51
|
Fu GM, Chen Y, Li RY, Yuan XQ, Liu CM, Li B, Wan Y. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep Biochem Biotechnol 2017; 47:782-788. [PMID: 28636478 DOI: 10.1080/10826068.2017.1342260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aspergillus oryzae A-F02, a glyphosate-degrading fungus, was isolated from an aeration tank in a pesticide factory. The pathway and rate-limiting step of glyphosate (GP) degradation were investigated through metabolite analysis. GP, aminomethylphosphonic acid (AMPA), and methylamine were detected in the fermentation liquid of A. oryzae A-F02, whereas sarcosine and glycine were not. The pathway of GP degradation in A. oryzae A-F02 was revealed: GP was first degraded into AMPA, which was then degraded into methylamine. Finally, methylamine was further degraded into other products. Investigating the effects of the exogenous addition of substrates and metabolites showed that the degradation of GP to AMPA is the rate-limiting step of GP degradation by A. oryzae A-F02. In addition, the accumulation of AMPA and methylamine did not cause feedback inhibition in GP degradation. Results showed that degrading GP to AMPA was a crucial step in the degradation of GP, which determines the degradation rate of GP by A. oryzae A-F02.
Collapse
Affiliation(s)
- Gui-Ming Fu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Yan Chen
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Ru-Yi Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Xiao-Qiang Yuan
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Cheng-Mei Liu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Bin Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| | - Yin Wan
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- c Food Engineering Department, Life Science and Food Engineering College , Nanchang University , Nanchang , China
| |
Collapse
|
52
|
Ermakova IT, Shushkova TV, Sviridov AV, Zelenkova NF, Vinokurova NG, Baskunov BP, Leontievsky AA. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch Microbiol 2017; 199:665-675. [PMID: 28184965 DOI: 10.1007/s00203-017-1343-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
Four bacterial strains from glyphosate- or alkylphosphonates-contaminated soils were tested for ability to utilize different organophosphonates. All studied strains readily utilized methylphosphonic acid and a number of other phosphonates, but differed in their ability to degrade glyphosate. Only strains Ochrobactrum anthropi GPK 3 and Achromobacter sp. Kg 16 utilized this compound after isolation from enrichment cultures with glyphosate. Achromobacter sp. MPK 7 from the same enrichment culture, similar to Achromobacter sp. MPS 12 from methylphosphonate-polluted source, required adaptation to growth on GP. Studied strains varied significantly in their growth parameters, efficiency of phosphonates degradation and characteristic products of this process, as well as in their energy metabolism. These differences give grounds to propose a possible model of interaction between these strains in microbial consortium in phosphonate-contaminated soils.
Collapse
Affiliation(s)
- Inna T Ermakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospect Nauki, Pushchino, Moscow, 142290, Russia
| | - Tatyana V Shushkova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospect Nauki, Pushchino, Moscow, 142290, Russia
| | - Alexey V Sviridov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospect Nauki, Pushchino, Moscow, 142290, Russia.
| | - Nina F Zelenkova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospect Nauki, Pushchino, Moscow, 142290, Russia
| | - Natalya G Vinokurova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospect Nauki, Pushchino, Moscow, 142290, Russia
| | - Boris P Baskunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospect Nauki, Pushchino, Moscow, 142290, Russia
| | - Alexey A Leontievsky
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospect Nauki, Pushchino, Moscow, 142290, Russia
| |
Collapse
|
53
|
Wang Q, Dore JE, McDermott TR. Methylphosphonate metabolism by
Pseudomonas
sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. Environ Microbiol 2017; 19:2366-2378. [DOI: 10.1111/1462-2920.13747] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Wang
- Department of Land Resources and Environmental SciencesMontana State UniversityBozeman MT59717 USA
| | - John E. Dore
- Department of Land Resources and Environmental SciencesMontana State UniversityBozeman MT59717 USA
- Montana Institute on Ecosystems, Montana State UniversityBozeman MT59717 USA
| | - Timothy R. McDermott
- Department of Land Resources and Environmental SciencesMontana State UniversityBozeman MT59717 USA
| |
Collapse
|
54
|
Fu GM, Li RY, Li KM, Hu M, Yuan XQ, Li B, Wang FX, Liu CM, Wan Y. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis. Prep Biochem Biotechnol 2016; 46:780-787. [PMID: 26795747 DOI: 10.1080/10826068.2015.1135462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.
Collapse
Affiliation(s)
- Gui-Ming Fu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Ru-Yi Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Kai-Min Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Ming Hu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Xiao-Qiang Yuan
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Bin Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Feng-Xue Wang
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Cheng-Mei Liu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- b Sino-German Food Engineering Center , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| | - Yin Wan
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
- c Food Science College, Nanchang University , Nanchang , China
| |
Collapse
|
55
|
Shushkova TV, Vinokurova NG, Baskunov BP, Zelenkova NF, Sviridov AV, Ermakova IT, Leontievsky AA. Glyphosate acetylation as a specific trait of Achromobacter sp. Kg 16 physiology. Appl Microbiol Biotechnol 2016; 100:847-55. [PMID: 26521241 DOI: 10.1007/s00253-015-7084-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The growth parameters of Achromobacter sp. Kg 16 (VKM B-2534 D), such as biomass and maximum specific growth rate, depended only on the source of phosphorus in the medium, but not on the carbon source or the presence of growth factors. With glyphosate as a sole phosphorus source, they were still 40-50 % lower than in media supplemented with orthophosphate or other organophosphonate-methylphosphonic acid. At the first time process of glyphosate acetylation and accumulation of acetylglyphosate in culture medium were revealed in this strain. Acetylglyphosate isolated from cultural liquid was identified by mass spectroscopy; its mass spectrum fully corresponded with that of chemically synthesized acetylglyphosate. Even poorer growth was observed in media with acetylglyphosate: although the strain was able to utilize this compound as a sole source of phosphorus, the maximum biomass was still 58-70 % lower than with glyphosate. The presence of acetylglyphosate in culture medium could also hinder the utilization of glyphosate as a phosphorus source. Therefore, the acetylation of glyphosate may be a specific feature of Achromobacter sp. Kg 16 responsible for its poor growth on this compound.
Collapse
Affiliation(s)
- Tatyana V Shushkova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Natalya G Vinokurova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Boris P Baskunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Nina F Zelenkova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Alexey V Sviridov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Inna T Ermakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| | - Alexey A Leontievsky
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
56
|
Mogusu EO, Wolbert JB, Kujawinski DM, Jochmann MA, Elsner M. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Anal Bioanal Chem 2015; 407:5249-60. [PMID: 25967147 DOI: 10.1007/s00216-015-8721-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.
Collapse
Affiliation(s)
- Emmanuel O Mogusu
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
57
|
Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsky AA. Microbial degradation of glyphosate herbicides (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020209] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Zhao H, Tao K, Zhu J, Liu S, Gao H, Zhou X. Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. J GEN APPL MICROBIOL 2015; 61:165-70. [PMID: 26582285 DOI: 10.2323/jgam.61.165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial strains capable of utilizing glyphosate as the sole carbon source were isolated from contaminated soil by the enrichment culture method and identified based on partial 16S rRNA gene sequence analysis. Pseudomonas spp. strains GA07, GA09 and GC04 demonstrated the best degradation capabilities towards glyphosate and were used for the laboratory experiments of glyphosate bioremediation. Inoculating glyphosate-treated soil samples with these three strains resulted in a 2-3 times higher rate of glyphosate removal than that in non-inoculated soil. The degradation kinetics was found to follow a first-order model with regression values greater than 0.96. Cell numbers of the introduced bacteria decreased from 4.4 × 10(6) CFU/g to 3.4-6.7 × 10(5) CFU/g dry soil within 18 days of inoculation. Due to the intense degradation of glyphosate, the total dehydrogenase activity of the soil microbial community increased by 21.2-25.6%. Analysis of glyphosate degradation products in cell-free extracts showed that glyphosate breakdown in strain GA09 was catalyzed both by C-P lyase and glyphosate oxidoreductase. Strains GA07 and GC04 degraded glyphosate only via glyphosate oxidoreductase, but no further metabolite was detected. These results highlight the potential of the isolated bacteria to be used in the bioremediation of GP-contaminated soils.
Collapse
Affiliation(s)
- Haoyu Zhao
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Institute of Plant Protection, Sichuan Academy of Agricultural Science
| | | | | | | | | | | |
Collapse
|
59
|
Hove-Jensen B, Zechel DL, Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 2014; 78:176-97. [PMID: 24600043 PMCID: PMC3957732 DOI: 10.1128/mmbr.00040-13] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.
Collapse
|
60
|
Klimek-Ochab M. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15. Folia Microbiol (Praha) 2014; 59:375-80. [PMID: 24570323 PMCID: PMC4133637 DOI: 10.1007/s12223-014-0309-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/27/2014] [Indexed: 11/28/2022]
Abstract
A psychrophilic fungal strain of Geomyces pannorum P15 was screened for its ability to utilize a range of synthetic and natural organophosphonate compounds as the sole source of phosphorus, nitrogen, or carbon. Only phosphonoacetic acid served as a phosphorus source for microbial growth in phosphate-independent manner. Substrate metabolism did not lead to extracellular release of inorganic phosphate. No phosphonate metabolizing enzyme activity was detectable in cell-free extracts prepared from Geomyces biomass pregrown on 2 mmol/L phosphonoacetic acid.
Collapse
Affiliation(s)
- Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland,
| |
Collapse
|
61
|
McGrath JW, Chin JP, Quinn JP. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat Rev Microbiol 2013; 11:412-9. [PMID: 23624813 DOI: 10.1038/nrmicro3011] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Organophosphonates are ancient molecules that contain the chemically stable C-P bond, which is considered a relic of the reducing atmosphere on primitive earth. Synthetic phosphonates now have a wide range of applications in the agricultural, chemical and pharmaceutical industries. However, the existence of C-P compounds as contemporary biogenic molecules was not discovered until 1959, with the identification of 2-aminoethylphosphonic acid in rumen protozoa. Here, we review advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, and discuss the role of these compounds and of the organisms engaged in their turnover within the P cycle.
Collapse
Affiliation(s)
- John W McGrath
- School of Biological Sciences and the Institute for Global Food Security, The Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | | | | |
Collapse
|
62
|
EFSA Panel on Genetically Modified Organisms (GMO). Scientific Opinion on application (EFSA‐GMO‐NL‐2010‐87) for the placing on the market of genetically modified herbicide tolerant oilseed rape GT73 for food containing or consisting of, and food produced from or containing ingredients produced from, oilseed rape GT73 (with the exception of refined oil and food additives) under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
63
|
Villarreal-Chiu JF, Quinn JP, McGrath JW. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 2012; 3:19. [PMID: 22303297 PMCID: PMC3266647 DOI: 10.3389/fmicb.2012.00019] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/10/2012] [Indexed: 11/13/2022] Open
Abstract
Phosphonates are compounds that contain the chemically stable carbon–phosphorus (C–P) bond. They are widely distributed amongst more primitive life forms including many marine invertebrates and constitute a significant component of the dissolved organic phosphorus reservoir in the oceans. Virtually all biogenic C–P compounds are synthesized by a pathway in which the key step is the intramolecular rearrangement of phosphoenolpyruvate to phosphonopyruvate. However C–P bond cleavage by degradative microorganisms is catalyzed by a number of enzymes – C–P lyases, C–P hydrolases, and others of as-yet-uncharacterized mechanism. Expression of some of the pathways of phosphonate catabolism is controlled by ambient levels of inorganic P (Pi) but for others it is Pi-independent. In this report we review the enzymology of C–P bond metabolism in bacteria, and also present the results of an in silico investigation of the distribution of the genes that encode the pathways responsible, in both bacterial genomes and in marine metagenomic libraries, and their likely modes of regulation. Interrogation of currently available whole-genome bacterial sequences indicates that some 10% contain genes encoding putative pathways of phosphonate biosynthesis while ∼40% encode one or more pathways of phosphonate catabolism. Analysis of metagenomic data from the global ocean survey suggests that some 10 and 30%, respectively, of bacterial genomes across the sites sampled encode these pathways. Catabolic routes involving phosphonoacetate hydrolase, C–P lyase(s), and an uncharacterized 2-aminoethylphosphonate degradative sequence were predominant, and it is likely that both substrate-inducible and Pi-repressible mechanisms are involved in their regulation. The data we present indicate the likely importance of phosphonate-P in global biogeochemical P cycling, and by extension its role in marine productivity and in carbon and nitrogen dynamics in the oceans.
Collapse
|