motte J, Mahmoud M, Nieder-Heitmann M, Vleeming H, Thybaut JW, Poissonnier J, Alvarenga RAF, Nachtergaele P, Dewulf J. Environmental Performance Assessment of a Novel Process Concept for Propanol Production from Widely Available and Wasted Methane Sources. Ind Eng Chem Res 2022; 61:11071-11079. [PMID: 35941850 PMCID: PMC9354509 DOI: 10.1021/acs.iecr.2c00808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Currently, propanol
production highly depends on conventional fossil
resources. Therefore, an alternative production process, denoted as
“C123”, is proposed and evaluated in which underutilized
and methane-rich feedstocks such as biogas (scenario BG), marginal
gas (scenario MG), and associated gas (scenario AG) are converted
into propanol. A first modular-scale process concept was constructed
in Aspen Plus, based on experimental data and know-how of the C123
consortium partners. The environmental performance of the considered
scenarios was compared at the life cycle level by calculating key
performance indicators (KPIs), such as the global warming burden.
The results showed that scenario BG is the least dependent on fossil
fuels for energy use. Scenario AG seems the most promising one based
on almost all selected KPIs when taking into account the avoided gas
flaring emissions. The performance of the C123 process concept could
be improved by applying heat integration in the process concept.
Collapse
Affiliation(s)
- Jordy Motte
- Research Group Sustainable Systems Engineering (STEN), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Mohamed Mahmoud
- Process Design Center (PDC), Paardeweide 7, NL-4824 EH Breda, The Netherlands
| | | | - Hank Vleeming
- Process Design Center (PDC), Paardeweide 7, NL-4824 EH Breda, The Netherlands
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Jeroen Poissonnier
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | | | - Pieter Nachtergaele
- Research Group Sustainable Systems Engineering (STEN), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Jo Dewulf
- Research Group Sustainable Systems Engineering (STEN), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
65
|
Qing C, He J, Guo S, Zhou W, Deng X, Xu D. Peer effects on the adoption of biogas in rural households of Sichuan Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61488-61501. [PMID: 35445303 DOI: 10.1007/s11356-022-20232-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/09/2022] [Indexed: 05/21/2023]
Abstract
Encouraging rural residents to adopt biogas is of great practical significance in tackling environmental degradation in China. Based on the survey data of 540 rural households in Sichuan Province, China, this paper studies the peer effects of biogas adoption in rural households, focusing on the influence of relatives and friends on the biogas adoption behavior of rural households. According to whether there is a Chinese New Year visit, the relatives and friends of rural households are divided into strong ties and weak ties. The peer effects are further discussed from the perspective of strong and weak ties, and the probability score matching (PSM) method is used to correct the estimation errors that may be caused by selection bias. In addition, the study further revealed the internal mechanism of peer effects through heterogeneity analysis. The results found that (1) the adoption of biogas by relatives and friends significantly promotes the adoption of biogas in rural households. (2) Compared with relatives and friends who did not visit during the Chinese New Year (weak ties), relatives and friends who visited (strong ties) had a more significant impact on the biogas adoption behavior of rural families. (3) Farmer groups with lower education levels and farther from the market are more affected by the peer effects and are more likely to adopt biogas. The driving effect of biogas behavior choice of relatives and friends on biogas behavior decision of rural households can provide a reference for decision-makers to make relevant measures.
Collapse
Affiliation(s)
- Chen Qing
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia He
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shili Guo
- China Western Economic Research Center, Southwestern University of Finance and Economics, Chengdu, 610074, China
| | - Wenfeng Zhou
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Deng
- College of Economics, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dingde Xu
- College of Management, Sichuan Agricultural University, Chengdu, 611130, China.
- Sichuan Center for Rural Development Research, College of Management, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
66
|
Abstract
Human activity and modern production contribute to the formation of a certain amount of waste that can be recycled to obtain useful products and energy sources. Today, the higher the level of industrial development, the greater the amount of waste generated, and as a result, the more important the need for disposal. A similar pattern is typical for any human production activity; as a result of large-scale production, at least 70–80% of waste is generated in relation to the amount of raw materials used. The large-scale use of polymeric materials and the plastic waste generated after their use lead to environmental pollution. While a small part of the waste is utilized naturally due to the vital activity of soil microorganisms, and a part is purposefully processed by humans into products for various purposes, a fairly large amount of waste occupies large areas in the form of a variety of garbage. After the removal of garbage by incineration, the liberated territories cannot be transferred to agricultural land due to the high content of harmful contaminants. The harm to the environment is quite obvious. In practice, certain types of waste consist of more than 70% content of valuable substances that can find further practical application in a wide variety of industries.
Collapse
|
67
|
Hahn J, Westerman PR, de Mol F, Heiermann M, Gerowitt B. Viability of Wildflower Seeds After Mesophilic Anaerobic Digestion in Lab-Scale Biogas Reactors. FRONTIERS IN PLANT SCIENCE 2022; 13:942346. [PMID: 35909787 PMCID: PMC9337220 DOI: 10.3389/fpls.2022.942346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The use of wildflower species as biogas feedstock carries the risk that their seeds survive anaerobic digestion (AD) and cause weed problems if spread with the digestate. Risk factors for seed survival in AD include low temperature, short exposure and hardseededness (HS). However, it is not possible to predict how AD will affect seed viability of previously unstudied species. In laboratory-scale reactors, we exposed seeds of eight species from a mixture of flowering wild plants intended as biogas feedstock and three reference species to AD at two mesophilic temperatures. Half of the species were HS, the other was non-HS (NHS). Viability was determined using a combination of tetrazolium and germination tests. Viability and germinability were modeled as functions of exposure time using a dose-response approach. Responses to AD varied considerably among species, and none of the considered influencing factors (time, temperature, HS) had a consistent effect. Seed lots of a species differed in inactivation times and seed-killing efficacy. The HS species Melilotus officinalis, Melilotus albus, and Malva sylvestris were particularly AD-resistant. They were the only ones that exhibited biphasic viability curves and tended to survive and germinate more at 42°C than at 35°C. Viability of the remaining species declined in a sigmoidal curve. Most NHS species were inactivated within a few days (Cichorium intybus, Daucus carota, Echium vulgare, and Verbascum thapsus), while HS species survived longer (Malva alcea). AD stimulated germination in the HS species A. theophrasti and its AD-resistance overlapped with that of the most resistant NHS species, C. album and tomato. In all seed lots, germinability was lost faster than viability, implying that mainly dormant seeds survived. After the maximum exposure time of 36 days, seeds of HS species and Chenopodium album were still viable. We concluded that viability responses to mesophilic AD were determined by the interplay of AD-conditions and species- and seed-lot-specific traits, of which HS was an important but only one factor. For the use of wildflowers as biogas feedstock, we recommended long retention times and special care with regard to HS species.
Collapse
Affiliation(s)
- Juliane Hahn
- Crop Health, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Paula R. Westerman
- Crop Health, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Friederike de Mol
- Crop Health, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Monika Heiermann
- Department Technology Assessment and Substance Cycles, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Bärbel Gerowitt
- Crop Health, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
68
|
Xu X, Qin Y, Li X, Ma Z, Wu W. Heterogeneity of CH 4-derived carbon induced by O 2:CH 4 mediates the bacterial community assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154442. [PMID: 35288141 DOI: 10.1016/j.scitotenv.2022.154442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The mechanism by which O2:CH4 controls microbial community assembly in the process of aerobic methane oxidation coupled to denitrification (AMED) remains largely uncharacterized, which hinders the design of engineering microbiomes for the AMED. In this study, the changes in the bacterial community in fed-batch serum bottle reactors under different O2:CH4 ratios were systematically characterized. The ratios of CH4 consumption to the amount of nitrate removal in the treatment with O2:CH4 = 1.5:1, O2:CH4 = 0.5:1, and O2:CH4 = 0.25:1 were 13.1 ± 3.4, 4.7 ± 1.1, and 5.9 ± 3.0 mol-CH4 mol-1-NO3-, respectively. The α-diversity of the bacterial community increased as O2:CH4 decreased. Significantly different selection patterns were found for the high and low O2:CH4 ratios. The coherence process dominated the selection at high O2:CH4 ratios, while the diversification process played a role when O2:CH4 was low. Differences were also observed in the composition of CH4-derived carbon between treatments with O2:CH4 = 1.5:1 and O2:CH4 = 0.5:1. Compared with the treatments with O2:CH4 = 1.5:1, the concentrations of methanol, formaldehyde, acetate, and ethanol in the treatment with O2:CH4 = 0.5:1 were significantly higher, while the concentration of formate was significantly lower. The heterogeneity of CH4-derived carbon induced by O2:CH4 was likely to be responsible for the differences in the selection patterns. Our findings bridge the gaps between the observations of bacterial community perturbations and ecological community assembly theories, highlighting the potential of the bottom-up design approach to improve the nitrate removal rate of the AME-D.
Collapse
Affiliation(s)
- Xingkun Xu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yong Qin
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China.
| | - Xinyu Li
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zhuang Ma
- Zhejiang Transper Environmental Protection Technology Co., Ltd., Hangzhou 310058, China
| | - Weixiang Wu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
69
|
Wang C, Wang Y, Wang Y, Liu L, Wang D, Ju F, Xia Y, Zhang T. Impacts of food waste to sludge ratios on microbial dynamics and functional traits in thermophilic digesters. WATER RESEARCH 2022; 219:118590. [PMID: 35597218 DOI: 10.1016/j.watres.2022.118590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A self-stabilizing microbial community lays the foundation of the efficient biochemical reactions of the anaerobic digestion (AD) process. Despite extensive profiling of microbial community dynamics under varying operating parameters, the effects of food waste (FW) to feeding sewage sludge (FSS) ratios on the microbial assembly, functional traits, and syntrophic interspecies interactions in thermophilic microbial consortia remain poorly understood. Here, we investigated the long-term impacts of the FW: FSS ratio on the thermophilic AD microbiome using genome-centric metagenomics. Both the short reads (SRs) assembly, and the iterative hybrid assembly (IHA) of SRs and nanopore long reads (LRs) were used to reconstruct metagenome-assembled genomes (MAGs) and four microbial clusters were identified, demonstrating different microbial dynamics patterns in response to varying FW:FSS ratios. Cluster C1-C3 were comprised of full functional members with genetic potentials in fulfilling empirical AD biochemical reactions, wherein, syntrophic decarboxylating acetogens could interact with methanogens, and some microbes could be energized by the electron bifurcation mechanism to drive thermodynamics unfavorable reactions. We found the co-existence of both acetogenic and hydrogenotrophic methanogens in the AD microbiome, and they altered their trophic groups to scavenge the methanogenic substrates in ensuring the methane generation in digesters with different FW:FSS ratios. Another interesting observation was that two phylogenetically close Thermotogota species showed a possible strong competition on carbon source inferred by the nearly complete genetic overlap of their relevant pathways.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Yubo Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Yu Xia
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
70
|
Anaerobic Digestion of Pig Slurry in Fixed-Bed and Expanded Granular Sludge Bed Reactors. ENERGIES 2022. [DOI: 10.3390/en15124414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Anaerobic digestion of animal manure is a potential bioenergy resource that avoids greenhouse gas emissions. However, the conventional approach is to use continuously stirred tank reactors (CSTRs) with hydraulic retention times (HRTs) of greater than 30 d. Reactors with biomass retention were investigated in this study in order to increase the efficiency of the digestion process. Filtered pig slurry was used as a substrate in an expanded granular sludge bed (EGSB) reactor and fixed-bed (FB) reactor. The highest degradation efficiency (ηCOD) and methane yield (MY) relative to the chemical oxygen demand (COD) were observed at the minimum loading rates, with MY = 262 L/kgCOD and ηCOD = 73% for the FB reactor and MY = 292 L/kgCOD and ηCOD = 76% for the EGSB reactor. The highest daily methane production rate (MPR) was observed at the maximum loading rate, with MPR = 3.00 m3/m3/d at HRT = 2 d for the FB reactor and MPR = 2.16 m3/m3/d at HRT = 3 d for the EGSB reactor. For both reactors, a reduction in HRT was possible compared to conventionally driven CSTRs, with the EGSB reactor offering a higher methane yield and production rate at a shorter HRT.
Collapse
|
71
|
Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector. ENERGIES 2022. [DOI: 10.3390/en15124413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urgent need to meet climate goals provides unique opportunities to promote small-scale farm anaerobic digesters that valorize on-site wastes for producing renewable electricity and heat, thereby cushioning agribusinesses against energy perturbations. This study explored the economic viability of mono-digestion of cow manure (CWM) and piglet manure (PM) in small manured-based 99 kWel plants using three treatment schemes (TS): (1) typical agricultural biogas plant, (2) a single-stage expanded granular sludge bed (EGSB) reactor, and (3) a multistage EGSB with a continuous stirred tank reactor. The economic evaluation attempted to take advantage of the financial incentives provided by The Renewable Energy Sources Act in Germany. To evaluate these systems, batch tests on raw and solid substrate fractions were conducted. For the liquid fraction, data of continuous tests obtained in a laboratory was employed. The economical evaluation was based on the dynamic indicators of net present value and internal return rate (IRR). Sensitivity analyses of the electricity and heat selling prices and hydraulic retention time were also performed. Furthermore, an incremental analysis of IRR was conducted to determine the most profitable alternative. The most influential variable was electricity selling price, and the most profitable alternatives were TS1 (CWM) > TS1 (PM) > TS3 (CWM). However, further studies on co-digestion using TS3 are recommended because this scheme potentially provides the greatest technical flexibility and highest environmental sustainability.
Collapse
|
72
|
Jiang M, Qiao W, Wang Y, Zou T, Lin M, Dong R. Balancing acidogenesis and methanogenesis metabolism in thermophilic anaerobic digestion of food waste under a high loading rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153867. [PMID: 35176381 DOI: 10.1016/j.scitotenv.2022.153867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Achieving a metabolic balance between volatile fatty acid (VFA) production and conversion is a standing challenge in high temperature and organic loading rate anaerobic digestion. A thermophilic anaerobic digestion reactor fed with food waste was therefore operated for 230 days to investigate metabolic performance in acidogenesis and methanogenesis. Results showed a methane yield of 310 mL/g·COD under an organic loading rate (OLR) of 10.0 kg·COD/(m3·d). The VFA concentration of 110 mg/L was low, indicating well-balanced VFA production and conversion metabolism. Highly specific acetic acid and propionic acid methanogenic activity showed satisfactory metabolic capability. Methanosarcina (95.2%) predominated in the high OLR state and increased abundance of Methanothermobactger (4.2%) was also observed. Syntrophic acetic acid oxidation bacterial was not found in different HRT conditions. It is therefore reasonable to speculate cleavage of acetic acid by mixotrophic Methanosarcina. Good acidogenesis and methanogenesis balance promote stable thermophilic AD of food waste under a high OLR.
Collapse
Affiliation(s)
- Mengmeng Jiang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuchang Wang
- Everbright Envirotech (China) Ltd., Nanjing 210007, China
| | - Ting Zou
- Everbright Envirotech (China) Ltd., Nanjing 210007, China
| | - Min Lin
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
73
|
Stability of the Anaerobic Digestion Process during Switch from Parallel to Serial Operation—A Microbiome Study. SUSTAINABILITY 2022. [DOI: 10.3390/su14127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic digestion is a common procedure of treating sewage sludge at wastewater treatment plants. However, plants differ in terms of the number of reactors and, in case of several reactors, their operation mode. To confirm the flexibility of well adapted, full-scale anaerobic digestion plants, we monitored the physicochemical process conditions of two continuously stirred tank reactors over one hydraulic retention time before and after the operation mode was switched from parallel to serial operation. To investigate changes in the involved microbiota, we applied Illumina amplicon sequencing. The rapid change between operation modes did not affect the process performance. In both parallel and serial operation mode, we detected a highly diverse microbial community, in which Bacteroidetes, Firmicutes, Proteobacteria and Claocimonetes were high in relative abundance. While a prominent core microbiome was maintained in both configurations, changes in the involved microbiota were evident at a lower taxonomical level comparing both reactors and operation modes. The most prominent methanogenic Euryarchaeota detected were Methanosaeta and cand. Methanofastidiosum. Volatile fatty acids were degraded immediately in both reactors, suggesting that the second reactor could be used to produce methane on demand, by inserting easily degradable substrates.
Collapse
|
74
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
75
|
Experimental and simulation analysis of biogas production from beverage wastewater sludge for electricity generation. Sci Rep 2022; 12:9107. [PMID: 35650251 PMCID: PMC9160279 DOI: 10.1038/s41598-022-12811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
This study assessed the biogas and methane production potential of wastewater sludge generated from the beverage industry. The optimization of the biogas production potential of a single fed-batch anaerobic digester was operated at different temperatures (25, 35, and 45 ℃), pH (5.5, 6.5, 7.5, 8.5, and 9.5), and organic feeding ratio (1:3, 1:4, 1:5, and 1:6) with a hydraulic retention time of 30 days. The methane and biogas productivity of beverage wastewater sludge in terms of volatile solid (VS) and volume was determined. The maximum production of biogas (15.4 m3/g VS, 9.3 m3) and methane content (6.3 m3/g VS, 3.8 m3) were obtained in terms of VS and volume at 8.5, 35 ℃, 1:3 of optimal pH, temperature, and organic loading ratio, respectively. Furthermore, the maximum methane content (7.4 m3/g VS, 4.4 m3) and biogas production potential (17.9 m3/g VS, 10.8 m3) were achieved per day at room temperature. The total biogas and methane at 35 ℃ (30 days) are 44.3 and 10.8 m3/g VS, respectively, while at 25 ℃ (48 days) increased to 67.3 and 16.1 m3/g VS, respectively. Furthermore, the electricity-generating potential of biogas produced at room temperature (22.1 kWh at 24 days) and optimum temperature (18.9 kWh) at 40 days was estimated. The model simulated optimal HRT (25 days) in terms of biogas and methane production at optimum temperature was in good agreement with the experimental results. Thus, we can conclude that the beverage industrial wastewater sludge has a huge potential for biogas production and electrification.
Collapse
|
76
|
Dong YN, Chen WC, Zhang LL, Sun BC, Chu GW, Chen JF. Sulfur recycle in biogas production: Novel Higee desulfurization process using natural amino acid salts. CHEMOSPHERE 2022; 297:134215. [PMID: 35248597 DOI: 10.1016/j.chemosphere.2022.134215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In this work, a desulfurization method using natural amino acid salts (AAS), which can be green prepared by biological fermentation, is proposed to remove H2S from raw biogas. Biogas purification and fertilizer production can be simultaneously achieved to close sulfur recycle. The reaction kinetic characteristics of H2S absorption with three kinds of AAS, including potassium β-alaninate (PA), potassium sarcosinate (PS) and potassium l-prolinate (PP) are first studied. Kinetic parameters including orders of reaction, rate constants, pre-exponential factors and activation energies are given. AAS absorbent exhibits good potential for biogas desulfurization. Higee (high gravity) technology is utilized to intensify H2S removal. The effects of operating conditions on H2S removal efficiency are investigated and PP shows the best desulfurization performance. The phytotoxicity of AAS and amino acid salt sulfide (AASS) is assessed by the germination index of mungbean seeds. PP and its salt sulfide (PPS) show relatively low phytotoxicity and their allowable agricultural feeding concentrations are below 0.08 M and 0.04 M, respectively. The desulfurization method demonstrates a green route for biogas purification to achieve sulfur recycle.
Collapse
Affiliation(s)
- Yu-Ning Dong
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wen-Cong Chen
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Liang-Liang Zhang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Bao-Chang Sun
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Guang-Wen Chu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jian-Feng Chen
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
77
|
Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems. ENERGIES 2022. [DOI: 10.3390/en15103551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A proper exploitation of biogas is key to recovering energy from biowaste in the framework of a circular economy and environmental sustainability of the energy sector. The main obstacle to widespread and efficient utilization of biogas is posed by some trace compounds (mainly sulfides and siloxanes), which can have a detrimental effect on downstream gas users (e.g., combustion engines, fuel cells, upgrading, and grid injection). Several purification technologies have been designed throughout the years. The following work reviews the main commercially available technologies along with the new concepts of cryogenic separation. This analysis aims to define a summary of the main technological aspects of the clean-up and upgrading technologies. Therefore, the work highlights which benefits and criticalities can emerge according to the intended final biogas application, and how they can be mitigated according to boundary conditions specific to the plant site (e.g., freshwater availability in WWTPs or energy recovery).
Collapse
|
78
|
Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations. ENERGIES 2022. [DOI: 10.3390/en15103547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To reduce greenhouse gases and air pollutants, new technologies are emerging to reduce fossil fuel usage and to adopt more renewable energy sources. As the major aspects of fuel consumption, power generation, transportation, and industrial applications have been given significant attention. The past few decades witnessed astonishing technological advancement in these energy sectors. In contrast, the residential sector has had relatively little attention despite its significant utilization of fuels for a much longer period. However, almost every energy transition in human history was initiated by the residential sector. For example, the transition from fuelwood to cheap coal in the 1700s first took place in residential houses due to urbanization and industrialization. The present review demonstrates the energy transitions in the residential sector during the past two centuries while portending an upcoming energy transition and future energy structure for the residential sector. The feasibility of the 100% electrification of residential buildings is discussed based on current residential appliance adoption, and the analysis indicates a hybrid residential energy structure is preferred over depending on a single energy source. Technical considerations and suggestions are given to help incorporate more renewable energy into the residential fuel supply system. Finally, it is observed that, compared to the numerous regulations on large energy-consumption aspects, standards for residential appliances are scarce. Therefore, it is concluded that establishing appropriate testing methods is a critical enabling step to facilitate the adoption of renewable fuels in future appliances.
Collapse
|
79
|
Kabaivanova L, Petrova P, Hubenov V, Simeonov I. Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics. Life (Basel) 2022; 12:life12050702. [PMID: 35629369 PMCID: PMC9148150 DOI: 10.3390/life12050702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/21/2023] Open
Abstract
Anaerobic digestion (AD) is a widespread biological process treating organic waste for green energy production. In this study, wheat straw and corn stalks without any harsh preliminary treatment were collected as a renewable source to be employed in a laboratory-scale digester to produce biogas/biomethane. Processes parameters of temperature, pH, total solids, volatile solid, concentration of volatile fatty acids (VFA), and cellulose concentration, were followed. The volume of biogas produced was measured. The impact of organic loading was stated, showing that the process at 55 °C tolerated a higher substrate load, up to 45 g/L. Further substrate increase did not lead to biogas accumulation increase, probably due to inhibition or mass transfer limitations. After a 12-day anaerobic digestion process, cumulative volumes of biogas yields were 4.78 L for 1 L of the bioreactor working volume with substrate loading 30 g/L of wheat straw, 7.39 L for 40 g/L and 8.22 L for 45 g/L. The degree of biodegradation was calculated to be 68.9%, 74% and 72%, respectively. A fast, effective process for biogas production was developed from native wheat straw, with the highest quantity of daily biogas production occurring between day 2 and day 5. Biomethane concentration in the biogas was 60%. An analysis of bacterial diversity by metagenomics revealed that more than one third of bacteria belonged to class Clostridia (32.9%), followed by Bacteroidia (21.5%), Betaproteobacteria (11.2%), Gammaproteobacteria (6.1%), and Alphaproteobacteria (5%). The most prominent genera among them were Proteiniphilum, Proteiniborus, and Pseudomonas. Archaeal share was 1.37% of the microflora in the thermophilic bioreactor, as the genera Methanocorpusculum, Methanobacterium, Methanomassiliicoccus, Methanoculleus, and Methanosarcina were the most abundant. A knowledge of the microbiome residing in the anaerobic digester can be further used for the development of more effective processes in conjunction with theidentified consortium.
Collapse
|
80
|
Biogas Production Enhancement through Chicken Manure Co-Digestion with Pig Fat. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chicken manure and pig fat are found abundantly around the globe, and there is a challenge to get rid of them. This waste has considerable energy potential to be recovered into fuel, but extracting this energy from some by-products, especially fat, isn’t an easy task. When anaerobic digestion technology stepped to the level of anaerobic co-digestion, the utilisation of hardly degradable waste became feasible. Our research was conducted on anaerobic co-digestion of chicken manure as the primary substrate with pig fat as a fat reach supplement in a semi-continuous mode at different organic load rates. The influence of fat waste on the process of biogas production from chicken manure and the composition of the obtained products was determined using an organic load rate of 3.0–4.5 kg VS·(m3·day)−1. A sturdy and continuously growing biogas production was observed at all organic load rates, implying the synergetic effect on chicken manure and pig fat co-digestion. The highest specific methane yield, 441.3 ± 7.6 L·kg VS−1, was observed at an organic load rate of 4.5 kg VS·(m3·day)−1. The research results showed that co-digestion of chicken manure with pig fat is an appropriate measure for fat utilisation and contributes to the increase in biogas yield, methane concentration, and overall methane yield at investigated organic load rates.
Collapse
|
81
|
Concept for Biomass and Organic Waste Refinery Plants Based on the Locally Available Organic Materials in Rural Areas of Poland. ENERGIES 2022. [DOI: 10.3390/en15093392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The importance of developing efficient and environmentally friendly means of biomass conversion into bioenergy, biofuels, and valuable products is currently high in Poland. Accordingly, herein, two new energy and biofuel units are proposed, namely, POLpec and POLbp, which are used as reference sources for comparing energy consumption and biofuel production in other countries or regions in the world. One POLpec equals 4400 PJ (195.1 Mtoe), reflecting the annual primary energy consumption of Poland in 2020. Meanwhile, one POLbp equals 42 PJ (1.0 Mtoe), referring to the annual production of biofuels in Poland in 2020. Additionally, a new import–export coefficient β is proposed in the current study, which indicates the relationship between the import and export of an energy carrier. More specifically, the potential of biomass and organic waste to be converted into energy, biofuels, and valuable products has been analysed for the rural areas of Poland. Results show that the annual biomass and organic waste potential is approximately 245 PJ (5.9 Mtoe). Finally, the concept of a biomass and organic waste refinery plant is proposed based on the locally available organic materials in rural areas. In particular, two models of biomass refinery plants are defined, namely, the Input/Output and Modular models. A four-module model is presented as a concept for building a refinery plant at the Institute of Technology and Life Sciences—National Research Institute in Poznan, Poland. The four modules include anaerobic digestion, gasification, transesterification, and alcoholic fermentation. The primary reason for combining different biomass conversion technologies is to reduce the cost of biomass products, which, currently, are more expensive than those obtained from oil and natural gas.
Collapse
|
82
|
Biomass Potential and Utilization in Worldwide Research Trends—A Bibliometric Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14095515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomass, as a part of renewables, is a resource found in large quantities and is a basis for many different industries. This paper presents the most important trends and characteristics of research in biomass potential and biomass utilization on a world scale. The main objective of this work is to analyze the state of research and trends in biomass potential and biomass utilization from 1974 to 2021, including 7117 relevant documents. The methodology part comprised two main stages: obtaining data from Scopus and then exporting the data into Excel. The VOSviewer bibliometric tool was used to analyze clusters of countries and groups of keywords. Research on this topic experienced significant development after 2000; moreover, the global trend of publications marked a significant increase after 2012. China and India have shown exponential growth, followed by USA, Germany, and UK. An important trend globally is that energy topics are gaining more importance and percentage annually, especially in photovoltaics and new generations of biofuels in terms of keywords. The paper aims to provide a tool for the scientific community by introducing the current state and potential tendencies in this special field, including the various sides of biomass use.
Collapse
|
83
|
Struckmann Poulsen J, de Jonge N, Vieira Macêdo W, Rask Dalby F, Feilberg A, Lund Nielsen J. Characterisation of cellulose-degrading organisms in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 351:126933. [PMID: 35247567 DOI: 10.1016/j.biortech.2022.126933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The recalcitrant nature of lignocellulosic biomass hinders efficient exploitation of this fraction for energy production. A better understanding of the microorganisms able to convert plant-based feedstocks is needed to improve anaerobic digestion of lignocellulosic biomass. In this study, active thermophilic cellulose-degrading microorganisms were identified from a full-scale anaerobic digester fed with maize by using metagenome-resolved protein stable isotope probing (protein-SIP). 13C-cellulose was converted into 13C-methane with a 13/12C isotope ratio of 0.127 after two days of incubation. Metagenomic analysis revealed 238 different genes coding for carbohydrate-active enzymes (CAZymes), six of which were directly associated with cellulose degradation. The protein-SIP analysis identified twenty heavily labelled peptides deriving from microorganisms actively assimilating labelled carbon from the degradation of 13C-cellulose, highlighting several members of the order Clostridiales. Corynebacterium was identified through CAZyme screening, amplicon analysis, and in the metagenome giving a strong identification of being a cellulose degrader.
Collapse
Affiliation(s)
- Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Williane Vieira Macêdo
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Frederik Rask Dalby
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Anders Feilberg
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark.
| |
Collapse
|
84
|
Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe. ENERGIES 2022. [DOI: 10.3390/en15082940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In line with the low-carbon strategy, the EU is expected to be climate-neutral by 2050, which would require a significant increase in renewable energy production. Produced biogas is directly used to produce electricity and heat, or it can be upgraded to reach the “renewable natural gas”, i.e., biomethane. This paper reviews the applied production technology and current state of biogas and biomethane production in Europe. Germany, UK, Italy and France are the leaders in biogas production in Europe. Biogas from AD processes is most represented in total biogas production (84%). Germany is deserving for the majority (52%) of AD biogas in the EU, while landfill gas production is well represented in the UK (43%). Biogas from sewage sludge is poorly presented by less than 5% in total biogas quantities produced in the EU. Biomethane facilities will reach a production of 32 TWh in 2020 in Europe. There are currently 18 countries producing biomethane (Germany and France with highest share). Most of the European plants use agricultural substrate (28%), while the second position refers to energy crop feedstock (25%). Sewage sludge facilities participate with 14% in the EU, mostly applied in Sweden. Membrane separation is the most used upgrading technology, applied at around 35% of biomethane plants. High energy prices today, and even higher in the future, give space for the wider acceptance of biomethane use.
Collapse
|
85
|
Olivera C, Tondo ML, Girardi V, Fattobene L, Herrero MS, Pérez LM, Salvatierra LM. Early-stage response in anaerobic bioreactors due to high sulfate loads: Hydrogen sulfide yield and other organic volatile sulfur compounds as a sign of microbial community modifications. BIORESOURCE TECHNOLOGY 2022; 350:126947. [PMID: 35247564 DOI: 10.1016/j.biortech.2022.126947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
In this work, the early-stage response of six lab-scale biogas bioreactors fed with different amounts of a sulfate-rich organic agro-industrial effluent was investigated. Biogas characterization, gas chromatography selective for sulfur compounds and high-throughput sequencing of 16S rRNA gene were performed. Hydrogen sulfide (H2S) yield went from transient to steady state in ∼ 2 weeks for all the studied conditions. In addition, volatile sulfur compounds (VSCs), like methanethiol (MeSH) and dimethyl sulfide (DMS), were generated at high sulfate loads. Changes were evidenced in the microbial community structures, with a higher abundance of genes involved in the dissimilatory sulfate-reduction pathway in high loaded sulfate bioreactors, as determined by PICRUSt analysis. Principal component analysis (PCA) and correlation analyses evidenced strong relationships between H2S, VSCs and the microbial community. Sulfate-reducing bacteria (SRB) like Desulfocarbo, Desulfocella and Desulfobacteraceae might be possibly linked with methylation processes of H2S.
Collapse
Affiliation(s)
- Camila Olivera
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314 (S2002QEO), Rosario (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Laura Tondo
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314 (S2002QEO), Rosario (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Valentina Girardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314 (S2002QEO), Rosario (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Lucía Fattobene
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314 (S2002QEO), Rosario (Santa Fe), Argentina
| | - María Sol Herrero
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314 (S2002QEO), Rosario (Santa Fe), Argentina
| | - Leonardo Martín Pérez
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314 (S2002QEO), Rosario (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Lucas Matías Salvatierra
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada - INGEBIO-, Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314 (S2002QEO), Rosario (Santa Fe), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
86
|
de Amarante MCA, Guerreiro PEG, Radmann EM, de Souza MDRAZ. Effect of fruits and vegetables in the anaerobic digestion of food waste from university restaurant. Appl Biochem Biotechnol 2022; 194:3365-3383. [PMID: 35357662 DOI: 10.1007/s12010-022-03895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the theoretical potential of methane production of the food waste generated by a university restaurant, as well as to verify the influence of the fruit and vegetable waste in the feeding composition of an anaerobic bioreactor treating this type of waste. Four feeding compositions combining three fractions of the food waste (fruit and vegetable fraction, soy protein and beans fraction, and rice fraction) at different concentrations were tested in anaerobic processes lasting 10 and 30 days. Additionally, a study of the theoretical potential of methane production from each fraction that composes the food waste was carried out, as well as the evaluation of the specific methanogenic activity of the anaerobic sludge. Despite its low theoretical potential of methane production (0.037 LCH4/g), the presence of the fruit and vegetable mixture in three of the feeding compositions led to greater organic matter degradation (above 69%) and CH4 yields (above 0.20 LCH4/gVS) in both periods tested, in comparison with the achieved by the feeding composition lacking this fraction. The results suggest that the presence of the fruit and vegetable mixture contributed with the supplementation of micro- and macroelements to the anaerobic sludge during the digestion of food waste.
Collapse
Affiliation(s)
- Marina Campos Assumpção de Amarante
- School of Chemistry and Food, Universidade Federal do Rio Grande (FURG), Campus Carreiros, Avenue Italia, km 08, Mail box 474, Rio Grande, RS, 96.203-900, Brazil. .,School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, West Midlands, UK.
| | - Pablo Eduardo Godinho Guerreiro
- School of Chemistry and Food, Universidade Federal do Rio Grande (FURG), Campus Carreiros, Avenue Italia, km 08, Mail box 474, Rio Grande, RS, 96.203-900, Brazil
| | - Elisangela Martha Radmann
- School of Chemistry and Food, Universidade Federal do Rio Grande (FURG), Campus Carreiros, Avenue Italia, km 08, Mail box 474, Rio Grande, RS, 96.203-900, Brazil
| | | |
Collapse
|
87
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
88
|
Abstract
Biogas, with its high carbon dioxide content (30–50 vol%), is an attractive feed for catalytic methanation with green hydrogen, and is suitable for establishing a closed carbon cycle with methane as energy carrier. The most important questions for direct biogas methanation are how the high methane content influences the methanation reaction and overall efficiency on one hand, and to what extent the methanation catalysts can be made more resistant to various sulfur-containing compounds in biogas on the other hand. Ni-based catalysts are the most favored for economic reasons. The interplay of active compounds, supports, and promoters is discussed regarding the potential for improving sulfur resistance. Several strategies are addressed and experimental studies are evaluated, to identify catalysts which might be suitable for these challenges. As several catalyst functionalities must be combined, materials with two active metals and binary oxide support seem to be the best approach to technically applicable solutions. The high methane content in biogas appears to have a measurable impact on equilibrium and therefore CO2 conversion. Depending on the initial CH4/CO2 ratio, this might lead to a product with higher methane content, and, after work-up, to a drop in-option for existing natural gas grids.
Collapse
|
89
|
Villalobos Solis MI, Chirania P, Hettich RL. In silico evaluation of a targeted metaproteomics strategy for broad screening of cellulolytic enzyme capacities in anaerobic microbiome bioreactors. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:32. [PMID: 35303956 PMCID: PMC8933973 DOI: 10.1186/s13068-022-02125-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Microbial-driven solubilization of lignocellulosic material is a natural mechanism that is exploited in anaerobic digesters (ADs) to produce biogas and other valuable bioproducts. Glycoside hydrolases (GHs) are the main enzymes that bacterial and archaeal populations use to break down complex polysaccharides in these reactors. Methodologies for rapidly screening the physical presence and types of GHs can provide information about their functional activities as well as the taxonomical diversity within AD systems but are largely unavailable. Targeted proteomic methods could potentially be used to provide snapshots of the GHs expressed by microbial consortia in ADs, giving valuable insights into the functional lignocellulolytic degradation diversity of a community. Such observations would be essential to evaluate the hydrolytic performance of a reactor or potential issues with it. RESULTS As a proof of concept, we performed an in silico selection and evaluation of groups of tryptic peptides from five important GH families derived from a dataset of 1401 metagenome-assembled genomes (MAGs) in anaerobic digesters. Following empirical rules of peptide-based targeted proteomics, we selected groups of shared peptides among proteins within a GH family while at the same time being unique compared to all other background proteins. In particular, we were able to identify a tractable unique set of peptides that were sufficient to monitor the range of GH families. While a few thousand peptides would be needed for comprehensive characterization of the main GH families, we found that at least 50% of the proteins in these families (such as the key families) could be tracked with only 200 peptides. The unique peptides selected for groups of GHs were found to be sufficient for distinguishing enzyme specificity or microbial taxonomy. These in silico results demonstrate the presence of specific unique GH peptides even in a highly diverse and complex microbiome and reveal the potential for development of targeted metaproteomic approaches in ADs or lignocellulolytic microbiomes. Such an approach could be valuable for estimating molecular-level enzymatic capabilities and responses of microbial communities to different substrates or conditions, which is a critical need in either building or utilizing constructed communities or defined cultures for bio-production. CONCLUSIONS This in silico study demonstrates the peptide selection strategy for quantifying relevant groups of GH proteins in a complex anaerobic microbiome and encourages the development of targeted metaproteomic approaches in fermenters. The results revealed that targeted metaproteomics could be a feasible approach for the screening of cellulolytic enzyme capacities for a range of anaerobic microbiome fermenters and thus could assist in bioreactor evaluation and optimization.
Collapse
Affiliation(s)
| | - Payal Chirania
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
90
|
Wang H, Yang Y, Wu B, Chai X, Dai X. Highly efficient solid-liquid separation of anaerobically digested liquor of food waste: Conditioning approach screening and mechanistic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152416. [PMID: 34923015 DOI: 10.1016/j.scitotenv.2021.152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion is known for its effectiveness and environmental friendliness in treating food waste. However, it produces anaerobically digested liquor (ADL). ADL usually has a high solid content and high concentrations of nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) carried by suspended solids (SS). Thus, when ADL with amounts of SS reaches the subsequent biochemical treatment units, they negatively impact the microbial stability of corresponding processes, causing unstable effluent qualities. For this reason, the solid-liquid separation of ADL acts as a crucial step for the wide application of anaerobic digestion. In this work, the typical sludge conditioning approaches, including flocculation/coagulation, coagulation, oxidation and advanced oxidation processes (AOPs), were systematically screened for their feasibility in enhancing the solid-liquid separation of ADL. The modified Fenton treatment combined with centrifugation was found to be the most effective approach, which realized the removal of 91.36% SS with FeSO4•7 H2O (5.96 g/L) and H2O2 (2.79 g/L) but without pH adjustment of ADL. The mechanism analysis showed that the modified Fenton promoted ADL colloidal aggregates to form looser medium-sized flocs with pores, increased the zeta potential to -17.6 mV, and highly reduced the total interfacial free energy. Also, extracellular polymeric substances (EPS) were released into liquid phase, which further eliminated the water-retaining properties of solid compositions. The analysis of surface chemical composition suggested that the modified Fenton decreased the hydrophilic component from 53.37% to 43.81% and the relative content of protein-N from 45.43% to 23.57%, while increased carbon chain and hydrocarbyl species. Furthermore, principal component analysis (PCA) suggested that SS, zeta potential, Lewis acid-base interfacial free energy, two-dimensional fractal index (2-Df) and C-(N, O) relative content were more sensitive to variations in conditioning approaches than protein-N relative content, and hydroxyl free radical (•OH) played the key role for the modified Fenton to improve SS removal from ADL.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, 901 Zhongshan North 2nd Road, Shanghai 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
91
|
Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, Parchami M, Varjani S, Khanal SK, Wong J, Awasthi MK, Taherzadeh MJ. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 2022; 13:6521-6557. [PMID: 35212604 PMCID: PMC8973982 DOI: 10.1080/21655979.2022.2035986] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
In the past decades, considerable attention has been directed toward anaerobic digestion (AD), which is an effective biological process for converting diverse organic wastes into biogas, volatile fatty acids (VFAs), biohydrogen, etc. The microbial bioprocessing takes part during AD is of substantial significance, and one of the crucial approaches for the deep and adequate understanding and manipulating it toward different products is process microbiology. Due to highly complexity of AD microbiome, it is critically important to study the involved microorganisms in AD. In recent years, in addition to traditional methods, novel molecular techniques and meta-omics approaches have been developed which provide accurate details about microbial communities involved AD. Better understanding of process microbiomes could guide us in identifying and controlling various factors in both improving the AD process and diverting metabolic pathway toward production of selective bio-products. This review covers various platforms of AD process that results in different final products from microbiological point of view. The review also highlights distinctive interactions occurring among microbial communities. Furthermore, assessment of these communities existing in the anaerobic digesters is discussed to provide more insights into their structure, dynamics, and metabolic pathways. Moreover, the important factors affecting microbial communities in each platform of AD are highlighted. Finally, the review provides some recent applications of AD for the production of novel bio-products and deals with challenges and future perspectives of AD.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Milad Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jonathan Wong
- Department of Biology, Institute of Bioresource and Agriculture and, Hong Kong Baptist University, Hong Kong
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| | | |
Collapse
|
92
|
|
93
|
Chen Z, Yang G, Mu T, Yang M, Samak NA, Peh S, Jia Y, Hao X, Zhao X, Xing J. Rate-based model for predicting and evaluating H2S absorption in the haloalkaliphilic biological desulfurization process. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
94
|
Liu J, Smith SR. The link between organic matter composition and the biogas yield of full-scale sewage sludge anaerobic digestion. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1658-1672. [PMID: 35290238 DOI: 10.2166/wst.2022.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The principal parameters influencing anaerobic digestion (AD) of sewage sludge have been extensively studied in controlled laboratory experiments, but the effects of sludge composition on full-scale systems have received relatively little attention. Sludge samples from eight major wastewater treatment plants (WWTPs) in the UK were examined to determine the effects of sludge composition on digestion performance. The biogas yield (BY) was estimated by two different methods: (1) a standard approach based on the reduction in volatile solids (VS), and (2) a more detailed mass balance of major constituent fractions of organic matter in sludge. The results showed that BY increased significantly with the overall amount of VS contained in digester feed sludge. In terms of the effects of individual fractions, BY was significantly related to and increased with the fat and cellulose contents in raw sludge, consistent with the high calorific value of fat and the digestibilities of both substrates, relative to the other major organic components. The results demonstrated the importance of sludge composition on digester performance and strategies to maximise BY were identified, for instance, by increasing codigestion of high fat containing substrates, and by utilising fat, oil and grease collected in-sewer and at WWTP.
Collapse
Affiliation(s)
- Jin Liu
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK E-mail:
| | - Stephen R Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK E-mail:
| |
Collapse
|
95
|
Insights on the electrochemical performance of indirect internal reforming of biogas into a solid oxide fuel cell. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
Schmithausen AJ, Deeken HF, Gerlach K, Trimborn M, Weiß K, Büscher W, Maack GC. Greenhouse gas formation during the ensiling process of grass and lucerne silage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114142. [PMID: 34864516 DOI: 10.1016/j.jenvman.2021.114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Silage is an essential global feedstuff and an emitter of greenhouse gases. However, few studies have examined the formation of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) during the ensiling process. This study aimed to record the course of gas concentrations in forage during the ensiling process and determine the temporal variation in the (microbiological) formation processes. Grass and lucerne, each with two different dry matter (DM) concentrations (four variants, each n = 3), were ensiled in laboratory-scale barrels (120 L). Gas samples were taken from the headspace of the barrels and analysed using a gas chromatograph. The measurement period included the first 49 days of the ensiling process and the measurement interval was 0.5-48.0 h. For all variants, a rapid increase in CO2 concentration and a one-time N2O concentration peak was observed between ensiling hours 36 and 96. Lower DM concentration led to significantly faster CO2 production (p < 0.05). Lucerne forage and higher DM concentrations led to significantly increased N2O concentrations (p < 0.05). The extensive measurements demonstrated that butyric acid formation by clostridia contributes to CH4 formation; thus, lucerne silage had a significantly higher concentration from ensiling day 13 (p < 0.05). Therefore, malfermentation actively contributes to the formation of greenhouse gases. The method described here provides further insights into greenhouse gas formation during the ensiling process and can thus help to improve ensiling research and management.
Collapse
Affiliation(s)
- Alexander J Schmithausen
- Institute of Agricultural Engineering, Rheinische Friedrich-Wilhelms-Universität Bonn, Nußallee 5, 53115, Bonn, Germany.
| | - Hauke F Deeken
- Institute of Agricultural Engineering, Rheinische Friedrich-Wilhelms-Universität Bonn, Nußallee 5, 53115, Bonn, Germany.
| | - Katrin Gerlach
- Institute of Animal Science, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 15, 53115, Bonn, Germany.
| | - Manfred Trimborn
- Institute of Agricultural Engineering, Rheinische Friedrich-Wilhelms-Universität Bonn, Nußallee 5, 53115, Bonn, Germany.
| | - Kirsten Weiß
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| | - Wolfgang Büscher
- Institute of Agricultural Engineering, Rheinische Friedrich-Wilhelms-Universität Bonn, Nußallee 5, 53115, Bonn, Germany.
| | - Gerd-Christian Maack
- Institute of Agricultural Engineering, Rheinische Friedrich-Wilhelms-Universität Bonn, Nußallee 5, 53115, Bonn, Germany.
| |
Collapse
|
97
|
Mozhiarasi V, Natarajan TS. Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products. BIOMASS CONVERSION AND BIOREFINERY 2022:1-24. [PMID: 35194536 PMCID: PMC8830992 DOI: 10.1007/s13399-022-02352-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The slaughterhouse and poultry industry is possibly one of the fastest-growing sectors driven by the increasing demand in food availability. Subsequently, the wastes produced from the slaughterhouse and poultry industry are in huge quantities, which could be a promising resource for the recovery of value added products, and bioenergy production to minimize the dependence on fossil fuels. Furthermore, the wastes from slaughterhouses and poultry are a hub of pathogens that is capable of infecting humans and animals. This demands the emerging need for an effective and safe disposal method to reduce the spread of diseases following animal slaughtering. In light of that, the state of the production of slaughterhouse and poultry wastes was presented at first. Following this, the impact of solid waste exposure in terms of air, water, and soil pollution and the associated health challenges due to improper solid waste management practices were presented to highlight the importance of the topic. Secondly, the potency of these solid wastes and the various waste-to-energy technologies that have been employed for effective management and resource utilization of wastes generated from slaughterhouses and poultry were reviewed in detail. Finally, this review also highlights the opportunities and challenges associated with effective solid waste management, future requirements for the development of effective technologies for the recovery of value added products (like keratin, fibreboards), and biofuel production.
Collapse
Affiliation(s)
- Velusamy Mozhiarasi
- CLRI Regional Centre, CSIR-Central Leather Research Institute (CSIR-CLRI), Punjab Jalandhar, 144021 India
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600020 Tamil Nadu India
| |
Collapse
|
98
|
Willenbücher K, Wibberg D, Huang L, Conrady M, Ramm P, Gätcke J, Busche T, Brandt C, Szewzyk U, Schlüter A, Barrero Canosa J, Maus I. Phage Genome Diversity in a Biogas-Producing Microbiome Analyzed by Illumina and Nanopore GridION Sequencing. Microorganisms 2022; 10:368. [PMID: 35208823 PMCID: PMC8879888 DOI: 10.3390/microorganisms10020368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.
Collapse
Affiliation(s)
- Katharina Willenbücher
- System Microbiology, Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Marius Conrady
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Patrice Ramm
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Julia Gätcke
- Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany;
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Christian Brandt
- Institute for Infection Medicine and Hospital Hygiene, University Hospital Jena, Kastanienstraße 1, 07747 Jena, Germany;
| | - Ulrich Szewzyk
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Jimena Barrero Canosa
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| |
Collapse
|
99
|
de Jonge N, Poulsen JS, Vechi NT, Kofoed MVW, Nielsen JL. Wood-Ljungdahl pathway utilisation during in situ H 2 biomethanation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151254. [PMID: 34710425 DOI: 10.1016/j.scitotenv.2021.151254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Biogas production from organic waste is a waste-to-energy technology with the potential to contribute significantly to sustainable energy production. Upgrading of biogas using in situ biomethanation with hydrogen has the potential for surplus electricity storage, and delivery of biogas with a methane content of >90%, allowing for easier integration into the natural gas grid, as well as conversion to other products. Microbial communities in biomethanation reactors undergo changes, however, these changes are largely unexplored. In the present study, metagenome-resolved protein stable isotope probing (Protein-SIP) was applied to laboratory scale batch incubations operating under anaerobic digestion, and (pre-adapted) biomethanation conditions, fed with 13C-labelled bicarbonate, in order to gain insight into the microbial activities during CO2-reduction. The strongest and most microbially diverse isotopic incorporation was observed in the pre-adapted biomethanation incubation. Furthermore, divergent incorporation of 13C-labelled bicarbonate was also observed in the Wood-Ljungdahl pathway, with the anaerobic digester incubations primarily showing labelled proteins in the peripheral pathways leading toward production of energy and biomass. The pre-adapted biomethanation incubations consumed H2 and CO2, but did not convert it to CH4, suggesting the production of acetate in these incubations, which was supported by heavy labelling of key enzymes in the Wood-Ljungdahl pathway. Twelve (ten high quality) metagenome-assembled genomes (MAGs) coding for 13C-incorporated proteins were extracted from the metagenome, eight of which contained one or more of the key genes in the Wood-Ljungdahl pathway, one of which was affiliated to Methanosarcina. Together, the findings in the present study deepen our knowledge surrounding microbial communities in biomethanation systems, and contribute to the development of better strategies for implementation of biogas upgrading and microbial management.
Collapse
Affiliation(s)
- Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg E, Denmark.
| | - Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg E, Denmark.
| | - Nathalia Thygesen Vechi
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark.
| | | | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg E, Denmark.
| |
Collapse
|
100
|
Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104207] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|