51
|
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Dear JW, Falcón‐Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker K, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer K, Yuen PS, Zheng L, Llorente A, Martens‐Uzunova ES. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021; 10:e12093. [PMID: 34035881 PMCID: PMC8138533 DOI: 10.1002/jev2.12093] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.
Collapse
|
52
|
Examining the evidence for extracellular RNA function in mammals. Nat Rev Genet 2021; 22:448-458. [PMID: 33824487 DOI: 10.1038/s41576-021-00346-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
The presence of RNAs in the extracellular milieu has sparked the hypothesis that RNA may play a role in mammalian cell-cell communication. As functional nucleic acids transfer from cell to cell in plants and nematodes, the idea that mammalian cells also transfer functional extracellular RNA (exRNA) is enticing. However, untangling the role of mammalian exRNAs poses considerable experimental challenges. This Review discusses the evidence for and against functional exRNAs in mammals and their proposed roles in health and disease, such as cancer and cardiovascular disease. We conclude with a discussion of the forward-looking prospects for studying the potential of mammalian exRNAs as mediators of cell-cell communication.
Collapse
|
53
|
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32:466-477. [PMID: 33548389 PMCID: PMC8268076 DOI: 10.1016/j.annonc.2021.01.074] [Citation(s) in RCA: 526] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells.
Collapse
Affiliation(s)
- W Yu
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - J Hurley
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - D Roberts
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | | | - D Enderle
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - M Noerholm
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - X O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Neuroscience Program, Harvard Medical School, Boston, USA
| | - J K Skog
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA.
| |
Collapse
|
54
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
55
|
Kidney Mesenchymal Stem Cell-derived Extracellular Vesicles Engineered to Express Erythropoietin Improve Renal Anemia in Mice with Chronic Kidney Disease. Stem Cell Rev Rep 2021; 18:980-992. [PMID: 33651336 DOI: 10.1007/s12015-021-10141-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 12/29/2022]
Abstract
Extracellular vesicles (EVs) shed from kidney mesenchymal stem cells (KMSCs) show protective effects against acute kidney injury and progressive kidney fibrosis via mRNA transfer. Previous studies report improvement of renal anemia following administration of genetically modified MSCs or peritoneal mesothelial cells that secrete erythropoietin (EPO). Here, we determined whether EPO-secreting KMSC-derived EVs (EPO(+)-EVs) can improve renal anemia in mouse models of chronic kidney disease (CKD). The mouse CKD and renal anemia model was induced by electrocoagulation of the right renal cortex and sequential left nephrectomy. At six weeks post-nephrectomy, we observed significantly lower hemoglobin (10.4 ± 0.2 vs. 13.2 ± 0.2 g/dL) and significantly higher blood urea nitrogen and serum creatinine levels in CKD mice relative to controls (60.5 ± 0.5 and 0.37 ± 0.09 mg/dL vs. 19.9 ± 0.5 and 0.12 ± 0.02 mg/dL, respectively). Genetically engineered EPO(+)-KMSCs secreted 71 IU/mL EPO/106 cells/24 h in vitro, and EPO(+)-EVs isolated by differential ultracentrifugation expressed EPO mRNA and horizontally transferred EPO mRNA into target cells in vitro and in vivo. Furthermore, at two weeks post-injection of EPO(+)-KMSCs or EPO(+)-EVs into CKD mice with renal anemia, we observed significant increases in hemoglobin levels (11.7 ± 0.2 and 11.5 ± 0.2 vs. 10.1 ± 0.2 g/dL, respectively) and significantly lower serum creatinine levels at eight weeks in comparison to mice receiving vehicle control (0.30 ± 0.00 and 0.23 ± 0.03 vs. 0.43 ± 0.06 mg/dL, respectively). These results demonstrate that intraperitoneal administration of EPO(+)-EVs significantly increased hemoglobin levels and renal function in CKD mice, suggesting the efficacy of these genetically engineered EVs as a promising novel strategy for the treatment of renal anemia.
Collapse
|
56
|
Papademetrio DL, Garcia MN, Grasso D, Alvarez É. Autophagy-Mediated Exosomes as Immunomodulators of Natural Killer Cells in Pancreatic Cancer Microenvironment. Front Oncol 2021; 10:622956. [PMID: 33680945 PMCID: PMC7933474 DOI: 10.3389/fonc.2020.622956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/30/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreas ductal adenocarcinoma is a highly aggressive cancer with an incredible poor lifespan. Different chemotherapeutic agents' schemes have been tested along the years without significant success. Furthermore, immunotherapy also fails to cope with the disease, even in combination with other standard approaches. Autophagy stands out as a chemoresistance mechanism and is also becoming relevant as responsible for the inefficacy of immunotherapy. In this complex scenario, exosomes have emerged as a new key player in tumor environment. Exosomes act as messengers among tumor cells, including tumor microenvironment immune cells. For instance, tumor-derived exosomes are capable of generating a tolerogenic microenvironment, which in turns conditions the immune system behavior. But also, immune cells-derived exosomes, under non-tolerogenic conditions, induce tumor suppression, although they are able to promote chemoresistance. In that way, NK cells are well known key regulators of carcinogenesis and the inhibition of their function is detrimental for tumor suppression. Additionally, increasing evidence suggests a crosstalk between exosome biogenesis and the autophagy pathway. This mini review has the intention to summarize the available data in the complex relationships between the autophagy pathway and the broad spectrum of exosomes subpopulations in pancreatic cancer, with focus on the NK cells response.
Collapse
Affiliation(s)
- Daniela L. Papademetrio
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Noé Garcia
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Élida Alvarez
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
57
|
CD44 and Tumor-Derived Extracellular Vesicles (TEVs). Possible Gateway to Cancer Metastasis. Int J Mol Sci 2021; 22:ijms22031463. [PMID: 33540535 PMCID: PMC7867195 DOI: 10.3390/ijms22031463] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis, the final stage of tumor progression, is a complex process governed by the interplay of multiple types of cells and the tumor microenvironment. One of the aspects of this interplay involves the release of various factors by the tumor cells alone or by forcing other cells to do so. As a consequence of these actions, tumor cells are prepared in favorable conditions for their dissemination and spread to other sites/organs, which guarantees their escape from immunosurveillance and further progression. Tumor-derived extracellular vesicles (TEVs) represent a heterogeneous population of membrane-bound vesicles that are being actively released by different tumors. The array of proteins (i.e., receptors, cytokines, chemokines, etc.) and nucleic acids (i.e., mRNA, miR, etc.) that TEVs can transfer to other cells is often considered beneficial for the tumor’s survival and proliferation. One of the proteins that is associated with many different tumors as well as their TEVs is a cluster of differentiation 44 in its standard (CD44s) and variant (CD44v) form. This review covers the present information regarding the TEVs-mediated CD44s/CD44v transfer/interaction in the context of cancer metastasis. The content and the impact of the transferred cargo by this type of TEVs also are discussed with regards to tumor cell dissemination.
Collapse
|
58
|
Wu X, Crawford R, Xiao Y, Mao X, Prasadam I. Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration. Cells 2021; 10:cells10020251. [PMID: 33525381 PMCID: PMC7911822 DOI: 10.3390/cells10020251] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Altered subchondral bone and articular cartilage interactions have been implicated in the pathogenesis of osteoarthritis (OA); however, the mechanisms remain unknown. Exosomes are membrane-derived vesicles that have recently been recognized as important mediators of intercellular communication. Herein, we investigated if OA subchondral bone derived exosomes alter transcriptional and bioenergetic signatures of chondrocytes. Exosomes were isolated and purified from osteoblasts of nonsclerotic or sclerotic zones of human OA subchondral bone and their role on the articular cartilage chondrocytes was evaluated by measuring the extent of extracellular matrix production, cellular bioenergetics, and the expression of chondrocyte activity associated marker genes. Exosomal microRNAs were analyzed using RNA sequencing and validated by quantitative real-time PCR and loss-of-function. In coculture studies, chondrocytes internalized OA sclerotic subchondral bone osteoblast derived exosomes and triggered catabolic gene expression and reduced chondrocyte-specific marker expression a phenomenon that is often observed in OA cartilage. RNA sequencing and miRNA profiling have identified miR-210-5p, which is highly enriched in OA sclerotic subchondral bone osteoblast exosomes, triggered the catabolic gene expression in articular cartilage chondrocytes. Importantly, we demonstrate that miR-210-5p suppresses the oxygen consumption rate of chondrocytes, altering their bioenergetic state that is often observed in OA conditions. These effects were markedly inhibited by the addition of a miR-210-5p inhibitor. Our study indicates that exosomes released by OA sclerotic subchondral bone osteoblasts plays a critical role in progression of cartilage degeneration and might be a potential target for therapeutic intervention in OA.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Orthopedic Department, the Prince Charles Hospital, Brisbane 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Correspondence: (X.M.); (I.P.); Tel.: +617-3138-6137 (I.P.)
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Correspondence: (X.M.); (I.P.); Tel.: +617-3138-6137 (I.P.)
| |
Collapse
|
59
|
Zhang Y, Zhu S, Yuan Z, Li Q, Ding R, Bao X, Zhen T, Fu Z, Fu H, Xing K, Yuan H, Chen T. Risk factors and socio-economic burden in pancreatic ductal adenocarcinoma operation: a machine learning based analysis. BMC Cancer 2020; 20:1161. [PMID: 33246424 PMCID: PMC7694304 DOI: 10.1186/s12885-020-07626-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Surgical resection is the major way to cure pancreatic ductal adenocarcinoma (PDAC). However, this operation is complex, and the peri-operative risk is high, making patients more likely to be admitted to the intensive care unit (ICU). Therefore, establishing a risk model that predicts admission to ICU is meaningful in preventing patients from post-operation deterioration and potentially reducing socio-economic burden. METHODS We retrospectively collected 120 clinical features from 1242 PDAC patients, including demographic data, pre-operative and intra-operative blood tests, in-hospital duration, and ICU status. Machine learning pipelines, including Supporting Vector Machine (SVM), Logistic Regression, and Lasso Regression, were employed to choose an optimal model in predicting ICU admission. Ordinary least-squares regression (OLS) and Lasso Regression were adopted in the correlation analysis of post-operative bleeding, total in-hospital duration, and discharge costs. RESULTS SVM model achieved higher performance than the other two models, resulted in an AU-ROC of 0.80. The features, such as age, duration of operation, monocyte count, and intra-operative partial arterial pressure of oxygen (PaO2), are risk factors in the ICU admission. The protective factors include RBC count, analgesic pump dexmedetomidine (DEX), and intra-operative maintenance of DEX. Basophil percentage, duration of the operation, and total infusion volume were risk variables for staying in ICU. The bilirubin, CA125, and pre-operative albumin were associated with the post-operative bleeding volume. The operation duration was the most important factor for discharge costs, while pre-lymphocyte percentage and the absolute count are responsible for less cost. CONCLUSIONS We observed that several new indicators such as DEX, monocyte count, basophil percentage, and intra-operative PaO2 showed a good predictive effect on the possibility of admission to ICU and duration of stay in ICU. This work provided an essential reference for indication in advance to PDAC operation.
Collapse
Affiliation(s)
- Yijue Zhang
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiqing Yuan
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiwei Li
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruifeng Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | | | | | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, 200003 China
| | | | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, 200003 China
| | - Tao Chen
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Pujin Street, Minhang District, Shanghai, 201100 China
| |
Collapse
|
60
|
Zhao Z, Muth DC, Mulka K, Liao Z, Powell BH, Hancock GV, Metcalf Pate KA, Witwer KW. miRNA profiling of primate cervicovaginal lavage and extracellular vesicles reveals miR-186-5p as a potential antiretroviral factor in macrophages. FEBS Open Bio 2020; 10:2021-2039. [PMID: 33017084 PMCID: PMC7530394 DOI: 10.1002/2211-5463.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Cervicovaginal secretions, or their components collected, are referred to as cervicovaginal lavage (CVL). CVL constituents have utility as biomarkers and play protective roles in wound healing and against HIV-1 infection. However, several components of cervicovaginal fluids are less well understood, such as extracellular RNAs and their carriers, for example, extracellular vesicles (EVs). EVs comprise a wide array of double-leaflet membrane extracellular particles and range in diameter from 30 nm to over one micron. The aim of this study was to determine whether differentially regulated CVL microRNAs (miRNAs) might influence retrovirus replication. To this end, we characterized EVs and miRNAs of primate CVL during the menstrual cycle and simian immunodeficiency virus (SIV) infection of macaques. EVs were enriched by stepped ultracentrifugation, and miRNA profiles were assessed with a medium-throughput stem-loop/hydrolysis probe qPCR platform. Whereas hormone cycling was abnormal in infected subjects, EV concentration correlated with progesterone concentration in uninfected subjects. miRNAs were present predominantly in the EV-depleted CVL supernatant. Only a small number of CVL miRNAs changed during the menstrual cycle or SIV infection, for example, miR-186-5p, which was depleted in retroviral infection. This miRNA inhibited HIV replication in infected macrophages in vitro. In silico target prediction and pathway enrichment analyses shed light on the probable functions of miR-186-5p in hindering HIV infections via immunoregulation, T-cell regulation, disruption of viral pathways, etc. These results provide further evidence for the potential of EVs and small RNAs as biomarkers or effectors of disease processes in the reproductive tract.
Collapse
Affiliation(s)
- Zezhou Zhao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dillon C. Muth
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kathleen Mulka
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Zhaohao Liao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bonita H. Powell
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | | | - Kelly A. Metcalf Pate
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
61
|
Extracellular RNA: Emerging roles in cancer cell communication and biomarkers. Cancer Lett 2020; 495:33-40. [PMID: 32916182 DOI: 10.1016/j.canlet.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Extracellular RNAs (exRNAs) are a type of RNA molecules that present in various biological fluids. exRNAs are heterogenous populations including small (e.g., miRNA) and long non-coding RNAs and coding RNAs (e.g., mRNA). They can exist in a free form or associate with carriers range from lipo- and ribo-proteins to extracellular vesicles such as exosomes in the extracellular fluids. exRNAs participate in cell-to-cell communication to regulate a broad array of physiological and pathological processes. exRNAs have been widely studied as a biomarker for cancer and other diseases. In this review, we will discuss the sorts of exRNAs with potential carriers as well as their roles in cancer.
Collapse
|
62
|
Sun H, Burrola S, Wu J, Ding WQ. Extracellular Vesicles in the Development of Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21176097. [PMID: 32847103 PMCID: PMC7504131 DOI: 10.3390/ijms21176097] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-delimited nanoparticles released from all types of cells examined thus far. Several groups of EVs, including exosomes, microvesicles, and apoptotic bodies, have been identified according to their size and biogenesis. With extensive investigations on EVs over the last decade, it is now recognized that EVs play a pleiotropic role in various physiological processes as well as pathological conditions through mediating intercellular communication. Most notably, EVs have been shown to be involved in cancer initiation and progression and EV signaling in cancer are viewed as potential therapeutic targets. Furthermore, as membrane nanoparticles, EVs are natural products with some of them, such as tumor exosomes, possessing tumor homing propensity, thus leading to strategies utilizing EVs as drug carriers to effectively deliver cancer therapeutics. In this review, we summarize recent reports on exploring EVs signaling as potential therapeutic targets in cancer as well as on developing EVs as therapeutic delivery carriers for cancer therapy. Findings from preclinical studies are primarily discussed, with early phase clinical trials reviewed. We hope to provide readers updated information on the development of EVs as cancer therapeutic targets or therapeutic carriers.
Collapse
Affiliation(s)
- Haoyao Sun
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Stephanie Burrola
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
- Section of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| |
Collapse
|
63
|
Normoxic Tumour Extracellular Vesicles Modulate the Response of Hypoxic Cancer and Stromal Cells to Doxorubicin In Vitro. Int J Mol Sci 2020; 21:ijms21175951. [PMID: 32824972 PMCID: PMC7503554 DOI: 10.3390/ijms21175951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV) secreted in the tumour microenvironment (TME) are emerging as major antagonists of anticancer therapies by orchestrating the therapeutic outcome through altering the behaviour of recipient cells. Recent evidence suggested that chemotherapeutic drugs could be responsible for the EV-mediated tumour-stroma crosstalk associated with cancer cell drug resistance. Here, we investigated the capacity of tumour EV (TEV) secreted by normoxic and hypoxic (1% oxygen) C26 cancer cells after doxorubicin (DOX) treatment to alter the response of naïve C26 cells and RAW 264.7 macrophages to DOX. We observed that C26 cells were less responsive to DOX treatment under normoxia compared to hypoxia, and a minimally cytotoxic DOX concentration that mounted distinct effects on cell viability was selected for TEV harvesting. Homotypic and heterotypic pretreatment of naïve hypoxic cancer and macrophage-like cells with normoxic DOX-elicited TEV rendered these cells slightly less responsive to DOX treatment. The observed effects were associated with strong hypoxia-inducible factor 1-alpha (HIF-1α) induction and B-cell lymphoma-extra-large anti-apoptotic protein (Bcl-xL)-mediated anti-apoptotic response in normoxic DOX-treated TEV donor cells, being also tightly connected to the DOX-TEV-mediated HIF-1α induction, as well as Bcl-xL levels increasing in recipient cells. Altogether, our results could open new perspectives for investigating the role of chemotherapy-elicited TEV in the colorectal cancer TME and their modulatory actions on promoting drug resistance.
Collapse
|
64
|
Sieminska I, Baran J. Myeloid-Derived Suppressor Cells in Colorectal Cancer. Front Immunol 2020; 11:1526. [PMID: 32849517 PMCID: PMC7426395 DOI: 10.3389/fimmu.2020.01526] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies diagnosed worldwide. The pathogenesis of CRC is complex and involves, among others, accumulation of genetic predispositions and epigenetic factors, dietary habits, alterations in gut microbiota, and lack of physical activity. A growing body of evidence suggests that immune cells play different roles in CRC, comprising both pro- and anti-tumorigenic functions. Immunosuppression observed during cancer development and progression is a result of the orchestration of many cell types, including myeloid-derived suppressor cells (MDSCs). MDSCs, along with other cells, stimulate tumor growth, angiogenesis, and formation of metastases. This article focuses on MDSCs in relation to their role in the initiation and progression of CRC. Possible forms of immunotherapies targeting MDSCs in CRC are also discussed.
Collapse
Affiliation(s)
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
65
|
Holkar K, Vaidya A, Pethe P, Kale V, Ingavle G. Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. MATERIALIA 2020; 12:100736. [DOI: 10.1016/j.mtla.2020.100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
66
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
67
|
Martinez EF, de Araújo VC, Navarini NF, de Souza IF, Rena GB, Demasi APD, de Paula E, Teixeira LN. Microvesicles derived from squamous cell carcinoma induce cell death, autophagy, and invasion of benign myoepithelial cells. J Oral Pathol Med 2020; 49:761-770. [PMID: 32453894 DOI: 10.1111/jop.13037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND There has been great interest recently in the mechanisms of cell-to-cell communication through microvesicles (MV). These structures are produced by many different cell types and can modulate cellular activity by induction of epigenetic alterations. These vesicles may promote tumor mass increase either by stimulating cell proliferation via growth factors or by inhibiting apoptosis, which reinforces the role of such vesicles as important modulators of tumor progression. METHODS The present in vitro study aimed to characterize MV derived from malignant neoplastic epithelial cell cultures (EP) and their effect on the expression of apoptosis/autophagy and invasion related genes of benign myoepithelial (Myo) cell cultures. RESULTS The results revealed round structures with a mean size of 153.6 (±0.2) nm, with typical MV morphology. CD63 quantification indicated that EP cell culture at 70%-80% confluence secreted 3.088 × 108 MV/mL. Overall, Myo exposed to MVs derived from EP showed both up- and downregulation of tumorigenesis promoting genes. MVs from EP cells promoted cell death of Myo cells and positively modulate BAX, SURVIVIN, LC3B, MMP-2, and MMP-9 expression. Furthermore, an increasing of MMP-2 and MMP-9 secretion by Myo was observed after MV exposure. CONCLUSIONS These findings suggest that MVs from EP modulate autophagy of Myo cells, which may, in part, explain the disappearance of these cells in in situ areas of invasive carcinoma ex-pleomorphic adenoma. Additionally, the overexpression of MMPs contributes to the development of an invasive phenotype of Myo cells, which could favor the dissolution of the basement membrane during tumorigenesis process.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Bernardo Rena
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Ana Paula Dias Demasi
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Lucas Novaes Teixeira
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
68
|
Lam KCK, Lam MKN, Chim CS, Chan GCF, Li JCB. The functional role of surface molecules on extracellular vesicles in cancer, autoimmune diseases, and coagulopathy. J Leukoc Biol 2020; 108:1565-1573. [PMID: 32480430 DOI: 10.1002/jlb.3mr0420-067r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that have emerged as mediators for intercellular communication in physiologic and pathologic conditions. EVs carry signaling information on their bilipid membrane as well as cargo within, allowing them to perform a wide range of biologic processes and contribute to pathophysiologic roles in a wide range of diseases, including cancer, autoimmune diseases and coagulopathy. This review will specifically address the function of surface molecules on EVs under normal and diseased conditions, as well as their potential to emerge as therapeutic targets in clinical settings, and the importance of further research on the surface topography of EVs.
Collapse
Affiliation(s)
- Katy C K Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Moses K N Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C S Chim
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Godfrey C F Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - James C B Li
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
69
|
|
70
|
Zhao Z, Wijerathne H, Godwin AK, Soper SA. Isolation and analysis methods of extracellular vesicles (EVs). EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2020; 2:80-103. [PMID: 34414401 PMCID: PMC8372011 DOI: 10.20517/evcna.2021.07] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have been recognized as an evolving biomarker within the liquid biopsy family. While carrying both host cell proteins and different types of RNAs, EVs are also present in sufficient quantities in biological samples to be tested using many molecular analysis platforms to interrogate their content. However, because EVs in biological samples are comprised of both disease and non-disease related EVs, enrichment is often required to remove potential interferences from the downstream molecular assay. Most benchtop isolation/enrichment methods require > milliliter levels of sample and can cause varying degrees of damage to the EVs. In addition, some of the common EV benchtop isolation methods do not sort the diseased from the non-diseased related EVs. Simultaneously, the detection of the overall concentration and size distribution of the EVs is highly dependent on techniques such as electron microscopy and Nanoparticle Tracking Analysis, which can include unexpected variations and biases as well as complexity in the analysis. This review discusses the importance of EVs as a biomarker secured from a liquid biopsy and covers some of the traditional and non-traditional, including microfluidics and resistive pulse sensing, technologies for EV isolation and detection, respectively.
Collapse
Affiliation(s)
- Zheng Zhao
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA
| | - Harshani Wijerathne
- Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Andrew K. Godwin
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Steven A. Soper
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Ulsan National Institute of Science & Technology, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
71
|
Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat Biomed Eng 2020; 4:52-68. [PMID: 31937944 DOI: 10.1038/s41551-019-0502-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
A small percentage of the short interfering RNA (siRNA) delivered via passive lipid nanoparticles and other delivery vehicles reaches the cytoplasm of cells. The high doses of siRNA and delivery vehicle that are thus required to achieve therapeutic outcomes can lead to toxicity. Here, we show that the integration of siRNA sequences into a Dicer-independent RNA stem-loop based on pre-miR-451 microRNA-which is highly enriched in small extracellular vesicles secreted by many cell types-reduces the expression of the genes targeted by the siRNA in the liver, intestine and kidney glomeruli of mice at siRNA doses that are at least tenfold lower than the siRNA doses typically delivered via lipid nanoparticles. Small extracellular vesicles that efficiently package siRNA can significantly reduce its therapeutic dose.
Collapse
|
72
|
Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med 2020; 52:1-6. [PMID: 31915368 PMCID: PMC7000698 DOI: 10.1038/s12276-019-0362-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
Apoptosis, a type of programmed cell death that plays a key role in both healthy and pathological conditions, releases extracellular vesicles such as apoptotic bodies and microvesicles, but exosome release due to apoptosis is not yet commonly accepted. Here, the reports demonstrating the presence of apoptotic exosomes and their roles in inflammation and immune responses are summarized, together with a general summary of apoptosis and extracellular vesicles. In conclusion, apoptosis is not just a 'silent' type of cell death but an active form of communication from dying cells to live cells through exosomes.
Collapse
|
73
|
Salamon P, Mekori YA, Shefler I. Lung cancer-derived extracellular vesicles: a possible mediator of mast cell activation in the tumor microenvironment. Cancer Immunol Immunother 2020; 69:373-381. [PMID: 31897659 DOI: 10.1007/s00262-019-02459-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022]
Abstract
Activated mast cells are often found in the tumor microenvironment. They have both pro- and anti-tumorigenic roles, depending on the tumor type. Several lines of evidence suggest that the tumor microenvironment contains multiple soluble factors that can drive mast cell recruitment and activation. However, it is not yet clear how mast cells are activated by tumor cells. In this study, we explored whether tumor-derived microvesicles (TMV) from non-small cell lung cancer (NSCLC) cells interact with human mast cells, activate them to release cytokines, and affect their migratory ability. PKH67-labelled TMV isolated from NSCLC cell lines were found to be internalized by mast cells. This internalization was first noticed after 4 h and peaked within 24 h of co-incubation. Furthermore, internalization of TMV derived from NSCLC cell lines or from surgical lung tissue specimens resulted in ERK phosphorylation, enhanced mast cell migratory ability and increased release of cytokines and chemokines, such as TNF-α and MCP-1. Our data are thus, consistent with the conclusion that TMV have the potential to influence mast cell activity and thereby, affect tumorigenesis.
Collapse
Affiliation(s)
- Pazit Salamon
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel
| | - Yoseph A Mekori
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.,Tel Hai College, Tel Hai, Israel
| | - Irit Shefler
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, 59 Tchernichovsky St., 4428164, Kfar Saba, Israel.
| |
Collapse
|
74
|
Baj-Krzyworzeka M, Mytar B, Weglarczyk K, Szatanek R, Kijowski J, Siedlar M. Protumorogenic Potential of Pancreatic Adenocarcinoma-Derived Extracellular Vesicles. Folia Biol (Praha) 2020; 66:104-110. [PMID: 33069189 DOI: 10.14712/fb2020066030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cancer development is a highly complicated process in which tumour growth depends on the development of its vascularization system. To support their own growth, tumour cells significantly modify their microenvironment. One of such modifications inflicted by tumours is stimulation of endothelial cell migration and proliferation. There is accumulating evidence that extracellular vesicles (EVs) secreted by tumour cells (tumour-derived EVs, TEVs) may be regarded as "messengers" with the potential for affecting the biological activities of target cells. Interaction of TEVs with different cell types occurs in an auto- and paracrine manner and may lead to changes in the function of the latter, e.g., promoting motility, proliferation, etc. This study analysed the proangiogenic activity of EVs derived from human pancreatic adenocarcinoma cell line (HPC-4, TEVHPC) in vitro and their effect in vivo on Matrigel matrix vascularization in severe combined immunodeficient (SCID) mice. TEVHPC enhanced proliferation of HPC-4 cells and induced their motility. Moreover, TEVHPC stimulated human umbilical vein endothelial cell (HUVEC) proliferation and migration in vitro. Additionally, TEVHPC influenced secretion of proangiogenic factors (IL-8, VEGF) by HUVEC cells and supported Matrigel matrix haemoglobinization in vivo. These data show that TEVs may support tumour propagation in an autocrine manner and may support vascularization of the tumour. The presented data are in line with the theory that tumour cells themselves are able to modulate the microenvironment via TEVs to maximize their growth potential.
Collapse
Affiliation(s)
- M Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - B Mytar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - K Weglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - R Szatanek
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - J Kijowski
- Department of Transplantology, Institute of Paediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - M Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
75
|
Nazarenko I. Extracellular Vesicles: Recent Developments in Technology and Perspectives for Cancer Liquid Biopsy. Recent Results Cancer Res 2020; 215:319-344. [PMID: 31605237 DOI: 10.1007/978-3-030-26439-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular micro- and nanoscale membrane vesicles produced by different cells progressively attract the attention of the scientific community. They function as mediators of intercellular communication and transport genetic material and signaling molecules between the cells. In the context of keeping homeostasis, the extracellular vesicles contribute to the regulation of various systemic and local processes. Vesicles released by the tumor and activated stromal cells exhibit multiple functions including support of tumor growth, preparation of the pre-metastatic niches, and immune suppression. Considerable progress has been made regarding the criteria of classification of the vesicles according to their origin, content, and function: Exosomes, microvesicles, also referred to as microparticles or ectosomes, and large oncosomes were defined as actively released vesicles. Additionally, apoptotic bodies represented by a highly heterogeneous population of particles produced during apoptosis, the programmed cell death, should be considered. Because the majority of isolation techniques do not allow the separation of different types of vesicles, a joined term "extracellular vesicles" (EVs) was recommended by the ISEV community for the definition of vesicles isolated from either the cell culture supernatants or the body fluids. Because EV content reflects the content of the cell of origin, multiple studies on EVs from body fluids in the context of cancer diagnosis, prediction, and prognosis were performed, actively supporting their high potential as a biomarker source. Here, we review the leading achievements in EV analysis from body fluids, defined as EV-based liquid biopsy, and provide an overview of the main EV constituents: EV surface proteins, intravesicular soluble proteins, EV RNA including mRNA and miRNA, and EV DNA as potential biomarkers. Furthermore, we discuss recent developments in technology for quantitative EV analysis in the clinical setting and future perspectives toward miniaturized high-precision liquid biopsy approaches.
Collapse
Affiliation(s)
- Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
76
|
Exosomes in Cancer: Circulating Immune-Related Biomarkers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1628029. [PMID: 31915681 PMCID: PMC6935444 DOI: 10.1155/2019/1628029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Exosomes, the smallest vesicles (30–100 nm) among multivesicular bodies, are released by all body cells including tumor cells. The cargo they transfer plays an important role in intercellular communication. Tumor-derived exosomes (TEXs) maintain interactions between cancer cells and the microenvironment. Emerging evidence suggests that tumor cells release a large number of exosomes, which may not only influence proximal tumor cells and stromal cells in the local microenvironment but can also exert systemic effects as they are circulating in the blood. TEXs have been shown to boost tumor growth promote progression and metastatic spread via suppression or modification of the immune response towards cancer cells, regulation of tumor neo-angiogenesis, pre-metastatic niche formation, and therapy resistance. In addition, recent studies in patients with cancer suggest that TEXs could serve as tumor biomarker reflecting partially the genetic and molecular content of the parent cancer cell (i.e., as a so-called “liquid biopsy”). Furthermore, recent studies have demonstrated that exosomes may have immunotherapeutic applications, or can act as a drug delivery system for targeted therapies with drugs and biomolecules.
Collapse
|
77
|
Tharp D, Nandana S. How Prostate Cancer Cells Use Strategy Instead of Brute Force to Achieve Metastasis. Cancers (Basel) 2019; 11:cancers11121928. [PMID: 31817000 PMCID: PMC6966655 DOI: 10.3390/cancers11121928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Akin to many other cancers, metastasis is the predominant cause of lethality in prostate cancer (PCa). Research in the past decade or so has revealed that although metastatic manifestation is a multi-step and complex process that is orchestrated by distinct cellular and molecular mechanisms, the process in itself is an extremely inefficient one. It is now becoming increasingly evident that PCa cells employ a plethora of strategies to make the most of this inefficient process. These strategies include priming the metastatic sites ahead of colonization, devising ways to metastasize to specific organs, outsmarting the host defense surveillance, lying in a dormant state at the metastatic site for prolonged periods, and widespread reprogramming of the gene expression to suit their needs. Based on established, recent, and evolving lines of research, this review is an attempt to understand PCa metastasis from the perspective of military combat, wherein strategic maneuvering instead of brute force often plays a decisive role in the outcome.
Collapse
|
78
|
Szatanek R, Weglarczyk K, Stec M, Baran J, Parlinska-Wojtan M, Siedlar M, Baj-Krzyworzeka M. Autologous tumor‑derived microvesicles influence gene expression profiles and enhance protumorigenic chemotactic potential, signal transduction and cellular respiration in gastric cancer cells. Int J Oncol 2019; 56:359-367. [PMID: 31789386 DOI: 10.3892/ijo.2019.4923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/18/2019] [Indexed: 11/06/2022] Open
Abstract
Tumor‑derived microvesicles (TMVs) interact with a variety of different cell types within the immune system, including lymphocytes, monocytes, dendritic cells and tumor cells that they have originated from. In the present study, the effects of autologous‑TMVs (auto‑TMVs) on gene expression, chemotaxis, intercellular signaling and cellular metabolism were examined in cells of the gastric cancer (GC) cell line 1415 (GC1415). The effects of auto‑TMVs on mRNA gene expression in GC1415 cells were assessed using pathway‑focused PCR arrays. A chemotaxis assay was performed using the HoloMonitor M4 System. Signaling pathways were evaluated using western blot analysis, and cellular respiration was measured using the Seahorse XF Cell Mito Stress Test. Exposure of the GC1415 cells to auto‑TMVs led to the overexpression (75 genes) and underexpression (96 genes) of genes that are associated with signal transduction, metabolism, chemotaxis, angiogenesis and metastasis. The auto‑TMVs were indicated to induce chemotaxis and activate the PI3K/AKT signaling pathway in GC1415 cells. However, the MAPK/ERK signaling pathway was not indicated to be activated. Furthermore, studies on cellular respiration in GC1415 cells exposed to auto‑TMVs demonstrated a metabolic shift to glycolysis. The results of the current study thus indicate that auto‑TMVs may exert an effect on tumor cell function.
Collapse
Affiliation(s)
- Rafal Szatanek
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Malgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Jaroslaw Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | | | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Jagiellonian University Medical College, 30‑663 Krakow, Poland
| |
Collapse
|
79
|
AmraneDjedidi R, Rousseau A, Larsen AK, Elalamy I, Van Dreden P, Gerotziafas GT. Extracellular vesicles derived from pancreatic cancer cells BXPC3 or breast cancer cells MCF7 induce a permanent procoagulant shift to endothelial cells. Thromb Res 2019; 187:170-179. [PMID: 32006891 DOI: 10.1016/j.thromres.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023]
Abstract
The endothelium could be a potential target of cancer cell derived extracellular vesicles (CaCe-dEV). We investigated in vitro the effect of CaCe-dEV on the hemostatic balance of endothelial cells. Extracellular vesicles released from pancreas adenocarcinoma cells (BXPC3) or human breast cancer cells (MCF7) were isolated by differential centrifugation. Human umbilical vein endothelial cells (HUVEC) were cultured for 72 h in the presence or absence of CaCe-dEV. Subsequently, they were washed and re-cultivated over three cycles to get daughter cell generations (DG) which were not exposed to CaCe-dEV. Thrombin generation of normal platelet poor plasma (PPP) added in wells carrying HUVEC was assessed by the Calibrated Automated Thrombogram®. Tissue factor activity (TFa) and procoagulant phospholipid clotting time were assessed. Some traces of TFa were displayed by non-exposed HUVEC (0.18 ± 0.03 pM) and their EVs (1.2 ± 1.0 pM). Non-exposed HUVEC did not induce any detectable thrombin generation. BXPC3-dEV displayed significantly higher TFa as compared to MCF7-dEV (45 ± 5 pM versus 4.6 ± 2.3pM respectively; p < 0.05). HUVEC exposed to CaCe-dEV enhanced thrombin generation. BXPC3-dEV induced significantly higher thrombin generation as compared to those exposed to MCF7-dEV. The procoagulant properties of HUVEC, acquired upon exposure to CaCe-dEV were transferred to DG. In conclusion, CaCe-dEV lead to a procoagulant shift of endothelial cells which, upon exposure, display TFa and enhance thrombin generation which is transferred to DG of HUVEC. The potency of CaCe-dEV to induce procoagulant shift of HUVEC depends on the histological type of the cancer cells. The procoagulant shift of endothelial cells which is transferable to DG could be an additional mechanism - together with cancer-induced blood hypercoagulability - in the pathogenesis of cancer associated thrombosis.
Collapse
Affiliation(s)
- Rania AmraneDjedidi
- Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France
| | - Aurélie Rousseau
- Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | - Annette K Larsen
- Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France
| | - Ismail Elalamy
- Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France; Department of Hematology and Cell Therapy, Saint Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Sorbonne University, Paris, France
| | | | - Grigoris T Gerotziafas
- Research Group "Cancer, Haemostasis and Angiogenesis", INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France; Department of Hematology and Cell Therapy, Saint Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Sorbonne University, Paris, France.
| |
Collapse
|
80
|
Razmkhah F, Soleimani M, Ghasemi S, Kafi-Abad SA. MicroRNA-21 over expression in umbilical cord blood hematopoietic stem progenitor cells by leukemia microvesicles. Genet Mol Biol 2019; 42:465-471. [PMID: 31429853 PMCID: PMC6726151 DOI: 10.1590/1678-4685-gmb-2018-0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Microvesicles are able to induce the cell of origin's phenotype in a target cell. MicroRNA-21, as an oncomir, is up-regulated in almost all cancer types such as leukemia which results in cell proliferation. In this study, we examine the ability of leukemia microvesicles to induce proliferation in hematopoietic stem progenitor cells (HSPCs) via microRNA-21 dysregulation. Herein, leukemia microvesicles were isolated from HL-60 and NB-4 cell lines by ultracentrifugation, and then their protein content was measured. Normal HSPCs were isolated from umbilical cord blood samples by a CD-34 antibody. These cells were treated with 20 and 40 μg/mL leukemia microvesicles for 5 and 10 days, respectively. Cell count, CD-34 analysis, and a microRNA-21 gene expression assay were done at days 5 and 10. HSPCs showed a significant increase in both microRNA-21 gene expression and cell count after treating with leukemia microvesicles compared with the control group. CD-34 analysis as stemness proof did not show any difference among the studied groups. This data suggests that HSPC proliferation followed by microRNA-21 gene over expression can be another evidence of a leukemia-like phenotype induction in a healthy target cell by leukemia microvesicles.
Collapse
Affiliation(s)
- Farnaz Razmkhah
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sedigheh Amini Kafi-Abad
- Department of Pathology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
81
|
Scavo MP, Depalo N, Rizzi F, Ingrosso C, Fanizza E, Chieti A, Messa C, Denora N, Laquintana V, Striccoli M, Curri ML, Giannelli G. FZD10 Carried by Exosomes Sustains Cancer Cell Proliferation. Cells 2019; 8:E777. [PMID: 31349740 PMCID: PMC6721576 DOI: 10.3390/cells8080777] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in intercellular communication during carcinogenesis, and cancer cells are able to secrete EVs, in particular exosomes containing molecules, that can be transferred to recipient cells to induce pathological processes and significant modifications, as metastasis, increase of proliferation, and carcinogenesis evolution. FZD proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in carcinogenesis of the gastroenteric tract. Here, a still unknown role of Frizzled 10 (FZD10) protein was identified. In particular, the presence of FZD10 and FZD10-mRNA in exosomes extracted from culture medium of the untreated colorectal, gastric, hepatic, and cholangio cancer cell lines, was detected. A substantial reduction in the FZD10 and FZD10-mRNA level was achieved in FZD10-mRNA silenced cells and in their corresponding exosomes. Concomitantly, a significant decrease in viability of the silenced cells compared to their respective controls was observed. Notably, the incubation of silenced cells with the exosomes extracted from culture medium of the same untreated cells promoted the restoration of the cell viability and, also, of the FZD10 and FZD10-mRNA level, thus indicating that the FZD10 and FZD10-mRNA delivering exosomes may be potential messengers of cancer reactivation and play an active role in long-distance metastatization.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Annarita Chieti
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Caterina Messa
- Laboratory of Clinical Biochemistry, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nunzio Denora
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Farmacia, Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia, Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Marinella Striccoli
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Maria Lucia Curri
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Gianluigi Giannelli
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
- National Institute of Gastroenterology "S. De Bellis", Scientific Direction, Via Turi 27, Castellana Grotte 70013 Bari, Italy.
| |
Collapse
|
82
|
Lu KC, Zhang Y, Song E. Extracellular RNA: mechanisms of it’s transporting into target cells. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
83
|
Cheung KWE, Choi SYR, Lee LTC, Lee NLE, Tsang HF, Cheng YT, Cho WCS, Wong EYL, Wong SCC. The potential of circulating cell free RNA as a biomarker in cancer. Expert Rev Mol Diagn 2019; 19:579-590. [PMID: 31215265 DOI: 10.1080/14737159.2019.1633307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023]
Abstract
Introduction: It is now clear that circulating cell-free ribonucleic acids (ccfRNAs), including messenger RNA (mRNA) and miRNA, are potential cancer biomarkers. As ccfmiRNA is relatively more stable than ccfmRNA, research should concentrate on developing novel methods to preserve the stability of ccfmRNA and standardization of the protocol which includes extraction, detection, and multicenter validation. Areas covered: This literature review concentrates on the potential of ccfRNA being used as a biomarker in cancer, with special focus on mRNAs and microRNAs (miRNAs). Expert opinion: With the advancement of high-throughput technologies such as RNA sequencing, a panel of biomarkers will be used for the diagnosis, prognosis and therapeutic monitoring of cancer patients. In order to achieve this important target, bioinformatics education to pathologists, scientists, and technologists in molecular diagnostic laboratories is essential. Moreover, the panel of these new ccfRNAs biomarkers has to obtain approval or clearance from an authority such as the US Food and Drug Administration (FDA), and the standard of utilizing these new protocols has to be recognized via accreditation exercise. Therefore, there is still a long way to go before an extensively use of ccfRNA biomarkers in cancer patients can be realized.
Collapse
Affiliation(s)
- Ka Wan Emily Cheung
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Sin-Yu Rachel Choi
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Lok Ting Claire Lee
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Nga Lam Ella Lee
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Hin Fung Tsang
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Yin Tung Cheng
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - William Chi Shing Cho
- b Department of Clinical Oncology , Queen Elizabeth Hospital, Kowloon , Hong Kong Special Administrative Region , China
| | - Elaine Yue Ling Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| | - Sze Chuen Cesar Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , Hong Kong Polytechnic University , Hong Kong Special Administrative Region , China
| |
Collapse
|
84
|
Vechetti IJ. Emerging role of extracellular vesicles in the regulation of skeletal muscle adaptation. J Appl Physiol (1985) 2019; 127:645-653. [PMID: 31194602 DOI: 10.1152/japplphysiol.00914.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular vesicles (EVs) were initially characterized as "garbage bags" with the purpose of removing unwanted material from cells. It is now becoming clear that EVs mediate intercellular communication between distant cells through a transfer of genetic material, a process important to the systemic adaptation in physiological and pathological conditions. Although speculative, it has been suggested that the majority of EVs that make it into the bloodstream would be coming from skeletal muscle, since it is one of the largest organs in the human body. Although it is well established that skeletal muscle secretes peptides (currently known as myokines) into the bloodstream, the notion that skeletal muscle releases EVs is in its infancy. Besides intercellular communication and systemic adaptation, EV release could represent the mechanism by which muscle adapts to certain stimuli. This review summarizes the current understanding of EV biology and biogenesis and current isolation methods and briefly discusses the possible role EVs have in regulating skeletal muscle mass.
Collapse
Affiliation(s)
- Ivan J Vechetti
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
85
|
Zhou C, Tan L, Sun Y, Qiu X, Meng C, Liao Y, Song C, Liu W, Nair V, Ding C. Exosomes Carry microRNAs into Neighboring Cells to Promote Diffusive Infection of Newcastle Disease Virus. Viruses 2019; 11:v11060527. [PMID: 31174402 PMCID: PMC6631457 DOI: 10.3390/v11060527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, was shown to prefer to replicate in tumor cells instead of normal cells; however, this mechanism has not been fully elucidated. Exosomes play a crucial role in intercellular communication due to the bioactive substances they carry. Several studies have shown that exosomes are involved in virus infections. However, the effect that exosomes have on NDV-infected tumor cells is not known. In this study, we focus on the role of exosomes secreted by NDV-infected HeLa cells in promoting NDV replication. Three miRNA candidates (miR-1273f, miR-1184, and miR-198) embraced by exosomes were associated with enhancing NDV-induced cytopathic effects on HeLa cells. Furthermore, luciferase assays, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) all demonstrated that these miRNAs could suppress interferon (IFN)-β gene expression. Enhanced NDV replication in HeLa cells was identified by Western blot and plaque assays. Based on these results, we speculate that NDV employed exosomes entry into neighboring cells, which carry miRNAs, resulting in inhibition of the IFN pathway and promotion of viral infection. To our knowledge, this is the first report on the involvement of NDV-employed exosomes in tumor cells, and as such, it provides new insights into the development of anti-tumor therapies.
Collapse
Affiliation(s)
- Changluan Zhou
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Lei Tan
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
- Correspondence: (L.T.); (C.D.); Tel.: +86-21-3429-3426 (L.T.); +86-21-3429-3441 (C.D.)
| | - Yingjie Sun
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Chunchun Meng
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Ying Liao
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Cuiping Song
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Weiwei Liu
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey Gu24 ONF, UK;
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; (C.Z.); (Y.S.); (X.Q.); (C.M.); (Y.L.); (C.S.); (W.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: (L.T.); (C.D.); Tel.: +86-21-3429-3426 (L.T.); +86-21-3429-3441 (C.D.)
| |
Collapse
|
86
|
Li J, Tian T, Zhou X. The role of exosomal shuttle RNA (esRNA) in lymphoma. Crit Rev Oncol Hematol 2019; 137:27-34. [DOI: 10.1016/j.critrevonc.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
|
87
|
MicroRNA Involvement in Allergic and Non-Allergic Mast Cell Activation. Int J Mol Sci 2019; 20:ijms20092145. [PMID: 31052286 PMCID: PMC6539777 DOI: 10.3390/ijms20092145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Allergic inflammation is accompanied by the coordinated expression of numerous genes and proteins that initiate, sustain, and propagate immune responses and tissue remodeling. MicroRNAs (miRNAs) are a large class of small regulatory molecules that are able to control the translation of target mRNAs and consequently regulate various biological processes at the posttranscriptional level. MiRNA profiles have been identified in multiple allergic inflammatory diseases and in the tumor microenvironment. Mast cells have been found to co-localize within the above conditions. More specifically, in addition to being essential in initiating the allergic response, mast cells play a key role in both innate and adaptive immunity as well as in modulating tumor growth. This review summarizes the possible role of various miRNAs in the above-mentioned processes wherein mast cells have been found to be involved. Understanding the role of miRNAs in mast cell activation and function may serve as an important tool in developing diagnostic as well as therapeutic approaches in mast cell-dependent pathological conditions.
Collapse
|
88
|
Bian X, Xiao YT, Wu T, Yao M, Du L, Ren S, Wang J. Microvesicles and chemokines in tumor microenvironment: mediators of intercellular communications in tumor progression. Mol Cancer 2019; 18:50. [PMID: 30925930 PMCID: PMC6441155 DOI: 10.1186/s12943-019-0973-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence indicates that the ability of cancer cells to convey biological information to recipient cells within the tumor microenvironment (TME) is crucial for tumor progression. Microvesicles (MVs) are heterogenous vesicles formed by budding of the cellular membrane, which are secreted in larger amounts by cancer cells than normal cells. Recently, several reports have also disclosed that MVs function as important mediators of intercellular communication between cancerous and stromal cells within the TME, orchestrating complex pathophysiological processes. Chemokines are a family of small inflammatory cytokines that are able to induce chemotaxis in responsive cells. MVs which selective incorporate chemokines as their molecular cargos may play important regulatory roles in oncogenic processes including tumor proliferation, apoptosis, angiogenesis, metastasis, chemoresistance and immunomodulation, et al. Therefore, it is important to explore the association of MVs and chemokines in TME, identify the potential prognostic marker of tumor, and develop more effective treatment strategies. Here we review the relevant literature regarding the role of MVs and chemokines in TME.
Collapse
Affiliation(s)
- Xiaojie Bian
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tianqi Wu
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leilei Du
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, China.
| |
Collapse
|
89
|
Roy S, Lin HY, Chou CY, Huang CH, Small J, Sadik N, Ayinon CM, Lansbury E, Cruz L, Yekula A, Jones PS, Balaj L, Carter BS. Navigating the Landscape of Tumor Extracellular Vesicle Heterogeneity. Int J Mol Sci 2019; 20:ijms20061349. [PMID: 30889795 PMCID: PMC6471355 DOI: 10.3390/ijms20061349] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
The last decade has seen a rapid expansion of interest in extracellular vesicles (EVs) released by cells and proposed to mediate intercellular communication in physiological and pathological conditions. Considering that the genetic content of EVs reflects that of their respective parent cell, many researchers have proposed EVs as a source of biomarkers in various diseases. So far, the question of heterogeneity in given EV samples is rarely addressed at the experimental level. Because of their relatively small size, EVs are difficult to reliably isolate and detect within a given sample. Consequently, standardized protocols that have been optimized for accurate characterization of EVs are lacking despite recent advancements in the field. Continuous improvements in pre-analytical parameters permit more efficient assessment of EVs, however, methods to more objectively distinguish EVs from background, and to interpret multiple single-EV parameters are lacking. Here, we review EV heterogeneity according to their origin, mode of release, membrane composition, organelle and biochemical content, and other factors. In doing so, we also provide an overview of currently available and potentially applicable methods for single EV analysis. Finally, we examine the latest findings from experiments that have analyzed the issue at the single EV level and discuss potential implications.
Collapse
Affiliation(s)
- Sabrina Roy
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hsing-Ying Lin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Chung-Yu Chou
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.
| | - Julia Small
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Noah Sadik
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA.
| | - Caroline M Ayinon
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Elizabeth Lansbury
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Lilian Cruz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
90
|
Jaiswal R, Sedger LM. Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments. Front Oncol 2019; 9:125. [PMID: 30895170 PMCID: PMC6414436 DOI: 10.3389/fonc.2019.00125] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is a normal feature of most physiological interactions between cells in healthy organisms. While cells communicate directly through intimate physiology contact, other mechanisms of communication exist, such as through the influence of soluble mediators such as growth factors, cytokines and chemokines. There is, however, yet another mechanism of intercellular communication that permits the exchange of information between cells through extracellular vesicles (EVs). EVs are microscopic (50 nm−10 μM) phospholipid bilayer enclosed entities produced by virtually all eukaryotic cells. EVs are abundant in the intracellular space and are present at a cells' normal microenvironment. Irrespective of the EV “donor” cell type, or the mechanism of EV biogenesis and production, or the size and EV composition, cancer cells have the potential to utilize EVs in a manner that enhances their survival. For example, cancer cell EV overproduction confers benefits to tumor growth, and tumor metastasis, compared with neighboring healthy cells. Herein, we summarize the current status of knowledge on different populations of EVs. We review the situations that regulate EV release, and the factors that instruct differential packaging or sorting of EV content. We then highlight the functions of cancer-cell derived EVs as they impact on cancer outcomes, promoting tumor progression, metastases, and the mechanisms by which they facilitate the creation of a pre-metastatic niche. The review finishes by focusing on the beneficial (and challenging) features of tumor-derived EVs that can be adapted and utilized for cancer treatments, including those already being investigated in human clinical trials.
Collapse
Affiliation(s)
- Ritu Jaiswal
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Lisa M Sedger
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
91
|
Wu H, Fan H, Shou Z, Xu M, Chen Q, Ai C, Dong Y, Liu Y, Nan Z, Wang Y, Yu T, Liu X. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int Immunopharmacol 2019; 68:204-212. [PMID: 30654310 DOI: 10.1016/j.intimp.2018.12.043] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
Accumulating evidence indicates that microRNA-146a (miR-146a), a well-known anti-inflammatory miRNA, acts as a negative feedback regulator of the innate immune response, but its role in modulation of inflammatory bowel disease (IBD) remains unclear and the issue related to the stability of exogenous miR-146a in blood is up in the air. In this study, extracellular vesicles (EVs) from cultured medium of bone-marrow mesenchymal stem cells (BMSCs) transfected with recombinant lentiviruses can serve as a stable delivery system and overexpress miR-146a, which significantly inhibited TNF receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK1) expression in TNBS-induced colitis of rats. Moreover, the increased phosphorylation levels of NF-κB p65 and IκBα were down-regulated by the administration of EVs containing miR-146a. Coupled with the associated influence of over-expressed miR-146a on phosphorylated proteins above, the production of inflammation factors such as tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6) and Interleukin-1β is apparently suppressed by this non-coding RNA. Collectively, these data elucidated that EVs containing miR-146a ameliorates experimental colitis caused 2,4,6‑trinitrobenzenesulfonic acid (TNBS) by targeting TRAF6 and IRAK1.
Collapse
Affiliation(s)
- Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Changzheng Ai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen Nan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
92
|
Abstract
Extracellular vesicles (EVs), and exosomes in particular, were initially considered as "garbage bags" for secretion of undesired cellular components. This view has changed considerably over the last two decades, and exosomes have now emerged as important organelles controlling cell-to-cell signaling. They are present in biological fluids and have important roles in the communication between cells in physiological and pathological processes. They are envisioned for clinical use as carriers of biomarkers, therapeutic targets, and vehicles for drug delivery. Important efforts are being made to characterize the contents of these vesicles and to understand the mechanisms that govern their biogenesis and modes of action. This chapter aims to recapitulate the place given to lipids in our understanding of exosome biology. Besides their structural role and their function as carriers, certain lipids and lipid-modifying enzymes seem to exert privileged functions in this mode of cellular communication. By extension, the use of selective "lipid inhibitors" might turn out to be interesting modulators of exosomal-based cell signaling.
Collapse
Affiliation(s)
- Antonio Luis Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France.,Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille, Equipe labellisée Ligue 2018, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France. .,Department of Human Genetics, K. U. Leuven, Leuven, Belgium.
| |
Collapse
|
93
|
Mir Seyed Nazari P, Riedl J, Pabinger I, Ay C. The role of podoplanin in cancer-associated thrombosis. Thromb Res 2018; 164 Suppl 1:S34-S39. [PMID: 29703483 DOI: 10.1016/j.thromres.2018.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/21/2022]
Abstract
Venous thromboembolism (VTE) is a frequent and life-threatening complication in patients with cancer. The underlying mechanisms of cancer-associated VTE are still not completely understood. However, emerging studies indicate that the mechanisms differ across tumor types. A recent study revealed that in patients with brain tumors, podoplanin overexpression is strongly correlated with intratumoral thrombotic vessels, hypercoagulability and increased VTE risk. In vitro experiments demonstrated that platelet aggregation induced by human glioblastoma cells was highly podoplanin-dependent. Podoplanin is a transmembrane glycoprotein with the ability to induce platelet activation via the platelet-receptor CLEC-2. Moreover, podoplanin is a lymphatic endothelial marker and exhibits substantial functions during embryonic development. It is variously upregulated by many cancers including primary brain tumors and linked to malignant progression and poor survival. In vivo studies have indicated that the podoplanin-CLEC-2 axis might be mechanistically involved in the development of venous thrombosis. In this review, we discuss the role of podoplanin in promoting cancer-associated VTE. Since podoplanin is associated with VTE risk in brain tumor patients, it could be a useful biomarker to identify patients at very high VTE risk. Those patients may benefit from primary thromboprophylaxis. In addition, the podoplanin-CLEC-2 axis might serve as an attractive target for new therapies against cancer-associated VTE.
Collapse
Affiliation(s)
- Pegah Mir Seyed Nazari
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Julia Riedl
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.
| |
Collapse
|
94
|
Wang W, Luo J, Wang S. Recent Progress in Isolation and Detection of Extracellular Vesicles for Cancer Diagnostics. Adv Healthc Mater 2018; 7:e1800484. [PMID: 30009550 DOI: 10.1002/adhm.201800484] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are emerging as one of the many new and promising biomarkers for liquid biopsy of cancer due to their loading capability of some specific proteins and nucleic acids that are closely associated with cancer states. As such, the isolation and detection of cancer-derived EVs offer important information in noninvasive diagnosis of early-stage cancer and real-time monitoring of cancer development. In light of the importance of EVs, over the last decade, researchers have made remarkable innovations to advance the development of EV isolation and detection methods by taking advantage of microfluidics, biomolecule probes, nanomaterials, surface plasmon, optics, and so on. This review introduces the basic properties of EVs and common cancer-derived EV ingredients, and provides a comprehensive overview of EV isolation and detection strategies, with emphasis on liquid biopsies of EVs for cancer diagnostics.
Collapse
Affiliation(s)
- Wenshuo Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jing Luo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
95
|
Byrnes CC, Jia W, Alshamrani AA, Kuppa SS, Murph MM. miR-122-5p Expression and Secretion in Melanoma Cells Is Amplified by the LPAR3 SH3–Binding Domain to Regulate Wnt1. Mol Cancer Res 2018; 17:299-309. [DOI: 10.1158/1541-7786.mcr-18-0460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
|
96
|
Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules 2018; 8:E94. [PMID: 30223513 PMCID: PMC6164003 DOI: 10.3390/biom8030094] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Louise Conrard
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Anne-Sophie Cloos
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
97
|
Bjørge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair. Biomater Sci 2018; 6:60-78. [PMID: 29184934 DOI: 10.1039/c7bm00479f] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue regeneration by stem cells is driven by the paracrine activity of shedding vesicles and exosomes, which deliver specific cargoes to the recipient cells. Proteins, RNA, cytokines and subsequent gene expression, orchestrate the regeneration process by improving the microenvironment to promote cell survival, controlling inflammation, repairing injury and enhancing the healing process. The action of microRNA is widely accepted as an essential driver of the regenerative process through its impact on multiple downstream biological pathways, and its ability to regulate the host immune response. Here, we present an overview of the recent potential uses of exosomes for regenerative medicine and tissue engineering. We also highlight the differences in composition between shedding vesicles and exosomes that depend on the various types of stem cells from which they are derived. The conditions that affect the production of exosomes in different cell types are deliberated. This review also presents the current status of candidate exosomal microRNAs for potential therapeutic use in regenerative medicine, and in applications involving widely studied organs and tissues such as heart, lung, cartilage and bone.
Collapse
Affiliation(s)
- I M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | | | | | | | | |
Collapse
|
98
|
Gieseler F, Plattfaut C, Quecke T, Freund A, Ungefroren H, Ender F. Heterogeneity of microvesicles from cancer cell lines under inflammatory stimulation with TNF-α. Cell Biol Int 2018; 42:1533-1544. [PMID: 30080276 DOI: 10.1002/cbin.11040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/29/2018] [Indexed: 12/11/2022]
Abstract
Microvesicles (MVs) represent a subgroup of extracellular vesicles (EVs) emerging from various cells by blebbing of their outer membrane. Therefore, they share features such as membrane composition and antigenicity with their parental cells. Released by many immune and tumor cells, MVs act as intercellular messengers, account for horizontal gene transfer and can activate the coagulation system. With the aim to investigate their relevance for tumor cell biology, we characterized MVs released by human tumor cell lines of various origins in the absence or presence of TNF-α. After stimulation, we used the combination of low and high-speed centrifugation to enrich MVs from cell culture supernatants. We analyzed the presentation of phosphatidylserine (PS) and tissue factor (TF) activity on the cell surface and investigated their potency to induce tumor cell migration. In all tumor cell lines, TNF-α stimulation enhanced the release of MVs. While the expression of PS was universally increased, an elevated activity of procoagulant TF could be detected on MVs from lung, pancreatic, and colon carcinoma, but not from breast and ovarian cancer cell lines. Functionally, TNF-α stimulation significantly increased the potency of MVs to induce tumor cell migration. In conclusion, inflammatory conditions promote the release of MVs with increased procoagulant activity from tumor cell lines in vitro. PS-containing and TF-expressing MVs may account for systemic activation of the coagulation system as seen in cancer patients and, since they induce tumor cell migration, they may serve as biomarkers for tumor progression.
Collapse
Affiliation(s)
- Frank Gieseler
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Corinna Plattfaut
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Tabea Quecke
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Annika Freund
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Hendrik Ungefroren
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany.,Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Fanny Ender
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| |
Collapse
|
99
|
Shefler I, Salamon P, Levi-Schaffer F, Mor A, Hershko AY, Mekori YA. MicroRNA-4443 regulates mast cell activation by T cell–derived microvesicles. J Allergy Clin Immunol 2018; 141:2132-2141.e4. [DOI: 10.1016/j.jaci.2017.06.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
|
100
|
NK Cell-derived Exosomes From NK Cells Previously Exposed to Neuroblastoma Cells Augment the Antitumor Activity of Cytokine-activated NK Cells. J Immunother 2018. [PMID: 28622272 DOI: 10.1097/cji.0000000000000179] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune cell-derived exosomes can increase immunity against tumors. In contrast, tumor-derived exosomes can reduce the immunity and can change the tumor microenvironment to further develop and provide metastasis. These effects take place by an alteration in the innate and adaptive immune cell functions. In this experiment, we studied the natural killer (NK) cells' effectiveness on tumor cells after expansion and thereafter incubated it with exosomes. The exosomes were derived from 2 populations of NK cells: (1) naive NK cells and, (2) NK cells previously exposed to neuroblastoma (NB) cells. Moreover, we have studied the NB-derived exosomes on NK cell function. The molecular load of the characterized exosomes (by means of nanoparticle-tracking analysis, flow cytometry, scanning electron microscopy, and western blot) from NK cells exposed to the NB cell revealed their expression of natural killer cell receptors in addition to CD56, NKG2D, and KIR2DL2 receptors. These exosomes were used to treat NK cells and thereafter administered to NB tumor cells both in vitro and in vivo. Our results showed some kind of NK cells' education by the exosomes. This education from NK cells previously exposed to NB cell-derived exosomes caused efficient and greater cytotoxicity against NB tumors, but NB-derived exosomes act as tumor promoters by providing a tumor supporting niche. Hence, this method of preparing the exosomes has a dramatic effect on activation of anti-NK cells against NB cells.
Collapse
|